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The GPT-3 Story (Estimation)!!

Power Consumption

GPT-3 consumed around 1,287 MWh

@ Running the London Eye continuously for over 5 years

https://arxiv.or /21041
https://arxiv.org/abs/2005.14165


https://arxiv.org/abs/2104.10350

The GPT-3 Story (Estimation)!!

GPU Consumption

GPT-3 training used ~355 GPU-years on V100s

6 Running 10,000 high-end gaming PCs at full load for 13 days straight

https://lambdalabs.com/blog/demystifying-gpt-3/



The GPT-3 Story (Estimation)!!

Water Consumption

GPT-3 required ~ 700K Lliters of water

* Running a standard shower for 6 years non-stop
* Filling 1.5 million water bottles (500ml each)

https://arxiv.org/abs/2304.03271



Al Is science for the rich, not the poor!
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Lets make modern LLMs
less hungry for resource
and less thirsty for water!!



Downscaling has already started
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TransEvolve
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Redesigning the Transformer Architecture with
Insights from Multi-particle Dynamical Systems

Subhabrata Dutta  Tanya Gautam Soumen Chakrabarti Tanmoy Chakraborty

NeurlPS’21 - Spotlight

Deep neural networks as numerical solvers of
ordinary differential equations

On all the encoder-only tasks, TransEvolve
outperforms Transformer, as well as several
strong baselines, with 50% fewer trainable
parameters and more than 3x training speedup.

Tanmoy Chakraborty
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Economical, Adaptable and Interpretable Models

that can reason faithfully BM. Meta,
Microsoft, DRDO

, , Economical
1. Economical—-How can we achieve
. ACL’23 (Outstanding Paper),
powerful performance with fewer NeurlPS727, ICLR"24] [CLRI2S,
resources? ICML’25

2. Adaptable - How do we make models
generalize to new and low-resource

ina?
domains Adaptable Interpretable

3. Interpretable — Can we understand ‘why’
and ‘how’ they make predictions? Can
we control them?

TACL’25, TMLR’25, TMLR’24, ACL’25,
EMNLP’25 TACL’25

JP Morgan, Samsung,
Microsoft Google, Adobe



Economical Models

Knowledge Distillation Model Pruning Model Coordination
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Efficient
LLM Distill LLM

(ICLR’24, TMLR’24, ACL’25) (ICLR’25, NeurlPS’24) (EMNLP°23, EMNLP’24, AAAI24, EMNLP’25)



Adaptable Models

Parameter Efficient Fine-Tuning Robust Fine-tuning (TMLR’25)
TACL'25 , .
ID3: Adaptive Selective Fine-tuning of LLMs MontecLoRA: Robust Domain Adaptation
j A Bayesian
C. O O G O C parameterization of
\/’(} ) 0 ( ) low-rank adaptation
(_J. e (::1‘ . aD reduces the variance of
O . posterior estimate,
O. O O stabilizing the fine-
) ) ' tuning model under
; |V gi O O g £ ] different
H{H ) - W ]]:‘I"f:fl:lii‘lj"‘t"’ Latent vectars :;f"‘;_‘:"::ﬁ:':_:'“‘"i" Latent matrices Frozen parameters hyperparameters
Heuristic function calculates the ratio of
parameter gradient and magnitde. Epsilon
and exp hyperparameters are used to balance
exploration-exploitation
In-context Adaptation (ACL’24)
Cross-lingual In-Context Learning (ACL'23) Cross-task In-Context Learning
We proposed X-InSTA - a novel and effective prompt We showed how LLMs can leverage cross-task signals
construction strategy for cross-lingual ICL. to solve novel tasks.

— ACL 2023 (Outstanding Paper Award)



LLM Interpretability

Mechanistic Understanding of CoT How Instruction Fine-tuning works?
~ (TMLR’24) (TACL'25)
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' | Prompt Tokens Response Tokens
Takeaways: Takeaways:
o Multiple different neural pathways are deployed to o The conventionalinstruction tuning loss rarely yields
compute the answer, that too in parallel. the best-performing model.
o parallel answer generation pathways collect answers o A moderately high response weight not only
from different segments of the input. enhances performance but also improves model
o Lower layers store pre-trained knowledge, whereas robustness to minor prompt.

upper layers store in-context knowledge



Economical Models

Knowledge Distillation

TG o
Efficient G
LLM Distill LLM

(ICLR’24, TMLR’24, ACL’25)




Knowledge Distillation (KD): Types

Hinton et al., 2015 Teacher model generate
soft labels (logits)

Teacher soft labels

predictions

Training data

distilled| knowledge

hard labels

Student

Teacher generated logits
used to fine-tune the
student
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Knowledge Distillation (KD): Types

Hinton et al., 2015

Teacher model generate
soft labels (logits)

soft labels
predictions

Teacher generated logits
used to fine-tune the
student

(%) - =(%7)]
T T 2

CE Loss CE Loss

DS Loss

PT Loss

PT Loss

PT Loss

PT Loss

?
LA A

PT Loss
Trm

4344444

i

BERT-Teacher

Inputs |

BERT-Student

Distance between
layer-wise
representations
used to enforce
student model to
imitate the teacher

[foco = s,

Sun et al., 2019



Limitations of Vanilla KD

: : Q- Learning
[% Sklll/Domam] [ & Objective ]
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Knowledge sharing is unidirectional, i.e., teacher is not aware of student’s
capacity

Image reference: Xu et al., 2024



MPDistil: Student-Aware Meta Distillation: Learning to teach

s Step 1: Teacher fine-tunin Step 2: Student distillation
« A healthy competition between the teacher s — Y - :
and student can encourage both the models | == @
.‘:: Meta-teacher model n :Ll .
to perform better. - S ’ prudent KD
Ofoneanne Ve ol ol
] N o et ) LT — iy!
d A better teaCher can set a hlgher Step 4: Student curriculum learning <: Step 3: Meta-teacher learning

Student

benchmark for the student, enhancing \P- B g
hidden representation

student’s performance. = @ e v
k4 ] o 3L e

)
[°T)
v Quiz
5 o I 4
stu;dent \8
Ly EEI Teacher

l [ hidden representation
reward + (T[] o] (ol S —

s

S

o e
v s
s

o The student can devise better learning
strategy (curriculum) to perform better than
the teacher.

Sengupta, Dixit, Akhtar, Chakraborty. A Good Learner Can Teach Better: Teacher-Student Collaborative Knowledge Distillation. ICLR 2024.




MPDistil: Step 1 -- Teacher Fine-tuning

1. Teacher Fine-tuning




MPDistil: Step 2 -- Student Distillation

1. Teacher Fine-tuning 2. Student Distillation

Task T L;mdenr KD

1

. ) YT Y(.,s
e~ Lot - o (52) ~o(22)] -




MPDistil: Step 3 -- Meta-teacher Learning

1. Teacher Fine-tuning 2. Student Distillation 3. Teacher Meta Learning
(on a quiz dataset)
; Student
@ : %\ Men representation
L .55 Task T - meta
Task T |, [student KD HQuiz |
| Train T \3 | —
VT (L Teacher
I:E — hidden representation
ngachﬁzr
Collaborative Loss Competitive Loss
1 _ _ - e 1 — . e
meta col 9N [log Y,y + log y(é,S)] , if Tis a classification task N Z [2 log y(;, ) — log Q(i,s)} , if T1is a classification task
L _ i1 CTmeta com __ 1
1 2 1 2 R . A 1 A R :
B Hy — Y1) ||2 + B Hy — U(.,s) ||2, if Tis a regression task ||y —Yem||, T §||’y — Y|, if T1is a regression task

Intuition: The meta-teacher obtains the hidden states from both teacher and student and creates a healthy
competition between the models.



MPDistil: Step 3 -- Meta-teacher Learning

1. Teacher Fine-tuning 2. Student Distillation 3. Teacher Meta Learning
(on a quiz dataset)
@ @ hldden representation

L?e ta

Task T o TaskT I Lsmdent KD g | Quiz
d Cco

< ensures stronger
] E[J: mela cum] o

Proposition 1. For any classification task 7, having E[L+™
student with E[ys| > E[yr|.

Collaborative Loss Competitive Loss

1 N

—— log ¥¢i 7y + log Yy ] if Tis a classification task . [ T — log s « } if Ti ificati
ﬁTm"ta col 2N - { g Y, T) gYi.9) | ¢ metacom N Z 2log Y,y — logyei,s) |, if Tis a classification task

, if Tis a regression task

Y-
2 Y= Y8 2

%Hy — ﬁ(_,m”z + %Hy — f}(_,s) ||2, if 7'is a regression task

Intuition: The meta-teacher obtains the hidden states from both teacher and student and creates a healthy
competition between the models.



MPDistil: Step 4 -- Student Curriculum Learning

1. Teacher Fine-tuning 2. Student Distillation 3. Teacher Meta Learning

(on a quiz dataset)

Student
%\ hidden representation = ceeeeeseesessessssnnennng
ST ' | [ raskr o pyreta
. Lsmdent KD \B Quiz
o2 DE' Teacher

hidden representation
Lteacher
T

4. Student Curriculum Learning

& ¥
g n Student State |

- : AN
. . . Task T Task T Policy -'??.’3“5-5,3
In real world, a student might aim to improve her u Quiz Qe | T otig

Why Curriculum Learning in KD?

understanding of Physics by studying selected concepts
from Mathematics.

smde!nt
L_Tr

reward = E[ﬁ -jf‘j] REINFORCE  tesessssismsimsiasmasasasssansin 4



MPDistil: Step 4 -- Student Curriculum Learning

1. Teacher Fine-tuning

ngach}sr

Competing student tries to beat the teacher

2. Student Distillation

A policy network
selects optimal

the student by

curriculum to fine-tune

R blnary
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3. Teacher Meta Learning
(on a quiz dataset)

Student
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L?e ta

4. Student Curriculum Learning
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MPDistil: Step 4 -- Student Curriculum Learning

1. Teacher Fine-tuning

2. Student Distillation 3. Teacher Meta Learning

(on a quiz dataset)

hidden representation

L?e ta

ngach}sr

selects optimal
curriculum to fine-tune
the student by

maximizing the reward

)

b

. L;tud.ent KD \3
(L

ey

hidden representation

4. Student Curriculum Learning

Proposition 2. For any classification task 7, E[R ®m] > E[R ],

I , if Tis a regression task
“y"_f‘u,T’J||2>”y"_“}“=3) Hg

chal — {

Q(@,s) — ?;'“ ') if T1is a classification task

Hyi — Q(i,T:) ‘yi — 9,9 ||21 if Tis a regression task

reward = E[yr — y5] ——



ICLR’24
A “smart” student can beat a teach!!

Methods BoolQ9 CB COPA RTE WIC WSC

KD Hinton et al. (2015) 133 -19.1 4.3 37 91 -144

PD Turc et al. (2019) 1 96  -9.5 03 -13.5 -69 -11.2

PKD Sun et al. (2019) 1.7  -59 60 -38 04 -125

DistilBERT Sanh et al. (2019) } 60 -7.7 -1.0 -120 -58 93

Theseus Xu et al. (2020) ‘1.6 -3.6  -43 48 -1.8 -11.5

TinyBERT Jiao et al. (2019) 1.4 -12 43 37 17 29

MobileBERT Sun et al. (2020) 48 24 07 -140 23 93

SID Aguilar et al. (2020) 101 -17.3  -1.0 -148 90 -12.8

MiniLM Wang et al. (2020b) t 35 -11.9 40 -53 -1.2 -144

MiniLMv2 Wang et al. (2020a) t 27  -143 40  -63 25 -15.1

ALP-KD Passban et al. (2021) 1 22 113 -5.3 48 -1.3  -13.1

LRC-BERT Fu et al. (2021) § 45 95 03  -164 -85 -11.2

Annealing-KD Jafari et al. (2021) 1 88  -59 33 -140 -63 -11.2

CKD Park et al. (2021) 1 78 66 -10 -117 -73 -11.2

Universal-KD Wu et al. (2021a) -1.8 -5.4 -1.3 -28 06 -11.2 Positive value

DIITO Wu et al. (2021b) t -39 -59 6.0 75 54 -86 L

Continuation-KD Jafari et al. (2022)+  -80  -7.1 27 -142 79  -13.1 indicates the

RAIL-KD Haidar et al. (2021) § 104 7.7 07 -124 -58 -7.7 student model is

MGSKD Liu et al. (2022a)) -6.1 66 -1.0 -70 30 -12.8 better than the
15t Let al f‘?ﬂ?l} _17 -1 R 1.0 10 _1 .6 (10

teacher model

MPDistil (Ours) -19 0.0 7.0 0.4 2.5 1.0

(-) Curriculum learning -2.8 -5.3 -4.0 -1.8 1.2 0.0



ACL 2025

Explaining Knowledge
Distillation

Known: KD improves generalization abilities of student models.

Questions

(i) Post-KD, does student perfectly imitate a teacher?
(i) What are the key drivers influencing the effectiveness of KD methods?



Agreement b/w Teacher-Student Post-KD

14B -> 0.5B 14B -> 1.5B 14B -> 3B 14B -> 7B
AQuA AQuA AQuA AQuA
70 80 80 80
60 : 70 ; 3 .
gleEq AddSu 60 leEq AddS 70 leEq AddS 70 leEq
"\',::\_..' i '-— ""?';‘.:\.:\ = v< \‘i:\i?‘ Z = ' \ T 60 (

GSM AMP AMP

GSM ./ AMP

MultiArith MultiArith MultiArith MultiArith
—— Agreement before KD ——— Agreement after KD

Agreement: Overlap between the final output generated by teacher and students.

Teacher-student agreement improves post KD, mostly for smaller LMs (<7B).



Fidelity b/w Teacher-Student Post-KD

14B -> 0.5B 14B -> 1.5B 14B -> 3B 14B -> 7B
GOAQUA AQUuA AQUA AQuA

ingleEq AddSub ingleEq AddSub ingleEq

A\ 4

MultiArith MultiArith MultiArith MultiArith

—— Reasoning fidelity before KD —— Reasoning fidelity after KD  Student self-reasoning fidelity
Fidelity: Ability of the student to imitate the teacher’s reasoning behaviors.
« Smaller LMs tend to have better fidelity post-KD.

 However, statistical tests show that fidelity does not necessarily improve the generalization
abilities of student models!!



Fidelity vs Generalization Paradox of KD

Instruction

Student KD Output

Teacher SFT Output

Fidelity

Robin has 28 packages of
gum and 13 packages of
candy. There are 4 pieces
in each package. How
many pieces of gum does
Robin have?

To solve this problem, we need
to use multiplication.

1. Identify the given information:
Robin has 28 packages of gum
and 13 packages of candy. Each
package has 4 pieces of gum and
candy.

2.  Determine the operation
needed to find the total number of
pieces of gum: We need to mul-
tiply the number of packages of
gum by the number of pieces of
gum in each package.

3. Multiply: 28 by 4 to find the
total number of pieces of gum.

Therefore, Robin has 56 pieces

of gum.<lendoftextl>

To solve this problem, we need
to use multiplication. 1. Multiply
the number of packages of gum
by the number of pieces in each
package:

28 packages x 4 pieces = 112
pieces of gum

2. Therefore, Robin has 112
pieces of gum.

The answer in Arabic numerals
is: 112.<lendoftext>

High teacher-student
fidelity, but wrong answer
predicted by student (poor
generalization)



Fidelity vs Generalization Paradox of KD

Instruction

Student KD Output

Teacher SFT Output

Fidelity |

Because of the decision
Sofia asked 310 students
to suggest specific types
of food. 185 students
suggested adding mashed
potatoes while others sug-
gested adding bacon to
the menu. How many stu-
dents suggested bacon?

To solve the problem, we can use
subtraction:number of students
= 3100f students who suggested
mashed potatoes = 185find the
number of students who sug-
gested bacon, we subtract the
number of students who sug-
gested mashed potatoes from the
total number of students:
310-185=125

Therefore, 125 students sug-
gested adding bacon to the
menu.<lendoftext/>

We can start by using the concept
of complementary counting. Let
x be the number of students who
suggested bacon. We know that
the total number of students is
310, so we can set up an equation:
185 + x = 310 Subtracting 185
from both sides: x =310 - 185
Simplifying: x = 125 Therefore,
125 students suggested adding
bacon to the menu. Answer:
125 <lendoftextl>

Low teacher-student
fidelity, but good
generalization

Therefore, the tradeoff between generalization vs fidelity-agreement remains prominent.



Drivers behind Successful KD

B KD with Task-Aware Teacher B KD with Task-Unaware Teacher BE o=0 mm o=1 mmm oc=2 |mmEm 0=5
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3B->0.5B 3B->1.5B 7B->0.5B 7B->1.5B 7B->3B - 3B->0.5B 3B->1.5B 7B->0.5B 7B->1.5B 7B->3B
Student Model Student Model
1. Teacher model should be task- 2. Teacher signals to student should be
aware noise-free.

Here o is the amount of Gaussian noise added to
the teacher logits before distilling to student. For o,
student performance drops drastically.

Teacher model performance minimally affects student outcomes; however, the

teacher’s task-specific expertise is crucial



Drivers behind Successful KD

70
=60
550

< 40+
@ 30+

Z20
10

0 3B->0.5B  3B->1.5B 7B->0.5B 7B->1.5B 7B->3B

I KD with Task-Aware Teacher B KD with Task-Unaware Teacher

Student Model

1. Teacher model should be task-
aware

Em o=0 mwm o=1 mm o=2 mm o=5

70
> 60
o
@
5 50
< 40+
@ 30
[
Z 204
10

3B->0.5B 3B->1.5B 7B->0.5B 7B->1.5B 7B->3B
Student Model

2. Teacher signals to student should be
noise-free.

Here o is the amount of Gaussian noise added to
the teacher logits before distilling to student. For o,
student performance drops drastically.

Average Accuracy
B, N W R U N
o o O o o o o o

e t=1 mm t=2 mm t=5

3B->0.5B 3B->1.5B 7B->0.5B 7B->1.5B 7B->3B
Student Model

3. Logit smoothing is important

Here 1 is the temperature used to
smoothen the teacher logits. Too much
smoothing hurts student performance,
but moderate smoothing shows benefit.

Temperature (7) in KD balances precision (7 |) and recall (z T) of the student model.




Economical Models

Model Pruning

(ICLR’25, NeurlPS'24)




Efficient Model Pruning

Model Pruning Methods

Unstructured Pruning Structured Pruning

A 4
\ 4

Benefit - Better retention of model performance Benefit - Easier to implement, flexible and
Limitation — Sparse matrix operations are hardware friendly

hardware-dependent and requires complex Limitation — Over pruning hurts performance,
implementation for inference benefits needs careful considerations for different model

architectures



Structure pruning requires calibration data

Pruning step

Evaluation Calibration data
Refinement

Recovery fine-tuning
RFT data

( Existing structured pruning methods — SliceGPT (Ashkboos et al., 2024), LLM Pruner (Ma etal., 2023), |
Layer Collapse (Yang et al., 2024) use calibration data to determine the unimportant components of a pre-
ktralned model for pruning. y
(Limitations h
1. Over-reliance on calibration data makes the compressed model sensitive to the data selection,
becomes less reliable on downstream tasks (Ji et al., 2025)
\2. Recovery fine-tuning (RFT) is crucial for preserving performance of the models, post-compression )




Structure pruning requires calibration data

Pruning step

Evaluation Calibration data
Refinement

Recovery fine-tuning
RFT data

Lemma 3.1 (Limitations of Intrinsic Model Compression). Given an LLM with hidden dimension
dpidden and intermediate FFN dimension dipermediate, any intrinsic model compression method that

introduces new parameters within the model will reduce model size only if the compression ratio
r dhr’dzfm —i_di’mennedim‘e
E’dhr’dzfm +3dmrennedime )




Can we use Intrinsic Metrics for Pruning

Corollary 3.3 (Slicing shrinks the range of the spectrum). Let W € R"*9 be a weight matrix,
and let W' € R™*% be a matrix obtained by slicing off rows of W so that m < n. Then, the range
of singular values of W' is a subset of the range of singular values of W'

21.0 (a) Layer 1

3 Singular values of a matrix determine the

% 0.8 7 importance of each component.

2 0.6 ,”

Iy .

'% 0.4 ,, — Compress!on 0% .

s [ Compression 25% Can we preserve the singular value structure
€0.2 —=—=- Compression 50% (spectral structure) to preserve the

= 0.0 / === Compression 75% performance of compressed model?

O 0.0«

0 1 2 3 4 5
Singular Values



PruneNet: Calibration-free Structured Pruning

Fany
P
ow Se ion
J@ .
[1,0,..,1,0]
: O @) Col
Policy Indices to 0 um'n Activation
Learning @ Keep Selection

m |

IEH“

Updated —
Spectrum Spectrum Multl-Heaqed
D|str|but|on| D stribution Self-Attention

Layer Norm

= =4

« PruneNet treats model compression as a policy-learning process that assesses the parameter
importance once (using intrinsic methods) and can reuse the policy to compress the model at
multiple compression ratios, at once.

. PruneNet is highly flexible, reusable and does not use sensitive and unreliable mechanisms like
\_ calibration.




PruneNet: Calibration-free Structured Pruning

Fd Y
€1/

/

Layer Norm

[
¢V

i Multi-Headed |
L Self-Attention |

Use the KS distance

spectrum distribution
signifies the impact of

[ Layer

Norm ]

\
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as penalty to update \_compression
the policy KS Distance
‘A Updated
Spectrum e AN Spectrum
Distribution

[

L

J\

/\ Distribution

Row Selection m
FEN 2 AU PN IS _/ FEN 2 \ ‘
clone > > [1,0,...,1,0] Reuse the same
—— Policy Indices to Column policy for FFN2
[ Activation ] Learning Keep Selection matrix
fKoImogorov-Smirnov
W _____ | _| _Clone = Penalt (KS) distance between

y original and updated

(With iterations, the )
penalty reduces.

The policy learning
terminates after

fixed number of

klteratlons. )

[A policy learner assesses the different column indices of FFN1 matrix for a Transformer block ]




ICLR’2

Effectiveness of PruneNet: Empirical Evidence

Method Sparsity  Effective Sparsity FLOPs Avg. Zero-shot Acc
_Dense 0% __ ____ 0.0% 1 1.35e+13 (1.00x) 090 ____.
SliceGPT 0% %ﬁéﬂg I.ﬁ?ig (1 .iox) 28.2 Model I\f[l}?rl]l:;d Thmughl;llult é’ﬁl‘ukenfsec}
PruneNet 12.0% 1.18e+13 (1.15x) 1.7 Dens ‘
CSliceGPT T, 153% | 1de+[3(118x) ~ ~ 5557 LLaMA27B - ShieeGHT oo
~PruneNet ™7 | 160% ] 1.13e+13 (1.20x) . 586 00 o--------- Demse ~~—~~ - 5020~ °
SliceGPT 30% 21.4% 1.07e+13 (1.27x) 51.5 Phi-2 SliceGPT 18.48
PruneNet 19.0 % 1.09e+13 (1.24x) 55.5 PruneNet 29.50

("PruneNet achieves higher effective sparsity and ) LLaMA-2-7B compressed with PruneNet
efficiency while maintaining better performance exhibits 73% better inference throughput
on downstream tasks. than the original model.

Effective sparsity indicates the memory
Qeduction in the compressed model. W,




Takeaways

LLaMA-2-7B compressed with PruneNet exhibits 73% better
inference throughput than the original model.

PruneNet can compress LLaMA-2-7B in just 15 minutes by 30%,
achieving over 80% retention of its zero-shot performance.

PruneNet is architecture-agnostic and can be applied on any pre-
trained network, without the need for any calibration.

https://github.com/LCS2-IlITD/PruneNet



SliceGPT, PruneNet still face some loss in the performance

Can we analytically estimate how much performance can be dropped post
compression?

Can we estimate how much inference speedup is expected post-compression to
overweigh the performance drop?



Accuray vs compression ratio is power law
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Inference time vs compression ratio is power law

8000 - ﬁ“lﬁ.h\‘: .---- Fitted ® Empirical
w0 7000 - h""-.___ﬁ‘
c T
= 6000 - Rt S
1
£ 5000 .
C Sz~
240001 R. c
[} e -======f========= ¢
§ 3000_ “'--.____-‘__-‘-_- ® ® ‘II=I===|==::=.
$2000( et T .
£ b LY S S e T -
1000_ -——-———__:::’::::::::l:::::::::::::::::!::
-—— - _______ . e !--
0_ T T T T T T
0 10 30 50 70 90

Compression Ratio

Qwen2.5-0.5B ~== Qwen2.5-3B -~~~ Uama-3.2-3B
Qwen2.5-1.5B --- Qwen2.5-7B === Meta-Llama-3-8B
Qwen2.5-14B ---~ Uama-3.2-1B

Inference runtime of a compressed LLM follows power-
law

L= L1+ 1r)7%67 with £, being the uncompressed
model runtime, r being the compression ratio.

Increasing the compression ratio for 0% to 30%, leads to
17% reduction in runtime (1.19X speedup). Increasing
compression ratio to 60% leads to 1.37X speedup.



ICML’25
Compression Laws for Large Language Models

Ayan Sengupta“! Siddhant Chaudhary ™' Tanmoy Chakraborty !

L(Loy,m,D) = LyFy(1 —7)°

b /\\\

Performance Performance of  Pruning Effect of Effect of recovery
of pruned LLM unpruned LLM constant pruningratio fine-tuning

https://arxiv.org/pdf/2504.04 342



Critical Compression Ratio

Poiealld) 1= oF — 1, which we call the critical compres-
sion ratio for recovery threshold o € (0,1). Then the
following hold:

1. If o € (0,2°), then for any compression ratio v €
(0, 1), there exists D such that RFT on the compressed
model with a dataset size of D will result in é > O.

2. If o € [2P,1), then for any r > 7¢isicat(0), no amount
of RFT can recover the compressed model accuracy
L to satisfy é > 0. On the other hand, for any

r < Teritical» there is a large enough D such that RFT
with a dataset of size D will result in Z% > .2
0

If we prune the LLM below the critical
compression ratio, we can achieve the
performance recovery target with some
arbitrarily large recovery fine-tuning data.

if we compress the LLM more than the critical
compression ratio, we can never reach the
performance target, no matter how much we
fine-tune the pruned model.
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