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Enough of Scaling Laws! 
Let’s Focus on Downscaling
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Power Consumption

GPT-3 consumed around 1,287 MWh

 Running the London Eye continuously for over 5 years

The GPT-3 Story (Estimation)!!

https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2005.14165

https://arxiv.org/abs/2104.10350


GPU Consumption

GPT-3 training used ~355 GPU-years on V100s 

 Running 10,000 high-end gaming PCs at full load for 13 days straight

The GPT-3 Story (Estimation)!!

https://lambdalabs.com/blog/demystifying-gpt-3/



Water Consumption

GPT-3 required ~ 700K liters of water

• Running a standard shower for 6 years non-stop 
• Filling 1.5 million water bottles (500ml each)

The GPT-3 Story (Estimation)!!

https://arxiv.org/abs/2304.03271



AI is science for the rich, not the poor!

Approximate locations of public cloud regions and the most 
advanced GPU type available in each region

Image Source: Lehdonvirta, Wú, Hawkins. Compute North vs. Compute South: The Uneven Possibilities of Compute-based AI Governance Around the Globe. AIES 2024



Lets make modern LLMs 
less hungry for resource 

and less thirsty for water!!



Downscaling has already started

https://www.marktechpost.com/2024/11/09/a-deep-dive-into-small-language-models-efficient-alternatives-to-large-language-
models-for-real-time-processing-and-specialized-tasks/
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NeurIPS’21 - Spotlight

On all the encoder-only tasks, TransEvolve 
outperforms Transformer, as well as several 
strong baselines, with 50% fewer trainable 
parameters and more than 3× training speedup.

Deep neural networks as numerical solvers of 
ordinary differential equations

TransEvolve

https://www.lcs2.in/
https://home.iitd.ac.in/


Economical, Adaptable and Interpretable Models 
that can reason faithfully

1. Economical – How can we achieve 
powerful performance with fewer 
resources?

2. Adaptable – How do we make models 
generalize to new and low-resource 
domains?

3. Interpretable – Can we understand ‘why’ 
and ‘how’ they make predictions? Can 
we control them?

Economical

InterpretableAdaptable

TACL’25, TMLR’25, 
EMNLP’25

TMLR’24, ACL’25, 
TACL’25

ACL’23 (Outstanding Paper), 
NeurIPS’21, ICLR’24, ICLR’25, 
ICML’25

IBM, Meta, 
Microsoft, DRDO

JP Morgan, Samsung, 
Microsoft Google, Adobe 



Economical Models

(ICLR’24, TMLR’24, ACL’25) (ICLR’25, NeurIPS’24) (EMNLP’23, EMNLP’24, AAAI’24, EMNLP’25)

Knowledge Distillation Model Pruning Model Coordination



Adaptable Models
Parameter Efficient Fine-Tuning

ID3:  Adaptive Selective Fine-tuning of LLMs

Robust Fine-tuning

MontecLoRA: Robust Domain Adaptation

A Bayesian 
parameterization of 
low-rank adaptation 
reduces the variance of 
posterior estimate, 
stabilizing the fine-
tuning model under 
different 
hyperparameters

In-context Adaptation

Cross-lingual In-Context Learning

We proposed X-InSTA - a novel and effective prompt 
construction strategy for cross-lingual ICL.

Cross-task In-Context Learning

We showed how LLMs can leverage cross-task signals 
to solve novel tasks.

(TMLR’25)

ACL 2023 (Outstanding Paper Award)

TACL’25

(ACL’23)
(ACL’24)



LLM Interpretability 

Takeaways:
o Multiple different neural pathways are deployed to 

compute the answer, that too in parallel.
o parallel answer generation pathways collect answers 

from different segments of the input.
o Lower layers store pre-trained knowledge, whereas 

upper layers store in-context knowledge

(TMLR’24)

Takeaways:
o The conventional instruction tuning loss rarely yields 

the best-performing model.
o A moderately high response weight not only 

enhances performance but also improves model 
robustness to minor prompt.

Mechanistic Understanding of CoT How Instruction Fine-tuning works?
(TACL’25)



Economical Models

(EMNLP’23, EMNLP’24, AAAI’24)

Knowledge Distillation Model Pruning Model Coordination

(ICLR’24, TMLR’24, ACL’25) (ICLR’25, NeurIPS’24)



Knowledge Distillation (KD): Types
Teacher model generate 

soft labels (logits)

Teacher generated logits 

used to fine-tune the 

student

Hinton et al., 2015



Knowledge Distillation (KD): Types
Teacher model generate 

soft labels (logits)

Teacher generated logits 

used to fine-tune the 

student

Hinton et al., 2015 Distance between 
layer-wise 

representations 
used to enforce 

student model to 
imitate the teacher

Sun et al., 2019



Limitations of Vanilla KD

Image reference: Xu et al., 2024

Knowledge sharing is unidirectional, i.e., teacher is not aware of student’s 

capacity 



MPDistil: Student-Aware Meta Distillation: Learning to teach

Sengupta, Dixit, Akhtar, Chakraborty. A Good Learner Can Teach Better: Teacher-Student Collaborative Knowledge Distillation. ICLR 2024.

● A healthy competition between the teacher 

and student can encourage both the models 

to perform better.

● A better teacher can set a higher 

benchmark for the student, enhancing 

student’s performance.

● The student can devise better learning 

strategy (curriculum) to perform better than 

the teacher. 



MPDistil: Step 1 -- Teacher Fine-tuning

1. Teacher Fine-tuning



MPDistil: Step 2 -- Student Distillation

1. Teacher Fine-tuning 2. Student Distillation



MPDistil: Step 3 -- Meta-teacher Learning

1. Teacher Fine-tuning 2. Student Distillation 3. Teacher Meta Learning 

(on a quiz dataset)

Intuition: The meta-teacher obtains the hidden states from both teacher and student and creates a healthy 

competition between the models. 

Collaborative Loss Competitive Loss
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1. Teacher Fine-tuning 2. Student Distillation 3. Teacher Meta Learning 
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Intuition: The meta-teacher obtains the hidden states from both teacher and student and creates a healthy 

competition between the models. 
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MPDistil: Step 4 -- Student Curriculum Learning

1. Teacher Fine-tuning 2. Student Distillation 3. Teacher Meta Learning 

(on a quiz dataset)

4. Student Curriculum Learning

Why Curriculum Learning in KD?

In real world, a student might aim to improve her 

understanding of Physics by studying selected concepts 

from Mathematics.



MPDistil: Step 4 -- Student Curriculum Learning

1. Teacher Fine-tuning 2. Student Distillation 3. Teacher Meta Learning 

(on a quiz dataset)

4. Student Curriculum Learning

A policy network 

selects optimal 

curriculum to fine-tune 

the student by 

maximizing the reward

Competing student tries to beat the teacher
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A “smart” student can beat a teach!!
ICLR’24

Positive value 
indicates the 
student model is 
better than the 
teacher model



Explaining Knowledge 

Distillation 

Questions

(i) Post-KD, does student perfectly imitate a teacher?

(ii) What are the key drivers influencing the effectiveness of KD methods?

Known: KD improves generalization abilities of student models.

ACL 2025



Agreement b/w Teacher-Student Post-KD

Teacher-student agreement improves post KD, mostly for smaller LMs (<7B).

Agreement: Overlap between the final output generated by teacher and students.

ACL 2025



Fidelity b/w Teacher-Student Post-KD

Fidelity: Ability of the student to imitate the teacher’s reasoning behaviors. 

• Smaller LMs tend to have better fidelity post-KD.

• However, statistical tests show that fidelity does not necessarily improve the generalization 

abilities of student models!!

ACL 2025



Fidelity vs Generalization Paradox of KD

High teacher-student 

fidelity, but wrong answer 

predicted by student (poor 

generalization)

ACL 2025



Fidelity vs Generalization Paradox of KD

Low teacher-student 

fidelity, but good 

generalization

Therefore, the tradeoff between generalization vs fidelity-agreement remains prominent. 

ACL 2025



Drivers behind Successful KD

1. Teacher model should be task-

aware
2. Teacher signals to student should be 

noise-free.

Here 𝜎 is the amount of Gaussian noise added to 
the teacher logits before distilling to student. For 𝜎, 
student performance drops drastically.

Teacher model performance minimally affects student outcomes; however, the 

teacher’s task-specific expertise is crucial

ACL 2025



Drivers behind Successful KD

1. Teacher model should be task-

aware
2. Teacher signals to student should be 

noise-free.

Here 𝜎 is the amount of Gaussian noise added to 
the teacher logits before distilling to student. For 𝜎, 
student performance drops drastically.

3. Logit smoothing is important

Here 𝜏 is the temperature used to 
smoothen the teacher logits. Too much 

smoothing hurts student performance, 
but moderate smoothing shows benefit.

ACL 2025

Temperature (𝜏) in KD balances precision (𝜏 ↓) and recall (𝜏 ↑) of the student model.



Economical Models

(EMNLP’23, EMNLP’24, AAAI’24)

Knowledge Distillation Model Pruning Model Coordination

(ICLR’24, TMLR’24) (ICLR’25, NeurIPS’24)



Efficient Model Pruning

Model Pruning Methods

Unstructured Pruning Structured Pruning

Benefit - Better retention of model performance

Limitation – Sparse matrix operations are 

hardware-dependent and requires complex 

implementation for inference benefits

Benefit - Easier to implement, flexible and 

hardware friendly

Limitation – Over pruning hurts performance, 

needs careful considerations for different model 

architectures



Structure pruning requires calibration data

Existing structured pruning methods – SliceGPT (Ashkboos et al., 2024), LLM Pruner (Ma et al., 2023), 

Layer Collapse (Yang et al., 2024) use calibration data to determine the unimportant components of a pre-

trained model for pruning. 

Limitations

1. Over-reliance on calibration data makes the compressed model sensitive to the data selection, 

becomes less reliable on downstream tasks (Ji et al., 2025)

2. Recovery fine-tuning (RFT) is crucial for preserving performance of the models, post-compression

Pruning step

Evaluation

RFT data

Refinement

Recovery fine-tuning

Calibration data

ICLR’25



Structure pruning requires calibration data

Pruning step

Evaluation

RFT data

Refinement

Recovery fine-tuning

Calibration data

ICLR’25



Can we use Intrinsic Metrics for Pruning

Singular values of a matrix determine the 

importance of each component. 

Can we preserve the singular value structure 

(spectral structure) to preserve the 

performance of compressed model?

ICLR’25



PruneNet: Calibration-free Structured Pruning

● PruneNet treats model compression as a policy-learning process that assesses the parameter 

importance once (using intrinsic methods) and can reuse the policy to compress the model at 

multiple compression ratios, at once. 

● PruneNet is highly flexible, reusable and does not use sensitive and unreliable mechanisms like 

calibration.

ICLR’25



PruneNet: Calibration-free Structured Pruning

A policy learner assesses the different column indices of FFN1 matrix for a Transformer block

Penalty

Kolmogorov-Smirnov 

(KS) distance between 

original and updated 

spectrum distribution 

signifies the impact of 

compression

Use the KS distance 

as penalty to update 

the policy

Reuse the same 

policy for FFN2 

matrix

With iterations, the 

penalty reduces. 

The policy learning 

terminates after 

fixed number of 

iterations.

ICLR’25



Effectiveness of PruneNet: Empirical Evidence

PruneNet achieves higher effective sparsity and 

efficiency while maintaining better performance 

on downstream tasks.

Effective sparsity indicates the memory 

reduction in the compressed model.

LLaMA-2-7B compressed with PruneNet 

exhibits 73% better inference throughput 

than the original model.

ICLR’25



Takeaways

▪ PruneNet is architecture-agnostic and can be applied on any pre-

trained network, without the need for any calibration.

https://github.com/LCS2-IIITD/PruneNet

▪ LLaMA-2-7B compressed with PruneNet exhibits 73% better 

inference throughput than the original model.

▪ PruneNet can compress LLaMA-2-7B in just 15 minutes by 30%, 

achieving over 80% retention of its zero-shot performance.

ICLR’25



• SliceGPT, PruneNet still face some loss in the performance

• Can we analytically estimate how much performance can be dropped post 

compression?

• Can we estimate how much inference speedup is expected post-compression to 

overweigh the performance drop?



Accuray vs compression ratio is power law



Inference time vs compression ratio is power law

Inference runtime of a compressed LLM follows power-

law 

ℒ =  ℒ0
1.0(1 + 𝑟)−0.67, with ℒ0 being the uncompressed 

model runtime, 𝑟 being the compression ratio.

Increasing the compression ratio for 0% to 30%, leads to 

17% reduction in runtime (1.19X speedup). Increasing 

compression ratio to 60%  leads to 1.37X speedup.



ICML’25

https://arxiv.org/pdf/2504.04342



Critical Compression Ratio

If we prune the LLM below the critical 

compression ratio, we can achieve the 

performance recovery target with some 

arbitrarily large recovery fine-tuning data.

if we compress the LLM more than the critical 

compression ratio, we can never reach the 

performance target, no matter how much we 

fine-tune the pruned model.



http://lcs2.iiitd.edu.in @lcs2iiitd@lcs2-iiitd @lcs2iiitd

Thanks to our sponsors

@lcs2lab

Laboratory for Computational Social Systems (LCS2), IIT Delhi

http://lcs2.in

http://lcs2.iiitd.edu.in/
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