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Introduction

Big Data

 Need lots of data



Introduction

Data is Naturally Distributed!

* Edge-devices collect data

e This data is used to train ML models
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Privacy

Individual user data should not be leaked
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Network constraints
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Communication is expensive
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Introduction

Intermittent Availability

Devices are available when

* Idle, plugged-in and on wifi

mii\tlf)
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Introduction

Distributed learning under

PIOONCT, oy Federated Learning
e Network constraints (FL)

Infrequent communication with server

* Intermittent client availability

(partial participation)

Kairouz, et al. "Advances and open problems in federated learning." Foundations
and Trends® in Machine Learning (2021).
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([ DRIP

Stylish clothing or
accessories.

“His outfit has so

GOAT |

Greatest of all time.

“Messi is the GOAT of

much drip!” football.”
HIGHKEY VIBE
The opposite of lowkey; A mood or feeling.
very obvious.
“1 highkey love this “This party has such a
song!” good vibe!”
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Data heterogeneity

System heterogeneity
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Round t begins

* P (out of n) clients

e
Server

Clients
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Round t

 Global model — clients

Clients
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 Global model — clients

Communication Efficiency

Network constraints

Infrequent
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Round t
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Round t
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Round t
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Round ¢
I
* Clients run t = 1 local steps I
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e Saves communication cost —
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Low-power devices

First-order methods
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Round t

 Local models — server

Clients
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Round t

 Local models — server

Communication Efficiency

Network constraints

Infrequent

Clients
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Round t

» Server aggregates local models

Server

Clients
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Round t

» Server aggregates local models

Round t ends
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Round t + 1 begins

* P (out of n) clients
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Round t + 1

 Global model — clients
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Server
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Round t + 1

 Global model — clients

Total T rounds

e
Server

Introduction

Clients
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ChatBots

Multiple Objectives

e Accuracy/Relevance

Gemini gGrok e Engagement

Politeness/Safety
@ l d e Personalization
C au e Trade-offs: accuracy

personalization



Recommender Systems*
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Image modified from MLArchive

Multiple Users

e User Diversity

e Data Privacy
Multiple Objectives

e Accuracy/Relevance

e Diversity

e Novelty

e Contextual Relevance

Trade-offs: accuracy <> diversity

*Sun, et al. "“A survey on federated recommendation systems.” IEEE TNNLS'24.


mlarchive.com

Personalized Medicine*

With personalised medicine

N R st e Multiple Patients

e Patient diversity

e Data confidentiality
Multiple Objectives

e Diagnostic Precision

S LA e Cost-Effectiveness
il \ v e Minimizing Side-Effects
N ’k’k’l\ m R e Privacy and Data Security

8
o

Equity in Access
Trade-offs:

Image from science.org and eupati.eu Precision <+ Cost-Effectiveness

Passive smart home monitoring

*Sheller, et al. “Federated learning in medicine: facilitating multi-institutional col-
laborations without sharing patient data.” Scientific Reports’20.


https://www.science.org/doi/abs/10.1126/scitranslmed.abe5383?rss=1&utm_source=TrendMD&utm_medium=cpc&utm_campaign=TrendMD_1
https://toolbox.eupati.eu/wp-content/uploads/sites/4/2023/01/Example-schematic-of-use-of-personalised-medicine.jpg

Goal

Using data from multiple (distributed) users/patients/clients,
learn a model
that simultaneously optimizes multiple objectives
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In this talk

Federated Multi-Objective Optimization (MOO)

N
min L(x) = mxin (Li(x),..., LM(X))T ,  where Li(x) = % Z LE{")(X)

* i=1
L7~ contribution of i-th client to k-th objective
M objectives, N users/patients/clients

e Communication-efficient algorithm FedCMOO

e Communication cost does not scale with number of objectives M

e Convergence to Pareto-stationary point

e Improved sample complexity - under weaker assumptions

e Improved empirical performance
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1. Background: MOO and MGDA

2. Federated MGDA and its Drawbacks

3. FedCMOO: Improving Federated MGDA

4. Experiment Results

5. Conclusion
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THu, et al. “Revisiting Scalarization in Multi-Task Learning: A Theoretical Per-
spective,” NeurlPS'23.

*Sener and Koltun, “Multi-task learning as multi-objective optimization,”
NeurlPS'18.
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Multi-Objective Optimization (MOO)*

min L(x) = mxin (Li(x),., Lm(x)) "

X
Why do we need it? Why not just solve miny nyl aly(x)?

e How do we decide the weights {ay}V ,?
e A subset of tasks might be severely under-optimized

e Scalar losses do not explore the set of all possible solutionsf

THu, et al. “Revisiting Scalarization in Multi-Task Learning: A Theoretical Per-
spective,” NeurlPS'23.

*Sener and Koltun, “Multi-task learning as multi-objective optimization,”
NeurlPS'18.



MGDA with Multi-MNIST Dataset*

Two digits - one in top-left, the other in bottom-right

*Sener and Koltun, “Multi-task learning as multi-objective optimization,”
NeurlPS'18.



MGDA with Multi-MNIST Dataset*

Two digits - one in top-left, the other in bottom-right

2 E1E1 E2

Task-L/R: classifying the digit on top-left/bottom-right

Table 3: Performance of MTL algorithms on
MultiMNIST. Single-task baselines solve tasks
096 separately, with dedicated models, but are shown
in the same row for clarity.

Fon Leftdigit  Right digit
accuracy [%]  accuracy [%]
97.23 95.90
092 g 96.46
Kendall etal 2018 96.47
GradNorm 96.27 %
0s0 Ous  97.26 95.90

*Sener and Koltun, “Multi-task learning as multi-objective optimization,”
NeurlPS'18.
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Pareto Optimality/Stationarity

min L(x) = mxin (Li(x), .. Lm(x) "

X

e At Pareto-optimal point - cannot reduce any loss L, without also
increasing some other L

e At Pareto-stationary point X - “some” convex combination of
gradient vectors is zero, i.e., there exist wy, ..., wy (all > 0) s.t.

M M
dwe=1 and Y wVL(X)=0
i=1 i=1

i.e., no common descent direction for all objectives
e Pareto-optimality = Pareto-stationarity

e . X is not Pareto-stationary = can find descent directions to
simultaneously reduce all {L}M ,



Multiple Gradient Descent

Multiple Gradient Descent Algorithm (MGDA)* solves

2

M M
min Z wi VL (x) s.t. Z wr =1, w, >0, for all k € [M]
Wi,...,Wm
i=1 2 i=1

*Désidéri, “Multiple-gradient descent algorithm (MGDA) for multiobjective opti-
mization,” Comptes Rendus Mathematique, 2012.
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M M
min Z wi VL (x) s.t. Z wr =1, w, >0, for all k € [M]
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Multiple Gradient Descent

Multiple Gradient Descent Algorithm (MGDA)* solves

2

M M
min Z wi VL (x) s.t. Z wr =1, w, >0, for all k € [M]
Wi,...,Wm
i=1 2 i=1

e Either the minimum value is 0,

e Or the solution gives Zf\il w; V Le(x) that reduces all objectives

*Désidéri, “Multiple-gradient descent algorithm (MGDA) for multiobjective opti-
mization,” Comptes Rendus Mathematique, 2012.
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Federated MGDA and its
Drawbacks



Problem - Federated Multi-Objective Optimization

~L Server
min L(x) := min [L1(x), ..., Ly(x)]" — min (L4, e, LGOI

1<
:NZLEJ)(X) AN T
i=1

.[Lm Lm] l , I .‘/ -
e M objectives, N clients

N Clients



First Attempt - Federated MGDA*

N
min L(x) = mxin (Ly(x),...,Lm(x))",  where Li(x) = % Z LE(I)(X)

X

M objectives, N clients

2
Recall MGDA - miny, Hzll\il WkVLk(X)H2 st w>0,w'l=1

*Yang, et al. “Federated Multi-Objective Learning,” NeurlPS'23.



First Attempt - Federated MGDA*

N
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First Attempt - Federated MGDA*

N
min L(x) = mxin (Ly(x),...,Lm(x))",  where Li(x) = % Z LE(I)(X)

X
i=1
M objectives, N clients

2
Recall MGDA - min Hz,“il WkVLk(x)H2 st.w>0, wl=1

, . T
o Client / computes ~ |:VL(1l)(X), c Vst,')(x)] (local gradients)

e Server computes ~ [VL;(x),... Vin(x)]", where
VL(x) = 5 X V()

*Yang, et al. “Federated Multi-Objective Learning,” NeurlPS'23.
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Challenges of Federated MGDA

At each client |

e Synchronize local models XE(;) = x for objective k and client i

0 % w 1O (x()

e | Multiple local updates x

e Local drift across tasks = worse performance

e | Return updates to server As(i) =

e Mx communication
At the server

e Average client updates Ay = % > AS("), for each task k € M
e Solve w* = argmin,, [|>, WkAng stw>0,w'l=1

e Update global model x <— x — 75>, wi A
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Improving Federated MGDA

If we knew the task weights {w}

At each client / - aggregated local updates, starting with x
i - x(® (M — v 1 ()5 ()
e Multiple local updates: x'") < x Ne Y, Wk VL (x}.7)
e Instead of xii) — xf(i) - 17¢§LS(") (XSJ))
x—x(

e Return updates to server V() = -

NENING!
o Instead of task-wise updates A(k') = —, 2 for each k

e Mx reduction in communication; reduces drift across tasks
At the server

e Solve w* = argmin,, [|>, WkAk||§ stw>0,w'l=1

e Update global model x <= x — 75 >, wi A

Repeat
How do we update w with {V()} instead of {A4}?
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Why do we need Mx communication?

At the server - need to solve

w* = argmin,, [|>", WkVLk(X)”g st. w>0,w'l=1
2

[VLi(x),..., Lpy(x)]w
LVL(x)eRI*XM

w* & Projs, (w — 1, VL(x)T VL(x)w) (Single PGD step)

= argmin,, st. w>0,w'l=1

2

Su is the probability simplex in RM
e In Federated MGDA:

[Ag,...,Apm] = VL(x)
— N~

Matrix of task updates Jacobian

e How do we approximate VL(x) with O(d) communication?
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Constructing VL(x) with O(d) Communication

Server wants VL = [VLi(x),..., VLy(x)]
Client i has H; = |VL) ... VL{)| € RIM
At clients

e Client / reshapes Fl,- to H; € RVdMx VM

e Send H; < Rand-SVD(H, r) (rank-r approximation of H;) to server
e Rank r < /d/M = communication cost < d

At server

e Reshape H: to H; € RI*M
o Compute G « (L3, H) ' (43, H)) ~ VLTVL



Comparison with other Compression Schemes

. CIFARIO+ | MNIST+ i ,
Compression Method CelebA MNIST F.MNIST MultiMNIST | Mean
Sum of client Gram matrices 50.95 11.51 20.61 14.56 24.41
ApproxGramJacobian two-way comm. - .
with randomized-SVD 10.15 1.38 2.04 1.76 3.83
ApproxGranJacoblan fwo-way comm. | 5 o 10.26 17.40 12.98 22.97
with random masking
ApproxGranJacobian fwo-way comm. | g 0.15 0.04 0.15 4.38
with top-k sparsification
ApproxGramJacobian one-way comm.
with randomized-SVD 10.87 1.68 1.79 1.96 4.08 |
ApproxCramJacobian onc-way comm. | ¢ 5 123 6.29 5.70 23.19
with random masking
ApproxGranJacobian one-way comm. | o) |4 0.04 0.01 0.10 6.07
with top-k sparsification

= ~ NT ~
Error (in %) = Hﬁ%”@“ where G = (% Z,H,-) (% > H,-)
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Updating aggregation weights

At the server - need to solve

2
w* = argmin,, || [VLi(X), ..., Ly(X)]w st. w>0,w'l=1
LTL(x)eRIXM 2
~ Projg,, (w — nwVL(x) " VL(x)w) (Single PGD step)

Sp is the probability simplex in RM

Server uses G ~ VL(x)" VL(x) (obtained with O(d) communication) to

compute

w < Projg,, (w — 1, Gw)
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Server and client steps

Select client subset C - send x
(iompute»@L,—(x) and send
H; = Q(VL;(x)) to server
Reshape ﬁ,- to H,-+ Compute
G~ (it (HSiH)
Compute w < Projg, (w — 1, Gw)
and send to clients
Start with x, multiple (7) local updates

x() — x() — . Yok Wk%LEj)(X([))
Return updates to server

v — x — x()

Update the global model

XX — 775% Yicc v

Server Communication
Cost

e FMGDA - d
e FedCMOO -d+ M~ d

Per-client Communication
Cost

e FMGDA - Md
e FedCMOO - 2d



Theory: Assumptions



Theory: Assumptions

Problem

mxin L(x) := mxin [L1(x),...,Lm(x)]"  where  Li(x)

e Smoothness: | VL (x) - VLV (y)| < L]x —y|



Theory: Assumptions

Problem

N
mxin L(x) := mxin [Li(x),..., LM(x)]T where  Ly(x) = % Z Lf(i)(X)
i=1

e Smoothness: | VL (x) - VLV (y)| < L]x —y|

e Unbiased stochastic gradients with bounded variance



Theory: Assumptions

Problem

N
mxin L(x) := mxin [Li(X),.. . Ly(x)]T where  Ly(x) = %Z LE(/)(X)
i=1

e Smoothness: | VL (x) - VLV (y)| < L]x —y|
e Unbiased stochastic gradients with bounded variance
¢ Bounded Gradients: ||VL5(i)(x)|| <B



Theory: Assumptions

Problem

N
min L(x) := min [Li(x), ..., Lpu(x)]"  where Li(x) = % Z Lf(i)(x)
i=1

Smoothness: VL (x) — VL (y)[| < L|x —y]|
Unbiased stochastic gradients with bounded variance
Bounded Gradients: |VL{(x)|| < B

Unbiased Compression: E[Q(x)] = x and E||Q(x) — x||? < q||x]|?,
for some ¢ > 0



Theoretical Result: Convergence
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where
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Theoretical Result: Convergence

mxin L(x) := mxin [L1(xX), ..., Lm(x)]" where  Li(x) = % Z ij)(x)

e With appropriate choice of parameters 7, 1c, Nw

. 1
i |2 OV LI <O ()



Dependence on Number of Objectives M

X

N
min L(x) := mxin [L1(x),. ... Lmu(x)]"  where  Li(x) = % Z Lg)(x)
i=1

To achieve min.c(77 | >, wi () VL (x(1))]]? < €

*Xiao, et al. “Direction-oriented multi-objective learning: Simple and provable
stochastic algorithms.” NeurlPS'23.
TYang, et al. “Federated Multi-Objective Learning,” NeurlPS'23.
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Dependence on Number of Objectives M

X

N
min L(x) := mxin [L1(x),. ... Lmu(x)]"  where  Li(x) = % Z Lg)(x)
i=1

To achieve minge(7y || 3o, wi(t)VLk(x(2))]]? < €

Work Federated | Complexity
SDMGrad® P o (%)
FMGDA! v (%)
FedCMOO (Ours) v oY)
*Xiao, et al. “Direction-oriented multi-objective learning: Simple and provable

stochastic algorithms.” NeurlPS'23.
TYang, et al. “Federated Multi-Objective Learning,” NeurlPS'23.
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Limitations of Our Analysis

mxin L(x) := mxin [L1(X), ... Lu(x)]  where  Li(x) =

=| =

e With appropriate choice of parameters 7, 1c, Nw
1
min wi V Li(x 2<O()
I VLI <0 (7

e Bounded Gradients: ||VLS(i)(x)|| <B
e No provable benefit of parallelization (i.e., speedup in N)

e Culprit: the inner product terms
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Experiments: Datasets

MNIST+FMNIST, MultiMNIST, CIFAR10+MNIST
e Constructed by combining two randomly sampled images: one from
each dataset

e 2 objectives

L:7 R:Boot L:4 R:Pullover L:5 R:Coat L:5 R:Sandal L:8 R:Boot L:6 R:Bag
1

PRBape

CelebA
e CelebA dataset - each image has 40 attributes

e Each attribute gives a binary classification = 40 objectives




Experiments: Mean Test Accuracy

100 clients in total, 10 selected in each round

MNIST+FMNIST CelebA

0.801
—— FedCMOO
—— FedCMOO-Pref 0

—— FSMGDA

Mean Test Accuracy
=
==}

100 200 300 400 500 O 100 200 300 400
Rounds Rounds

Test Accuracy averaged over all the objectives



Experiments: Controlling Local Drift

100 clients in total, 10 selected in each round

MultiMNIST
o | Semmmmmm Ko S X
£0.92{ o 0.87 .
& N, ,r’
8 . 0.867 "
< S
= 0.90 0.85] Sl
3 e, PRt S o
& 0.84
g 0.88 . N
g -=¢= FedCMOO . 0.83] -+~ FedCMOO S...
= --- FSMGDA N -+- FSMGDA
0.86 °1 0.2 hd
5 10 15 20 25 5 10 15 20 25
Number of Local Iterations Number of Local Iterations

Test Accuracy averaged over all the objectives

e Increasing local iterations (7) = larger local drift in FSMGDA =
worse performance



Experiments: Final Loss Values

o CelebA dataset - 40 objectives

CelebA Test Loss

CelebA-5 Test Loss
T




Preferences in MOO

Users sometimes prefer solutions with specific trade-offs among the
different objectives

e Healthcare

e Privacy <> Utility

One possible solution: specific ratios for loss values

)[giRnd L(x) = [La(x), ., Lm(x)]

subject to  rLi(x) =--- = rmLu(x).

MOO methods, by default, do not let us control the trade-off

Ensure that normalized scaled losses are almost uniform*

o) = s~

*Mahapatra and Rajan, “Multi-task learning with user preferences: Gradient descent
with controlled ascent in pareto optimization.” ICML'20.



Experiments: Preference-based Pareto Solutions

_ MultiMNIST MNIST+FMNIST
07 1 058 1
| |
0.6 07
; x , :
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2021 R Z !
R {romTeeee e S 02 %
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01 ! 0.1 T e
1 1
0.0 . 0.0 .
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.2 0.4 0.6 0.8
Digit 2 Test Loss FashionMNIST Test Loss
X 4.0/1.0 + 1.5/1.0 1.0/1.5 <« 1.0/4.0 X 1.0/1.0 + 1.0/2.0 1.0/4.0
2.0/1.0 ¢ 1.0/1.0 1.0/2.0 1.0/1.5 4 1.0/3.0 1.0/6.0

e Vertical and horizontal dashed lines - minimum loss from
single-objective training
e Gray regions are infeasible

e More difficult to satisfy preferences with significantly different
weights



Conclusion



Some Open Questions

e How to explore the entire Pareto front?
e Generalization guarantees?
e Impact of MOO optimization on MTL generalization$
e Generalization gap between single-task and multi-task trajectories
early into training
e Standard optimization metrics (sharpness, minimum loss, etc.) do

not explain the generalization gaps between single-task and
multi-task models

SMueller, et al. “Can Optimization Trajectories Explain Multi-Task Transfer?”
rXiv:2408.14677.



Summary: Federated Multi-Objective Optimization (MOO)

=]

mxin L(x) := mxin [Li(x),. .., LM(X)]T where  Ly(x) = 1 Z LE{")(X)

M objectives, N clients

e Communication-efficient algorithm FedCMOO

e Communication cost does not scale with the number of objectives M

e Convergence to Pareto-stationary point

e Improved sample complexity in terms of M
e Under weaker assumptions

e Improved empirical performance

Thanks! (pranaysh@iitb.ac.in)



mailto: pranaysh@iitb.ac.in
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