
Federated Communication-Efficient

Multi-Objective Optimization

Pranay (pranaysh@iitb.ac.in)

C-MInDS, IIT Bombay

Paper: AISTATS’25 (arxiv.org/pdf/2410.16398)

mailto:pranaysh@iitb.ac.in
https://arxiv.org/pdf/2410.16398

Work with

Baris Askin, Dr. Gauri Joshi and Dr. Carlee Joe-Wong (ECE, CMU)

https://askinb.github.io/
http://andrew.cmu.edu/user/gaurij
http://www.andrew.cmu.edu/user/cjoewong/

Big Data

• Need lots of data

Introduction

2

Data is Naturally Distributed!
• Edge-devices collect data

• This data is used to train ML models

Introduction

3

Liu, et al. "Privacy-preserving traffic flow prediction: A federated learning approach." IEEE IoT Journal 2020.
Li, et al. "Federated learning: Challenges, methods, and future directions." IEEE SPMag, 2020.

Hard, et al. "Federated learning for mobile keyboard prediction." arXiv:1811.03604.
Image curtsey: https://envuetelematics.com/

Introduction

4

https://envuetelematics.com/

Liu, et al. "Privacy-preserving traffic flow prediction: A federated learning approach." IEEE IoT Journal 2020.
Li, et al. "Federated learning: Challenges, methods, and future directions." IEEE SPMag, 2020.

Hard, et al. "Federated learning for mobile keyboard prediction." arXiv:1811.03604.
Image curtsey: https://envuetelematics.com/

Introduction

4

https://envuetelematics.com/

Liu, et al. "Privacy-preserving traffic flow prediction: A federated learning approach." IEEE IoT Journal 2020.
Li, et al. "Federated learning: Challenges, methods, and future directions." IEEE SPMag, 2020.

Hard, et al. "Federated learning for mobile keyboard prediction." arXiv:1811.03604.
Image curtsey: https://envuetelematics.com/

Introduction

Image
Classification

4

https://envuetelematics.com/

Liu, et al. "Privacy-preserving traffic flow prediction: A federated learning approach." IEEE IoT Journal 2020.
Li, et al. "Federated learning: Challenges, methods, and future directions." IEEE SPMag, 2020.

Hard, et al. "Federated learning for mobile keyboard prediction." arXiv:1811.03604.
Image curtsey: https://envuetelematics.com/

Introduction

Image
Classification

4

https://envuetelematics.com/

Liu, et al. "Privacy-preserving traffic flow prediction: A federated learning approach." IEEE IoT Journal 2020.
Li, et al. "Federated learning: Challenges, methods, and future directions." IEEE SPMag, 2020.

Hard, et al. "Federated learning for mobile keyboard prediction." arXiv:1811.03604.
Image curtsey: https://envuetelematics.com/

Introduction

Image
Classification Next-word Prediction

4

https://envuetelematics.com/

Liu, et al. "Privacy-preserving traffic flow prediction: A federated learning approach." IEEE IoT Journal 2020.
Li, et al. "Federated learning: Challenges, methods, and future directions." IEEE SPMag, 2020.

Hard, et al. "Federated learning for mobile keyboard prediction." arXiv:1811.03604.
Image curtsey: https://envuetelematics.com/

Introduction

Image
Classification Next-word Prediction

Autonomous Driving

4

https://envuetelematics.com/

Liu, et al. "Privacy-preserving traffic flow prediction: A federated learning approach." IEEE IoT Journal 2020.
Li, et al. "Federated learning: Challenges, methods, and future directions." IEEE SPMag, 2020.

Hard, et al. "Federated learning for mobile keyboard prediction." arXiv:1811.03604.
Image curtsey: https://envuetelematics.com/

Introduction

Image
Classification Next-word Prediction

Autonomous Driving

4

https://envuetelematics.com/

Liu, et al. "Privacy-preserving traffic flow prediction: A federated learning approach." IEEE IoT Journal 2020.
Li, et al. "Federated learning: Challenges, methods, and future directions." IEEE SPMag, 2020.

Hard, et al. "Federated learning for mobile keyboard prediction." arXiv:1811.03604.
Image curtsey: https://envuetelematics.com/

Introduction

Image
Classification Next-word Prediction

Autonomous Driving • Communication

• Device Server

• Device Device

4

https://envuetelematics.com/

Liu, et al. "Privacy-preserving traffic flow prediction: A federated learning approach." IEEE IoT Journal 2020.
Li, et al. "Federated learning: Challenges, methods, and future directions." IEEE SPMag, 2020.

Hard, et al. "Federated learning for mobile keyboard prediction." arXiv:1811.03604.
Image curtsey: https://envuetelematics.com/

Introduction

Image
Classification Next-word Prediction

Autonomous Driving • Communication

• Device Server

• Device Device

4

https://envuetelematics.com/

Liu, et al. "Privacy-preserving traffic flow prediction: A federated learning approach." IEEE IoT Journal 2020.
Li, et al. "Federated learning: Challenges, methods, and future directions." IEEE SPMag, 2020.

Hard, et al. "Federated learning for mobile keyboard prediction." arXiv:1811.03604.
Image curtsey: https://envuetelematics.com/

Introduction

Image
Classification Next-word Prediction

Autonomous Driving • Communication

• Device Server

• Device Device

4

https://envuetelematics.com/

Liu, et al. "Privacy-preserving traffic flow prediction: A federated learning approach." IEEE IoT Journal 2020.
Li, et al. "Federated learning: Challenges, methods, and future directions." IEEE SPMag, 2020.

Hard, et al. "Federated learning for mobile keyboard prediction." arXiv:1811.03604.
Image curtsey: https://envuetelematics.com/

Introduction

Image
Classification Next-word Prediction

Autonomous Driving • Communication

• Device Server

• Device Device

• “Device-server” setting

4

https://envuetelematics.com/

Liu, et al. "Privacy-preserving traffic flow prediction: A federated learning approach." IEEE IoT Journal 2020.
Li, et al. "Federated learning: Challenges, methods, and future directions." IEEE SPMag, 2020.

Hard, et al. "Federated learning for mobile keyboard prediction." arXiv:1811.03604.
Image curtsey: https://envuetelematics.com/

Introduction

Image
Classification Next-word Prediction

Autonomous Driving • Communication

• Device Server

• Device Device

• “Device-server” setting

• Challenges?

4

https://envuetelematics.com/

Privacy

Individual user data should not be leaked

Introduction

6

Network constraints

Server

Introduction

Communication is expensive
7Image from www.ookla.com

http://www.ookla.com/

Introduction

Intermittent Availability

Devices are available when

• Idle, plugged-in and on wifi

8

Distributed learning under

• Privacy concerns

• Network constraints

• Intermittent client availability

 (partial participation)

Federated Learning
(FL)

Introduction

Devices don’t send raw data*

Infrequent communication with server

9
Kairouz, et al. "Advances and open problems in federated learning." Foundations

and Trends® in Machine Learning (2021).

Server

Introduction

1 2 3 𝑛…

10

Server

Introduction

1 2 3 𝑛…

10

Server

Introduction

1 2 3 𝑛…

10

Server

Introduction

1 2 3 𝑛…

10

Server

Introduction

1 2 3 𝑛…

10

Server

Introduction

1 2 3 𝑛

Data heterogeneity

…

10

Server

Introduction

1 2 3 𝑛

Data heterogeneity

…

10

Server

Introduction

1 2 3 𝑛

Data heterogeneity

System heterogeneity

…

10

Server

Clients

Introduction

Round 𝑡 begins

• 𝑃 (out of 𝑛) clients

1 2 3 𝑛

11

Server

Clients

Introduction

Round 𝑡 begins

• 𝑃 (out of 𝑛) clients

1 2 3 𝑛

11

Server

Clients

Introduction

Round 𝑡 begins

• 𝑃 (out of 𝑛) clients

1 2 3 𝑛

Partial Client Participation

Small fraction of clients available

11

Server

Clients

Introduction

Round 𝑡

• Global model → clients

12

Server

Clients

Introduction

Round 𝑡

• Global model → clients

Network constraints

Infrequent

Communication Efficiency

12

Server

Clients

Introduction

Round 𝑡

• Clients run 𝜏 ≥ 1 local steps

1 1 1

13

Server

Clients

Introduction

Round 𝑡

• Clients run 𝜏 ≥ 1 local steps

1

2

1

2

1

2

13

Server

Clients

Introduction

Round 𝑡

• Clients run 𝜏 ≥ 1 local steps

1

2

𝜏

1

2

𝜏

1

2

𝜏

13

Server

Clients

Introduction

Round 𝑡

• Clients run 𝜏 ≥ 1 local steps

• Saves communication cost

1

2

𝜏

1

2

𝜏

1

2

𝜏

13

Server

Clients

Introduction

Round 𝑡

• Clients run 𝜏 ≥ 1 local steps

• Saves communication cost

1

2

𝜏

1

2

𝜏

1

2

𝜏

Low-power devices

First-order methods

Computation Efficiency

13

Server

Clients

Introduction

Round 𝑡

• Local models → server

14

Server

Clients

Introduction

Round 𝑡

• Local models → server

Network constraints

Infrequent

Communication Efficiency

14

Server

Clients

Introduction

Round 𝑡

• Server aggregates local models

1 2 3 𝑛

15

Server

Clients

Σ

Introduction

Round 𝑡

• Server aggregates local models

1 2 3 𝑛

15

Server

Clients

Σ

Introduction

Round 𝑡

• Server aggregates local models

1 2 3 𝑛

15

Server

Clients

Σ

Introduction

Round 𝑡

• Server aggregates local models

Round 𝑡 ends

1 2 3 𝑛

15

Server

Introduction

Clients

Round 𝑡 + 1 begins

• 𝑃 (out of 𝑛) clients

1 2 3 𝑛

16

Server

Introduction

Clients

Round 𝑡 + 1 begins

• 𝑃 (out of 𝑛) clients

1 2 3 𝑛

Partial Client Participation

Small fraction of clients available

16

Server

Clients

Introduction

Round 𝑡 + 1

• Global model → clients

17

Server

Clients

Introduction

Round 𝑡 + 1

• Global model → clients

Total 𝑇 rounds

17

ChatBots

Multiple Objectives

• Accuracy/Relevance

• Engagement

• Politeness/Safety

• Personalization

Trade-offs: accuracy ↔
personalization

Recommender Systems∗

Image modified from MLArchive

Multiple Users

• User Diversity

• Data Privacy

Multiple Objectives

• Accuracy/Relevance

• Diversity

• Novelty

• Contextual Relevance

Trade-offs: accuracy ↔ diversity

∗Sun, et al. “A survey on federated recommendation systems.” IEEE TNNLS’24.

mlarchive.com

Personalized Medicine∗

Image from science.org and eupati.eu

Multiple Patients

• Patient diversity

• Data confidentiality

Multiple Objectives

• Diagnostic Precision

• Cost-Effectiveness

• Minimizing Side-Effects

• Privacy and Data Security

• Equity in Access

Trade-offs:

Precision ↔ Cost-Effectiveness

∗Sheller, et al. “Federated learning in medicine: facilitating multi-institutional col-

laborations without sharing patient data.” Scientific Reports’20.

https://www.science.org/doi/abs/10.1126/scitranslmed.abe5383?rss=1&utm_source=TrendMD&utm_medium=cpc&utm_campaign=TrendMD_1
https://toolbox.eupati.eu/wp-content/uploads/sites/4/2023/01/Example-schematic-of-use-of-personalised-medicine.jpg

Goal

Using data from multiple (distributed) users/patients/clients,

learn a model

that simultaneously optimizes multiple objectives

In this talk

Federated Multi-Objective Optimization (MOO)

min
x∈Rd

L(x) = min
x

(L1(x), . . . , LM(x))⊤ , where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

L
(i)
k - contribution of i-th client to k-th objective

M objectives, N users/patients/clients

In this talk

Federated Multi-Objective Optimization (MOO)

min
x∈Rd

L(x) = min
x

(L1(x), . . . , LM(x))⊤ , where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

L
(i)
k - contribution of i-th client to k-th objective

M objectives, N users/patients/clients

In this talk

Federated Multi-Objective Optimization (MOO)

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤ , where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

L
(i)
k - contribution of i-th client to k-th objective

M objectives, N users/patients/clients

• Communication-efficient algorithm FedCMOO

• Communication cost does not scale with number of objectives M

• Convergence to Pareto-stationary point

• Improved sample complexity - under weaker assumptions

• Improved empirical performance

In this talk

Federated Multi-Objective Optimization (MOO)

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤ , where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

L
(i)
k - contribution of i-th client to k-th objective

M objectives, N users/patients/clients

• Communication-efficient algorithm FedCMOO

• Communication cost does not scale with number of objectives M

• Convergence to Pareto-stationary point

• Improved sample complexity - under weaker assumptions

• Improved empirical performance

In this talk

Federated Multi-Objective Optimization (MOO)

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤ , where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

L
(i)
k - contribution of i-th client to k-th objective

M objectives, N users/patients/clients

• Communication-efficient algorithm FedCMOO

• Communication cost does not scale with number of objectives M

• Convergence to Pareto-stationary point

• Improved sample complexity - under weaker assumptions

• Improved empirical performance

In this talk

Federated Multi-Objective Optimization (MOO)

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤ , where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

L
(i)
k - contribution of i-th client to k-th objective

M objectives, N users/patients/clients

• Communication-efficient algorithm FedCMOO

• Communication cost does not scale with number of objectives M

• Convergence to Pareto-stationary point

• Improved sample complexity - under weaker assumptions

• Improved empirical performance

In this talk

Federated Multi-Objective Optimization (MOO)

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤ , where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

L
(i)
k - contribution of i-th client to k-th objective

M objectives, N users/patients/clients

• Communication-efficient algorithm FedCMOO

• Communication cost does not scale with number of objectives M

• Convergence to Pareto-stationary point

• Improved sample complexity - under weaker assumptions

• Improved empirical performance

Outline

1. Background: MOO and MGDA

2. Federated MGDA and its Drawbacks

3. FedCMOO: Improving Federated MGDA

4. Experiment Results

5. Conclusion

Background: MOO and MGDA

Multi-Objective Optimization (MOO)∗

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤

Why do we need it? Why not just solve minx
∑M

k=1 αkLk(x)?

• How do we decide the weights {αk}Mk=1?

• A subset of tasks might be severely under-optimized

• Scalar losses do not explore the set of all possible solutions†

†Hu, et al. “Revisiting Scalarization in Multi-Task Learning: A Theoretical Per-

spective,” NeurIPS’23.
∗Sener and Koltun, “Multi-task learning as multi-objective optimization,”

NeurIPS’18.

Multi-Objective Optimization (MOO)∗

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤

Why do we need it? Why not just solve minx
∑M

k=1 αkLk(x)?

• How do we decide the weights {αk}Mk=1?

• A subset of tasks might be severely under-optimized

• Scalar losses do not explore the set of all possible solutions†

†Hu, et al. “Revisiting Scalarization in Multi-Task Learning: A Theoretical Per-

spective,” NeurIPS’23.
∗Sener and Koltun, “Multi-task learning as multi-objective optimization,”

NeurIPS’18.

Multi-Objective Optimization (MOO)∗

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤

Why do we need it? Why not just solve minx
∑M

k=1 αkLk(x)?

• How do we decide the weights {αk}Mk=1?

• A subset of tasks might be severely under-optimized

• Scalar losses do not explore the set of all possible solutions†

†Hu, et al. “Revisiting Scalarization in Multi-Task Learning: A Theoretical Per-

spective,” NeurIPS’23.
∗Sener and Koltun, “Multi-task learning as multi-objective optimization,”

NeurIPS’18.

Multi-Objective Optimization (MOO)∗

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤

Why do we need it? Why not just solve minx
∑M

k=1 αkLk(x)?

• How do we decide the weights {αk}Mk=1?

• A subset of tasks might be severely under-optimized

• Scalar losses do not explore the set of all possible solutions†

†Hu, et al. “Revisiting Scalarization in Multi-Task Learning: A Theoretical Per-

spective,” NeurIPS’23.
∗Sener and Koltun, “Multi-task learning as multi-objective optimization,”

NeurIPS’18.

MGDA with Multi-MNIST Dataset∗

Two digits - one in top-left, the other in bottom-right

Task-L/R: classifying the digit on top-left/bottom-right

∗Sener and Koltun, “Multi-task learning as multi-objective optimization,”

NeurIPS’18.

MGDA with Multi-MNIST Dataset∗

Two digits - one in top-left, the other in bottom-right

Task-L/R: classifying the digit on top-left/bottom-right

∗Sener and Koltun, “Multi-task learning as multi-objective optimization,”

NeurIPS’18.

Pareto Optimality/Stationarity

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤

• At Pareto-optimal point - cannot reduce any loss Lk without also

increasing some other Lk′

• At Pareto-stationary point x̄ - “some” convex combination of

gradient vectors is zero, i.e., there exist w1, . . . ,wM (all ≥ 0) s.t.

M∑
i=1

wk = 1 and
M∑
i=1

wk∇Lk(x̄) = 0

i.e., no common descent direction for all objectives

• Pareto-optimality ⇒ Pareto-stationarity

• ∴ x̄ is not Pareto-stationary ⇒ can find descent directions to

simultaneously reduce all {Lk}Mk=1

Pareto Optimality/Stationarity

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤

• At Pareto-optimal point - cannot reduce any loss Lk without also

increasing some other Lk′

• At Pareto-stationary point x̄ - “some” convex combination of

gradient vectors is zero, i.e., there exist w1, . . . ,wM (all ≥ 0) s.t.

M∑
i=1

wk = 1 and
M∑
i=1

wk∇Lk(x̄) = 0

i.e., no common descent direction for all objectives

• Pareto-optimality ⇒ Pareto-stationarity

• ∴ x̄ is not Pareto-stationary ⇒ can find descent directions to

simultaneously reduce all {Lk}Mk=1

Pareto Optimality/Stationarity

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤

• At Pareto-optimal point - cannot reduce any loss Lk without also

increasing some other Lk′

• At Pareto-stationary point x̄ - “some” convex combination of

gradient vectors is zero, i.e., there exist w1, . . . ,wM (all ≥ 0) s.t.

M∑
i=1

wk = 1 and
M∑
i=1

wk∇Lk(x̄) = 0

i.e., no common descent direction for all objectives

• Pareto-optimality ⇒ Pareto-stationarity

• ∴ x̄ is not Pareto-stationary ⇒ can find descent directions to

simultaneously reduce all {Lk}Mk=1

Pareto Optimality/Stationarity

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤

• At Pareto-optimal point - cannot reduce any loss Lk without also

increasing some other Lk′

• At Pareto-stationary point x̄ - “some” convex combination of

gradient vectors is zero, i.e., there exist w1, . . . ,wM (all ≥ 0) s.t.

M∑
i=1

wk = 1 and
M∑
i=1

wk∇Lk(x̄) = 0

i.e., no common descent direction for all objectives

• Pareto-optimality ⇒ Pareto-stationarity

• ∴ x̄ is not Pareto-stationary ⇒ can find descent directions to

simultaneously reduce all {Lk}Mk=1

Multiple Gradient Descent

Multiple Gradient Descent Algorithm (MGDA)∗ solves

min
w1,...,wM

∥∥∥∥∥
M∑
i=1

wk∇Lk(x)

∥∥∥∥∥
2

2

s.t.
M∑
i=1

wk = 1,wk ≥ 0, for all k ∈ [M]

• Either the minimum value is 0,

• Or the solution gives
∑M

i=1 w
∗
k∇Lk(x) that reduces all objectives

∗Désidéri, “Multiple-gradient descent algorithm (MGDA) for multiobjective opti-

mization,” Comptes Rendus Mathematique, 2012.

Multiple Gradient Descent

Multiple Gradient Descent Algorithm (MGDA)∗ solves

min
w1,...,wM

∥∥∥∥∥
M∑
i=1

wk∇Lk(x)

∥∥∥∥∥
2

2

s.t.
M∑
i=1

wk = 1,wk ≥ 0, for all k ∈ [M]

• Either the minimum value is 0,

• Or the solution gives
∑M

i=1 w
∗
k∇Lk(x) that reduces all objectives

∗Désidéri, “Multiple-gradient descent algorithm (MGDA) for multiobjective opti-

mization,” Comptes Rendus Mathematique, 2012.

Multiple Gradient Descent

Multiple Gradient Descent Algorithm (MGDA)∗ solves

min
w1,...,wM

∥∥∥∥∥
M∑
i=1

wk∇Lk(x)

∥∥∥∥∥
2

2

s.t.
M∑
i=1

wk = 1,wk ≥ 0, for all k ∈ [M]

• Either the minimum value is 0,

• Or the solution gives
∑M

i=1 w
∗
k∇Lk(x) that reduces all objectives

∗Désidéri, “Multiple-gradient descent algorithm (MGDA) for multiobjective opti-

mization,” Comptes Rendus Mathematique, 2012.

Outline

1. Background: MOO and MGDA

2. Federated MGDA and its Drawbacks

3. FedCMOO: Improving Federated MGDA

4. Experiment Results

5. Conclusion

Federated MGDA and its

Drawbacks

Problem - Federated Multi-Objective Optimization

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤

Lk(x) :=
1

N

N∑
i=1

L
(i)
k (x)

• M objectives, N clients

First Attempt - Federated MGDA∗

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤ , where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

M objectives, N clients

Recall MGDA - minw

∥∥∥∑M
i=1 wk∇Lk(x)

∥∥∥2
2
s.t. w ≥ 0, w⊤1 = 1

• Client i computes ≈
[
∇L(i)1 (x), . . . ,∇L(i)M (x)

]⊤
(local gradients)

• Server computes ≈ [∇L1(x), . . . ,∇LM(x)]⊤, where

∇Lk(x) = 1
N

∑N
i=1∇L

(i)
k (x)

∗Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

First Attempt - Federated MGDA∗

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤ , where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

M objectives, N clients

Recall MGDA - minw

∥∥∥∑M
i=1 wk∇Lk(x)

∥∥∥2
2
s.t. w ≥ 0, w⊤1 = 1

• Client i computes ≈
[
∇L(i)1 (x), . . . ,∇L(i)M (x)

]⊤
(local gradients)

• Server computes ≈ [∇L1(x), . . . ,∇LM(x)]⊤, where

∇Lk(x) = 1
N

∑N
i=1∇L

(i)
k (x)

∗Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

First Attempt - Federated MGDA∗

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤ , where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

M objectives, N clients

Recall MGDA - minw

∥∥∥∑M
i=1 wk∇Lk(x)

∥∥∥2
2
s.t. w ≥ 0, w⊤1 = 1

• Client i computes ≈
[
∇L(i)1 (x), . . . ,∇L(i)M (x)

]⊤
(local gradients)

• Server computes ≈ [∇L1(x), . . . ,∇LM(x)]⊤, where

∇Lk(x) = 1
N

∑N
i=1∇L

(i)
k (x)

∗Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

Federated MGDA∗

At each client i

• Synchronize local models x
(i)
k = x for objective k and client i

• Multiple local updates x
(i)
k ← x

(i)
k − ηc∇̃L(i)k (x

(i)
k) (SGD/GD/etc.)

• Return updates to server ∆
(i)
k =

x−x
(i)
k

ηc
for each k

At the server

• Average client updates ∆k = 1
N

∑
i ∆

(i)
k , for each objective k ∈ M

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

∗Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

Federated MGDA∗

At each client i

• Synchronize local models x
(i)
k = x for objective k and client i

• Multiple local updates x
(i)
k ← x

(i)
k − ηc∇̃L(i)k (x

(i)
k) (SGD/GD/etc.)

• Return updates to server ∆
(i)
k =

x−x
(i)
k

ηc
for each k

At the server

• Average client updates ∆k = 1
N

∑
i ∆

(i)
k , for each objective k ∈ M

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

∗Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

Federated MGDA∗

At each client i

• Synchronize local models x
(i)
k = x for objective k and client i

• Multiple local updates x
(i)
k ← x

(i)
k − ηc∇̃L(i)k (x

(i)
k) (SGD/GD/etc.)

• Return updates to server ∆
(i)
k =

x−x
(i)
k

ηc
for each k

At the server

• Average client updates ∆k = 1
N

∑
i ∆

(i)
k , for each objective k ∈ M

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

∗Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

Federated MGDA∗

At each client i

• Synchronize local models x
(i)
k = x for objective k and client i

• Multiple local updates x
(i)
k ← x

(i)
k − ηc∇̃L(i)k (x

(i)
k) (SGD/GD/etc.)

• Return updates to server ∆
(i)
k =

x−x
(i)
k

ηc
for each k

At the server

• Average client updates ∆k = 1
N

∑
i ∆

(i)
k , for each objective k ∈ M

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

∗Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

Federated MGDA∗

At each client i

• Synchronize local models x
(i)
k = x for objective k and client i

• Multiple local updates x
(i)
k ← x

(i)
k − ηc∇̃L(i)k (x

(i)
k) (SGD/GD/etc.)

• Return updates to server ∆
(i)
k =

x−x
(i)
k

ηc
for each k

At the server

• Average client updates ∆k = 1
N

∑
i ∆

(i)
k , for each objective k ∈ M

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

∗Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

Federated MGDA∗

At each client i

• Synchronize local models x
(i)
k = x for objective k and client i

• Multiple local updates x
(i)
k ← x

(i)
k − ηc∇̃L(i)k (x

(i)
k) (SGD/GD/etc.)

• Return updates to server ∆
(i)
k =

x−x
(i)
k

ηc
for each k

At the server

• Average client updates ∆k = 1
N

∑
i ∆

(i)
k , for each objective k ∈ M

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

∗Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

Federated MGDA∗

At each client i

• Synchronize local models x
(i)
k = x for objective k and client i

• Multiple local updates x
(i)
k ← x

(i)
k − ηc∇̃L(i)k (x

(i)
k) (SGD/GD/etc.)

• Return updates to server ∆
(i)
k =

x−x
(i)
k

ηc
for each k

At the server

• Average client updates ∆k = 1
N

∑
i ∆

(i)
k , for each objective k ∈ M

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

∗Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

Challenges of Federated MGDA

At each client i

• Synchronize local models x
(i)
k = x for objective k and client i

• Multiple local updates x
(i)
k ← x

(i)
k − ηc∇̃L(i)k (x

(i)
k)

• Local drift across tasks ⇒ worse performance

• Return updates to server ∆
(i)
k =

x−x
(i)
k

ηc
for each task k

• M× communication

At the server

• Average client updates ∆k = 1
N

∑
i ∆

(i)
k , for each task k ∈ M

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

Challenges of Federated MGDA

At each client i

• Synchronize local models x
(i)
k = x for objective k and client i

• Multiple local updates x
(i)
k ← x

(i)
k − ηc∇̃L(i)k (x

(i)
k)

• Local drift across tasks ⇒ worse performance

• Return updates to server ∆
(i)
k =

x−x
(i)
k

ηc
for each task k

• M× communication

At the server

• Average client updates ∆k = 1
N

∑
i ∆

(i)
k , for each task k ∈ M

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

Challenges of Federated MGDA

At each client i

• Synchronize local models x
(i)
k = x for objective k and client i

• Multiple local updates x
(i)
k ← x

(i)
k − ηc∇̃L(i)k (x

(i)
k)

• Local drift across tasks ⇒ worse performance

• Return updates to server ∆
(i)
k =

x−x
(i)
k

ηc
for each task k

• M× communication

At the server

• Average client updates ∆k = 1
N

∑
i ∆

(i)
k , for each task k ∈ M

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

FedCMOO: Improving Federated

MGDA

Improving Federated MGDA

If we knew the task weights {wk}
At each client i - aggregated local updates, starting with x

• Multiple local updates: x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x
(i)
k)

• Instead of x(i)k ← x(i)k − ηc∇̃L(i)
k (x(i)k)

• Return updates to server ∇(i) = x−x(i)

ηc

• Instead of task-wise updates ∆
(i)
k =

x−x
(i)
k

ηc
for each k

• M× reduction in communication; reduces drift across tasks

At the server

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

Repeat

How do we update w with {∇(i)} instead of {∆k}?

Improving Federated MGDA

If we knew the task weights {wk}
At each client i - aggregated local updates, starting with x

• Multiple local updates: x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x
(i)
k)

• Instead of x(i)k ← x(i)k − ηc∇̃L(i)
k (x(i)k)

• Return updates to server ∇(i) = x−x(i)

ηc

• Instead of task-wise updates ∆
(i)
k =

x−x
(i)
k

ηc
for each k

• M× reduction in communication; reduces drift across tasks

At the server

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

Repeat

How do we update w with {∇(i)} instead of {∆k}?

Improving Federated MGDA

If we knew the task weights {wk}
At each client i - aggregated local updates, starting with x

• Multiple local updates: x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x
(i)
k)

• Instead of x(i)k ← x(i)k − ηc∇̃L(i)
k (x(i)k)

• Return updates to server ∇(i) = x−x(i)

ηc

• Instead of task-wise updates ∆
(i)
k =

x−x
(i)
k

ηc
for each k

• M× reduction in communication; reduces drift across tasks

At the server

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

Repeat

How do we update w with {∇(i)} instead of {∆k}?

Improving Federated MGDA

If we knew the task weights {wk}
At each client i - aggregated local updates, starting with x

• Multiple local updates: x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x
(i)
k)

• Instead of x(i)k ← x(i)k − ηc∇̃L(i)
k (x(i)k)

• Return updates to server ∇(i) = x−x(i)

ηc

• Instead of task-wise updates ∆
(i)
k =

x−x
(i)
k

ηc
for each k

• M× reduction in communication; reduces drift across tasks

At the server

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

Repeat

How do we update w with {∇(i)} instead of {∆k}?

Improving Federated MGDA

If we knew the task weights {wk}
At each client i - aggregated local updates, starting with x

• Multiple local updates: x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x
(i)
k)

• Instead of x(i)k ← x(i)k − ηc∇̃L(i)
k (x(i)k)

• Return updates to server ∇(i) = x−x(i)

ηc

• Instead of task-wise updates ∆
(i)
k =

x−x
(i)
k

ηc
for each k

• M× reduction in communication; reduces drift across tasks

At the server

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

Repeat

How do we update w with {∇(i)} instead of {∆k}?

Improving Federated MGDA

If we knew the task weights {wk}
At each client i - aggregated local updates, starting with x

• Multiple local updates: x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x
(i)
k)

• Instead of x(i)k ← x(i)k − ηc∇̃L(i)
k (x(i)k)

• Return updates to server ∇(i) = x−x(i)

ηc

• Instead of task-wise updates ∆
(i)
k =

x−x
(i)
k

ηc
for each k

• M× reduction in communication; reduces drift across tasks

At the server

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

Repeat

How do we update w with {∇(i)} instead of {∆k}?

Improving Federated MGDA

If we knew the task weights {wk}
At each client i - aggregated local updates, starting with x

• Multiple local updates: x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x
(i)
k)

• Instead of x(i)k ← x(i)k − ηc∇̃L(i)
k (x(i)k)

• Return updates to server ∇(i) = x−x(i)

ηc

• Instead of task-wise updates ∆
(i)
k =

x−x
(i)
k

ηc
for each k

• M× reduction in communication; reduces drift across tasks

At the server

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

Repeat

How do we update w with {∇(i)} instead of {∆k}?

Improving Federated MGDA

If we knew the task weights {wk}
At each client i - aggregated local updates, starting with x

• Multiple local updates: x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x
(i)
k)

• Instead of x(i)k ← x(i)k − ηc∇̃L(i)
k (x(i)k)

• Return updates to server ∇(i) = x−x(i)

ηc

• Instead of task-wise updates ∆
(i)
k =

x−x
(i)
k

ηc
for each k

• M× reduction in communication; reduces drift across tasks

At the server

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

Repeat

How do we update w with {∇(i)} instead of {∆k}?

Improving Federated MGDA

If we knew the task weights {wk}
At each client i - aggregated local updates, starting with x

• Multiple local updates: x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x
(i)
k)

• Instead of x(i)k ← x(i)k − ηc∇̃L(i)
k (x(i)k)

• Return updates to server ∇(i) = x−x(i)

ηc

• Instead of task-wise updates ∆
(i)
k =

x−x
(i)
k

ηc
for each k

• M× reduction in communication; reduces drift across tasks

At the server

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

Repeat

How do we update w with {∇(i)} instead of {∆k}?

Why do we need M× communication?

At the server - need to solve

w∗ = argminw ∥
∑

k wk∇Lk(x)∥22 s.t. w ≥ 0, w⊤1 = 1

= argminw

∥∥∥∥∥ [∇L1(x), . . . , LM(x)]︸ ︷︷ ︸
≜∇L(x)∈Rd×M

w

∥∥∥∥∥
2

2

s.t. w ≥ 0, w⊤1 = 1

w∗ ≈ ProjSM

(
w − ηw∇L(x)⊤∇L(x)w

)
(Single PGD step)

SM is the probability simplex in RM

• In Federated MGDA:

[∆1, . . . ,∆M]︸ ︷︷ ︸
Matrix of task updates

≈ ∇L(x)︸ ︷︷ ︸
Jacobian

• How do we approximate ∇L(x) with O(d) communication?

Why do we need M× communication?

At the server - need to solve

w∗ = argminw ∥
∑

k wk∇Lk(x)∥22 s.t. w ≥ 0, w⊤1 = 1

= argminw

∥∥∥∥∥ [∇L1(x), . . . , LM(x)]︸ ︷︷ ︸
≜∇L(x)∈Rd×M

w

∥∥∥∥∥
2

2

s.t. w ≥ 0, w⊤1 = 1

w∗ ≈ ProjSM

(
w − ηw∇L(x)⊤∇L(x)w

)
(Single PGD step)

SM is the probability simplex in RM

• In Federated MGDA:

[∆1, . . . ,∆M]︸ ︷︷ ︸
Matrix of task updates

≈ ∇L(x)︸ ︷︷ ︸
Jacobian

• How do we approximate ∇L(x) with O(d) communication?

Why do we need M× communication?

At the server - need to solve

w∗ = argminw ∥
∑

k wk∇Lk(x)∥22 s.t. w ≥ 0, w⊤1 = 1

= argminw

∥∥∥∥∥ [∇L1(x), . . . , LM(x)]︸ ︷︷ ︸
≜∇L(x)∈Rd×M

w

∥∥∥∥∥
2

2

s.t. w ≥ 0, w⊤1 = 1

w∗ ≈ ProjSM

(
w − ηw∇L(x)⊤∇L(x)w

)
(Single PGD step)

SM is the probability simplex in RM

• In Federated MGDA:

[∆1, . . . ,∆M]︸ ︷︷ ︸
Matrix of task updates

≈ ∇L(x)︸ ︷︷ ︸
Jacobian

• How do we approximate ∇L(x) with O(d) communication?

Constructing ∇L(x) with O(d) Communication

Server wants ∇L = [∇L1(x), . . . ,∇LM(x)]

Client i has H̃i =
[
∇̃L(i)1 . . . ∇̃L(i)M

]
∈ Rd×M

At clients

• Client i reshapes H̃i to H̄i ∈ R
√
dM×

√
dM

• Send Ĥi ← Rand-SVD(H̄i , r) (rank-r approximation of H̄i) to server

• Rank r ≤
√
d/M ⇒ communication cost ≤ d

At server

• Reshape Ĥi to Hi ∈ Rd×M

• Compute G ←
(
1
N

∑
i Hi

)⊤ (1
N

∑
i Hi

)
≈ ∇L⊤∇L

Constructing ∇L(x) with O(d) Communication

Server wants ∇L = [∇L1(x), . . . ,∇LM(x)]

Client i has H̃i =
[
∇̃L(i)1 . . . ∇̃L(i)M

]
∈ Rd×M

At clients

• Client i reshapes H̃i to H̄i ∈ R
√
dM×

√
dM

• Send Ĥi ← Rand-SVD(H̄i , r) (rank-r approximation of H̄i) to server

• Rank r ≤
√
d/M ⇒ communication cost ≤ d

At server

• Reshape Ĥi to Hi ∈ Rd×M

• Compute G ←
(
1
N

∑
i Hi

)⊤ (1
N

∑
i Hi

)
≈ ∇L⊤∇L

Constructing ∇L(x) with O(d) Communication

Server wants ∇L = [∇L1(x), . . . ,∇LM(x)]

Client i has H̃i =
[
∇̃L(i)1 . . . ∇̃L(i)M

]
∈ Rd×M

At clients

• Client i reshapes H̃i to H̄i ∈ R
√
dM×

√
dM

• Send Ĥi ← Rand-SVD(H̄i , r) (rank-r approximation of H̄i) to server

• Rank r ≤
√
d/M ⇒ communication cost ≤ d

At server

• Reshape Ĥi to Hi ∈ Rd×M

• Compute G ←
(
1
N

∑
i Hi

)⊤ (1
N

∑
i Hi

)
≈ ∇L⊤∇L

Constructing ∇L(x) with O(d) Communication

Server wants ∇L = [∇L1(x), . . . ,∇LM(x)]

Client i has H̃i =
[
∇̃L(i)1 . . . ∇̃L(i)M

]
∈ Rd×M

At clients

• Client i reshapes H̃i to H̄i ∈ R
√
dM×

√
dM

• Send Ĥi ← Rand-SVD(H̄i , r) (rank-r approximation of H̄i) to server

• Rank r ≤
√
d/M ⇒ communication cost ≤ d

At server

• Reshape Ĥi to Hi ∈ Rd×M

• Compute G ←
(
1
N

∑
i Hi

)⊤ (1
N

∑
i Hi

)
≈ ∇L⊤∇L

Constructing ∇L(x) with O(d) Communication

Server wants ∇L = [∇L1(x), . . . ,∇LM(x)]

Client i has H̃i =
[
∇̃L(i)1 . . . ∇̃L(i)M

]
∈ Rd×M

At clients

• Client i reshapes H̃i to H̄i ∈ R
√
dM×

√
dM

• Send Ĥi ← Rand-SVD(H̄i , r) (rank-r approximation of H̄i) to server

• Rank r ≤
√
d/M ⇒ communication cost ≤ d

At server

• Reshape Ĥi to Hi ∈ Rd×M

• Compute G ←
(
1
N

∑
i Hi

)⊤ (1
N

∑
i Hi

)
≈ ∇L⊤∇L

Constructing ∇L(x) with O(d) Communication

Server wants ∇L = [∇L1(x), . . . ,∇LM(x)]

Client i has H̃i =
[
∇̃L(i)1 . . . ∇̃L(i)M

]
∈ Rd×M

At clients

• Client i reshapes H̃i to H̄i ∈ R
√
dM×

√
dM

• Send Ĥi ← Rand-SVD(H̄i , r) (rank-r approximation of H̄i) to server

• Rank r ≤
√
d/M ⇒ communication cost ≤ d

At server

• Reshape Ĥi to Hi ∈ Rd×M

• Compute G ←
(
1
N

∑
i Hi

)⊤ (1
N

∑
i Hi

)
≈ ∇L⊤∇L

Constructing ∇L(x) with O(d) Communication

Server wants ∇L = [∇L1(x), . . . ,∇LM(x)]

Client i has H̃i =
[
∇̃L(i)1 . . . ∇̃L(i)M

]
∈ Rd×M

At clients

• Client i reshapes H̃i to H̄i ∈ R
√
dM×

√
dM

• Send Ĥi ← Rand-SVD(H̄i , r) (rank-r approximation of H̄i) to server

• Rank r ≤
√
d/M ⇒ communication cost ≤ d

At server

• Reshape Ĥi to Hi ∈ Rd×M

• Compute G ←
(
1
N

∑
i Hi

)⊤ (1
N

∑
i Hi

)
≈ ∇L⊤∇L

Comparison with other Compression Schemes

Error (in %) = ∥G̃−G∥
∥G̃∥

, where G̃ =
(

1
N

∑
i H̃i

)⊤ (
1
N

∑
i H̃i

)

Updating aggregation weights

At the server - need to solve

w∗ = argminw

∥∥∥∥∥ [∇L1(x), . . . , LM(x)]︸ ︷︷ ︸
≜∇L(x)∈Rd×M

w

∥∥∥∥∥
2

2

s.t. w ≥ 0, w⊤1 = 1

≈ ProjSM

(
w − ηw∇L(x)⊤∇L(x)w

)
(Single PGD step)

SM is the probability simplex in RM

Server uses G ≈ ∇L(x)⊤∇L(x) (obtained with O(d) communication) to

compute

w← ProjSM
(w − ηwGw)

Updating aggregation weights

At the server - need to solve

w∗ = argminw

∥∥∥∥∥ [∇L1(x), . . . , LM(x)]︸ ︷︷ ︸
≜∇L(x)∈Rd×M

w

∥∥∥∥∥
2

2

s.t. w ≥ 0, w⊤1 = 1

≈ ProjSM

(
w − ηw∇L(x)⊤∇L(x)w

)
(Single PGD step)

SM is the probability simplex in RM

Server uses G ≈ ∇L(x)⊤∇L(x) (obtained with O(d) communication) to

compute

w← ProjSM
(w − ηwGw)

FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send

Ĥi = Q(∇̃Li (x)) to server

• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)

FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send

Ĥi = Q(∇̃Li (x)) to server

• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)

FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send

Ĥi = Q(∇̃Li (x)) to server

• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)

FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send

Ĥi = Q(∇̃Li (x)) to server

• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)

FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send

Ĥi = Q(∇̃Li (x)) to server

• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)

FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send

Ĥi = Q(∇̃Li (x)) to server

• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)

FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send

Ĥi = Q(∇̃Li (x)) to server

• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)

FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send

Ĥi = Q(∇̃Li (x)) to server

• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)

Server Communication

Cost

• FMGDA - d

• FedCMOO - d +M ≈ d

Per-client Communication

Cost

• FMGDA - Md

• FedCMOO - 2d

FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send

Ĥi = Q(∇̃Li (x)) to server

• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)

Server Communication

Cost

• FMGDA - d

• FedCMOO - d +M ≈ d

Per-client Communication

Cost

• FMGDA - Md

• FedCMOO - 2d

FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send

Ĥi = Q(∇̃Li (x)) to server

• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)

Server Communication

Cost

• FMGDA - d

• FedCMOO - d +M ≈ d

Per-client Communication

Cost

• FMGDA - Md

• FedCMOO - 2d

FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send

Ĥi = Q(∇̃Li (x)) to server

• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)

Server Communication

Cost

• FMGDA - d

• FedCMOO - d +M ≈ d

Per-client Communication

Cost

• FMGDA - Md

• FedCMOO - 2d

FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send

Ĥi = Q(∇̃Li (x)) to server

• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)

Server Communication

Cost

• FMGDA - d

• FedCMOO - d +M ≈ d

Per-client Communication

Cost

• FMGDA - Md

• FedCMOO - 2d

Theory: Assumptions

Problem

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• Smoothness: ∥∇L(i)k (x)−∇L(i)k (y)∥ ≤ L∥x− y∥
• Unbiased stochastic gradients with bounded variance

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• Unbiased Compression: E[Q(x)] = x and E∥Q(x)− x∥2 ≤ q∥x∥2,
for some q > 0

Theory: Assumptions

Problem

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• Smoothness: ∥∇L(i)k (x)−∇L(i)k (y)∥ ≤ L∥x− y∥

• Unbiased stochastic gradients with bounded variance

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• Unbiased Compression: E[Q(x)] = x and E∥Q(x)− x∥2 ≤ q∥x∥2,
for some q > 0

Theory: Assumptions

Problem

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• Smoothness: ∥∇L(i)k (x)−∇L(i)k (y)∥ ≤ L∥x− y∥
• Unbiased stochastic gradients with bounded variance

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• Unbiased Compression: E[Q(x)] = x and E∥Q(x)− x∥2 ≤ q∥x∥2,
for some q > 0

Theory: Assumptions

Problem

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• Smoothness: ∥∇L(i)k (x)−∇L(i)k (y)∥ ≤ L∥x− y∥
• Unbiased stochastic gradients with bounded variance

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• Unbiased Compression: E[Q(x)] = x and E∥Q(x)− x∥2 ≤ q∥x∥2,
for some q > 0

Theory: Assumptions

Problem

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• Smoothness: ∥∇L(i)k (x)−∇L(i)k (y)∥ ≤ L∥x− y∥
• Unbiased stochastic gradients with bounded variance

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• Unbiased Compression: E[Q(x)] = x and E∥Q(x)− x∥2 ≤ q∥x∥2,
for some q > 0

Theoretical Result: Convergence

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

min
[T]
∥
∑
k

wk∇Lk(x)∥2 ≤ O
(

1

Tηsηcτ
+

Lηsηc
n

)
︸ ︷︷ ︸
Centralized Optimization Error

for Scalarized Loss

+ O (LηsηcτB)︸ ︷︷ ︸
Partial Participation

Error

+O
(
Lηc(τB +

√
τB)

)︸ ︷︷ ︸
Local Drift Error

+O

(
ηwM

[
q

n
+

qB

n
+ B

]2)
︸ ︷︷ ︸

MOO Weight Error

• With appropriate choice of parameters ηs , ηc , ηw

min
t∈[T]

∥
∑
k

wk(t)∇Lk(x(t))∥2 ≤ O
(

1√
T

)

Theoretical Result: Convergence

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

min
[T]
∥
∑
k

wk∇Lk(x)∥2 ≤ O
(

1

Tηsηcτ
+

Lηsηc
n

)
︸ ︷︷ ︸
Centralized Optimization Error

for Scalarized Loss

+ O (LηsηcτB)︸ ︷︷ ︸
Partial Participation

Error

+O
(
Lηc(τB +

√
τB)

)︸ ︷︷ ︸
Local Drift Error

+O

(
ηwM

[
q

n
+

qB

n
+ B

]2)
︸ ︷︷ ︸

MOO Weight Error

• With appropriate choice of parameters ηs , ηc , ηw

min
t∈[T]

∥
∑
k

wk(t)∇Lk(x(t))∥2 ≤ O
(

1√
T

)

Dependence on Number of Objectives M

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

To achieve mint∈[T] ∥
∑

k wk(t)∇Lk(x(t))∥2 ≤ ϵ

Work Federated Complexity

SDMGrad∗ ✗ O
(

M2

ϵ2

)
FMGDA† ✓ O

(
M4

ϵ2

)
FedCMOO (Ours) ✓ O

(
M
ϵ2

)

∗Xiao, et al. “Direction-oriented multi-objective learning: Simple and provable

stochastic algorithms.” NeurIPS’23.
†Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

Dependence on Number of Objectives M

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

To achieve mint∈[T] ∥
∑

k wk(t)∇Lk(x(t))∥2 ≤ ϵ

Work Federated Complexity

SDMGrad∗ ✗ O
(

M2

ϵ2

)

FMGDA† ✓ O
(

M4

ϵ2

)
FedCMOO (Ours) ✓ O

(
M
ϵ2

)

∗Xiao, et al. “Direction-oriented multi-objective learning: Simple and provable

stochastic algorithms.” NeurIPS’23.
†Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

Dependence on Number of Objectives M

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

To achieve mint∈[T] ∥
∑

k wk(t)∇Lk(x(t))∥2 ≤ ϵ

Work Federated Complexity

SDMGrad∗ ✗ O
(

M2

ϵ2

)
FMGDA† ✓ O

(
M4

ϵ2

)

FedCMOO (Ours) ✓ O
(
M
ϵ2

)

∗Xiao, et al. “Direction-oriented multi-objective learning: Simple and provable

stochastic algorithms.” NeurIPS’23.
†Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

Dependence on Number of Objectives M

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

To achieve mint∈[T] ∥
∑

k wk(t)∇Lk(x(t))∥2 ≤ ϵ

Work Federated Complexity

SDMGrad∗ ✗ O
(

M2

ϵ2

)
FMGDA† ✓ O

(
M4

ϵ2

)
FedCMOO (Ours) ✓ O

(
M
ϵ2

)

∗Xiao, et al. “Direction-oriented multi-objective learning: Simple and provable

stochastic algorithms.” NeurIPS’23.
†Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.

Limitations of Our Analysis

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• With appropriate choice of parameters ηs , ηc , ηw

min
[T]
∥
∑
k

wk∇Lk(x)∥2 ≤ O
(

1√
T

)

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• No provable benefit of parallelization (i.e., speedup in N)

• Culprit: the inner product terms

Limitations of Our Analysis

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• With appropriate choice of parameters ηs , ηc , ηw

min
[T]
∥
∑
k

wk∇Lk(x)∥2 ≤ O
(

1√
T

)

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• No provable benefit of parallelization (i.e., speedup in N)

• Culprit: the inner product terms

Limitations of Our Analysis

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• With appropriate choice of parameters ηs , ηc , ηw

min
[T]
∥
∑
k

wk∇Lk(x)∥2 ≤ O
(

1√
T

)

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• No provable benefit of parallelization (i.e., speedup in N)

• Culprit: the inner product terms

Limitations of Our Analysis

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• With appropriate choice of parameters ηs , ηc , ηw

min
[T]
∥
∑
k

wk∇Lk(x)∥2 ≤ O
(

1√
T

)

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• No provable benefit of parallelization (i.e., speedup in N)

• Culprit: the inner product terms

Outline

1. Background: MOO and MGDA

2. Federated MGDA and its Drawbacks

3. FedCMOO: Improving Federated MGDA

4. Experiment Results

5. Conclusion

Experiment Results

Experiments: Datasets

MNIST+FMNIST, MultiMNIST, CIFAR10+MNIST

• Constructed by combining two randomly sampled images: one from

each dataset

• 2 objectives

L:7 R:Boot L:4 R:Pullover L:5 R:Coat L:5 R:Sandal L:8 R:Boot L:6 R:Bag

CelebA

• CelebA dataset - each image has 40 attributes

• Each attribute gives a binary classification ⇒ 40 objectives

Experiments: Datasets

MNIST+FMNIST, MultiMNIST, CIFAR10+MNIST

• Constructed by combining two randomly sampled images: one from

each dataset

• 2 objectives

L:7 R:Boot L:4 R:Pullover L:5 R:Coat L:5 R:Sandal L:8 R:Boot L:6 R:Bag

CelebA

• CelebA dataset - each image has 40 attributes

• Each attribute gives a binary classification ⇒ 40 objectives

Experiments: Mean Test Accuracy

100 clients in total, 10 selected in each round

0 100 200 300 400 500
Rounds

0.70

0.75

0.80

0.85

0.90

M
ea

n
Te

st
 A

cc
ur

ac
y

MNIST+FMNIST

FedCMOO
FedCMOO-Pref
FSMGDA

0 100 200 300 400
Rounds

0.75

0.80

0.85

0.90 CelebA

Test Accuracy averaged over all the objectives

Experiments: Controlling Local Drift

100 clients in total, 10 selected in each round

5 10 15 20 25
Number of Local Iterations

0.86

0.88

0.90

0.92

M
ea

n
Te

st
 A

cc
ur

ac
y

MultiMNIST

FedCMOO
FSMGDA

5 10 15 20 25
Number of Local Iterations

0.82

0.83

0.84

0.85

0.86

0.87

MNIST+FMNIST

FedCMOO
FSMGDA

Test Accuracy averaged over all the objectives

• Increasing local iterations (τ)⇒ larger local drift in FSMGDA ⇒
worse performance

Experiments: Final Loss Values

• CelebA dataset - 40 objectives

T1 T2 T3T4
T5

T6
T7

T8
T9
T10
T11
T12

T13
T14

T15
T16

T17
T18T19T20T21T22T23T24

T25
T26

T27
T28

T29
T30
T31
T32
T33
T34

T35
T36

T37
T38T39T40

0.2

0.4

0.6

CelebA Test Loss
T1

T2

T3T4

T5

0.20

0.22

0.24

0.25

0.27
CelebA-5 Test Loss

FedCMOO-Pref
FSMGDA

FedCMOO

Preferences in MOO

• Users sometimes prefer solutions with specific trade-offs among the

different objectives

• Healthcare

• Privacy ↔ Utility

• One possible solution: specific ratios for loss values

min
x∈Rd

L(x) := [L1(x), . . . , LM(x)]⊤

subject to r1L1(x) = · · · = rMLM(x).

• MOO methods, by default, do not let us control the trade-off

• Ensure that normalized scaled losses are almost uniform∗

ûk(r) =
rkLk(x)∑
j rjLj(x)

≈ 1

M

∗Mahapatra and Rajan, “Multi-task learning with user preferences: Gradient descent

with controlled ascent in pareto optimization.” ICML’20.

Experiments: Preference-based Pareto Solutions

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Digit 2 Test Loss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
ig

it
1

Te
st

 L
os

s

MultiMNIST

4.0/1.0
2.0/1.0

1.5/1.0
1.0/1.0

1.0/1.5
1.0/2.0

1.0/4.0

0.0 0.2 0.4 0.6 0.8
FashionMNIST Test Loss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
N

IS
T

Te
st

 L
os

s

MNIST+FMNIST

1.0/1.0
1.0/1.5

1.0/2.0
1.0/3.0

1.0/4.0
1.0/6.0

• Vertical and horizontal dashed lines - minimum loss from

single-objective training

• Gray regions are infeasible

• More difficult to satisfy preferences with significantly different

weights

Conclusion

Some Open Questions

• How to explore the entire Pareto front?

• Generalization guarantees?

• Impact of MOO optimization on MTL generalization§

• Generalization gap between single-task and multi-task trajectories

early into training

• Standard optimization metrics (sharpness, minimum loss, etc.) do

not explain the generalization gaps between single-task and

multi-task models

§Mueller, et al. “Can Optimization Trajectories Explain Multi-Task Transfer?”

rXiv:2408.14677.

Summary: Federated Multi-Objective Optimization (MOO)

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

M objectives, N clients

• Communication-efficient algorithm FedCMOO

• Communication cost does not scale with the number of objectives M

• Convergence to Pareto-stationary point

• Improved sample complexity in terms of M

• Under weaker assumptions

• Improved empirical performance

Thanks! (pranaysh@iitb.ac.in)

mailto: pranaysh@iitb.ac.in

	8515a45980380279bd6ec81544820c39a29eb214fc2f96d52f018bdaad4365f3.pdf
	b34644f20f8a83d993b70f078fc9977d21e3e42691ae2824ae107c41589dad11.pdf
	b34644f20f8a83d993b70f078fc9977d21e3e42691ae2824ae107c41589dad11.pdf
	Slide 5: Big Data

	b34644f20f8a83d993b70f078fc9977d21e3e42691ae2824ae107c41589dad11.pdf
	Slide 10: Data is Naturally Distributed!
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

	b34644f20f8a83d993b70f078fc9977d21e3e42691ae2824ae107c41589dad11.pdf
	Slide 25: Privacy

	b34644f20f8a83d993b70f078fc9977d21e3e42691ae2824ae107c41589dad11.pdf
	Slide 28: Network constraints

	b34644f20f8a83d993b70f078fc9977d21e3e42691ae2824ae107c41589dad11.pdf
	Slide 34

	b34644f20f8a83d993b70f078fc9977d21e3e42691ae2824ae107c41589dad11.pdf
	Slide 42: Federated Learning (FL)
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

	8515a45980380279bd6ec81544820c39a29eb214fc2f96d52f018bdaad4365f3.pdf
	8515a45980380279bd6ec81544820c39a29eb214fc2f96d52f018bdaad4365f3.pdf
	8515a45980380279bd6ec81544820c39a29eb214fc2f96d52f018bdaad4365f3.pdf
	b34644f20f8a83d993b70f078fc9977d21e3e42691ae2824ae107c41589dad11.pdf
	Background: MOO and MGDA
	Federated MGDA and its Drawbacks
	FedCMOO: Improving Federated MGDA
	Experiment Results
	Conclusion

	8515a45980380279bd6ec81544820c39a29eb214fc2f96d52f018bdaad4365f3.pdf

