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Big Data

• Need lots of data

Introduction
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Data is Naturally Distributed!
• Edge-devices collect data

• This data is used to train ML models

Introduction
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Privacy

Individual user data should not be leaked

Introduction
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Network constraints

Server

Introduction

Communication is expensive
7Image from www.ookla.com

http://www.ookla.com/


Introduction

Intermittent Availability

Devices are available when

• Idle, plugged-in and on wifi

8



Distributed learning under

• Privacy concerns

• Network constraints

• Intermittent client availability

 (partial participation)

Federated Learning
(FL)

Introduction

Devices don’t send raw data*

Infrequent communication with server

9
Kairouz, et al. "Advances and open problems in federated learning." Foundations 

and Trends® in Machine Learning (2021).
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Round 𝑡
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Server

Clients

Introduction

Round 𝑡

• Clients run 𝜏 ≥ 1 local steps

• Saves communication cost

1

2

𝜏

1

2

𝜏

1

2

𝜏

Low-power devices

First-order methods

Computation Efficiency
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Clients

Σ

Introduction

Round 𝑡

• Server aggregates local models

Round 𝑡 ends

1 2 3 𝑛
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Server

Introduction

Clients

Round 𝑡 + 1 begins

• 𝑃 (out of 𝑛) clients

1 2 3 𝑛
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Clients

Introduction

Round 𝑡 + 1

• Global model → clients
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Server

Clients

Introduction

Round 𝑡 + 1

• Global model → clients

Total 𝑇 rounds

17



ChatBots

Multiple Objectives

• Accuracy/Relevance

• Engagement

• Politeness/Safety

• Personalization

Trade-offs: accuracy ↔
personalization



Recommender Systems∗

Image modified from MLArchive

Multiple Users

• User Diversity

• Data Privacy

Multiple Objectives

• Accuracy/Relevance

• Diversity

• Novelty

• Contextual Relevance

Trade-offs: accuracy ↔ diversity

∗Sun, et al. “A survey on federated recommendation systems.” IEEE TNNLS’24.

mlarchive.com


Personalized Medicine∗

Image from science.org and eupati.eu

Multiple Patients

• Patient diversity

• Data confidentiality

Multiple Objectives

• Diagnostic Precision

• Cost-Effectiveness

• Minimizing Side-Effects

• Privacy and Data Security

• Equity in Access

Trade-offs:

Precision ↔ Cost-Effectiveness

∗Sheller, et al. “Federated learning in medicine: facilitating multi-institutional col-

laborations without sharing patient data.” Scientific Reports’20.

https://www.science.org/doi/abs/10.1126/scitranslmed.abe5383?rss=1&utm_source=TrendMD&utm_medium=cpc&utm_campaign=TrendMD_1
https://toolbox.eupati.eu/wp-content/uploads/sites/4/2023/01/Example-schematic-of-use-of-personalised-medicine.jpg


Goal

Using data from multiple (distributed) users/patients/clients,

learn a model

that simultaneously optimizes multiple objectives



In this talk

Federated Multi-Objective Optimization (MOO)

min
x∈Rd

L(x) = min
x

(L1(x), . . . , LM(x))⊤ , where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

L
(i)
k - contribution of i-th client to k-th objective

M objectives, N users/patients/clients
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Multi-Objective Optimization (MOO)∗

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤

Why do we need it? Why not just solve minx
∑M

k=1 αkLk(x)?

• How do we decide the weights {αk}Mk=1?

• A subset of tasks might be severely under-optimized

• Scalar losses do not explore the set of all possible solutions†

†Hu, et al. “Revisiting Scalarization in Multi-Task Learning: A Theoretical Per-

spective,” NeurIPS’23.
∗Sener and Koltun, “Multi-task learning as multi-objective optimization,”

NeurIPS’18.
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MGDA with Multi-MNIST Dataset∗

Two digits - one in top-left, the other in bottom-right

Task-L/R: classifying the digit on top-left/bottom-right

∗Sener and Koltun, “Multi-task learning as multi-objective optimization,”

NeurIPS’18.
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Pareto Optimality/Stationarity

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤

• At Pareto-optimal point - cannot reduce any loss Lk without also

increasing some other Lk′

• At Pareto-stationary point x̄ - “some” convex combination of

gradient vectors is zero, i.e., there exist w1, . . . ,wM (all ≥ 0) s.t.

M∑
i=1

wk = 1 and
M∑
i=1

wk∇Lk(x̄) = 0

i.e., no common descent direction for all objectives

• Pareto-optimality ⇒ Pareto-stationarity

• ∴ x̄ is not Pareto-stationary ⇒ can find descent directions to

simultaneously reduce all {Lk}Mk=1
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Multiple Gradient Descent

Multiple Gradient Descent Algorithm (MGDA)∗ solves

min
w1,...,wM

∥∥∥∥∥
M∑
i=1

wk∇Lk(x)

∥∥∥∥∥
2

2

s.t.
M∑
i=1

wk = 1,wk ≥ 0, for all k ∈ [M]

• Either the minimum value is 0,

• Or the solution gives
∑M

i=1 w
∗
k∇Lk(x) that reduces all objectives

∗Désidéri, “Multiple-gradient descent algorithm (MGDA) for multiobjective opti-

mization,” Comptes Rendus Mathematique, 2012.
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Federated MGDA and its

Drawbacks



Problem - Federated Multi-Objective Optimization

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤

Lk(x) :=
1

N

N∑
i=1

L
(i)
k (x)

• M objectives, N clients



First Attempt - Federated MGDA∗

min
x

L(x) = min
x

(L1(x), . . . , LM(x))⊤ , where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

M objectives, N clients

Recall MGDA - minw

∥∥∥∑M
i=1 wk∇Lk(x)

∥∥∥2
2
s.t. w ≥ 0, w⊤1 = 1

• Client i computes ≈
[
∇L(i)1 (x), . . . ,∇L(i)M (x)

]⊤
(local gradients)

• Server computes ≈ [∇L1(x), . . . ,∇LM(x)]⊤, where

∇Lk(x) = 1
N

∑N
i=1∇L

(i)
k (x)

∗Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.
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• Server computes ≈ [∇L1(x), . . . ,∇LM(x)]⊤, where

∇Lk(x) = 1
N

∑N
i=1∇L

(i)
k (x)
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Federated MGDA∗

At each client i

• Synchronize local models x
(i)
k = x for objective k and client i

• Multiple local updates x
(i)
k ← x

(i)
k − ηc∇̃L(i)k (x

(i)
k ) (SGD/GD/etc.)

• Return updates to server ∆
(i)
k =

x−x
(i)
k

ηc
for each k

At the server

• Average client updates ∆k = 1
N

∑
i ∆

(i)
k , for each objective k ∈ M

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k
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Challenges of Federated MGDA

At each client i

• Synchronize local models x
(i)
k = x for objective k and client i

• Multiple local updates x
(i)
k ← x

(i)
k − ηc∇̃L(i)k (x

(i)
k )

• Local drift across tasks ⇒ worse performance

• Return updates to server ∆
(i)
k =

x−x
(i)
k

ηc
for each task k

• M× communication

At the server

• Average client updates ∆k = 1
N

∑
i ∆

(i)
k , for each task k ∈ M

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k
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FedCMOO: Improving Federated

MGDA



Improving Federated MGDA

If we knew the task weights {wk}
At each client i - aggregated local updates, starting with x

• Multiple local updates: x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x
(i)
k )

• Instead of x(i)k ← x(i)k − ηc∇̃L(i)
k (x(i)k )

• Return updates to server ∇(i) = x−x(i)

ηc

• Instead of task-wise updates ∆
(i)
k =

x−x
(i)
k

ηc
for each k

• M× reduction in communication; reduces drift across tasks

At the server

• Solve w∗ = argminw ∥
∑

k wk∆k∥22 s.t. w ≥ 0, w⊤1 = 1

• Update global model x← x− ηs
∑

k w
∗
k∆k

Repeat

How do we update w with {∇(i)} instead of {∆k}?
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Why do we need M× communication?

At the server - need to solve

w∗ = argminw ∥
∑

k wk∇Lk(x)∥22 s.t. w ≥ 0, w⊤1 = 1

= argminw

∥∥∥∥∥ [∇L1(x), . . . , LM(x)]︸ ︷︷ ︸
≜∇L(x)∈Rd×M

w

∥∥∥∥∥
2

2

s.t. w ≥ 0, w⊤1 = 1

w∗ ≈ ProjSM

(
w − ηw∇L(x)⊤∇L(x)w

)
(Single PGD step)

SM is the probability simplex in RM

• In Federated MGDA:

[∆1, . . . ,∆M ]︸ ︷︷ ︸
Matrix of task updates

≈ ∇L(x)︸ ︷︷ ︸
Jacobian

• How do we approximate ∇L(x) with O(d) communication?
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Constructing ∇L(x) with O(d) Communication

Server wants ∇L = [∇L1(x), . . . ,∇LM(x)]

Client i has H̃i =
[
∇̃L(i)1 . . . ∇̃L(i)M

]
∈ Rd×M

At clients

• Client i reshapes H̃i to H̄i ∈ R
√
dM×

√
dM

• Send Ĥi ← Rand-SVD(H̄i , r) (rank-r approximation of H̄i ) to server

• Rank r ≤
√
d/M ⇒ communication cost ≤ d

At server

• Reshape Ĥi to Hi ∈ Rd×M

• Compute G ←
(
1
N

∑
i Hi

)⊤ ( 1
N

∑
i Hi

)
≈ ∇L⊤∇L



Constructing ∇L(x) with O(d) Communication

Server wants ∇L = [∇L1(x), . . . ,∇LM(x)]

Client i has H̃i =
[
∇̃L(i)1 . . . ∇̃L(i)M

]
∈ Rd×M

At clients

• Client i reshapes H̃i to H̄i ∈ R
√
dM×

√
dM
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• Reshape Ĥi to Hi ∈ Rd×M

• Compute G ←
(
1
N

∑
i Hi

)⊤ ( 1
N

∑
i Hi

)
≈ ∇L⊤∇L



Comparison with other Compression Schemes

Error (in %) = ∥G̃−G∥
∥G̃∥

, where G̃ =
(

1
N

∑
i H̃i

)⊤ (
1
N

∑
i H̃i

)



Updating aggregation weights

At the server - need to solve

w∗ = argminw

∥∥∥∥∥ [∇L1(x), . . . , LM(x)]︸ ︷︷ ︸
≜∇L(x)∈Rd×M

w

∥∥∥∥∥
2

2

s.t. w ≥ 0, w⊤1 = 1

≈ ProjSM

(
w − ηw∇L(x)⊤∇L(x)w

)
(Single PGD step)

SM is the probability simplex in RM

Server uses G ≈ ∇L(x)⊤∇L(x) (obtained with O(d) communication) to

compute

w← ProjSM
(w − ηwGw)
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FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send

Ĥi = Q(∇̃Li (x)) to server

• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)
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• Reshape Ĥi to Hi . Compute

G ≈
(

1
|C|
∑

i Hi

)⊤ (
1
|C|
∑

i Hi

)
• Compute w← ProjSM

(w − ηwGw)

and send to clients

• Start with x, multiple (τ) local updates

x(i) ← x(i) − ηc
∑

k wk∇̃L(i)k (x(i))

• Return updates to server

∇(i) = x− x(i)

• Update the global model

x← x− ηs
1
|C|
∑

i∈C ∇(i)



FedCMOO: Federated Communication-efficient MOO

Server and client steps

• Select client subset C - send x

• Compute ∇̃Li (x) and send
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Theory: Assumptions

Problem

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• Smoothness: ∥∇L(i)k (x)−∇L(i)k (y)∥ ≤ L∥x− y∥
• Unbiased stochastic gradients with bounded variance

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• Unbiased Compression: E[Q(x)] = x and E∥Q(x)− x∥2 ≤ q∥x∥2,
for some q > 0



Theory: Assumptions

Problem

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• Smoothness: ∥∇L(i)k (x)−∇L(i)k (y)∥ ≤ L∥x− y∥

• Unbiased stochastic gradients with bounded variance

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• Unbiased Compression: E[Q(x)] = x and E∥Q(x)− x∥2 ≤ q∥x∥2,
for some q > 0



Theory: Assumptions

Problem

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• Smoothness: ∥∇L(i)k (x)−∇L(i)k (y)∥ ≤ L∥x− y∥
• Unbiased stochastic gradients with bounded variance

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• Unbiased Compression: E[Q(x)] = x and E∥Q(x)− x∥2 ≤ q∥x∥2,
for some q > 0



Theory: Assumptions

Problem

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• Smoothness: ∥∇L(i)k (x)−∇L(i)k (y)∥ ≤ L∥x− y∥
• Unbiased stochastic gradients with bounded variance

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• Unbiased Compression: E[Q(x)] = x and E∥Q(x)− x∥2 ≤ q∥x∥2,
for some q > 0



Theory: Assumptions

Problem

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• Smoothness: ∥∇L(i)k (x)−∇L(i)k (y)∥ ≤ L∥x− y∥
• Unbiased stochastic gradients with bounded variance

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• Unbiased Compression: E[Q(x)] = x and E∥Q(x)− x∥2 ≤ q∥x∥2,
for some q > 0



Theoretical Result: Convergence

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

min
[T ]
∥
∑
k

wk∇Lk(x)∥2 ≤ O
(

1

Tηsηcτ
+

Lηsηc
n

)
︸ ︷︷ ︸
Centralized Optimization Error

for Scalarized Loss

+ O (LηsηcτB)︸ ︷︷ ︸
Partial Participation

Error

+O
(
Lηc(τB +

√
τB)

)︸ ︷︷ ︸
Local Drift Error

+O

(
ηwM

[
q

n
+

qB

n
+ B

]2)
︸ ︷︷ ︸

MOO Weight Error

• With appropriate choice of parameters ηs , ηc , ηw

min
t∈[T ]

∥
∑
k

wk(t)∇Lk(x(t))∥2 ≤ O
(

1√
T

)
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Dependence on Number of Objectives M

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

To achieve mint∈[T ] ∥
∑

k wk(t)∇Lk(x(t))∥2 ≤ ϵ

Work Federated Complexity

SDMGrad∗ ✗ O
(

M2

ϵ2

)
FMGDA† ✓ O

(
M4

ϵ2

)
FedCMOO (Ours) ✓ O

(
M
ϵ2

)

∗Xiao, et al. “Direction-oriented multi-objective learning: Simple and provable

stochastic algorithms.” NeurIPS’23.
†Yang, et al. “Federated Multi-Objective Learning,” NeurIPS’23.
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Limitations of Our Analysis

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

• With appropriate choice of parameters ηs , ηc , ηw

min
[T ]
∥
∑
k

wk∇Lk(x)∥2 ≤ O
(

1√
T

)

• Bounded Gradients: ∥∇L(i)k (x)∥ ≤ B

• No provable benefit of parallelization (i.e., speedup in N)

• Culprit: the inner product terms
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Experiments: Datasets

MNIST+FMNIST, MultiMNIST, CIFAR10+MNIST

• Constructed by combining two randomly sampled images: one from

each dataset

• 2 objectives

L:7 R:Boot L:4 R:Pullover L:5 R:Coat L:5 R:Sandal L:8 R:Boot L:6 R:Bag

CelebA

• CelebA dataset - each image has 40 attributes

• Each attribute gives a binary classification ⇒ 40 objectives
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Experiments: Mean Test Accuracy

100 clients in total, 10 selected in each round
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Experiments: Controlling Local Drift

100 clients in total, 10 selected in each round
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• Increasing local iterations (τ)⇒ larger local drift in FSMGDA ⇒
worse performance



Experiments: Final Loss Values

• CelebA dataset - 40 objectives
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Preferences in MOO

• Users sometimes prefer solutions with specific trade-offs among the

different objectives

• Healthcare

• Privacy ↔ Utility

• One possible solution: specific ratios for loss values

min
x∈Rd

L(x) := [L1(x), . . . , LM(x)]⊤

subject to r1L1(x) = · · · = rMLM(x).

• MOO methods, by default, do not let us control the trade-off

• Ensure that normalized scaled losses are almost uniform∗

ûk(r) =
rkLk(x)∑
j rjLj(x)

≈ 1

M

∗Mahapatra and Rajan, “Multi-task learning with user preferences: Gradient descent

with controlled ascent in pareto optimization.” ICML’20.



Experiments: Preference-based Pareto Solutions
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• Vertical and horizontal dashed lines - minimum loss from

single-objective training

• Gray regions are infeasible

• More difficult to satisfy preferences with significantly different

weights



Conclusion



Some Open Questions

• How to explore the entire Pareto front?

• Generalization guarantees?

• Impact of MOO optimization on MTL generalization§

• Generalization gap between single-task and multi-task trajectories

early into training

• Standard optimization metrics (sharpness, minimum loss, etc.) do

not explain the generalization gaps between single-task and

multi-task models

§Mueller, et al. “Can Optimization Trajectories Explain Multi-Task Transfer?”

rXiv:2408.14677.



Summary: Federated Multi-Objective Optimization (MOO)

min
x

L(x) := min
x

[L1(x), . . . , LM(x)]⊤ where Lk(x) =
1

N

N∑
i=1

L
(i)
k (x)

M objectives, N clients

• Communication-efficient algorithm FedCMOO

• Communication cost does not scale with the number of objectives M

• Convergence to Pareto-stationary point

• Improved sample complexity in terms of M

• Under weaker assumptions

• Improved empirical performance

Thanks! (pranaysh@iitb.ac.in)

mailto: pranaysh@iitb.ac.in
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