
CS772-DLNLP

Topic: Intro to VLMS
Presenter: Sravanthi

Today’s Lecture

Text

Model

Text

Text

Model

Text

Image

Text-to-text

Text

Model

Image

Multi-to-text

Multi-to-multi

Model

Image

Text Image

Multi-to-image

Text Image

Anoop’s Lecture

Tejomay’s Lecture

Example chat from Intern-S1 model

Example: Web agents

Model

Text

Text Image
• Combining with a language model

Multi-to-text

 Overview

• Vision architecture basics

• ViT [Dosovitskiy et al 2020]

• Learning image representations

• CLIP [Radford et al 2021]

• Llava [Liu et al 2023]

Model

Text

Text Image

Key problem: Representing Images
● We represent text as a sequence of vectors

(token embeddings)
● We want to also represent an image as a

sequence of vectors

fenc(ximage) → z
1
, …, zL

Need:

1. Neural network architecture
2. Algorithm for learning good vectors

Vision Transformer (ViT)
• Idea: Divide an image into patches, flatten the

patches into vectors, use a standard transformer

How to build ViT in a Nutshell
● Break images into patches
● Flatten those patches into vectors
● Add some information about where in the image the chunks came

from (positional encoding)
● Pass those vectors through a transformer
● Take the output, put it into a dense neural network, and predict

what is in the image.

Vision Transformer (ViT)

ximage ∈ ℝ
H×W×C

px ∈
ℝ

2N×(P ⋅C)

x ∈ ℝ
N×D

x = Wxp
eW ∈

ℝ

2

D×(P ⋅C)

120 x 120 x 3
Patch: 40 x 40

“Patch embeddings”

+ position embeddings

N = (120)(120)
= 9

 (40)(40)
patches

P2 ⋅ C = (40)(40)(3)
= 4800

⟹ xp ∈ ℝ
9×4800

W ∈ ℝ
1024×4800

⟹ x ∈ ℝ
9×1024

CLS token
● One feature introduced to transformers with the popular BERT models was the use of a

[CLS] (or “classification”) token. The [CLS] token was a “special token” prepended to every
sentence fed into BERT.

● This [CLS] token is converted into a token embedding and passed through several
encoding layers.

● Two things make [CLS] embeddings special. First, it does not represent an actual token,
meaning it begins as a “blank slate” for each sentence. Second, the final output from the
[CLS] embedding is used as the input into a classification head during pretraining.

● Using a “blank slate” token as the sole input to a classification head pushes the transformer
to learn to encode a “general representation” of the entire sentence into that embedding.
The model must do this to enable accurate classifier predictions.

● ViT applies the same logic by adding a “learnable embedding”. This learnable embedding is
the same as the [CLS] token used by BERT.

● The preferred pretraining function of ViT is based solely on classification, unlike BERT,
which uses masked language modeling. Based on that, this learning embedding is even
more important to the successful pretraining of ViT.

Position Embeddings
● Transformers do not have any default mechanism that considers the “order” of token or

patch embeddings.
● We enable order with positional embeddings. For ViT, these positional embeddings are

learned vectors with the same dimensionality as our patch embeddings.
● After creating the patch embeddings and prepending the “class” embedding, we sum them

all with positional embeddings.
● These positional embeddings are learned during pretraining and (sometimes) during

fine-tuning.

Vision Transformer (ViT)

• The transformer transforms
the patch embeddings into
vector representations
z

1
, …, zN

• We can train the model to
perform a task such as
classification

output

Apple
Bird
Car
…

Vision Transformer (ViT)

Performance versus pre-training compute for different architectures

Vision Transformer (ViT)

Reshape rows into P x P, visualize principal components of learned embedding filters.
The components resemble plausible basis functions for a low-dimensional
representation of the fine structure within each patch

Vision Transformer (ViT)

Cosine similarity between the position embedding of the patch with the indicated row and
column and the position embeddings of all other patches

Vision Transformer (ViT)

Attention from o/p tokens to i/p space. Can attend to regions that are salient
for the task (here classification)

Vision Transformer (ViT)

Early layers either attend to large regions or narrow regions; later layers
generally attend to larger regions

Code example

https://github.com/cmu-l3/anlp-fall2025-code

Model

Text

Text Image
• Combining with a language model

Multi-to-text

Overview

• Vision architecture basics

• ViT

• Learning image representations

• CLIP

• Llava

Contrastive Language-Image
Pre-training (CLIP)

Goal: Pre-training objective for learning image representations
• Learn from text

• At the time, models were pre-trained on classification: the only textual
supervision was from the class label.

• A textual description of an image provides much more information than one
class label.

• Scalable

• At the time, image pre-training was largely limited to hand labeled data.

• Want to have the property of improving by adding more compute.

What is CLIP capable of ?

CLIP
• Idea: learn image and text representations jointly in a shared

embedding space

• Learn an image encoder fI(x) → zI

• Learn a text encoder fT(y) → zT

• The representations for a paired image and its text should be
close together.

• The representations for an unpaired image and text should be far
apart.

• Apply the method over a large dataset of (image, text) pairs

Key Components in CLIP
• Data: pairs of (image, text)

• E.g. 400 million web images
with their text descriptions

• Image encoder fI(x) → zI

• E.g. vision transformer

• Text encoder fT(y) → zT

• E.g. transformer

CLIP Architecture

• Basic idea: Given N (image, text) pairs, classify which image
is paired with which text

Text Encoder

Image Encoder

Image encoder can be either ResNet-50 or ViT

Before Training

After Training

 How to Calculate Probabilities?

 Contrastive Loss

CLIP

CLIP
• Example “zero-shot” usage

CLIP

Code example

https://github.com/cmu-l3/anlp-fall2025-code

Model

Text

Text Image

Multi-to-text

Overview

• Vision architecture basics

• ViT

• Learning image representations

• CLIP

• Combining with a language
model

• Llava

Research Gap

Llava

Data Creation

Llava

• ‘Image tokens’:

• Get sequence of vectors from
the pretrained CLIP ViT

• Text tokens: same as usual

Training Paradigm
Stage 1- Pre-training for Feature Alignment : 595K image-text pairs are
filtered from CC3M dataset. Only projection layer is trained.

Stage 2- Fine-tuning End-to-End : Fine-tuning on the 158K
language-image instruction-following data. Both projection layer and LLM
are trained in this stage.

 Stages of Training

General pipeline
• Image preprocessing

• E.g. split into patches and vectorize

• Image encoding

• E.g. use a pre-existing CLIP model, get the ViT vectors from the last layer

• Provide the encodings to a LLM

• E.g. linearly transform the vectors to be the model’s embedding
dimension

• Train/fine-tune on data that has text and images

• For image positions, skip the loss

Other Architectures
● Alternatives for CLIP: SiGLiP’s pairwise sigmoid loss, Dino’s

(V2,V3) self supervised vision model.

● Flamingo is a family of VLMs that take as input visual data
interleaved with text and produce free-form text as output.

● Similar to LLaVA: InstructBlip, Qwen VL, InternVL, TinyLLaVA,
many more

Model

Text

Text Image
• Combining with a language model

Multi-to-text

Summary

• Vision architecture basics

• ViT

• Learning image representations

• CLIP

• Llava

Questions?

References

● The material of this lecture is inspired by CMU CS 11-711 Advanced
NLP course.

● I have taken some images from the blog
https://towardsdatascience.com/clip-intuitively-and-exhaustively-explain
ed-1d02c07dbf40/

Thank You!!

