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Describe this image

The image features two animated characters from the famous cartoon "Tom and Jerry." The blue ca
t, Tom, is in the foreground with a mischievous grin, appearing to be running. On top of Tom's head s
its the brown mouse, Jerry, who is also smiling broadly. Both characters are depicted in a playful and

dynamic pose, capturing their classic comedic interaction.

Example chat from Intern-S1 model



Okay, I will perform the following steps:

1. Open the Email editor.

2. Type Leon’s email address into the "To" field.

3. Enter "Weekly Update" into the "Subject" field.

4. Type "Hi Leon, ...." into the email body.
5. Click the "Send" button.
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Overview

* Vision architecture basics f Text\

* VIT [Dosovitskiy et al 2020]

» Learning image representations

|
Text Image

o CLIP [Radford et al 2021]

« Combining with a language model
* Llava [Liu et al 2023] Multi-to-text /




Key problem: Representing Images

We represent text as a sequence of vectors

(token embeddings) = ™

Text

We want to also represent an image as a
sequence of vectors

fenc(ximage) Ay g t

Need: Text Image

1. Neural network architecture —
2. Algorithm for learning good vectors \ /




Vision Transformer (ViT)

- ldea: Divide an image into patches, flatten the
patches into vectors, use a standard transformer

Transformer Encoder
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How to build ViT in a Nutshell

Break images into patches

Flatten those patches into vectors

Add some information about where in the image the chunks came
from (positional encoding)

Pass those vectors through a transformer

Take the output, put it into a dense neural network, and predict

what is in the image.



Vision Transformer (ViT)
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CLS token

One feature introduced to transformers with the popular BERT models was the use of a
[CLS] (or “classification”) token. The [CLS] token was a “special token” prepended to every
sentence fed into BERT.

This [CLS] token is converted into a token embedding and passed through several

encoding layers.

Two things make [CLS] embeddings special. First, it does not represent an actual token,
meaning it begins as a “blank slate” for each sentence. Second, the final output from the
[CLS] embedding is used as the input into a classification head during pretraining.

Using a “blank slate” token as the sole input to a classification head pushes the transformer
to learn to encode a “general representation” of the entire sentence into that embedding.
The model must do this to enable accurate classifier predictions.

VIiT applies the same logic by adding a “learnable embedding”. This learnable embedding is
the same as the [CLS] token used by BERT.

The preferred pretraining function of ViT is based solely on classification, unlike BERT,
which uses masked language modeling. Based on that, this learning embedding is even
more important to the successful pretraining of ViT.



Position Embeddings

Transformers do not have any default mechanism that considers the “order” of token or
patch embeddings.

We enable order with positional embeddings. For ViT, these positional embeddings are
learned vectors with the same dimensionality as our patch embeddings.

After creating the patch embeddings and prepending the “class” embedding, we sum them
all with positional embeddings.

These positional embeddings are learned during pretraining and (sometimes) during
fine-tuning.



Vision Transformer (ViT)
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Vision Transformer (ViT)

Transfer accuracy [%]
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Vision Transformer (ViT)

RGB embedding filters
(first 28 principal components)

Reshape rows into P x P, visualize principal components of learned embedding filters.
The components resemble plausible basis functions for a low-dimensional
representation of the fine structure within each patch




Vision Transformer (ViT)

Position embedding similarity
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Cosine similarity between the position embedding of the patch with the indicated row and
column and the position embeddings of all other patches



Vision Transformer (ViT)

Input  Attention

Attention from o/p tokens to i/p space. Can attend to regions that are salient
for the task (here classification)



Vision Transformer (ViT)
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Code example

[ Patch embedding process:
1. Input image: torch.Size([1, 3, 224, 224])
[batch, channels=3, height=224, width=224]

Processed Image (224x224)

2. After patch projection: torch.Size([1, 196, 768])
[batch, num_patches=196, hidden_size=768]

3. Each 16x16x3 patch - 768-dim vector

Model architecture:

Number of layers: 12

Number of attention heads: 12
Hidden size: 768

Head dimension: 64

Output shape: torch.Size([1, 197, 768])

CLS token representation shape: torch.Size([1, 768])
(Used for classification tasks)

Top 5 predictions:

1. Egyptian cat: 93.74%

2. tabby, tabby cat: 3.84%

3. tiger cat: 1.44%

4. lynx, catamount: 0.33%

5. Siamese cat, Siamese: 0.07%

https://github.com/cmu-I3/anlp-fall2025-code
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Contrastive Language-Image
Pre-training (CLIP)

Goal: Pre-training objective for learning image representations
» Learn from text

» At the time, models were pre-trained on classification: the only textual
supervision was from the class label.

» A textual description of an image provides much more information than one
class label.
» Scalable

» At the time, image pre-training was largely limited to hand labeled data.

« Want to have the property of improving by adding more compute.



What is CLIP capable of ?
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CLIP

 |dea: learn image and text representations jointly in a shared
embedding space

+ Learn an image encoder f (x) — z,

» Learn a text encoder f.(y) — z..

* The representations for a paired image and its text should be
close together.

» The representations for an unpaired image and text should be far
apart.

* Apply the method over a large dataset of (image, text) pairs



Key Components in CLIP
« Data: pairs of (image, text)

« E.g. 400 million web images Pepper the
aussle pup
with their text descriptions

» Image encoder f (x) — z,

« E.g. vision transformer

» Text encoder f (v) — z,

» E.g. transformer



CLIP Architecture

« Basic idea: Given N (image, text) pairs, classify which image
Is paired with which text
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Text Encoder

Text
Embedding
"A picture of a dog

wearing a Text Encoder !
fabulous jacket"
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Image Encoder

Input Image

Imaqge
Embedding

Image .
Encoder

Image encoder can be either ResNet-50 or ViT



Input Image

e

P B
s

Input Text

Skate Boarder

Skate Boarding
With Dog

A picture of a dog
wearing a
fabulous jacket

Image
Encoder

Text Encoder

Before Training




Input Image
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Input Text

Skate Boarder

Skate Boarding
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After Training
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How to Calculate Probabilities?

Conversions into
probabilities

Cosin Similarities Probabilities
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Contrastive Loss
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ResNet or Vision Transformer
text_encoder CBOW or Text Transformer

Tlm b, w8, %) minibatch of aligned images
T[n, 1] - minibatch of aligned texts
W_i[d_i, d_e] learned proj of image to embed
W_t[d_t, d_e] learned proj of text to embed
T - learned temperature parameter

image_encoder

H oH H H H R R

image_encoder(I) #[n, d_i]

xtract feature representations of each modality
= text_encoder(T) #[n, d_t]

—

e
_f
_f

oint multimodal embedding [n, d_e]
12_normalize(np.dot(I_f, W_i), axis=1)

# ]
I_e
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2



« Example “zero-shot” usage

CLIP

(2) Create dataset classifier from label text

A photo of
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StanfordCars

Country211 +23.2
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Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNet.



Code example

Input Image

Zero-shot Classification Results

Top 5 predictions:

1. cats on a couch: 89.08%

2. two cats sitting together: 5.39%
3. animals indoors: 1.97%

4. a living room scene: 1.62%

5. pets at home: 1.16%

Cat vs Dog Classification

Raw similarity scores (logits):
a photo of a cat: 18.904

a photo of a dog: 11.716 ALl predictions:
o cats on a couch I 50 . 06%

Probabilities: two cats sitting together B 5.39%
a photo of a cat: 99.9% animals indoors 1.97%
a living room scene 1.62%
a photo of a dog: 0.1% jets it hone 1.16%
a photo of furniture 0.35%
Prediction: a photo of a cat (99.9%) a photo of @ cat 9.33%
a photo of a kitten 0.10%
a photo of a person 0.00%
a photo of a dog 0.00%

https://github.com/cmu-I3/anlp-fall2025-code
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Research Gap

@openar G2 —» GPT.3 -  ChAGPT o Gpry
InstructGPT
What's new? In-context-learning In-context-learning In-context-learning
Chain-of-thoughts (CoT) Chain-of-thoughts (CoT) Chain-of-thoughts (CoT)
Instruction-Following Instruction-Following

Multimodal Input with image

Multimodal Flamingo
Space BLIP2

GIT Multimodal GPT-4




User
LLaVA

Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures. jpg

What is unusual about this image?

The unusual aspect of this image is a man ironing clothes on the back of a minivan or
van. This is not a typical place to perform this activity, as one would usually iron clothes
in a more stationary and safe location, such as a home, using a regular ironing board.
The scene depicted in the image is peculiar as it involves a makeshift ironing setup on a
vehicle, which can be both unsafe and unconventional. Additionally, it is not clear how
the man is able to maintain balance and stability while ironing clothes in such an unstable
environment.



Data Creation

Context type 1: Captions

A group of people standing outside of a black vehicle with various luggage.
Luggage surrounds a vehicle in an underground parking area

People try to fit all of their luggage in an SUV.
The sport utility vehicle is parked in the public garage, being packed for a trip§
Some people with luggage near a van that is transporting it.
Context type 2: Boxes il
person: [0.681, 0.242, 0.774, 0.694], backpack: [0.384, 0.696, 0.485, 0.914], suitcase: ...<omitted>

Response type 1: conversation

Question: What type of vehicle is featured in the image?

Answer: The image features a black sport utility vehicle (SUV) ...<omitted>

Response type 2: detailed description

The image is an underground parking area with a black sport utility vehicle (SUV) parked. There
are three people in the scene, with one person standing closer to the left side of the vehicle, another
person in the middle, and the third person on the right side. They are all working together to pack
their luggage into the SUV for a trip. ...<omitted>

Response type 3: complex reasoning

Question: What challenges do these people face?

Answer: In the image, a group of people is standing outside a black SUV in a parking area,
surrounded by various pieces of luggage, including suitcases and backpacks. They are facing the
challenge of fitting all their luggage into the black SUV. There are multiple suitcases and backpacks
to be packed, which suggests that the group has a significant amount of belongings ...<omitted>




Llava
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Training Paradigm

Stage 1- Pre-training for Feature Alignment : 595K image-text pairs are
filtered from CC3M dataset. Only projection layer is trained.

Stage 2- Fine-tuning End-to-End : Fine-tuning on the 158K
language-image instruction-following data. Both projection layer and LLM
are trained in this stage.
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General pipeline

Image preprocessing

» E.g. split into patches and vectorize
Image encoding

» E.g. use a pre-existing CLIP model, get the ViT vectors from the last layer
Provide the encodings to a LLM

» E.g. linearly transform the vectors to be the model’s embedding
dimension

Train/fine-tune on data that has text and images



Other Architectures

Alternatives for CLIP: SiGLiP’s pairwise sigmoid loss, Dino’s
(V2,V3) self supervised vision model.

Flamingo is a family of VLMs that take as input visual data
interleaved with text and produce free-form text as output.

Similar to LLaVA: InstructBlip, Qwen VL, InternVL, TinyLLaVA,
many more



Summary

* Vision architecture basics a Text\
* VIT
» Learning image representations

« CLIP

|
Text Image

« Combining with a language model
e Llava Multi-to-text /




Questions?



References

e The material of this lecture is inspired by CMU CS 11-711 Advanced
NLP course.

e | have taken some images from the blog

https://towardsdatascience.com/clip-intuitively-and-exhaustively-explain
ed-1d02c07dbf40/



Thank You!!



