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Example chat from Intern-S1 model



Example: Web agents
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     Overview

• Vision architecture basics

• ViT [Dosovitskiy et al 2020]

• Learning image representations

• CLIP [Radford et al 2021]

• Llava [Liu et al 2023]
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Key problem: Representing Images
● We represent text as a sequence of vectors 

(token embeddings)
● We want to also represent an image as a 

sequence of vectors

fenc(ximage) → z
1
, …, zL

Need:

1. Neural network architecture
2. Algorithm for learning good vectors



Vision Transformer (ViT)
• Idea: Divide an image into patches, flatten the 

patches into vectors, use a standard transformer



How to build ViT in a Nutshell
● Break images into patches
● Flatten those patches into vectors
● Add some information about where in the image the chunks came 

from (positional encoding)
● Pass those vectors through a transformer
● Take the output, put it into a dense neural network, and predict 

what is in the image.



Vision Transformer (ViT)

ximage ∈ ℝ
H×W×C

px ∈ 
ℝ

2N×(P   ⋅C)

x ∈ ℝ
N×D

x = Wxp
eW ∈ 

ℝ

2

D×(P ⋅C)

120 x 120 x 3
Patch: 40 x 40

“Patch embeddings”

+ position embeddings

N = (120)(120)
= 9

    (40)(40)
patches

P2 ⋅ C = (40)(40)(3)
= 4800

⟹ xp ∈ ℝ
9×4800

W ∈ ℝ
1024×4800

⟹ x ∈ ℝ
9×1024



CLS token
● One feature introduced to transformers with the popular BERT models was the use of a 

[CLS] (or “classification”) token. The [CLS] token was a “special token” prepended to every 
sentence fed into BERT.

● This [CLS] token is converted into a token embedding and passed through several 
encoding layers.

● Two things make [CLS] embeddings special. First, it does not represent an actual token, 
meaning it begins as a “blank slate” for each sentence. Second, the final output from the 
[CLS] embedding is used as the input into a classification head during pretraining.

● Using a “blank slate” token as the sole input to a classification head pushes the transformer 
to learn to encode a “general representation” of the entire sentence into that embedding. 
The model must do this to enable accurate classifier predictions.

● ViT applies the same logic by adding a “learnable embedding”. This learnable embedding is 
the same as the [CLS] token used by BERT.

● The preferred pretraining function of ViT is based solely on classification, unlike BERT, 
which uses masked language modeling. Based on that, this learning embedding is even 
more important to the successful pretraining of ViT.



Position Embeddings
● Transformers do not have any default mechanism that considers the “order” of token or 

patch embeddings.
● We enable order with positional embeddings. For ViT, these positional embeddings are 

learned vectors with the same dimensionality as our patch embeddings.
● After creating the patch embeddings and prepending the “class” embedding, we sum them 

all with positional embeddings.
● These positional embeddings are learned during pretraining and (sometimes) during 

fine-tuning. 



Vision Transformer (ViT)

• The transformer transforms 
the patch embeddings into 
vector representations
z

1
, …, zN

• We can train the model to 
perform a task such as 
classification

output

Apple 
Bird 
Car
…



Vision Transformer (ViT)

Performance versus pre-training compute for different architectures



Vision Transformer (ViT)

Reshape rows into P x P, visualize principal components of learned embedding filters. 
The components resemble plausible basis functions for a low-dimensional
representation of the fine structure within each patch



Vision Transformer (ViT)

Cosine similarity between the position embedding of the patch with the indicated row and 
column and the position embeddings of all other patches



Vision Transformer (ViT)

Attention from o/p tokens to i/p space. Can attend to regions that are salient 
for the task (here classification)



Vision Transformer (ViT)

Early layers either attend to large regions or narrow regions; later layers 
generally attend to larger regions



Code example

https://github.com/cmu-l3/anlp-fall2025-code
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Contrastive Language-Image 
Pre-training (CLIP)

Goal: Pre-training objective for learning image representations
• Learn from text

• At the time, models were pre-trained on classification: the only textual 
supervision was from the class label.

• A textual description of an image provides much more information than one 
class label.

• Scalable

• At the time, image pre-training was largely limited to hand labeled data.

• Want to have the property of improving by adding more compute.



What is CLIP capable of ?



CLIP
• Idea: learn image and text representations jointly in a shared 

embedding space

• Learn an image encoder fI(x) → zI

• Learn a text encoder fT(y) → zT

• The representations for a paired image and its text should be 
close together.

• The representations for an unpaired image and text should be far 
apart.

• Apply the method over a large dataset of (image, text) pairs



Key Components in CLIP
• Data: pairs of (image, text)

• E.g. 400 million web images 
with their text descriptions

• Image encoder fI(x) → zI

• E.g. vision transformer

• Text encoder fT(y) → zT

• E.g. transformer



CLIP Architecture

• Basic idea: Given N (image, text) pairs, classify which image 
is paired with which text



Text Encoder

 



Image Encoder

 

Image encoder can be either ResNet-50 or ViT



Before Training



After Training



    How to Calculate Probabilities?



               Contrastive Loss



CLIP



CLIP
• Example “zero-shot” usage



CLIP



Code example

https://github.com/cmu-l3/anlp-fall2025-code
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Research Gap



Llava



Data Creation



Llava

• ‘Image tokens’:

• Get sequence of vectors from 
the pretrained CLIP ViT

• Text tokens: same as usual



Training Paradigm
Stage 1- Pre-training for Feature Alignment : 595K image-text pairs are 
filtered from CC3M dataset. Only projection layer is trained.

Stage 2- Fine-tuning End-to-End :  Fine-tuning on the 158K 
language-image instruction-following data. Both projection layer and LLM 
are trained in this stage.

 



 Stages of Training



General pipeline
• Image preprocessing

• E.g. split into patches and vectorize

• Image encoding

• E.g. use a pre-existing CLIP model, get the ViT vectors from the last layer

• Provide the encodings to a LLM

• E.g. linearly transform the vectors to be the model’s embedding 
dimension

• Train/fine-tune on data that has text and images

• For image positions, skip the loss



Other Architectures
● Alternatives for CLIP: SiGLiP’s pairwise sigmoid loss, Dino’s 

(V2,V3) self supervised vision model.

● Flamingo is a family of VLMs that take as input visual data 
interleaved with text and produce free-form text as output.

● Similar to LLaVA: InstructBlip, Qwen VL, InternVL, TinyLLaVA, 
many more
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Summary

• Vision architecture basics

• ViT

• Learning image representations

• CLIP

• Llava



Questions?



References

● The material of this lecture is inspired by CMU CS 11-711 Advanced 
NLP course.

● I have taken some images from the blog 
https://towardsdatascience.com/clip-intuitively-and-exhaustively-explain
ed-1d02c07dbf40/



Thank You!!


