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What is summarization ?

• Extracting juice from Fruit. You keep the important parts and discard the pulp.

• In general, summarization is the process of reducing large amounts of information into a 
shorter, concise form while preserving the core meaning and essential details.

• It’s not just limited to NLP or text — summarization happens in daily life.



Data is growing

Source: Data growth worldwide 2010-2025 | Statista

Source: Data growth worldwide 2010-2025 | Statista

In 2020, the amount of digital data was 64.2 zettabytes

In 2025, the expected amount of digital data is 180 zettabytes

In 2028, the expected amount of digital data is 400 zettabytes

90% Of The Data Worldwide Is Unstructured !!
Source  : Research World

Fun fact - A zettabyte equals 1 sextillion bytes 
(1,000,000,000,000,000,000,000 bytes) ☺ 

https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://researchworld.com/articles/possibilities-and-limitations-of-unstructured-data


Types of Summarization in a Broader Context



Text Summarization

Natural language processing (NLP) is technology that 
allows computers to interpret, manipulate, and 
comprehend human language. Organizations today have 
large volumes of voice and text data from various 
communication channels like emails, text messages, social 
media newsfeeds, video, audio, and more. Natural 
language processing is key in analyzing this data for 
actionable business insights. Organizations can classify, 
sort, filter, and understand the intent or sentiment hidden 
in language data. Natural language processing is a key 
feature of AI-powered automation and supports real-time 
machine-human communication.

NLP enables computers to understand 
and analyze human language, helping 
organizations extract insights, detect 
intent or sentiment, and support AI-
driven automation and real-time 
communication.

84 words 24 words



Classification of Text Summarization System

Text Summarization

Output TypeInput Type Intent Approach Domain

Single Document
Multi Document

Indicative
Informative

Generic
Query Focused

Extractive
Abstractive
Hybrid

Language

Monolingual
Multilingual
Cross-Lingua

General
Specialized



Typical Text Summarization System

SummaryPre-Processing Post-Processing

Optional Query



Typical Extractive Summarization System

SummaryPre-Processing Post-Processing

Sentence 
Scoring

Sentence 
Selection



Typical Abstractive Summarization System

SummaryPre-Processing Post-Processing

Intermediate 
Representation

Sentences 
Creation



Query Focused Summarization

Summary



Text summarization research Evolution

Source : A Systematic Survey of Text Summarization: From Statistical Methods to Large Language Models, Zhang et.al 

https://arxiv.org/abs/2406.11289
https://arxiv.org/abs/2406.11289


Text summarization research Evolution

Heuristic-based, Carbonell et.al 
Optimization-based, Lin et.al
Graph-based Erkan et.al

• Relied heavily on handcrafted features 
(word frequency, sentence position, 
cue words).

• No deep semantic understanding of the 
text.

https://www.cs.cmu.edu/~jgc/publication/The_Use_MMR_Diversity_Based_LTMIR_1998.pdf
https://aclanthology.org/P11-1052.pdf
https://aclanthology.org/P11-1052.pdf
https://arxiv.org/pdf/1109.2128
https://arxiv.org/pdf/1109.2128


Text summarization research Evolution

Attention Based LSTM extractor, Cheng et.al 
Sentence-level RNN + Feature fusion 
(SummaRuNNer), Nallapati et.al
LSTM + reinforcement learning, Narayan et.al

• Required parallel datasets of documents and 
summaries.

• Improved fluency compared to feature-based 
methods but struggled with long-context

https://arxiv.org/abs/1603.07252
https://arxiv.org/pdf/1611.04230
https://aclanthology.org/N18-1158.pdf
https://aclanthology.org/N18-1158.pdf


Text summarization research Evolution

BERTSUMEXT, Liu et.al
PEGASUS, Zhang et.al

https://arxiv.org/pdf/1908.08345
https://arxiv.org/abs/1912.08777
https://arxiv.org/abs/1912.08777


Text summarization research Evolution

BERTSUMEXT, Liu et.al
PEGASUS, Zhang et.al

• Captured rich contextual representations.
• Reduced dependence on large task-specific 

labelled data.
• Enabled better handling of diverse domains 

and abstractive summarization.

https://arxiv.org/pdf/1908.08345
https://arxiv.org/abs/1912.08777
https://arxiv.org/abs/1912.08777


Text summarization research Evolution

ICL, Zhang et.al
Tiny LLMs, Fu et.al
Style Focused, Liu et.al
CoT, Wang et.al
Multi-Agents, Zhang et.al
…

• Require minimal task-specific supervision.
• High adaptability to diverse summarization 

styles and domains via prompting

https://arxiv.org/abs/2304.04193
https://arxiv.org/abs/2402.00841
https://arxiv.org/abs/2306.07799
https://arxiv.org/abs/2305.13412
https://arxiv.org/pdf/2305.14835


Recent Modelling approaches with LLMs

❑Prompting Based

❑Multi-Agent Based

❑Distillation Based

❑Other Innovations



Few Shot Prompting

AnswerQuestion

AnswerQuestion

AnswerQuestion

AnswerQuestion

Question

Answer

Zero Shot Prompting

3 Shot Prompting



Prompt Chaining

Figure 1 : Prompt Chaining

Prompt1

Output1

Prompt2

Output2



Prompt Chaining Vs Stepwise Prompt

Source : Element-aware Summarization with Large Language Models: Expert-aligned Evaluation and Chain-of-Thought Method, Sun et.al

“Think step by step” within one prompt
Break task into multiple steps with 
each step involves a separate prompt

https://arxiv.org/pdf/2406.00507


More Prompting Examples

Source : Element-aware Summarization with Large Language Models: Expert-aligned Evaluation and Chain-of-Thought Method, Wang et.al

Figure 1 : Summary Chain-of-Thought  (SumCoT) methodology

https://arxiv.org/pdf/2305.13412


Multi-Agents 

Source : SummIt: Iterative Text Summarization via ChatGPT, Zhang et.al

https://arxiv.org/pdf/2305.14835


Instruction Fine-Tuning

Source : InstructPTS: Instruction-Tuning LLMs for Product Title Summarization, Fetahu et.al

Figure 1 : Product title summaries generated through instruction tuning for different instructions.

https://arxiv.org/pdf/2310.16361


Knowledge Distillation

Source : InheritSumm: A General, Versatile and Compact Summarizer by Distilling from GPT, Xu et.al

Figure 1 : Knowledge Distillation (transferring knowledge from a big teacher → small student )

https://arxiv.org/pdf/2305.13083


Common Summarization Datasets

Source : A Systematic Survey of Text Summarization: From Statistical Methods to Large Language Models, Zhang et.al

https://arxiv.org/abs/2406.11289


3C’s For Summary Quality

All Important details captured? Only Important details captured?All details are accurate?



Key Metrics

➢ ROUGE (Recall-Oriented Understudy for Gisting Evaluation) →  Measures overlap between reference summary and 
generated text using n-grams or sub-sequences. Focus is on recall.

     Example:

• Reference: "Chandrayaan-3 successfully landed on the Moon."

• Generated: "Chandrayaan-3 landed on the Moon."

• Most unigrams match → High ROUGE-1.

➢ BERTScore →  Uses BERT embeddings to measure semantic similarity between generated and reference summary.

     Example:

• Reference: "ISRO’s Chandrayaan-3 landed successfully."

• Generated: "Chandrayaan-3 touched down safely."

• Even though words differ, embeddings are similar → High BERTScore.



Key Metrics

➢ QA Eval →  Uses QA models to check whether generated summaries can answer key questions from the source/reference.

     Example:

• Question: "Where did Chandrayaan-3 land?"

• If generated summary answers “Moon’s south pole” → High QAEval score.

➢ FACTCC →  Checks factual consistency between the summary and the source using a fact-checking classifier.

     Example:

• Source: "Chandrayaan-3 landed on the Moon in 2023."

• Generated: "Chandrayaan-3 landed in 2022." → Low FactCC score.

➢ LLM As a judge →  Uses a large language model to evaluate a generated summary based on correctness, completeness, 
conciseness or other dimensions interested.

     Example:

• Reference: “ISRO launched Chandrayaan-3 on July 14, 2023, aiming for a soft landing on the Moon’s south pole.”

• Generated Summary: “ISRO launched Chandrayaan-3 on July 14, 2023, aiming for a soft landing.”

• LLM Score: Correctness = 5/5, Completeness = 4/5, Conciseness = 5/5, Final Score = 4.7/5 



Code Summarization



Code Summarization

Code Summarization is a task that tries to comprehend code and 
automatically generate descriptions directly from the source code

31

Image taken from https://www.arxiv-vanity.com/papers/1708.01837/



Need for Code Comments

• It is estimated that developers spend about significant amount of 
their time in the program comprehension activity during the software 
maintenance effort.

• Many time developers handle code written by someone else

• Writing comments during the development is time-consuming for 
developers. 

• Further, comments often doesn’t stay updated to the code changes.

• Therefore, there is a need to generate code summaries automatically. 
It can help save the developer’s time in writing comments, program 
comprehension, and code search.



Deal with Lack of Code Comments

❑ Obviate comments by descriptive identifier names e.g. 
getParametersOfMethodCall()

❑  Encourage and facilitate writing comments. Automatically prompt 
developers to enter comments

❑ Generate Comments. Extract key code statements or generate 
phrases or long descriptive summary of the code block



Source Code Modelling - Code as Code (Vs &) Code as Text

❑ Text-only representations
▪ Treating source code as series of tokens

• Pick interesting tokens

Ref : https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/sfw2.12064



❑ Text-only representations
▪ Treating source code as series of tokens

• Pick interesting tokens

❑ Structured representations
▪ Tree :  Abstract Syntax Tree (AST)

• AST into sequences, randomly extract 
AST paths, dividing AST into multiple 
sub-ASTs etc.
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❑ Text-only representations
▪ Treating source code as series of tokens

• Pick interesting tokens

❑ Structured representations
▪ Tree :  Abstract Syntax Tree (AST)

• AST into sequences, randomly extract 
AST paths, dividing AST into multiple 
sub-ASTs etc.

▪ Graph : Control Flow Graph (CFG), 
Data Flow Graph (DFG),
Program Dependency Graph (PDG) etc.       

❑ Combined representations
▪ Tokens +AST , Add different graphs-based 

edges to AST nodes etc.

Note : Generated through https://github.com/IBM/tree-sitter-codeviews

Source Code Modelling - Code as Code (Vs &) Code as Text



Code Summarization Techniques

❑Term Based :
Term-based summarization is to generate a summary that contains the most relevant terms for a specific 
software unit. Most of term-based summarization methods are connected with the information retrieval 
techniques.

❑Template Based :
In template-based summarization, there is a predefined set of summary templates, and the templates are 
filled based on the type of the target code segment and other information.

❑External Description Based :
External-description-based summarization uses external data such as comment-code mappings in other 
repositories or website forums.

❑Machine Learning Based :
Started with supervised & unsupervised learning. But Neural network based natural language generators             
are now more prevalent and show better efficiency.

Reference : “Automatic Code Summarization: A Systematic Literature Review” Yuxiang Zhu et.al



Term Based Summarization Techniques

• Works range from position of text to retrieval techniques

• The first step in almost of these techniques is to extract & process terms from code document. 

• Apply different techniques from IR like LSI, VSM to extract top K weighted list or Identify top topics 
representing words through LDA etc.

• Just tags are not helpful for comprehension.

Class A Class B Class C Class A

setValue 0.043 0.001 0.21 0.13

counter 0.29 0.12 0.09 0.1

employee 0 0.078 0.03 0.22

Term

Document

The content of a cell in this matrix represents the weight of a code token (the row) 
with respect to a code document (the column) could be log, tf-idf, binary-entropy etc.

Haiduc et al. (2010), Eddy et al. (2013), Movshovitz-Attias and Cohen (2013), Rodeghero et al. (2014)



Template Based Summarization Techniques

• A Practical approach where summary 
templates are predefined. Based on the target 
code segments the templates are filled.

• Templates could cover program structural 
information such as the number of interfaces 
in a package or what kind of parameter does a 
method use or actions performed by different 
code fragments

• Many works leveraged the Software Word 
Usage Model (SWUM) to generate 
descriptions. SWUM is a technique for 
representing program statements as sets of 
nouns, verbs, and optional secondary 
arguments of a statement grouping

• The quality of the summary relies heavily on 
the quality of identifier names and method 
signatures in the source code

Sridhara et al. (2010,2011), Dawood et al. (2017) and Hammad et al. (2016)

Badihi et.al (2017) CrowdSummarizer : Employing the Software Word Usage Model (SWUM) 
to generate a summary. (a) An example method. (b) The automatically generated summary. 
SWUM captures a methods linguistic elements in terms of its action, theme, and any 
secondary arguments



External Description Based Summarization Techniques

• Developers post questions and receive solutions in online (Q&A) sites & many contribute to the open-source 
projects

• These sites/repositories contains code segments together with their descriptions

• Apply different similarity measure to find most similar code and then re-use the comment

• Correctness & Quality is again highly dependent on the community. Likely to miss out comments for code segments 
not discussed in QA sites. Lack of standardization of comments in open source can slow down processing.

<Code-Description> 
Extraction

Code Clone 
Detection

Comment Ranking Output Comment

Common workflow in external source based summarization

Input Code block

Wong et al. (2013), Huang et al. (2017)



Summarizing source code using a neural attention model, Iyer et al (2016)

int getSum int[] <END>

Return the sum array

…

… …

…

Encoder

Decoder

Simplified view of the approach

Attention

• Address both code summarization and 
Code retrieval tasks

• Inspired by similar models in NLP tasks

• Crawl 934K C# and 977K SQL posts from 
StackOverflow

• Perform several preprocessing and 
cleaning steps. Used a small annotated 
dataset to clean data. 

• Retain 66,015 C# (title, query) pairs and 
32,337 SQL pairs, split as 80-10-10 

• Also provide an analysis of attention 
weights learned and evaluation using 
additional quality measures such as 
‘naturalness’ and ‘informativeness’

<START>

Primary Results



A Transformer-based Approach for Source Code Summarization, Ahmad et al (2020)

Code Tokens Outputs
(Shifted right)

Relative Positional Encodings!
Copy-Attention!

• Transformers for source code had been applied previously, but not 
directly to source code summarization

• The RNN-based sequence models:
• Do not model the non-sequential structure of source code
• Unable to capture the long-range dependencies among code tokens

• Model the pairwise relationship between code tokens using relative 
position representation (Shaw et al, 2018)

• Use copy-attention to retain OOV words

Conduct experiments on a Java dataset (Hu et al) and a Python dataset(Wan et al)
The Base model out-performs the baselines in most cases
The Full model improves the performance further



CodeBERT: A Pre-Trained Model for Programming and Natural Languages, Feng et al (2020)

• A bimodal pre-trained model for natural and programming languages 
capturing semantic connections between the two

• Trained with a hybrid objective function, including standard masked 
language modeling(MLM) and replaced token detection (RTD) 

Pretraining:

• Input is the concatenation of code and language tokens separated by [SEP]
• The MLM objective is to predict the original tokens that are masked out
• The discriminator is trained to determine if the predicted words are the 

original ones or not
• After training, the Generators are discarded and the Discriminator is used for 

fine-tuning tasks

• Evaluation is performed on CodeSearchNet dataset for 6 
programming languages

• Also perform a study on languages not in pretraining



Few-shot training LLMs for project-specific code-summarization, (Ahmad et al 2022)

• Task →  prepend 𝑛 functions (cross-project/ same-project), each 
followed by a comment, followed by the target function for which 
the model is to generate the comment

Observations : 
• With 10 samples, Codex outperforms all finetuned foundation 

models CodeT5, CodeBERT
• Same-project few-shot training improves the Codex model’s 

performance



Tasks and Datasets

Replace a String from a Text File

contains ignore case

1. Method name prediction*

2. Method documentation generation (Code captioning)*

Related Tasks

Code Summarization

Code Search
Code Generation
Bug/Vulnerability detection

* Examples from Alon et al (2019)

Datasets

CodeSearchNet – Husain et al (2019)
  - 2.3M (code, comment) pairs over 6 languages

MultiLingual

Java

Hu et al (2018)
  - 69K (code, comment) pairs (training set)
Alon et al (2019)
  - Java-small, Java-medium, Java-large
  - 700K, 4M, 16M (code, comment) pairs
Python

Barone et al (2017)
  - 55k (code, comment) pairs (training set)

C#

Iyer et al (2016)
  - 66k (code, comment) pairs

Metrics

BLEU, Meteor, Rouge, Precision-Recall-F1



Agentic Multi-Modal LLMs for Software Comprehension
Structuring Code Summarization with Business Process Awareness

Srikanth Tamilselvam and Ashita Saxena 

Accepted at IEEE SSE 2025 



Why Current Application Summaries Fall Short?

 Copilot + Claude Sonnet on DayTrader

User: Can you give summary of the business 
capabilities of the uploaded Daytrader repo?
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Why Current Application Summaries Fall Short?

 Flat, syntax-centric summaries

 Unnatural sequencing (e.g., "trading" before 
"login")

 Copilot + Claude Sonnet on DayTrader

User: Can you give summary of the business 
capabilities of the uploaded Daytrader repo?



Why Current Application Summaries Fall Short?

 Flat, syntax-centric summaries

 Unnatural sequencing (e.g., "trading" before 
"login")

 Low domain understanding

 Copilot + Claude Sonnet on DayTrader

User: Can you give summary of the business 
capabilities of the uploaded Daytrader repo?



Business-Aware Summarization

We aim to generate summaries that:

 Abstract technical details into business 
functions

 Follow the real user flow

 Are structured, meaningful, and domain-aligned

User: Can you give summary of the business 
capabilities of the uploaded Daytrader repo?



LLMs can reason—but better with the right signals

Inputs are rich but fragmented

 Code Entry Points

 Textual Docs (e.g., README.md)

 Domain Knowledge
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● Clear responsibility and verification



LLMs can reason—but better with the right signals

Inputs are rich but fragmented

 Code Entry Points

 Textual Docs (e.g., README.md)

 Domain Knowledge

Use specialized LLM agents to reason through these and synthesize structured outputs

Agents enable traceability, reuse, and better failure handling.

LLM Agents help organize reasoning

● Modular, step-by-step processing

● Clear responsibility and verification



Agentic Multi-Modal Summarization Pipeline



Agentic Multi-Modal Summarization Pipeline



Agentic Multi-Modal Summarization Pipeline
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Agentic Multi-Modal Summarization Pipeline



Agentic Multi-Modal Summarization Pipeline



Evaluations

Human validation from 

SME with 18+ years of 

experience

 All workflows 

aligned

 Only PetClinic 

missed one service



ETF: An Entity Tracing Framework for 
Hallucination Detection in Code Summaries

Kishan Maharaj, Vitobha Munigala, Srikanth G. Tamilselvam, Prince Kumar, Sayandeep Sen, 
Palani Kodeswaran, Abhijit Mishra, Pushpak Bhattacharyya

Accepted at ACL 2025 



What is Hallucination?

• The term hallucination was inspired by psychology

• In medical science, hallucinations refer to the particular type of perception realised by an 
individual without any external stimulus (Blom, 2010). 

• In context of Natural Language Processing:

• In the same way, the generated text may contain information that might look correct, but 
maybe unfaithful to the reference (context or world knowledge)

• Types of Hallucination

• Intrinsic Hallucination

• Extrinsic Hallucination



• Intrinsic Hallucination

– Occurs when the output generated by a model contradicts the source text

– Input document:

• “Marie Curie discovered radium in 1898 at the University of Paris, marking a 
groundbreaking moment in the history of science. Her pioneering research in 
radioactivity, conducted alongside her husband Pierre Curie….” 

– Generation:

• “Marie Curie invented radium in 1898.”

– Explanation: 

• discovery → Invention

Intrinsic Hallucination



• Extrinsic Hallucination

– Occurs when the generated output cannot be verified from the source text

– Input document:

• “Marie Curie discovered radium in 1898 at the University of Paris, marking a 
groundbreaking moment in the history of science. Her pioneering research in 
radioactivity, conducted alongside her husband Pierre Curie….” 

– Generation:

• “Marie Curie was born in Warsaw, Poland.”

– Explanation: 

• No information about the birthplace of Marie Curie. 

Extrinsic Hallucination



Hallucination Detection in Code Summarization

• The current code model have high tendency to produce unrelated code summaries

– Also includes Imaginary entities

• The current SOTA language models are very good at hallucinating in a convincing way​:

– Guessing the summary based on lexical interpretation of the code. 

– references to some functions/classes not available during the input time​

Code:  int getJobID (String jobName) ​{ 

return -1;}

private void runJob (String jobName) { ​
 int x = getJobId(jobName);

}​

Summary: The getJobID method is a private 
method that takes a job name as a parameter 
and returns the job ID after fetching it from a 
database. ​The runJob method uses the 
getJoobID method to get the job ID and then 
uses the job ID to run the job.​

Input

Output: Hallucinated



Dataset Creation

● Programming language: Java
○ Code snippets: CodeXGLUE (Lu et al., 2021) – Code-To-Text dataset.

● Study Natural Hallucination in Code Summaries
○ Do not introduce perturbations → Artificial Hallucination

○ Rely on Natural Generation of Code/Language Models
■ IBM-Granite family (20B and 34B)
■ Llama3 family (8B and 70B); 
■ CodeLlama family (7B and 34B)
■ Mistral-7B 

○ Include different level of abstractions:
■ Low Abstraction → Describe the code line by line (detailed)
■ High Abstraction → Describe the business purpose of the code (high level)



Proposed Taxonomy



Dataset Statistics



Approach: Entity Tracing Framework



Measuring What Matters: An Aggregate Metric for Assessing 
Enterprise Code Summaries

Ashita Saxena, Palanivel Kodeswaran, Sayandeep Sen, Srikanth Tamilselvam

Accepted at FSE 2025 



• Existing summarization benchmarks focus on small code snippets.

• Enterprise Java codebases: avg. 231 code tokens vs ~30 (5 LoC) in public datasets.

• SME-written summaries are longer and more informative.

Motivation

Fig 1 : Comparison of average no. of code tokens 

and average no. of summary tokens across 

current public summarization datasets and samples 

from enterprise

Fig 2 : Ground Truth Summary Length 

(no. of tokens) vs Lines of Code (LoC) 

from SMEs



• Ignore verbosity, repetitiveness, and incompleteness.
• Need for new evaluation dimensions.

Motivation

Overall 
summary 
Quality

Completeness

Tian et.al, 2024
Haldar et.al, 2024
Maharaj et.al, 2024

ConcisenessCorrectness



Example

Issues:
•Redundant logging mentions
•Superficial method references
•Misses complex, public methods

Ref : https://github.com/IBM/appmod-resorts/blob/master/src/main/java/com/ibm/ta/modresorts/WeatherServlet.java

https://github.com/IBM/appmod-resorts/blob/master/src/main/java/com/ibm/ta/modresorts/WeatherServlet.java
https://github.com/IBM/appmod-resorts/blob/master/src/main/java/com/ibm/ta/modresorts/WeatherServlet.java
https://github.com/IBM/appmod-resorts/blob/master/src/main/java/com/ibm/ta/modresorts/WeatherServlet.java


Penalizes:
• Repetitive sentences (clustering on SBERT embeddings)

• Verbose language

Key idea:
• Cluster count ≠ sentence count ⇒ redundancy

• Summary/code token ratio ⇒ verbosity

Contributions -Distinctness Metric



Captures:
• Coverage of complex/public methods (by cyclomatic complexity)

• Diversity of content using inverse self-BLEU

• Scalable, language-agnostic design

• Aligns with SME perceptions of usefulness

Contributions - Completeness Metric



Contributions – Aggregated Metric

• Support Vector Regression (SVR)
• Input: Distinctiveness + Completeness

• Output: Predicted overall summary quality (1–10)

• Learns to match SME judgments

• Robust to noise and small dataset size



Experiments

• Dataset: 70 Java classes from 9 internal apps (HR, SSO, travel)

• SMEs: 5 senior engineers (15+ yrs experience)

• Rating dimensions: correctness, completeness, conciseness, overall

Figure : SME questionnaire for evaluating summaries



Results



Conclusion - Summarization Focus Areas

➢Foundational

➢Application

➢System



Foundational

➢Accuracy & Hallucination Mitigation

   Challenges
• Models fabricate facts, APIs, or results.
• Hard to verify factual correctness automatically.

➢Context & Long-sequence Understanding

   Challenges
• Handling books, multi-document corpora, and large enterprise codebases.
• Models struggle with maintaining coherence over long contexts.

➢Evaluation Metrics & Benchmarking

   Challenges
• ROUGE, BLEU, and METEOR fail to capture semantic quality.



Application

➢Domain-specific & Task-oriented Summarization

   Challenges
• Generic summarizers underperform in specialized domains.

• Summarizing enterprise codebases and regulatory documents needs deep domain knowledge.

➢Personalization & User Intent Awareness

   Challenges
• Many models generate “one-size-fits-all” summaries.

• Different stakeholders (developers, managers, researchers) need different levels of detail.



System

➢Scalability & Efficiency

   Challenges
• Handling enterprise-scale repositories and large document sets.
• Reducing computational cost for edge deployments.

➢Explainability

   Challenges
• Summaries are black boxes; users can’t verify why content was included.
• Lack of provenance tracking in code and text summaries.

➢Multilingual & Cross-lingual Summarization

   Challenges
• Limited datasets for low-resource languages and code comments.
• Cross-lingual summarization of code + documentation is underexplored.



THANK YOU
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