
Summarization

Srikanth Tamilselvam
IBM Research, India

➢Motivation

➢Text Summarization

➢Code Representations

➢Code Summarization

➢Research Opportunities

Agenda

What is summarization ?

• Extracting juice from Fruit. You keep the important parts and discard the pulp.

• In general, summarization is the process of reducing large amounts of information into a
shorter, concise form while preserving the core meaning and essential details.

• It’s not just limited to NLP or text — summarization happens in daily life.

Data is growing

Source: Data growth worldwide 2010-2025 | Statista

Source: Data growth worldwide 2010-2025 | Statista

In 2020, the amount of digital data was 64.2 zettabytes

In 2025, the expected amount of digital data is 180 zettabytes

In 2028, the expected amount of digital data is 400 zettabytes

90% Of The Data Worldwide Is Unstructured !!
Source : Research World

Fun fact - A zettabyte equals 1 sextillion bytes
(1,000,000,000,000,000,000,000 bytes) ☺

https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://researchworld.com/articles/possibilities-and-limitations-of-unstructured-data

Types of Summarization in a Broader Context

Text Summarization

Natural language processing (NLP) is technology that
allows computers to interpret, manipulate, and
comprehend human language. Organizations today have
large volumes of voice and text data from various
communication channels like emails, text messages, social
media newsfeeds, video, audio, and more. Natural
language processing is key in analyzing this data for
actionable business insights. Organizations can classify,
sort, filter, and understand the intent or sentiment hidden
in language data. Natural language processing is a key
feature of AI-powered automation and supports real-time
machine-human communication.

NLP enables computers to understand
and analyze human language, helping
organizations extract insights, detect
intent or sentiment, and support AI-
driven automation and real-time
communication.

84 words 24 words

Classification of Text Summarization System

Text Summarization

Output TypeInput Type Intent Approach Domain

Single Document
Multi Document

Indicative
Informative

Generic
Query Focused

Extractive
Abstractive
Hybrid

Language

Monolingual
Multilingual
Cross-Lingua

General
Specialized

Typical Text Summarization System

SummaryPre-Processing Post-Processing

Optional Query

Typical Extractive Summarization System

SummaryPre-Processing Post-Processing

Sentence
Scoring

Sentence
Selection

Typical Abstractive Summarization System

SummaryPre-Processing Post-Processing

Intermediate
Representation

Sentences
Creation

Query Focused Summarization

Summary

Text summarization research Evolution

Source : A Systematic Survey of Text Summarization: From Statistical Methods to Large Language Models, Zhang et.al

https://arxiv.org/abs/2406.11289
https://arxiv.org/abs/2406.11289

Text summarization research Evolution

Heuristic-based, Carbonell et.al
Optimization-based, Lin et.al
Graph-based Erkan et.al

• Relied heavily on handcrafted features
(word frequency, sentence position,
cue words).

• No deep semantic understanding of the
text.

https://www.cs.cmu.edu/~jgc/publication/The_Use_MMR_Diversity_Based_LTMIR_1998.pdf
https://aclanthology.org/P11-1052.pdf
https://aclanthology.org/P11-1052.pdf
https://arxiv.org/pdf/1109.2128
https://arxiv.org/pdf/1109.2128

Text summarization research Evolution

Attention Based LSTM extractor, Cheng et.al
Sentence-level RNN + Feature fusion
(SummaRuNNer), Nallapati et.al
LSTM + reinforcement learning, Narayan et.al

• Required parallel datasets of documents and
summaries.

• Improved fluency compared to feature-based
methods but struggled with long-context

https://arxiv.org/abs/1603.07252
https://arxiv.org/pdf/1611.04230
https://aclanthology.org/N18-1158.pdf
https://aclanthology.org/N18-1158.pdf

Text summarization research Evolution

BERTSUMEXT, Liu et.al
PEGASUS, Zhang et.al

https://arxiv.org/pdf/1908.08345
https://arxiv.org/abs/1912.08777
https://arxiv.org/abs/1912.08777

Text summarization research Evolution

BERTSUMEXT, Liu et.al
PEGASUS, Zhang et.al

• Captured rich contextual representations.
• Reduced dependence on large task-specific

labelled data.
• Enabled better handling of diverse domains

and abstractive summarization.

https://arxiv.org/pdf/1908.08345
https://arxiv.org/abs/1912.08777
https://arxiv.org/abs/1912.08777

Text summarization research Evolution

ICL, Zhang et.al
Tiny LLMs, Fu et.al
Style Focused, Liu et.al
CoT, Wang et.al
Multi-Agents, Zhang et.al
…

• Require minimal task-specific supervision.
• High adaptability to diverse summarization

styles and domains via prompting

https://arxiv.org/abs/2304.04193
https://arxiv.org/abs/2402.00841
https://arxiv.org/abs/2306.07799
https://arxiv.org/abs/2305.13412
https://arxiv.org/pdf/2305.14835

Recent Modelling approaches with LLMs

❑Prompting Based

❑Multi-Agent Based

❑Distillation Based

❑Other Innovations

Few Shot Prompting

AnswerQuestion

AnswerQuestion

AnswerQuestion

AnswerQuestion

Question

Answer

Zero Shot Prompting

3 Shot Prompting

Prompt Chaining

Figure 1 : Prompt Chaining

Prompt1

Output1

Prompt2

Output2

Prompt Chaining Vs Stepwise Prompt

Source : Element-aware Summarization with Large Language Models: Expert-aligned Evaluation and Chain-of-Thought Method, Sun et.al

“Think step by step” within one prompt
Break task into multiple steps with
each step involves a separate prompt

https://arxiv.org/pdf/2406.00507

More Prompting Examples

Source : Element-aware Summarization with Large Language Models: Expert-aligned Evaluation and Chain-of-Thought Method, Wang et.al

Figure 1 : Summary Chain-of-Thought (SumCoT) methodology

https://arxiv.org/pdf/2305.13412

Multi-Agents

Source : SummIt: Iterative Text Summarization via ChatGPT, Zhang et.al

https://arxiv.org/pdf/2305.14835

Instruction Fine-Tuning

Source : InstructPTS: Instruction-Tuning LLMs for Product Title Summarization, Fetahu et.al

Figure 1 : Product title summaries generated through instruction tuning for different instructions.

https://arxiv.org/pdf/2310.16361

Knowledge Distillation

Source : InheritSumm: A General, Versatile and Compact Summarizer by Distilling from GPT, Xu et.al

Figure 1 : Knowledge Distillation (transferring knowledge from a big teacher → small student)

https://arxiv.org/pdf/2305.13083

Common Summarization Datasets

Source : A Systematic Survey of Text Summarization: From Statistical Methods to Large Language Models, Zhang et.al

https://arxiv.org/abs/2406.11289

3C’s For Summary Quality

All Important details captured? Only Important details captured?All details are accurate?

Key Metrics

➢ ROUGE (Recall-Oriented Understudy for Gisting Evaluation) → Measures overlap between reference summary and
generated text using n-grams or sub-sequences. Focus is on recall.

 Example:

• Reference: "Chandrayaan-3 successfully landed on the Moon."

• Generated: "Chandrayaan-3 landed on the Moon."

• Most unigrams match → High ROUGE-1.

➢ BERTScore → Uses BERT embeddings to measure semantic similarity between generated and reference summary.

 Example:

• Reference: "ISRO’s Chandrayaan-3 landed successfully."

• Generated: "Chandrayaan-3 touched down safely."

• Even though words differ, embeddings are similar → High BERTScore.

Key Metrics

➢ QA Eval → Uses QA models to check whether generated summaries can answer key questions from the source/reference.

 Example:

• Question: "Where did Chandrayaan-3 land?"

• If generated summary answers “Moon’s south pole” → High QAEval score.

➢ FACTCC → Checks factual consistency between the summary and the source using a fact-checking classifier.

 Example:

• Source: "Chandrayaan-3 landed on the Moon in 2023."

• Generated: "Chandrayaan-3 landed in 2022." → Low FactCC score.

➢ LLM As a judge → Uses a large language model to evaluate a generated summary based on correctness, completeness,
conciseness or other dimensions interested.

 Example:

• Reference: “ISRO launched Chandrayaan-3 on July 14, 2023, aiming for a soft landing on the Moon’s south pole.”

• Generated Summary: “ISRO launched Chandrayaan-3 on July 14, 2023, aiming for a soft landing.”

• LLM Score: Correctness = 5/5, Completeness = 4/5, Conciseness = 5/5, Final Score = 4.7/5

Code Summarization

Code Summarization

Code Summarization is a task that tries to comprehend code and
automatically generate descriptions directly from the source code

31

Image taken from https://www.arxiv-vanity.com/papers/1708.01837/

Need for Code Comments

• It is estimated that developers spend about significant amount of
their time in the program comprehension activity during the software
maintenance effort.

• Many time developers handle code written by someone else

• Writing comments during the development is time-consuming for
developers.

• Further, comments often doesn’t stay updated to the code changes.

• Therefore, there is a need to generate code summaries automatically.
It can help save the developer’s time in writing comments, program
comprehension, and code search.

Deal with Lack of Code Comments

❑ Obviate comments by descriptive identifier names e.g.
getParametersOfMethodCall()

❑ Encourage and facilitate writing comments. Automatically prompt
developers to enter comments

❑ Generate Comments. Extract key code statements or generate
phrases or long descriptive summary of the code block

Source Code Modelling - Code as Code (Vs &) Code as Text

❑ Text-only representations
▪ Treating source code as series of tokens

• Pick interesting tokens

Ref : https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/sfw2.12064

❑ Text-only representations
▪ Treating source code as series of tokens

• Pick interesting tokens

❑ Structured representations
▪ Tree : Abstract Syntax Tree (AST)

• AST into sequences, randomly extract
AST paths, dividing AST into multiple
sub-ASTs etc.

▪ Graph : Control Flow Graph (CFG),
Data Flow Graph (DFG),
Program Dependency Graph (PDG) etc.

Ref : https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/sfw2.12064

Source Code Modelling - Code as Code (Vs &) Code as Text

❑ Text-only representations
▪ Treating source code as series of tokens

• Pick interesting tokens

❑ Structured representations
▪ Tree : Abstract Syntax Tree (AST)

• AST into sequences, randomly extract
AST paths, dividing AST into multiple
sub-ASTs etc.

▪ Graph : Control Flow Graph (CFG),
Program Dependency Graph (PDG),
Data Flow Graph (DFG), etc.

Ref : https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/sfw2.12064

Source Code Modelling - Code as Code (Vs &) Code as Text

❑ Text-only representations
▪ Treating source code as series of tokens

• Pick interesting tokens

❑ Structured representations
▪ Tree : Abstract Syntax Tree (AST)

• AST into sequences, randomly extract
AST paths, dividing AST into multiple
sub-ASTs etc.

▪ Graph : Control Flow Graph (CFG),
Data Flow Graph (DFG),
Program Dependency Graph (PDG) etc.

❑ Combined representations
▪ Tokens +AST , Add different graphs-based

edges to AST nodes etc.

Note : Generated through https://github.com/IBM/tree-sitter-codeviews

Source Code Modelling - Code as Code (Vs &) Code as Text

Code Summarization Techniques

❑Term Based :
Term-based summarization is to generate a summary that contains the most relevant terms for a specific
software unit. Most of term-based summarization methods are connected with the information retrieval
techniques.

❑Template Based :
In template-based summarization, there is a predefined set of summary templates, and the templates are
filled based on the type of the target code segment and other information.

❑External Description Based :
External-description-based summarization uses external data such as comment-code mappings in other
repositories or website forums.

❑Machine Learning Based :
Started with supervised & unsupervised learning. But Neural network based natural language generators
are now more prevalent and show better efficiency.

Reference : “Automatic Code Summarization: A Systematic Literature Review” Yuxiang Zhu et.al

Term Based Summarization Techniques

• Works range from position of text to retrieval techniques

• The first step in almost of these techniques is to extract & process terms from code document.

• Apply different techniques from IR like LSI, VSM to extract top K weighted list or Identify top topics
representing words through LDA etc.

• Just tags are not helpful for comprehension.

Class A Class B Class C Class A

setValue 0.043 0.001 0.21 0.13

counter 0.29 0.12 0.09 0.1

employee 0 0.078 0.03 0.22

Term

Document

The content of a cell in this matrix represents the weight of a code token (the row)
with respect to a code document (the column) could be log, tf-idf, binary-entropy etc.

Haiduc et al. (2010), Eddy et al. (2013), Movshovitz-Attias and Cohen (2013), Rodeghero et al. (2014)

Template Based Summarization Techniques

• A Practical approach where summary
templates are predefined. Based on the target
code segments the templates are filled.

• Templates could cover program structural
information such as the number of interfaces
in a package or what kind of parameter does a
method use or actions performed by different
code fragments

• Many works leveraged the Software Word
Usage Model (SWUM) to generate
descriptions. SWUM is a technique for
representing program statements as sets of
nouns, verbs, and optional secondary
arguments of a statement grouping

• The quality of the summary relies heavily on
the quality of identifier names and method
signatures in the source code

Sridhara et al. (2010,2011), Dawood et al. (2017) and Hammad et al. (2016)

Badihi et.al (2017) CrowdSummarizer : Employing the Software Word Usage Model (SWUM)
to generate a summary. (a) An example method. (b) The automatically generated summary.
SWUM captures a methods linguistic elements in terms of its action, theme, and any
secondary arguments

External Description Based Summarization Techniques

• Developers post questions and receive solutions in online (Q&A) sites & many contribute to the open-source
projects

• These sites/repositories contains code segments together with their descriptions

• Apply different similarity measure to find most similar code and then re-use the comment

• Correctness & Quality is again highly dependent on the community. Likely to miss out comments for code segments
not discussed in QA sites. Lack of standardization of comments in open source can slow down processing.

<Code-Description>
Extraction

Code Clone
Detection

Comment Ranking Output Comment

Common workflow in external source based summarization

Input Code block

Wong et al. (2013), Huang et al. (2017)

Summarizing source code using a neural attention model, Iyer et al (2016)

int getSum int[] <END>

Return the sum array

…

… …

…

Encoder

Decoder

Simplified view of the approach

Attention

• Address both code summarization and
Code retrieval tasks

• Inspired by similar models in NLP tasks

• Crawl 934K C# and 977K SQL posts from
StackOverflow

• Perform several preprocessing and
cleaning steps. Used a small annotated
dataset to clean data.

• Retain 66,015 C# (title, query) pairs and
32,337 SQL pairs, split as 80-10-10

• Also provide an analysis of attention
weights learned and evaluation using
additional quality measures such as
‘naturalness’ and ‘informativeness’

<START>

Primary Results

A Transformer-based Approach for Source Code Summarization, Ahmad et al (2020)

Code Tokens Outputs
(Shifted right)

Relative Positional Encodings!
Copy-Attention!

• Transformers for source code had been applied previously, but not
directly to source code summarization

• The RNN-based sequence models:
• Do not model the non-sequential structure of source code
• Unable to capture the long-range dependencies among code tokens

• Model the pairwise relationship between code tokens using relative
position representation (Shaw et al, 2018)

• Use copy-attention to retain OOV words

Conduct experiments on a Java dataset (Hu et al) and a Python dataset(Wan et al)
The Base model out-performs the baselines in most cases
The Full model improves the performance further

CodeBERT: A Pre-Trained Model for Programming and Natural Languages, Feng et al (2020)

• A bimodal pre-trained model for natural and programming languages
capturing semantic connections between the two

• Trained with a hybrid objective function, including standard masked
language modeling(MLM) and replaced token detection (RTD)

Pretraining:

• Input is the concatenation of code and language tokens separated by [SEP]
• The MLM objective is to predict the original tokens that are masked out
• The discriminator is trained to determine if the predicted words are the

original ones or not
• After training, the Generators are discarded and the Discriminator is used for

fine-tuning tasks

• Evaluation is performed on CodeSearchNet dataset for 6
programming languages

• Also perform a study on languages not in pretraining

Few-shot training LLMs for project-specific code-summarization, (Ahmad et al 2022)

• Task → prepend 𝑛 functions (cross-project/ same-project), each
followed by a comment, followed by the target function for which
the model is to generate the comment

Observations :
• With 10 samples, Codex outperforms all finetuned foundation

models CodeT5, CodeBERT
• Same-project few-shot training improves the Codex model’s

performance

Tasks and Datasets

Replace a String from a Text File

contains ignore case

1. Method name prediction*

2. Method documentation generation (Code captioning)*

Related Tasks

Code Summarization

Code Search
Code Generation
Bug/Vulnerability detection

* Examples from Alon et al (2019)

Datasets

CodeSearchNet – Husain et al (2019)
 - 2.3M (code, comment) pairs over 6 languages

MultiLingual

Java

Hu et al (2018)
 - 69K (code, comment) pairs (training set)
Alon et al (2019)
 - Java-small, Java-medium, Java-large
 - 700K, 4M, 16M (code, comment) pairs
Python

Barone et al (2017)
 - 55k (code, comment) pairs (training set)

C#

Iyer et al (2016)
 - 66k (code, comment) pairs

Metrics

BLEU, Meteor, Rouge, Precision-Recall-F1

Agentic Multi-Modal LLMs for Software Comprehension
Structuring Code Summarization with Business Process Awareness

Srikanth Tamilselvam and Ashita Saxena

Accepted at IEEE SSE 2025

Why Current Application Summaries Fall Short?

 Copilot + Claude Sonnet on DayTrader

User: Can you give summary of the business
capabilities of the uploaded Daytrader repo?

Why Current Application Summaries Fall Short?

 Flat, syntax-centric summaries

 Copilot + Claude Sonnet on DayTrader

User: Can you give summary of the business
capabilities of the uploaded Daytrader repo?

Why Current Application Summaries Fall Short?

 Flat, syntax-centric summaries

 Unnatural sequencing (e.g., "trading" before
"login")

 Copilot + Claude Sonnet on DayTrader

User: Can you give summary of the business
capabilities of the uploaded Daytrader repo?

Why Current Application Summaries Fall Short?

 Flat, syntax-centric summaries

 Unnatural sequencing (e.g., "trading" before
"login")

 Low domain understanding

 Copilot + Claude Sonnet on DayTrader

User: Can you give summary of the business
capabilities of the uploaded Daytrader repo?

Business-Aware Summarization

We aim to generate summaries that:

 Abstract technical details into business
functions

 Follow the real user flow

 Are structured, meaningful, and domain-aligned

User: Can you give summary of the business
capabilities of the uploaded Daytrader repo?

LLMs can reason—but better with the right signals

Inputs are rich but fragmented

 Code Entry Points

 Textual Docs (e.g., README.md)

 Domain Knowledge

LLMs can reason—but better with the right signals

Inputs are rich but fragmented

 Code Entry Points

 Textual Docs (e.g., README.md)

 Domain Knowledge

Use specialized LLM agents to reason through these and synthesize structured outputs

LLMs can reason—but better with the right signals

Inputs are rich but fragmented

 Code Entry Points

 Textual Docs (e.g., README.md)

 Domain Knowledge

Use specialized LLM agents to reason through these and synthesize structured outputs

LLM Agents help organize reasoning

● Modular, step-by-step processing

● Clear responsibility and verification

LLMs can reason—but better with the right signals

Inputs are rich but fragmented

 Code Entry Points

 Textual Docs (e.g., README.md)

 Domain Knowledge

Use specialized LLM agents to reason through these and synthesize structured outputs

Agents enable traceability, reuse, and better failure handling.

LLM Agents help organize reasoning

● Modular, step-by-step processing

● Clear responsibility and verification

Agentic Multi-Modal Summarization Pipeline

Agentic Multi-Modal Summarization Pipeline

Agentic Multi-Modal Summarization Pipeline

Agentic Multi-Modal Summarization Pipeline

Agentic Multi-Modal Summarization Pipeline

Agentic Multi-Modal Summarization Pipeline

Evaluations

Human validation from

SME with 18+ years of

experience

 All workflows

aligned

 Only PetClinic

missed one service

ETF: An Entity Tracing Framework for
Hallucination Detection in Code Summaries

Kishan Maharaj, Vitobha Munigala, Srikanth G. Tamilselvam, Prince Kumar, Sayandeep Sen,
Palani Kodeswaran, Abhijit Mishra, Pushpak Bhattacharyya

Accepted at ACL 2025

What is Hallucination?

• The term hallucination was inspired by psychology

• In medical science, hallucinations refer to the particular type of perception realised by an
individual without any external stimulus (Blom, 2010).

• In context of Natural Language Processing:

• In the same way, the generated text may contain information that might look correct, but
maybe unfaithful to the reference (context or world knowledge)

• Types of Hallucination

• Intrinsic Hallucination

• Extrinsic Hallucination

• Intrinsic Hallucination

– Occurs when the output generated by a model contradicts the source text

– Input document:

• “Marie Curie discovered radium in 1898 at the University of Paris, marking a
groundbreaking moment in the history of science. Her pioneering research in
radioactivity, conducted alongside her husband Pierre Curie….”

– Generation:

• “Marie Curie invented radium in 1898.”

– Explanation:

• discovery → Invention

Intrinsic Hallucination

• Extrinsic Hallucination

– Occurs when the generated output cannot be verified from the source text

– Input document:

• “Marie Curie discovered radium in 1898 at the University of Paris, marking a
groundbreaking moment in the history of science. Her pioneering research in
radioactivity, conducted alongside her husband Pierre Curie….”

– Generation:

• “Marie Curie was born in Warsaw, Poland.”

– Explanation:

• No information about the birthplace of Marie Curie.

Extrinsic Hallucination

Hallucination Detection in Code Summarization

• The current code model have high tendency to produce unrelated code summaries

– Also includes Imaginary entities

• The current SOTA language models are very good at hallucinating in a convincing way​:

– Guessing the summary based on lexical interpretation of the code.

– references to some functions/classes not available during the input time​

Code: int getJobID (String jobName) ​{

return -1;}

private void runJob (String jobName) { ​
 int x = getJobId(jobName);

}​

Summary: The getJobID method is a private
method that takes a job name as a parameter
and returns the job ID after fetching it from a
database. ​The runJob method uses the
getJoobID method to get the job ID and then
uses the job ID to run the job.​

Input

Output: Hallucinated

Dataset Creation

● Programming language: Java
○ Code snippets: CodeXGLUE (Lu et al., 2021) – Code-To-Text dataset.

● Study Natural Hallucination in Code Summaries
○ Do not introduce perturbations → Artificial Hallucination

○ Rely on Natural Generation of Code/Language Models
■ IBM-Granite family (20B and 34B)
■ Llama3 family (8B and 70B);
■ CodeLlama family (7B and 34B)
■ Mistral-7B

○ Include different level of abstractions:
■ Low Abstraction → Describe the code line by line (detailed)
■ High Abstraction → Describe the business purpose of the code (high level)

Proposed Taxonomy

Dataset Statistics

Approach: Entity Tracing Framework

Measuring What Matters: An Aggregate Metric for Assessing
Enterprise Code Summaries

Ashita Saxena, Palanivel Kodeswaran, Sayandeep Sen, Srikanth Tamilselvam

Accepted at FSE 2025

• Existing summarization benchmarks focus on small code snippets.

• Enterprise Java codebases: avg. 231 code tokens vs ~30 (5 LoC) in public datasets.

• SME-written summaries are longer and more informative.

Motivation

Fig 1 : Comparison of average no. of code tokens

and average no. of summary tokens across

current public summarization datasets and samples

from enterprise

Fig 2 : Ground Truth Summary Length

(no. of tokens) vs Lines of Code (LoC)

from SMEs

• Ignore verbosity, repetitiveness, and incompleteness.
• Need for new evaluation dimensions.

Motivation

Overall
summary
Quality

Completeness

Tian et.al, 2024
Haldar et.al, 2024
Maharaj et.al, 2024

ConcisenessCorrectness

Example

Issues:
•Redundant logging mentions
•Superficial method references
•Misses complex, public methods

Ref : https://github.com/IBM/appmod-resorts/blob/master/src/main/java/com/ibm/ta/modresorts/WeatherServlet.java

https://github.com/IBM/appmod-resorts/blob/master/src/main/java/com/ibm/ta/modresorts/WeatherServlet.java
https://github.com/IBM/appmod-resorts/blob/master/src/main/java/com/ibm/ta/modresorts/WeatherServlet.java
https://github.com/IBM/appmod-resorts/blob/master/src/main/java/com/ibm/ta/modresorts/WeatherServlet.java

Penalizes:
• Repetitive sentences (clustering on SBERT embeddings)

• Verbose language

Key idea:
• Cluster count ≠ sentence count ⇒ redundancy

• Summary/code token ratio ⇒ verbosity

Contributions -Distinctness Metric

Captures:
• Coverage of complex/public methods (by cyclomatic complexity)

• Diversity of content using inverse self-BLEU

• Scalable, language-agnostic design

• Aligns with SME perceptions of usefulness

Contributions - Completeness Metric

Contributions – Aggregated Metric

• Support Vector Regression (SVR)
• Input: Distinctiveness + Completeness

• Output: Predicted overall summary quality (1–10)

• Learns to match SME judgments

• Robust to noise and small dataset size

Experiments

• Dataset: 70 Java classes from 9 internal apps (HR, SSO, travel)

• SMEs: 5 senior engineers (15+ yrs experience)

• Rating dimensions: correctness, completeness, conciseness, overall

Figure : SME questionnaire for evaluating summaries

Results

Conclusion - Summarization Focus Areas

➢Foundational

➢Application

➢System

Foundational

➢Accuracy & Hallucination Mitigation

 Challenges
• Models fabricate facts, APIs, or results.
• Hard to verify factual correctness automatically.

➢Context & Long-sequence Understanding

 Challenges
• Handling books, multi-document corpora, and large enterprise codebases.
• Models struggle with maintaining coherence over long contexts.

➢Evaluation Metrics & Benchmarking

 Challenges
• ROUGE, BLEU, and METEOR fail to capture semantic quality.

Application

➢Domain-specific & Task-oriented Summarization

 Challenges
• Generic summarizers underperform in specialized domains.

• Summarizing enterprise codebases and regulatory documents needs deep domain knowledge.

➢Personalization & User Intent Awareness

 Challenges
• Many models generate “one-size-fits-all” summaries.

• Different stakeholders (developers, managers, researchers) need different levels of detail.

System

➢Scalability & Efficiency

 Challenges
• Handling enterprise-scale repositories and large document sets.
• Reducing computational cost for edge deployments.

➢Explainability

 Challenges
• Summaries are black boxes; users can’t verify why content was included.
• Lack of provenance tracking in code and text summaries.

➢Multilingual & Cross-lingual Summarization

 Challenges
• Limited datasets for low-resource languages and code comments.
• Cross-lingual summarization of code + documentation is underexplored.

THANK YOU

References

• https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-
attention/

• https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

• https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-
704147f91686

• https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

• https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#0458

• https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1

• https://jalammar.github.io/illustrated-transformer/

• https://arxiv.org/abs/2406.11289

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://medium.com/@henrymao/reinforcement-learning-using-asynchronous-advantage-actor-critic-704147f91686
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#0458
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#0458
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#0458
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#0458
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#0458
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#0458
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#0458
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3#0458
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://towardsdatascience.com/an-intuitive-explanation-of-self-attention-4f72709638e1
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/2406.11289
https://arxiv.org/abs/2406.11289

	Slide 1
	Slide 2: Agenda
	Slide 3: What is summarization ?
	Slide 4: Data is growing
	Slide 5: Types of Summarization in a Broader Context
	Slide 6: Text Summarization
	Slide 7: Classification of Text Summarization System
	Slide 8: Typical Text Summarization System
	Slide 9: Typical Extractive Summarization System
	Slide 10: Typical Abstractive Summarization System
	Slide 11: Query Focused Summarization
	Slide 12: Text summarization research Evolution
	Slide 13: Text summarization research Evolution
	Slide 14: Text summarization research Evolution
	Slide 15: Text summarization research Evolution
	Slide 16: Text summarization research Evolution
	Slide 17: Text summarization research Evolution
	Slide 18: Recent Modelling approaches with LLMs
	Slide 19: Few Shot Prompting
	Slide 20: Prompt Chaining
	Slide 21: Prompt Chaining Vs Stepwise Prompt
	Slide 22: More Prompting Examples
	Slide 23: Multi-Agents
	Slide 24: Instruction Fine-Tuning
	Slide 25: Knowledge Distillation
	Slide 26: Common Summarization Datasets
	Slide 27: 3C’s For Summary Quality
	Slide 28: Key Metrics
	Slide 29: Key Metrics
	Slide 30: Code Summarization
	Slide 31: Code Summarization
	Slide 32: Need for Code Comments
	Slide 33: Deal with Lack of Code Comments
	Slide 34: Source Code Modelling - Code as Code (Vs &) Code as Text
	Slide 35: Source Code Modelling - Code as Code (Vs &) Code as Text
	Slide 36: Source Code Modelling - Code as Code (Vs &) Code as Text
	Slide 37: Source Code Modelling - Code as Code (Vs &) Code as Text
	Slide 38: Code Summarization Techniques
	Slide 39: Term Based Summarization Techniques
	Slide 40: Template Based Summarization Techniques
	Slide 41: External Description Based Summarization Techniques
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Few-shot training LLMs for project-specific code-summarization, (Ahmad et al 2022)
	Slide 46: Tasks and Datasets
	Slide 47: Agentic Multi-Modal LLMs for Software Comprehension Structuring Code Summarization with Business Process Awareness
	Slide 48: Why Current Application Summaries Fall Short?
	Slide 49: Why Current Application Summaries Fall Short?
	Slide 50: Why Current Application Summaries Fall Short?
	Slide 51: Why Current Application Summaries Fall Short?
	Slide 52: Business-Aware Summarization
	Slide 53: LLMs can reason—but better with the right signals
	Slide 54: LLMs can reason—but better with the right signals
	Slide 55: LLMs can reason—but better with the right signals
	Slide 56: LLMs can reason—but better with the right signals
	Slide 57: Agentic Multi-Modal Summarization Pipeline
	Slide 58: Agentic Multi-Modal Summarization Pipeline
	Slide 59: Agentic Multi-Modal Summarization Pipeline
	Slide 60: Agentic Multi-Modal Summarization Pipeline
	Slide 61: Agentic Multi-Modal Summarization Pipeline
	Slide 62: Agentic Multi-Modal Summarization Pipeline
	Slide 63: Evaluations
	Slide 64: ETF: An Entity Tracing Framework for Hallucination Detection in Code Summaries
	Slide 65: What is Hallucination?
	Slide 66: Intrinsic Hallucination
	Slide 67: Extrinsic Hallucination
	Slide 68: Hallucination Detection in Code Summarization
	Slide 69: Dataset Creation
	Slide 70: Proposed Taxonomy
	Slide 71: Dataset Statistics
	Slide 72: Approach: Entity Tracing Framework
	Slide 73: Measuring What Matters: An Aggregate Metric for Assessing Enterprise Code Summaries
	Slide 74: Motivation
	Slide 75: Motivation
	Slide 76: Example
	Slide 77: Contributions -Distinctness Metric
	Slide 78: Contributions - Completeness Metric
	Slide 79: Contributions – Aggregated Metric
	Slide 80: Experiments
	Slide 81: Results
	Slide 82: Conclusion - Summarization Focus Areas
	Slide 83: Foundational
	Slide 84: Application
	Slide 85: System
	Slide 86
	Slide 87: References

