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Abstract. The traditional stepwise refinement based program deriva-
tion methodologies are primarily top-down. Strictly following the top-
down program derivation approach may require backtracking resulting
in rework. Moreover, the top down approach does not directly help in
suggesting the next course of action in case of a failed derivation at-
tempt. In this work we seamlessly incorporate a bottom up assumption
propagation technique into a primarily top down derivation methodol-
ogy. We present new tactics for back-propagating the assumptions made
during the top-down phase. These tactics help in reducing the guess-
work during the derivations. We have implemented these tactics in a
program derivation system. With the help of simple examples, we show
how this approach is useful for avoiding backtracking thereby simplifying
the derivations.
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1 Introduction

In the calculational style of programming [10,14,13], programs are systemati-
cally derived from their formal specifications in a top-down manner. At each
step, a derivation rule is applied to a partially derived program at hand, finally
resulting in the fully derived program. Although systematic, this approach can
still be considered as informal. The refinement calculus [15,1] formalizes this
top-down derivation approach. It provides a set of formally verified refinement
rules (transformations).

At an intermediate stage in a top down derivation, users have to select an
appropriate refinement rule by analyzing the structure of the specification under
consideration. However it is not always possible to come up with the right choice
on the first attempt. Users often need to backtrack and try out different rules.
The failed attempts, however, often provide added insight which help, to some
extent, in deciding the future course of action. In the words of Morgan [15]:
“excursions like the above ... are not fruitless...we have discovered that we need
the extra conjunct in the precondition, and so we simply place it in the invari-
ant and try again.” Although the failed attempts are not fruitless and provide
the required insight, the trying again results in rework. The derived program



fragments (and the discharged proof obligations) need to be recalculated (re-
discharged) during the next attempt. The failed attempts also break the flow
of the derivations and make them difficult to organize. Moreover, the learnings
from the failed attempt are not directly applicable; some guesswork is needed in
deciding the future course of action.

The non-linear and lengthy derivations are the major hindrance in wide-
spread adoption of the calculational derivation methodology. In our earlier work
[6], we developed a system called CAPS1 (Calculational Assistant for Program-
ming from the Specifications). The CAPS system provides, among other features,
support for backtracking and branching by maintaining the complete deriva-
tion tree. Although these features helps in managing the non-linear derivations
(along with the failed attempts), the problem of rework still remains. Users have
to repeat most of the steps carried out during the failed attempt with slight
modifications. In the manual derivations (e.g. as in [14]), users do not actually
backtrack and redo the complete derivations; they just figure out the impact
of the modifications and add relevant program fragments to maintain the cor-
rectness. However, without proper formalization and tool support, this approach
remains error prone.

Tools supporting the refinement based formal program derivation (Cock-
tail [12], Refine [16], Refinement Calculator [4] and PRT [5]) mostly follow the
top-down methodology. Not much emphasis has been given on avoiding the un-
necessary backtrackings. The refinement strategies cataloged by these tools help
to some extent in avoiding the common pitfalls. However, a general framework
for allowing the users to assume predicates and then propagating these predicates
to appropriate location is missing.

In this work, we have seamlessly incorporated the bottom-up techniques into
a top-down derivation methodology in order to avoid the unnecessary back-
trackings and the associated rework. We present derivation tactics for captur-
ing the assumptions made during the top-down phase and subsequently back-
propagating these assumptions to appropriate program locations. We have im-
plemented this approach in the CAPS system. With the help of small examples,
we explain how this approach avoids unnecessary backtracking, reduces guess-
work, and results in simpler derivations in the CAPS system.

2 Motivating Example

In this section, we present a sketch of the calculational derivation for a simple
program performed in a top-down manner. We discuss how the top-down ap-
proach is insufficient to capture the natural flow of the derivation and results
in additional guesswork and rework. Consider the following programming task
(adapted from exercise 4.3.4 in [14]. The informal derivation of this problem also
appears in [6]).

1 CAPS is available at http://www.cse.iitb.ac.in/~damani/CAPS

http://www.cse.iitb.ac.in/~damani/CAPS


con N : int{N ≥ 0};var f : array [0..N) of bool;var r : bool;
S

R :

{
r ≡

(
∃p : 0 ≤ p ≤ N :

(
(∀i : 0 ≤ i < p : f [i])
∧ (∀i : p ≤ i < N : ¬f [i])

))}

var n : int;
S



(
r ≡

(
∃p : 0 ≤ p ≤ n :

(
(∀i : 0 ≤ i < p : f [i])
∧ (∀i : p ≤ i < n : ¬f [i])

)))

∧ n = N ∧ 0 ≤ n ≤ N





r, n := true, 0;
{Inv : P0 ∧ P1}
while n 6= N →

S0 : r, n := r′, n+ 1
end

r′ ≡ (r ∧ ¬f [n]) ∨ (∀i : 0 ≤ i < n+ 1 : f [i])

r, n, s := true, 0, true;
{Inv : P0 ∧ P1 ∧ P2}
while n 6= N →
S1

end

r′ ≡ (r ∧ ¬f [n] ∨ s)

r, n, s := true, 0, true
{Inv : P0 ∧ P1 ∧ P2}
while n 6= N →

s := s ∧ f [n]
r, n := (r ∧ ¬f [n]) ∨ s, n+ 1

end

wp.(r, n := r′, n+ 1)(P0)

r′ ≡
(
∃p : 0 ≤ p ≤ n+ 1 :

(
(∀i : 0 ≤ i < p : f [i])

∧ (∀i : p ≤ i < n+ 1 : ¬f [i])

))

≡ { Split off p = n+ 1; 0 ≤ n+ 1 }

≡ {Definition of P0 and assignment }

A

B

G

H

I

Replace N by n and add bounds on n.

Calculate r′

Take conjuncts P0 and P1 as invariant

Step into Proof obligation for the invariance of P0

C

D

E

F

Strengthen Inv
with P2

Derivation of expn for s

Fig. 1. Sketch of the top-down derivation of the motivating example.
P0 : (r ≡ (∃p : 0 ≤ p ≤ n : ((∀i : 0 ≤ i < p : f [i]) ∧ (∀i : p ≤ i < n : ¬f [i]))))
P1 : 0 ≤ n ≤ N ; P2 : s ≡ (∀i : 0 ≤ i < n : f [i])

Let f [0..N) be an array of booleans where N is a natural number. Derive a
program for the computation of a boolean variable r such that r is true iff all the
true values in the array come before all the false values.

Fig. 1 depicts the derivation process for this program. We start the derivation
by providing the formal specification (node A) of the program. We then apply
the Replace Constant by a Variable [14] heuristic to replace the constant N with
a fresh variable n as shown in node B. We follow the general guideline of adding
bounds on the introduced variable n by adding a conjunct P1 : 0 ≤ n ≤ N to the
postcondition. Although this conjunct looks redundant due to existence of the
stronger predicate n = N , it is used later and becomes part of the loop invariant.
We then apply the Take Conjuncts as Invariants heuristics to select conjuncts
P0 and P1 as invariants and negation of the remaining conjunct n = N as the



guard of the while loop. To ensure termination, we choose to increment variable
n by 1 and envision an assignment r, n := r′, n+ 1 , where r′ is a metavariable.
The partially derived program at this stage is shown in node C. To calculate
the metavariable r′, we now step into the proof obligation for the invariance
of P0 and try to manipulate the formula with the aim of finding a program
expression for r′. After several formula transformations, we arrive at a formula
(r′ ≡ (r ∧ ¬f [n]) ∨ (∀i : 0 ≤ i < n+ 1 : f [i])) shown in node F.

At this point, we realize that we can not represent r′ in terms of the exist-
ing program variables. After analyzing the derivation, we speculate that if we
introduce a fresh variable (say s) and maintain P2 : s ≡ (∀i : 0 ≤ i < n : f [i]) as
an additional loop invariant then we would be able to express r′ in terms of the
program variables.

We backtrack to program C, introduce a fresh variable s, and envision a While
program with the strengthened invariant. For the derivation of the program S1,
we follow the same process as that of S0. The steps from node G to node H
correspond to the calculation of r′. These steps are similar to the calculation
of r′ in the failed attempt (node E to node F ). However, this time, we are
able to instantiate r′ with the help of the newly introduced invariant P2. After
calculation of r′, we proceed further for the derivation of assignment for the
variable s. The program can be improved further by strengthening the guard to
ensure early termination.

Note that we did not select s ≡ (∀i : 0 ≤ i < n+ 1 : f [i]) as an invariant
even though the formula is required at node F . This comes from the observation
that it would not be possible to establish the invariant at the start of the loop.
Since n is initially 0, assignment s := f [0] would be needed to establish the
invariant. However, f [0] is undefined when N = 0. Instead we added P2 as an
invariant. Selection of this formula needs foresight that the occurrences of n are
textually substituted by n + 1 during the derivation (step D-E ), so we will get
the formula we want at node F , if we strengthen the invariant with P2.

As we saw in this example, some ingenuity is required to figure out the next
course of action after a failed derivation attempt. We need to decide the location
from where to branch and what new things to try. The backtracking results
in rework and breaks the linear flow of the derivation making the derivation
complex.

3 Mixing Top-Down and Bottom-Up Approaches

In this section, we first describe the derivation methodology adopted in CAPS
and then present our approach for incorporating the bottom-up reasoning in a
primarily top-down approach.

3.1 Derivation Methodology

For representing a program fragment and its specification, we use an extension
of the Guarded Command Language (GCL) [9] called AnnotatedProgram. It is



obtained by augmenting each program construct in the GCL with its precon-
dition and postcondition. It is different from the Hoare triple in a sense that,
in addition to the program, every subprogram is also annotated with the pre-
and post-conditions. We also introduce a new program construct UnkProg to
represent an unsynthesized program fragment. Annotated program with a pre-
condition α, a postcondition β, and body S is represented as {α}S {β}. We use
the formulas in sorted first-order predicate logic for expressing the precondition
and the postcondition of the programs. We adopt the Eindhoven notation [2] for
representing the quantified formulas.

Users start a derivation by providing a formal specification of a program and
then incrementally transform it into a fully synthesized annotated program by
applying predefined transformation rules called Derivation Tactics. The com-
plete derivation history is recorded in the form of a Derivation Tree. The system
provides various features like structured derivations, stepping into subcompo-
nents, and backtracking. The system automates most of the mundane tasks and
employs the automated theorem provers Alt-Ergo [7], CVC3 [3], SPASS [17] and
Z3 [8] for discharging proof obligations. The Why3 tool [11] is used to interface
with these theorem provers.

Nature of the transformation rules. In the stepwise refinement based
approaches [15,1], a formal specification is incrementally transformed into a
concrete program. A specification (pre- and post-conditions) is treated as an
abstract program (called a specification statement). At any intermediate stage
during the derivation, a program might contain specification statements as well
as executable constructs. The traditional refinement rules are transformations
that convert a specification statement into another program which may in turn
contain specifications statements and the concrete constructs. In the conven-
tional approach, once a specification statement is transformed into a concrete
construct, its pre- and post-conditions are not carried forward.

In contrast to the conventional approach, we maintain the specifications of
all the subprogram (concrete as well as unsynthesized). This allows us to provide
rules which transform any correct program (not just a specification statement)
into another correct program. These rules try to reuse the already derived pro-
gram fragments and utilize the already discharged proof obligations to ensure
correctness.

Program and Formula Modes. The CAPS system provides tactics for
transforming partially derived programs as well as the proof obligation formu-
las. These two modes are referred as the Program Mode and the Formula Mode
respectively. Users can envision missing program fragments in terms of metavari-
ables which are then derived by manipulating the proof obligation formulas. The
StepIntoPO (Step Into Proof Obligation) tactic is used to transition from pro-
grams to corresponding proof obligation formulas. On applying the tactic to an
annotated program containing metavariables, a new formula node representing
the proof obligations (verification conditions) is created in the derivation tree.
This formula is then incrementally transformed to a form, from which it is easier
to instantiate the metavariables. After successfully discharging the proof obliga-



tion and instantiating all the metavariables, a tactic called StepOut is applied
to get an annotated program with all the metavariables replaced by the corre-
sponding instantiations.

3.2 Incorporating the Bottom-up Approach

In order to incorporate the bottom-up approach in the primarily top-down
methodology, we need a way to accumulate assumptions made during the deriva-
tion and then to propagate these assumptions upstream. After propagating the
assumptions to appropriate location in the derived program, user can introduce
appropriate program constructs to establish the assumptions.

The bottom-up phase has three main steps.

– Assume: To derive an annotated program {α}UnkProg(1) {β}, we envision
an assignment containing metavariables and step into the proof obligation
for the program. We then try to simplify the formula with the objective of
guessing the expressions for the metavariables. However, to do so, imagine
that we need to assume θ. Instead of backtracking, we just accumulate the
assumption and proceed further to derive a program S. In the derived anno-
tated program (Fig. 2), assume(θ) establishes the assumed predicate θ while
preserving α. For brevity, we abbreviate the statement assume(θ) as A(θ).

– Propagate: We may not want to materialize the program to establish θ at
the current program location. We then propagate the assumption upstream
to an appropriate program location. Depending on the program constructs
through which the assumption is propagated, the assumed predicate at the
new upstream location might be different from the one being propagated.

– Realize: Materialize the assume statement by converting it to an unknown
program fragment which can be derived subsequently from its specification.

{α}
{α}
A(θ)
{α ∧ θ}
S
{β}
{β}

Fig. 2. Result of assuming pre-
condition θ in the derivation of
{α}UnkProg(1) {β}

{α}
x := E

{β}
A(θ)

{β ∧ θ}

{α}
A(wp(x := E, θ))

{α ∧ wp(x := E, θ)}
x := E

{β ∧ θ}

Fig. 3. AssignmentUp tactic.



{α}
UnkProg1
{β}
A(θ)
{β ∧ θ}

{α}
A(θ)
{α ∧ θ}
UnkProg2
{β ∧ θ}

{α}
UnkProg1
{β}
A(θ)
{β ∧ θ}

{α}
UnkProg2
{β ∧ θ}

(a) UnkProgUp tactic (b) UnkProgEst tactic

Fig. 4. UnkProg tactics

4 Propagating and Establishing Assumptions

The propagation step mentioned in the previous section is an important step in
the bottom up phase. We have developed transformation rules for propagating
the assumptions upstream through various program constructs. Some of these
rules also establish the assumptions after propagating them. The transformation
rules transform an annotated program (source program) into another annotated
program (target program) with the same specification (i.e. with the same precon-
dition and postcondition). The transformation rules are verified for correctness:
if the source program is correct, then the transformed program is also correct. To
prove correctness of a rule, we prove the validity of the formula PO(S)⇒ PO(T )
where PO(S) and PO(T ) are the proof obligations of the source program S and
target program T respectively. The transformation rules are implemented in the
CAPS system as tactics. Some of the tactics have associated applicability condi-
tions (also called as proviso). A tactic can be applied only when the associated
proviso is discharged successfully.

4.1 Atomic Constructs

Atomic constructs are the program constructs that do not have subprograms. In
this section, we present some rules for the Assignment and UnkProg constructs.

Assignment. Fig. 3 shows the AssignmentUp tactic for propagating an as-
sumption upwards through an assignment.

UnkProg. Fig. 4(a) shows the UnkProgUp tactic which propagates an as-
sumption upward through an unknown program fragment (UnkProg1). Note
that pre- and post-conditions of UnkProg2 are strengthened with θ. Here, we
are demanding that UnkProg2 should preserve θ. User may prefer to establish
θ instead of propagating. The UnkProgEst tactic (Fig. 4(b)) can be used for this
purpose.

We have not presented the rules for the simple constructs like skip and as-
sume, since the propagation rules for these constructs are simple.



{α}
{ϕ1}S1{ψ1}
:

{ϕn}Sn{ψn}
{β}

A(θ)
{β ∧ θ}

{α}
{ϕ1}S1{ψ1}
:

{ϕn}Sn{ψn}
{β}A(θ){β ∧ θ}

{β ∧ θ}

Fig. 5. CompositionIn tactic

{α}
{ϕ}A(θ){ϕ ∧ θ}
{ϕ ∧ θ}S1{ψ1}
. . .

{β}

{α}
A(θ)

{α ∧ θ}
{ϕ ∧ θ}S1{ψ1}
. . .

{β}

Fig. 6. CompositionOut tactic

4.2 Composition

Fig. 5 shows a Composition program which is composed of another Composition
and an assume(θ) statement. The CompositionIn tactic can be used to propagate
the assumption θ inside the Composition construct. The assumption can then
be propagated upwards through the subprograms of the composition (Sn to
S1) using appropriate rules. The CompositionOut tactic (Fig. 6) propagates the
assume statement before the composition statement.

The CAPS system supports nested composition constructs (Composition con-
structed out of other compositions). Although a nested composition can be col-
lapsed to form a single composition, this construct is useful when we want to
apply a tactic to a subcomposition.

Fig. 7 shows the CompoToIf tactic which establishes the assumption θ by
introducing an if program in which the assumed predicate θ appears as the
guard of the program. Another guarded command is added to handle the other
case. This tactic has a proviso that θ is a valid program expression. This tactic
allows users to delay the decision about the type of the program constructs. For
example, users may envision an assignment, which can be turned later into an
if program if required.

4.3 If

Fig. 8 shows the IfIn tactic. An assume statement that appears after the if
construct in the source program is pushed inside the if construct in the tar-



{α}
{ϕ}A(θ){ϕ ∧ θ}
{ϕ ∧ θ}S{ψ}

{β}

{α}
if
| θ → {ϕ ∧ θ}S{ψ}
| ¬θ → {ϕ ∧ ¬θ}UnkProg{ψ}
end

{β}

Fig. 7. CompoToIf tactic: Transforms a composition to an if program.

{α}
if
| G1 → {ϕ1}S1{ψ1}
:
| Gi → {ϕi}Si{ψi}
:
| Gn → {ϕn}Sn{ψn}
end

{β}
A(θ)

{β ∧ θ}

{α}
if
| G1 → {ϕ1}S1{ψ1}A(θ){ψ1 ∧ θ}
:
| Gi → {ϕi}Si{ψi}A(θ){ψi ∧ θ}
:
| Gn → {ϕn}Sn{ψn}A(θ){ψn ∧ θ}
end

{β ∧ θ}

Fig. 8. IfIn tactic.

get program. In the target program, θ is assumed at the end of every guarded
command.

Fig. 9 shows the IfOut tactic. In the source program, θ is assumed before
the subprogram Si, whereas in the target program, θ∗ is assumed before the if
program. Note that θ∗ (which is defined as (Gi ⇒ θ)) is weaker than θ. As a result
of assuming θ∗ before the if construct, we also strengthen the precondition of the
other guarded commands. This strengthening of the precondition is beneficial
for the unsynthesized program fragments as it may make the task of derivation
simpler.

Instead of propagating the assumption, it can be established by strengthening
the guard. This can be achieved by applying the IfGrd tactic. An additional
guarded command needs to be added to the if program to preserve correctness.
This tactic does not propagate the assumption; instead it establishes it.

4.4 While

The assumption propagation tactics involving the While construct are more
complex than those for the other constructs since strengthening an invariant
strengthens the precondition as well as the postcondition of the loop body.

WhileIn tactic. Fig. 11 shows the WhileIn tactic. The source program has
an assumption after the while loop. In order to propagate the assumption θ



{α}
if
| G1 → {ϕ1}S1{ψ1}
:
| Gi → {ϕi}A(θ){ϕi ∧ θ}Si{ψi}
:
| Gn → {ϕn}Sn{ψn}
end

{β}

{α}
A(θ∗)
{α ∧ θ∗}

if
| G1 → {ϕ1 ∧ θ∗}S1{ψ1}
:
| Gi → {ϕi ∧ θ}Si{ψi}
:
| Gn → {ϕn ∧ θ∗}Sn{ψn}
end

{β}

Fig. 9. IfOut tactic. (θ? , Gi ⇒ θ)

{α}
if
| G1 −→ {ϕ1}S1{ψ1}
:
| Gi −→ {ϕi}A(θ){ϕi ∧ θ}Si{ψi}
:
| Gn −→ {ϕn}Sn{ψn}
end
{β}

{α}
if
| G1 −→ {ϕ1}S1{ψ1}
:
| Gi ∧ θ −→ {ϕi ∧ θ}Si{ψi}
:
| Gn −→ {ϕn}Sn{ψn}
| Gi ∧ ¬θ −→ {α ∧Gi ∧ ¬θ}UnkProg{β}
end
{β}

Fig. 10. IfGrd tactic

upward, we strengthen the invariant of the while loop with ¬G ⇒ θ. This is
the weakest formula that will assert θ after the while loop. We add an assume
statement after the loop body to maintain the invariant and another assume
statement before the loop to establish the invariant at the entry of the loop.

WhileStrInv tactic. Fig. 12 shows the WhileStrInv tactic. In the source
program, the predicate θ is assumed at the start of the loop body. To make θ
valid at the start of the loop body S, we strengthen the invariant with (G⇒ θ).
An assume statement A(G ⇒ θ) is added after the loop body to ensure that
invariant is preserved. Another assume statement is added before the while loop
to establish the invariant at the entry of the loop.

WhilePostStrInv tactic. Fig. 13 shows the WhilePostStrInv tactic. There
are two steps in this tactic. In the first step, postcondition of the program S
is strengthened with θ∗ which is the strongest postcondition of θ with respect
to S. In the second step, the invariant of the while loop is strengthened with
θ∗. An unknown program fragment is added before S to establish θ. An assume
statement is added before the while program to establish θ∗ at the entry of the
loop.

Strongest postconditions involve existential quantifiers. We have implemented
heuristics for eliminating the quantifiers to simplify the formulas. In this tac-



{α}
while {Inv : ω}
G→

{ϕ}
S

{ψ}
end

{β}
A(θ)

{β ∧ θ}

{α}
A(¬G⇒ θ)

{α ∧ (¬G⇒ θ)}
while {Inv : ω ∧ (¬G⇒ θ)}
G→

{ϕ}
S

{ψ}
A(¬G⇒ θ)

{ψ ∧ (¬G⇒ θ)}
end

{β ∧ θ}

Fig. 11. WhileIn tactic: Strengthens the invariant with ¬G⇒ θ

{α}
while {Inv : ω}
G→

{ϕ}
A(θ)

{ϕ ∧ θ}
S

{ψ}
end

{β}

{α}
A(G⇒ θ)

{α ∧ (G⇒ θ)}
while {Inv : ω ∧ (G⇒ θ)}
G→

{ϕ ∧ θ}
S

{ψ}
A(G⇒ θ)

{ψ ∧ (G⇒ θ)}
end

{β}

Fig. 12. WhileStrInv tactic: Strengthens the invariant with G⇒ θ

tic, we have defined θ∗ to be the sp(S, θ). However, any formula θw weaker
than the strongest postcondition will also work as long as the program {ϕ ∧ θw}
UnkProg{ϕ ∧ θ} can be derived.

4.5 Down-propagating the assumed predicates

As we move the assumptions upstream, they become available to various down-
stream constructs. For example, in the IfOut tactic the assumption θ in the ith

guarded command is moved upwards before the if construct. As a result of this,
the propagated assumption θ∗ percolates down to the other guarded commands.
The predicates can be further propagated downwards using the StrengthenPost
tactic.



{α}
while {Inv : ω}
G→

{ϕ}
A(θ)

{ϕ ∧ θ}
S

{φ}
end

{β}

{α}
while {Inv : ω}
G→

{ϕ}
A(θ)

{ϕ ∧ θ}
S

{φ ∧ θ∗}
end

{β}

{α}
A(θ∗)

{α ∧ θ∗}
while {Inv : ω ∧ θ∗)}
G→

{ϕ ∧ θ∗}
UnkProg

{ϕ ∧ θ}
S

{φ ∧ θ∗}
end

{β}

Fig. 13. WhilePostStrInv tactic: Strengthens the loop invariant with θ∗ where
θ∗ , sp(S, θ)

5 Derivation Examples

5.1 Evaluating Polynomials

A typical derivation involves interleaved instances of up-propagation of the as-
sume statements and down-propagation of the assumed predicates. To demon-
strate this, we present some of the steps from the derivation of a program for
evaluating a polynomial whose coefficients are stored in an array (also called
Horner’s rule). The program is specified as follows.

con A[0..N) array of int {N ≥ 0};
con x : int;var r : int;
S{
R : r =

(∑
i : 0 ≤ i < N : c[i] ∗ xi

)}

We skip the initial tactic applications and directly jump to the program
shown in Fig. 14(a). The user has already assumed predicate P2 : y = xn dur-
ing the calculation of r′ (not shown). We next apply the WhileStrInv tactic to
stengthen the invariant with P2 to arrive at program shown in the figure (b).
We then propagate the assume statement upwards through n := n+ 1 to arrive
at the program shown in figure (c). We would like to synthesize the assumption
here but the precondition is not sufficient. Next, we strengthen the postcondition
of the assignment statement for r to arrive at program shown in the figure (d).
The assumption P2(n := n+ 1) can now be easily established as y := y ∗x. Note
that alternative solutions are also possible.

With the combinations of steps involving up-propagation of the assume state-
ments and down-propagation of the predicates, we can propagate the missing
fragments to an appropriate location and then synthesize them.



while {Inv : P}
n 6= N →
{P}
assume(P2);
{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n+ 1)}
n := n+ 1
{P}

end {R}

while {Inv : P ∧ P2}
n 6= N →
{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n+ 1)}
n := n+ 1
{P}
assume(P2)
{P ∧ P2}

end {R}

while {Inv : P ∧ P2}
n 6= N →
{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n+ 1)}
assume(P2(n := n+ 1)){
P (n := n+ 1)
∧P2(n := n+ 1)

}

n := n+ 1
{P ∧ P2}

end {R}

while {Inv : P ∧ P2}
n 6= N →
{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n+ 1) ∧ P2}
assume(P2(n := n+ 1)){
P (n := n+ 1)
∧P2(n := n+ 1)

}

n := n+ 1
{P ∧ P2}

end {R}

Add P2 to invariant

Propagate assume up Strengthen post of r asgn

(a)
(b)

(c) (d)

P : r =
(∑

i : 0 ≤ i < n : c[i] ∗ xi
)
∧ 0 ≤ n ≤ N

P2 : y = xn

Fig. 14. Some steps in the derivation of a program for the Horner’s rule. Invari-
ant initializations at the entry of the loop are not shown.

5.2 Back to the Motivating Example

Next, we derive the motivating example from section 2 using our approach. We
start from formula F in Fig. 1. At this point, we are not able to express the
formula tt(n+ 1) (where tt(n) , (∀i : 0 ≤ i < n : f [i])) as a program expression.
Instead of backtracking, we introduce a fresh variable s and assume the formula
s ≡ tt(n+ 1) and proceed further with the calculation.

. . .
r′ ≡ (r ∧ ¬f [n]) ∨ (∀i : 0 ≤ i < n+ 1 : f [i])
≡ { Introduce variable s and assume s ≡ (∀i : 0 ≤ i < n+ 1 : f [i]) }
r′ ≡ (r ∧ ¬f [n]) ∨ s
≡ {Step out from formula mode}



After stepping out from the formula mode, we arrive at the while loop where
the body of the loop contains the assume statement.

{P0 ∧ P1}
while {Inv : P0 ∧ P1}

n 6= N →
{P0 ∧ P1 ∧ n 6= N}

assume(s ≡ tt(n+ 1))
{P0 ∧ P1 ∧ n 6= N ∧ s ≡ tt(n+ 1)}
r, n := (r ∧ ¬f [n]) ∨ s, n+ 1
{P0 ∧ P1}

end
{R}

We can establish the assumption at the current location however that would
be expensive since we would need to traverse the array inside the loop. We
can apply the WhileStrInv tactic or the WhilePostStrInv tactic. Applying the
WhileStrInv would add n 6= N ⇒ s ≡ tt(n + 1) as an invariant. With this
invariant the initialization problem discussed in section 2 does not arise and this
choice results in a different solution. Here, we apply the WhilePostStrInv tactic
which adds s ≡ tt(n) as an invariant. By applying this tactic, we arrive at the
following program.

{P0 ∧ P1}
assume(s ≡ tt(n))

{P0 ∧ P1 ∧ s ≡ tt(n)}
while {Inv : P0 ∧ P1 ∧ s ≡ tt(n)}
n 6= N →
{P0 ∧ P1 ∧ n 6= N ∧ s ≡ tt(n)}
UnkProg
{P0 ∧ P1 ∧ n 6= N ∧ s ≡ tt(n+ 1)}
r, n := (r ∧ ¬f [n]) ∨ s, n+ 1
{P0 ∧ P1 ∧ s ≡ tt(n)}

end
{R}

We can now proceed further with the derivation of the UnkProg fragment and
the initialization assume statement as usual.

Using the bottom-up assumption propagation technique, we could maintain
the natural flow of the derivation. This derivation reduces the guesswork and
avoids unnecessary branching.

6 Conclusion

We have developed tactics (rules) for up-propagating the information assumed
during the top down phase. These tactics have been implemented in the CAPS
system. With the help of simple examples we have demonstrated that the seam-
less integration of the bottom-up and top-down techniques help in reducing the



unnecessary backtrackings and associated rework. The methodology also helps
in reducing the guesswork involved in the derivations by allowing the user to
delay decisions.
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