
Design and Implementation of a Server Cluster Backend for Thin Client
Computing

Ashish Khurange
IIT Bombay

ashishk@it.iitb.ac.in

Om P. Damani
IIT Bombay

damani@it.iitb.ac.in

Abstract

Thin Client systems provide affordable solution in envi-
ronments where little computation power is needed, such
as academic institutes, and small and medium businesses.
Existing open source Thin Client systems are however not
scalable and have the server as the single point of failure.
In this paper, we present the design and implementation of a
server cluster backend which makes the Thin Client solution
highly available and scalable. We have used LTSP (Linux
Terminal Server Project) Thin Clients for our implementa-
tion but our design is generic and can be applied to other
systems as well. Our design goals are to use open source
software and to keep hardware cost low.

1 Introduction

Schools, colleges and small and medium businesses need
computers mostly for document processing, Email, and
Internet access. They need very little processing power.
While PC prices are falling rapidly, many organizations still
can not provide separate PC per user. Thin Client system
provides an affordable solution in such scenario.

A Thin Client system consists of multiple heterogeneous
Thin Client terminals (TC) connected to a single server.
Hardware requirement of a Thin Client is keyboard, moni-
tor, mouse, and some computation power. The server per-
forms all application processing and stores all user data.
Thin Client plays the role of input and output device only.
Figure 1 shows Thin Client Network.

Thin Client sends keyboard and mouse inputs to the
server. Server performs the computation accordingly and
replies back with the screen updates. Figure 2 shows work-
ing of Thin Clients.

Advantages of Thin Client system are :

1 Thin Clients are less expensive and maintenance free.
Old heterogeneous PCs can also be used as Thin

Figure 1. Thin Client Network

Figure 2. Thin Client computation system

Client. In our lab at IIT Bombay, 16 Thin Clients are
running for over 3 years without any maintenance.

2 Only the server needs to be secured and not the TCs,
thus reducing the cost of security.

3 All data is stored on the server. Hence only the server
needs to be backed up.

4 Software installation and upgradation happens only on
the server. This reduces the cost of software installa-
tion.

But the current Thin Client systems have following lim-
itations:

1 In current implementation of Thin Client system there
is only one server to which all the Thin Clients are con-
nected. If the server is down, none of the Thin Client

can carry on its computation. It has the server as a
single point of failure.

2 Since there is only one server, it is not a scalable solu-
tion. Few of the schools from UK have reported that
they want to support around 1000 Thin Clients [7].
Which is not possible for a single server.

3 Adding more independent servers helps with scalabil-
ity but not with high availability. Because if a user has
his home directory on one server and if it goes down,
then that user can not use the computation facility even
if other servers are running.

4 Adding more independent servers does not guarantee
load balancing and optimal use of resources.

To overcome these limitations, the single server in Thin
Client system needs to be replaced by a cluster of servers.
To our knowledge, except for Windows Thin Client system,
no other system has a clustering solution. Microsoft and
Citrix [2] have developed ‘Windows Server 2003 Terminal
Services’ [8] to provide cluster backend. This product has
the following features :

1 Thin Client in Windows network are called Windows
Based Terminals (WBT). It’s cost is in the range of
$500 (without monitor). Unlike Unix based systems,
any ‘dumb terminal’ can not act as a Thin Client.

2 For load balancing in this cluster it is recommended to
use a third party (Citrix) load balancing solution.

3 All the servers in the cluster are required to be running
Windows Server 2003, Enterprise Edition or Windows
Server 2003, Datacenter Edition only.

4 This cluster needs a separate highly available file
server.

All the above factors increase the cost of Window’s solu-
tion. We have designed and implemented a server cluster
backend for open source Thin Client computing, which pro-
vides scalability and high availability. We have used LTSP
system [6] but our ideas can be applied to other open source
Thin Client systems as well such as PXEs Thin Clients [9].
Our emphasis is on providing high availability at low cost.
We are not aiming for transparent failover. When a server
fails, all the Thin Client terminals connected to it need to be
rebooted.

The rest of the paper proceeds as follows. In section 2,
working of Thin Client is discussed. Design issues of clus-
ter are discussed in section 3. In section 4 we look at how,
the cluster design provides highly available DHCP, TFTP,
XDM and NFS services. In section 5 we describe main soft-
ware components we developed for building the cluster. In
section 6 we describe working of cluster. We discuss high

available filesystem for the cluster in section 7. Conclusion
is discussed in section 8.

2 Working of Thin Clients

To understand the issues in cluster design first the work-
ing of existing Thin Client system needs to be explained.
Figure 3 shows stepwise working of the LTSP Thin Client.
LTSP needs four basic services - DHCP, TFTP, NFS and X
display protocol.

Figure 3. Working of Thin Client

1 DHCP (Dynamic Host Configuration Protocol) :
When a Thin Client is turned on, it broadcasts a DHCP
request to the local network. DHCP server running on
the network replies back with the IP address for the
workstation, netmask for the local network, pathname
of the kernel to download, and pathname of the root
filesystem to mount. The Thin Client receives the re-
ply and it configures its TCP/IP interface.

2 TFTP (Trivial File Transfer Protocol) : Using the the
pathname of the kernel to download, provided by the
DHCP server, Thin Client contacts the TFTP server,
downloads the kernel, and boots up using that kernel.

3 NFS (Network File System) : Using the pathname of
the root filesystem to mount, provided by the DHCP
server, Thin Client mounts the root filesystem via
NFS. The root filesystem has all the configuration files,
Xserver binaries, and various scripts required to con-
nect to the server.

4 XDMCP (X Display Manager Control Protocol) : X is
the display protocol used in LTSP. The mounted root
filesystem has a configuration file, which contains IP
address of the XDM server. Depending on its video

card, Thin Client selects the appropriate X server bi-
nary. The Thin Client sends an XDMCP query to the
XDM server, which offers a login dialog.

3 Design issues

To make Thin Client computing scalable and highly
available we need to replace a single server in Thin Client
network with server cluster. To make the cluster highly
available we need to remove all the single points of failures.
Following issues need to be addressed to build scalable and
highly available cluster.

1 Provide highly available DHCP, TFTP, NFS, and XDM
services.

2 Static binding of Thin Clients to XDM server needs to
be made dynamic.

3 To keep the system cost low, we do not want to use any
special purpose storage device. Data should be stored
on servers only. Each user’s home directory must be
replicated on multiple servers to provide high avail-
ability. Replicated filesystem must be consistent.

4 We need software component for finding health status
of servers, load balancing, and managing clusters.

For our experiments we are using LTSP Thin Clients and
X protocol for display. Our aim is to do minimum changes
to LTSP, so that our changes can be easily incorporated in
LTSP. We haven’t done any changes to the X protocol. Our
design is generic, and can be used with any Thin Client and
any display protocol. In the following sections we explain
how our system addresses above issues.

4 High availability of various services

In this section, we discuss, how to provide highly avail-
able DHCP, TFTP, NFS and XDM services.

1 DHCP Server : In DHCP Protocol [10], the period
over which a network address is allocated to a client is
referred to as a ‘lease’. The DHCP client can extend its
lease from the DHCP server which initially assigned it
IP address or another DHCP server which has the in-
formation about this client’s lease. Failing the lease
renewal, the client reinitiates the process of getting an
IP address. If client gets the previous IP address back,
it continues network processing, else it drops all exist-
ing network connections.
Breaking existing network connections will cause a
Thin Client to terminate its X session and disrupt the
current user. Note that Thin Client network is a stable

netwok - clients are not added or removed frequently.
Hence unlike existing usage of DHCP, we use static
IP allocation feature of DHCP. In our design, there is
static binding of MAC address of a client to its as-
signed IP address. This static binding is same for all
DHCP servers and hence they return the same IP ad-
dress to a particular Thin Client. In this arrangement
even if the DHCP server which assigned an IP address
to a client goes down, on lease expiration, the client
can get its original address back from other DHCP
servers. If we arrange n servers in ‘Static binding’,
we can tolerate upto n − 1 failures. In contrast, the
DHCP ‘Failover protocol’ [5] arrangement can toler-
ate failure of only one DHCP server.

2 TFTP Server : Thin Client contacts TFTP server to
download kernel. TFTP servers do not have any state
like DHCP. Hence multiple TFTP servers working in-
dependently provide high availability. In our design,
TFTP server runs on each of the servers where DHCP
server is running. Each DHCP server, in its reply to
client, advertises its own address as path to download
the kernel.

3 XDM Server : In our solution, each server acts as
XDM server. Each XDM server offers X session to
only those users who have their home directories on
that XDM server.

Now we discuss, in our cluster design how a Thin
Client selects a XDM server from the cluster for its
session. After replacing a single server in Thin Client
network with server cluster, static binding between
Thin Clients and XDM server is not going to work.

Our cluster design makes this binding dynamic using
username of the user who wants to use the Thin Client.
Each time before establishing X connection with XDM
server, Thin Client prompts for username. Thin Client
gets the username from user and sends the username to
the server acting as Load balancer in the cluster. Load
balancer selects the least loaded server which hosts this
user’s home directory, and replies Thin Client with IP
address of that server. Then the Thin Client establishes
X connection with the selected server, and the user
gets log-in to the server which hosts his home direc-
tory. Thus binding between Thin Client and the server
is made dynamic using the user id.

4 NFS Server : Thin Client uses NFS server to mount
the root filesystem. Multiple NFS servers working in-
dependently can provide high availability. When Thin
Client establishes a X connection with a XDM server,
it has two independent dependencies. First is the NFS
server from which Thin Client mounted its root file

system. It contains Xserver binaries and all config-
uration files, which are necessary for running X ses-
sion. Second is the XDM server where user logs in.
To reduce the impact of failures, we merged these two
separate dependencies into a single dependency by re-
mounting the root file system from the XDM server it-
self. Hence alongwith XDM server, we run NFS server
on every machine in the cluster.
Figure 4 shows merging of two separate dependencies.

Figure 4. Merging two separate dependen-
cies.

5 Software components of the system

In the last section we saw how our cluster design re-
moves all single point of failures. We next discuss the soft-
ware component which schedules user’s session to a server
and manages the cluster.

1 Health Status Service : This component computes
load on all the running servers in the cluster. It is di-
vided into two parts : Health Status Server and Health
Status Client. Health Status server runs on each of the
server in the cluster. It accepts an incoming connec-
tion and replies back with its load. Health status client
is used by Load balancer to detect whether server is
alive or dead, and to get the load on the running server.

2 Load balancer : Load balancer ensures that a user
logs into the least loaded server that hosts this user’s
home directory. It has a database which maps user-
name to server group which hosts home directory for
this user. Using Health Status client, Load balancer
finds load on these servers and returns the IP address
of the least loaded server to the Thin Client.
Load balancer is also a single point of failure, so mul-
tiple servers in the cluster run Load balancer. These
Load balancers function independently. They only

need to synchronize the database mapping username to
servers. This mapping changes only when the cluster
configuration changes or the number of users changes
drastically. As presented, our cluster design has two
separate dependencies; DHCP servers and Load bal-
ancer. To reduce impact of failure, we merge these
two separate dependencies, by running these two com-
ponents together on same servers in the cluster.

3 Cluster Manager : This component is used by sys-
tem administrators to manage the cluster. It is used to
add or remove a server to cluster transparently without
bringing the system down. It provides services to start
or stop load balancer on any of the server in the cluster.
It also provides a service to add or remove users from
the system. The Cluster Manager takes care that each
of the server in the cluster has the latest information
about the entire system.

6 Working of the system

We have already explained how the cluster design pro-
vides highly available DHCP, TFTP, NFS and XDM ser-
vice. We also discussed the main software components of
our system. Putting these two together, we next present the
working of the entire system.

Arrangement of various components in the cluster is as
follows. Each server in the cluster runs XDM server, NFS
server, and Health Status server. DHCP server runs on some
of the servers in the cluster providing high availability. On
these servers along with DHCP server, TFTP server and
Load balancer also run. The number of servers on which
DHCP, TFTP and Load balancer services run, determines
the fault tolerance capacity of the cluster.

Figure 5. Arrangement of various compo-
nents in cluster

Figure 5 shows design of a five servers cluster, with a
fault tolerance of two. Figure also shows, Load balancer
module of a node contacting all other nodes to find out load
on them.

When a Thin Client is turned on, it broadcasts a DHCP
request. All DHCP servers reply back offering an IP ad-
dress for the Thin Client, and advertising their own address
as TFTP server and NFS server. Thin Client randomly se-
lects one of the replies. After configuring its TCP/IP in-
terface, the Thin Client contacts the TFTP server (running
on the same machine as the DHCP server whose reply the
Thin Client chose) and downloads the kernel. After boot-
ing the kernel, Thin Client mounts the root filesystem via
NFS from the NFS server. This NFS server also runs on the
same machine as the DHCP server whose reply the Thin
Client chose.

Figure 6 explains the working of the system after the
Thin Client has mounted the root filesystem:

Figure 6. Summary of working of cluster

1 In original system, once Thin Client boots, it sends
XDMCP query to the XDM server. We need to se-
lect the XDM server based on the user id. Hence we
have changed this step. At this point, the Thin Client
prompts for the username. The mounted root filesys-
tem of Thin Client has a configuration file which lists
IP addresses of all the Load balancers in the cluster.
Thin Client gets the username from the user and sends
it to one of the running Load balancer. In case the Load
balancer does not reply in a specified time interval, the
Thin Client tries the next Load balancer in its list.

2 Each Load balancer has a database mapping username
to XDM servers. From this database, Load balancer
finds out the server group hosting the home directory
of the given user. Using Health Status Service, Load

balancer finds out the least loaded server from this
group.

3 Load balancer sends address of this least loaded server
to the Thin Client.

4 Thin Client sends XDMCP query to the selected XDM
server and establishes X connection with the server.

5 In the original system, when the user logs out, the X
connection between Thin Client and the XDM server
remains persistent. In our system, we do not know who
the next user is and whether they have home directory
on this server or not. Hence when a user logs out, the
X connection between Thin Client and XDM server is
broken and the control is returned back to Thin Client,
which again prompts for the username. Steps 1 to 5 are
repeated for the next user.

Now we list all the changes we made to LTSP Thin
Client system, to build this cluster.

• In the existing LTSP system, Thin Client’s binding
with the XDM server is static. Every time Thin Client
establishes connection to the same server, whose IP ad-
dress is mentioned in the configuration file. We made
Thin Client’s binding with XDM server dynamic, de-
pending on username. User is first prompted for user-
name. Then X connection is established with the
server hosting user’s home directory, selected by Load
balancer.

• The XDMCP query to establish X connection with
XDM server, is sent with -terminate option, which
breaks the X connection between Thin Client and
XDM server after the user logs out.

These are the only changes we introduced in to LTSP Thin
Client system. Hence our changes can be easily incorpo-
rated in existing LTSP Thin Client system.

7 Filesystem for Cluster

The filesystem of our cluster is based on High Available
NFS (HA NFS) [1]. HA NFS is designed using DRBD (Dis-
tributed Replicated Block Device) [3] and Heartbeat [4].

DRBD is a kernel module that maintains a real time mir-
ror of a local block devices on a remote machine. In DRBD,
pair of nodes work together. One of them acts as ‘primary’
and the other as ‘secondary’ server. The block device being
replicated, is accessible on primary node only.

Heartbeat provides a cluster membership service, which
detects node liveliness. Heartbeat runs between the pair of
nodes running DRBD. All applications accessing the repli-
cated block device run on the primary node. If the primary

node fails, Heartbeat makes the secondary node primary. If
the failed node comes up again, it is made a secondary node
and it has to synchronise its content to the current primary.

7.1 HA NFS

User’s home directories can be mirrored in real time us-
ing DRBD. Thus we can provide highly available filesys-
tem to users. But DRBD grants read-write access to the
primary node only. Which means users who gets log-in on
primary server can only access their files. To allow users
to acess their files on the secondary server, we have imple-
mented HA NFS. We export partition which has users home
directories through NFS, so that it can be mounted on both
the nodes. We create a virtual NFS server, which points to
DRBD’s primary server. This virtual IP will be used by the
current ‘primary’ DRBD node. Both the nodes mount the
home directory from this virtual server.

Figure 7. Working of HA-NFS

Figure 7 shows working of HA-NFS, when both the
nodes are running. Host-a is DRBD primary node.

When both the nodes are running, user’s home directo-
ries are mirrored using DRBD. The primary DRBD node
uses the virtual IP address and it exports user’s home di-
rectories through NFS. Both the nodes mount user’s home
directory from this virtual server. DRBD running between
the nodes does real time mirroring of filesystem. Heartbeat
running between the hosts does detection of node failure.

When the primary node fails, Heartbeat daemon running
on secondary finds out primary is down. Secondary takes
over virtual IP address and starts NFS server. All the users
sessions, who got their log-in on primary are terminated.
Since NFS can recover from disconnection, all the users
who got their log-in on on secondary continue without in-
terruption.

Users in the system are divided into mutually exclusive
groups. Then home directories of users in each group are
replicated between a separate pair of servers. Users get
log-in to any one of the two servers where their home di-
rectory resides. Thus HA NFS provides high available file
system for this cluster. Our solution can tolerate failure of
one server for each user group.

8 Conclusion

We have implemented the server cluster backend for
Thin Client computing. In our cluster design DHCP, TFTP,
and Load balancer can tolerate up to n − 1 failures. Users
in the system are divided into mutually exclusive groups.
Filesystem provides fault tolerance of one server for each
user group. Thus we have provided high availability.

Our cluster has four servers and 16 Thin Client terminals.
Right now, we use HA-NFS for cluster filesystem. Our so-
lution can tolerate failure of one server per user group. We
want to make our filesystem solution scalable. For this pur-
pose, in future, we plan to explore the use of Coda filesys-
tem [11] as the cluster filesystem and compare its perfor-
mance to HA-NFS.

References

[1] Article on highly available nfs (ha nfs),
http://wiki.linux-ha.org/drbd/nfs.

[2] Citrix homepage, http://www.citrix.com.

[3] Drbd homepage, http://www.drbd.org.

[4] Heartbeat project, http://linux-ha.org/heartbeat.

[5] Internet draft dhcp failover protocol,
http://www3.ietf.org/proceedings/04mar/i-d/draft-
ietf-dhc-failover-12.txt.

[6] Linux terminal server project homepage,
http://www.ltsp.org.

[7] Ltsp discuss mailing list,
http://www.ltsp.org/mailinglists.php.

[8] Microssoft windows terminal server 2003,
http://www.microsoft.com/windowsserver2003.

[9] Pxe thin clients, http://pxes.sourceforge.net/.

[10] Rfc 2131 dhcp protocol,
http://www.freesoft.org/cie/rfc/2131.

[11] Satyanarayanan M., Kistler J.J. Kumar P., Okasaki
M.E., Siegel E.H., and Steere D.C. Coda: A Highly
Available File System for a Distributed Workstation
Environment. IEEE Transactions on Computers Vol.
39, No. 4, April 1990.

