
C. Dubois, P. Masci, D. Méry (Eds): 2nd International Workshop
on Formal Integrated Development Environment (F-IDE 2015)
EPTCS ??, 2015, pp. 1–13, doi:10.4204/EPTCS.??.??

c© D. L. Chaudhari and O. Damani
This work is licensed under the
Creative Commons Attribution License.

Building an IDE for the Calculational Derivation of
Imperative Programs

Dipak L. Chaudhari Om Damani
Indian Institute of Technology Bombay, India

dipakc@cse.iitb.ac.in damani@cse.iitb.ac.in

In this paper, we describe an IDE called CAPS (Calculational Assistant for Programming from Spec-
ifications) for the interactive, calculational derivation of imperative programs. In building CAPS,
our aim has been to make the IDE accessible to non-experts while retaining the overall flavor of the
pen-and-paper calculational style. We discuss the overall architecture of the CAPS system, the main
features of the IDE, the GUI design, and the trade-offs involved.

1 Introduction

Correct by Construction is a programming methodology, wherein programs are derived from a given
formal specification of the problem to be solved, by repeatedly applying transformation rules to partially
derived programs. Within this broad framework, Dijkstra and Wim Feijen [15] popularized the Calcu-
lational style for deriving sequential programs, where unknown program fragments are calculated from
their pre- and post- conditions. By calculation, we mean that program constructs are introduced only
when logical manipulations show them to be sufficient for discharging the correctness proof obligations.

Despite resulting in simple and elegant programs [19], the Calculational Style of Program Derivation
did not become popular due to the various practical difficulties that prevented wider adoption of this
methodology. Even for small programming problems, the derivations are often long and difficult to
organize. As a result, the derivations, if done manually, are error-prone and cumbersome.

To address these issues, we have built an IDE called CAPS (Calculational Assistant for Programming
from Specifications)1. CAPS has built-in refinement rules and the system generates the required correct-
ness proof obligations. In building CAPS, our aim has been to make the IDE accessible to nonexperts
while retaining the overall flavor of the pen-and-paper style derivation.

Towards this goal, in our earlier work, we described the use of theorem prover assisted tactics [11]
to automate the mundane tasks during the derivations. In this paper, we discuss the overall architecture
of CAPS, the main features of the IDE, the GUI design, and the design trade-offs involved. For the
automation to fit into the overall calculational methodology, we have developed several features, like
stepping into subcomponents, backtracking, and metavariable support. With the help of small examples,
we discuss how these features address various issues with particular emphasis on usability.

Related Work.

The Implement-and-Verify program development methodology involves an implementation phase fol-
lowed by a verification phase. Tools like Why3 [16], Dafny [20], VCC [13] and VeriFast [18] generate
the proof obligations and try to automatically discharge these proof obligations. Although the failed

1CAPS is available at http://www.cse.iitb.ac.in/~dipakc/CAPS

http://dx.doi.org/10.4204/EPTCS.??.??
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.cse.iitb.ac.in/~dipakc/CAPS

2 Building an IDE for the Calculational Derivation of Imperative Programs

proof obligations provide some hint, there is no structured help available to the users in the actual task
of implementing the programs. Users often rely on ad-hoc use cases and informal reasoning to guess the
program constructs.

Systems like Cocktail [17], Refine [22], Refinement Calculator [9] and PRT [10] provide tool support
for the refinement based formal program derivation. Cocktail offers a proof-editor for first-order logic
which is partially automated by a tableau based theorem prover. However, the proof style is different
from the calculational style. Refine has a plug-in called Gabriel which allows users to create tactics
using a tactic language called ArcAngel. Refine and Gabriel are not integrated with theorem provers and
do not support discharging of proof obligations. In case of Refinement Calculator and PRT, the program
constructs need to be encoded in the language of the underlying theorem prover. In CAPS, our goal
has been to be theorem-prover agnostic, so that we can exploit the advances made in different theorem
provers.

The KIDS and the Specware[24] systems provide operations for the transformational development
of programs and have been very successful in synthesizing efficient scheduling algorithms. However,
these systems are targeted towards expert users. Jape[8] is a proof calculator for interactive and step-by-
step construction of proofs in natural-deduction style. Although Jape supports Hoare logic, it is mainly
intended for proof construction whereas CAPS is focused on program derivation and has many tactics
specific to program calculations.

2 An Example of a Calculational Derivation

We now present a sketch of the calculational derivation for a simple program. Consider the following
programming task (adapted from exercise 4.3.4 in [19]. The informal derivation of this problem also
appears in [11]).

Let f[0..N) be an array of booleans where N is a natural number. Derive a program for the computa-
tion of a boolean variable r such that r is true iff all the true values in the array come before all the false
values.

Fig. 1 depicts the derivation process for this program. We start the derivation by providing the formal
specification (node A) of the unknown program S. We apply the Replace Constant by a Variable [19]
heuristic. In particular, we replace constant N by a fresh variable n and add bounds on n to arrive at
program B. After inspecting the postcondition of program shown in node B, we decide to apply another
well known heuristic Take Conjuncts as Invariants to arrive at a While program (node C) with P0 and P1 as
loop invariants. Here, S0 denotes the unknown loop body. (Derivation of the initialization of the variables
r and n is skipped.) To ensure loop progress, we envision an assignment r,n := r′,n+ 1 for S0 where
r′ is placeholder for the unknown expression (also called a metavariable). We then step into the proof
obligation for preservation of invariant P0 and try to manipulate the formula with the aim of finding a
program expression for the metavariable r′. After several formula transformations we arrive at a formula
E (r′ ≡ (r∧¬ f [n])∨ (∀i : 0≤ i < n+1 : f [i])). At this point, we realize that we can not represent r′ in
terms of the program variables unless we introduce a fresh variable to maintain (∀i : 0≤ i < n : f [i]).
We then backtrack to program B, introduce a fresh variable s and strengthen the invariant of the While
program with P2. For the derivation of program S1, we follow the same process as that of S0 with the
strengthened invariant. On this derivation attempt, we are able to calculate r′ with the help of the newly
added invariant P2. Finally we derive s := s∧ f .n to establish P2(n := n+1).2 The final derived program
in shown in node H. (Note that we can further improve the program by strengthening the guard.)

2P2(n := n+1) represents a formula obtained by textual substitution of the free occurrences of n with n+1 in P2

D. L. Chaudhari and O. Damani 3

con N : int {N ≥ 0}; var f : array [0..N) of bool; var r: bool;
S

R :
{

r ≡
(
∃p : 0 ≤ p ≤ N :

(
(∀i : 0 ≤ i < p : f.i)
∧ (∀i : p ≤ i < N : ¬f.i)

))}

A

con N : int{N ≥ 0}; var f : array[0..N)of bool; var r : bool;
S

(
r ≡

(
∃p : 0 ≤ p ≤ n :

(
(∀i : 0 ≤ i < p : f.i)
∧ (∀i : p ≤ i < n : ¬f.i)

)))

∧n = N ∧ 0 ≤ n ≤ N

B

r, n := true, 0;{
invariant : P0 ∧ P1

}

while n 6= N →
S0

end

C

wp. (r, n := r′, n + 1) . (P0)
≡ { definition of P0 and assignment }
r′ ≡

(
∃p : 0 ≤ p ≤ n + 1 :

(
(∀i : 0 ≤ i < p : f.i)
∧ (∀i : p ≤ i < n + 1 : ¬f.i)

))

≡ { split off p = n + 1; 0 ≤ n + 1}

D

r′ ≡(r ∧ ¬f.n) ∨ (∀i : 0 ≤ i < n + 1 : f.i)E

r, n, s := true, 0, true;{
invariant : P0 ∧ P1 ∧ P2

}

while n 6= N →
S1;

end

F

r′ ≡(r ∧ ¬f.n) ∨ s

G

r, n, s := true, 0, true;{
invariant : P0 ∧ P1 ∧ P2

}

while n 6= N →
s := s ∧ f.n;
{P2(n := n + 1)}
r, n := (r ∧ ¬f.n) ∨ s, n + 1

end

H

Replace N by n and add bounds

Take conjuncts P0 and P1 as invariant

Envision S0 : r, n := r′, n + 1 &
Step into proof obligation of P0

Formula Transformations

Strengthen Inv.
with P2

Calculate r′

Figure 1. Sketch of the calculational derivation for a simple program. Symbols S, S0, and S1 are the placeholders
for the unknown program fragments. The single bordered boxes represent program nodes whereas the double
bordered boxes represent formula nodes.
P0 : (r ≡ (∃p : 0≤ p≤ n : ((∀i : 0≤ i < p : f [i])∧ (∀i : p≤ i < n : ¬ f [i]))))
P1 : 0≤ n≤ N; P2 : s≡ (∀i : 0≤ i < n : f [i])

As can be seen in this example, the calculational derivation involves program transformations as well
as formula transformations. The derivation process is non-linear involving backtracking and branching.

3 CAPS

In building CAPS, our aim has been to build an easy to use IDE for the calculational derivation of
imperative programs. We have tried to automate the mundane tasks while striving to keep the overall ap-

4 Building an IDE for the Calculational Derivation of Imperative Programs

proach close to the pen-and-paper calculational style. All the publicly available IDEs lack in one respect
or another with respect to the features important for our purpose (for example, structured calculations,
integration with multiple theorem provers, backtracking and branching).

3.1 Derivation Methodology

We use a hierarchical representation called AnnotatedProgram for representing a program fragment along
with its specification (precondition and postcondition). The AnnotatedProgram representation can be
thought of as an extension of the Guarded Command Language (GCL) [14] where each program con-
struct in the GCL is augmented with its precondition and postcondition. We also introduce a new program
construct UnkProg to represent an unsynthesized program fragment. Each subprogram in the annotated
program representation has its own precondition and postcondition. As we will see in section 5, this
hierarchical structure is helpful when the user wants to focus on each subprogram independently.

We use the formulas in sorted first-order predicate logic for expressing the precondition and the
postcondition of the programs. We use the Eindhoven notation [6] for expressing the quantified formulas.
In the quantified formula (OPi : R : T), The symbol OP is the quantifier version of a symmetric and
associative binary operator op, i is a list of quantified variables, R is the Range - a boolean expression
typically involving the quantified variables, and T is the Term - an expression.

Users start a derivation by providing the formal specification of a program and then incrementally
transform it into a fully derived program by applying predefined transformation rules called Derivation
Tactics. For example, in Fig. 1, the user starts the derivation by providing the postcondition R (node
A). This program is then transformed incrementally to the final program shown in node H. During the
derivation, a user might envision a subprogram in terms of the metavariables. The next task for the user
is to find a program expression for the metavariable such that the proof obligation is discharged. This
requires formula transformations to simplify the proof obligation. The derivation thus consists of the
program transformations as well as the formula transformations. These derivation modes are called the
program mode and the formula mode respectively. A way of transitioning between these two modes is
described in section 5. The derivation process ends when all the unknown programs are derived. The
complete derivation history is recorded in the form of the Derivation Tree.

The final outcome of the program derivation process is the fully annotated program along with the
complete derivation tree. The AnnotatedProgram can be easily transformed to a program in a real pro-
gramming language.

3.2 Graphical User Interface

Fig. 2 shows the Graphical User Interface of the CAPS system. It has three panels. The central panel,
also called the contents panel, shows a partially derived program (or a formula) at the current stage of the
derivation. For example, the schematic node C in Fig. 1 corresponds to the program in the contents panel
in Fig. 2. The contents in this panel can be shown at different levels of details, as discussed in section
6. The left panel, also called the tactics panel shows the list of the tactics applied so far. It corresponds
to a path the derivation tree. For example, the tactics applied from node A to node C in Fig. 1 are listed
in the tactics panel in Fig. 2. Users can navigate back to an earlier point in the derivation by clicking
on the corresponding node in the left panel. The bottom panel is the input panel. This panel is used for
selecting a tactic to be applied next and for providing the corresponding tactic parameters.

D. L. Chaudhari and O. Damani 5

1
2 Init4
3 RTVInPost
4 StepIntoUnknownProgIdx>
5 DeleteConjunct

arr: ArrayBool N: Int r: Bool n: Int

N≥ 0

n = 0

UnknownProg(11)

r ≡ ∃p : 0 ≤ p ∧∧ p ≤ n : ∀i : 0 ≤ i∧∧ i < p : arr [i] ∧∧ ∀i : p ≤ i∧∧ i < n : ¬ arr [i] ∧∧ 0 ≤ n ∧∧ n ≤ N

while

r ≡ ∃p : 0 ≤ p ∧∧ p ≤ n : ∀i : 0 ≤ i ∧∧ i< p : arr [i] ∧∧ ∀i : p ≤ i∧∧ i < n : ¬ arr [i] ∧∧ 0 ≤ n ∧∧ n ≤ N

¬ n = N ——→
UnknownProg(12)

r ≡ ∃p : 0 ≤ p ∧∧ p ≤ n : ∀i : 0 ≤ i ∧∧ i < p : arr [i] ∧∧ ∀i : p ≤ i ∧∧ i < n : ¬ arr [i] ∧∧ 0 ≤ n ∧∧ n ≤ N ∧∧ n = N

Tactic: DeleteConjunct

n=N
N−n

conjunct =

variant =

Apply

Input Panel

File View Derivations Actions Settings user1@company.com

Contents Panel

Input Panel

Tactics Panel

Figure 2. CAPS GUI

3.3 System Architecture

The architecture of the CAPS system is shown in Fig. 3. There are 3 main components of the system:

• Core Library. The Core library contains the data structures for AnnotatedPrograms, Formula,
DerivationTree, DerivationTactic and Frame. It also contains a repository of the program and
the formula manipulation tactics. The Core library is integrated with various automated theorem
provers (Alt-Ergo, CVC3, SPASS, Z3) via the common interface provided by the Why3 frame-
work [16]. The Derivation Tree management utilities are also implemented in this library. The
library is implemented in Scala and uses the Kiama library [23] for rewriting.

• Application Server. The server component is implemented using the Scala play web framework
[2]. The server stores the current state of the derivation. The application also implements a tactic
parser which parses the tactic request.

• Web Client. The CAPS application is implemented as a single-page web application based on the
Backbone.js framework [1]. The client also maintains a state of the derivation in order to reduce
server trips for navigational purpose to increase responsiveness of the application. The GUI part is
implemented in the Typescript language [3] (which complies to Javascript). The GUI module has
different views to display the current state of the derivation.

6 Building an IDE for the Calculational Derivation of Imperative Programs

Core Library
Data Structures
* AnnotatedProgram
* Formula
* Derivation Tree
* Frame
...

Derivation
Tactics

PO Generator

Application Server
Model(State)
* Derivation Tree Object
* Head Node
* Selected Node

Tactic
Parser

Web Client
Tactics
View

Content
View

Model(State)
* Derivation Tree Object
* Head Node
* Selected Node Input View

Theorem prover
interface
(Why3) Alt-Ergo

CVC3

SPASS

Z3

Theorem
Provers

Figure 3. CAPS Architecture

4 Textual vs Structured Representation

One important decision in developing an IDE is the choice between a textual representation and a struc-
tural one. While the tools like Dafny [20] and Why3 [16] use textual representations, the structural
representation is more suitable for a tactic based framework like CAPS. An Annotated Program in CAPS
has a hierarchical structure consisting of nested programs and formulas. By Structured representation,
we mean that such hierarchical elements are identifiable in the GUI. As discussed later, this allows the
user to select and focus on a subprogram or a subformula. Note that doing the same in a text based
representation will require extra processing [7].

Direct editing of the Annotated Program may destroy the structure and is disallowed in CAPS; the
only way to generate a program is through a tactic application. This discipline allows us to capture all the
design decisions taken during the derivation. However, to allow some informality, we do have tactics to
directly guess a program fragment (or the next formula). In such cases, the role of a tactic application is
just to ensure - with the help of theorem provers - that the transformation is correct, and that the structure
is maintained.

D. L. Chaudhari and O. Damani 7

Figure 4. Structured representation of a formula in normal mode and selection mode. Users can select a
subformula by simply clicking on it.

Figure 5. Input Panel: On selection of a tactic to be applied, the corresponding input form is dynamically
generated.

The contents panel in Fig. 2 shows the structured representation of an annotated program. Fig. 4
shows the structured representation of a formula in the normal and the selection mode. The binary
logical operators are shown using the infix notation. Only necessary parentheses are displayed assuming
the usual precedence. We put more space around the lower precedence operators (like ≡) to improve
readability.

For inputting the tactic parameters, we prefer a dynamically generated GUI instead of a static textual
input form. On selecting a tactic to be applied next, the corresponding input form is dynamically gener-
ated. Users need not remember the input parameters required for the tactic. Fig. 5 shows the tactic input
panel for the Init4 tactic which is used for specifying the program. Since CAPS is a web-based applica-
tion, the hypertext-based display enables providing a help menu for input parameters in a user-friendly
way.

For entering formulas, however, we prefer textual input. The formulas are entered in the Latex
format. The formula input box is responsive; as soon as a Latex expression is typed, it converts the
expression into the corresponding symbol immediately.

8 Building an IDE for the Calculational Derivation of Imperative Programs

Figure 6. Formula transformations from the derivation of the Binary Search program.

5 Focusing on subcomponents

During the program derivation process, an annotated program is nothing but a partially derived program
containing multiple unsynthesized subprograms. The derivation of these unsynthesized subprograms is,
for the most part, independent of the rest of the program. Hence the CAPS system provides a facility
to extract all the contextual information required for the derivation of a subprogram so that the user
can focus their attention on the derivation of one of these unknown subprograms. A subprogram can
be selected by simply clicking on it. On selecting a subprogram, only the extracted context of the
subprogram, and its precondition and postcondition are shown whereas the rest of the program is hidden.

Similar to the subprogram extraction, users can chose to restrict attention to a subformula of the for-
mula under consideration. On focusing on a subformula, the system extracts and presents the contextual
information necessary for manipulating the subformula.

Our subformula representation is an extension of the Structured Calculational Proof format [5]. The

D. L. Chaudhari and O. Damani 9

implementation details and the theoretical basis of the contextual extraction is given in [11].
Fig. 6 shows a snapshot of the formula transformations involved in the derivation of the binary search

program. The derivation is displayed in a nested fashion. Whenever the user focuses on a subformula, an
inner frame is created inside the outer frame. The assumptions available in each frame are displayed on
the top of the frame. In the figure, as the user focuses on the consequent of the implication, the antecedent
is added to the assumptions. On successful derivation of all the metavariables, user can step out from the
formula mode to create a program where the metavariables are replaced with the corresponding derived
expressions.

Unlike the hierarchical program structure, the hierarchical formula structure is not usually shown in
the GUI. This is done to reduce the clutter as the hierarchical formula structure can get very large. It
is only displayed when we intend to select a subformula. This user interaction mode, called a selection
mode, is used to select subformulas to be focused on. Fig. 4 shows a formula in the normal mode and in
the selection mode.

6 Selective Display of Information

In the AnnotatedProgram representation, all the subprograms are annotated with the respective precondi-
tion and postcondition. Although this creates a nice hierarchical structure, it results in a cluttered display
which places higher cognitive demand on the attention and mental resources of the users. An effective
way to keep the cognitive load low, is to hide information that is not relevant in any given context, such
as the annotations that can be easily inferred from the other annotations. CAPS provides a Minimal
Annotations mode which displays only the following annotations.

• Precondition and postcondition of the outermost program

• Loop invariants

• The intermediate-assertion of the Composition construct

All other annotations can be inferred from these annotations without performing a textual substitu-
tion required for computing the weakest precondition with respect to an assignment statement. Fig. 7
shows the Integer Division program with full annotations and with minimal annotations. All the hidden
annotations can be easily inferred from the displayed annotations. The minimal annotations reduce the
clutter to a great extent.

In addition to the annotations, there are lots of other details that can be hidden. For example, the
discharge status of various proof obligations for the SimplifyAuto tactic can run into several pages, and
is hidden by default (The ProofInfo link in the Fig. 6). The annotated programs can also be collapsed by
double clicking on them.

7 Maintaining Derivation History

Invariant and assertion annotations help in understanding and verifying a program. However, they pro-
vide little clue about how the program designer might have discovered them. For example, at node E
in the derivation in Fig. 1, we are unable to express the expression under consideration in terms of the
program variables. This guides us to introduce a fresh variable s and strengthen the invariant with P2.
This crucial information is missing from the final annotated program. It is therefore desirable to preserve
the complete derivation history to fully understand the derivation of the program. CAPS maintains the

10 Building an IDE for the Calculational Derivation of Imperative Programs

1
2 Init4
3 DeleteConjunct
4 StepIntoUnknownProgIdx>
5 IntroAssignment
6 StepOutTactic
7 StepIntoUnknownProgIdx>
8 IntroAssignment
9 StepOutTactic

StepOutTactic

x: Int y: Int q: Int r: Int

x ≥ 0
y > 0

true

true

q 0

r x
:=

0 ≤ r ∧∧ q * y + r = x

0 ≤ r ∧∧ q * y + r = x

while
0 ≤ r ∧∧ q * y + r = x

¬ r < y ——→

0 ≤ r ∧∧ q * y + r = x ∧∧ ¬ r < y

r r − y

q q + 1
:=

0 ≤ r ∧∧ q * y + r = x

0 ≤ r ∧∧ r < y ∧∧ q * y + r = x

0 ≤ r ∧∧ r < y ∧∧ q * y + r = x

File View Derivations Actions Settings user1@company.com

1
2 Init4
3 DeleteConjunct
4 StepIntoUnknownProgIdx>
5 IntroAssignment
6 StepOutTactic
7 StepIntoUnknownProgIdx>
8 IntroAssignment
9 StepOutTactic

StepOutTactic

x: Int y: Int q: Int r: Int

x ≥ 0
y > 0

true

q 0

r x
:=

0 ≤ r ∧∧ q * y + r = x

while
0 ≤ r ∧∧ q * y + r = x

¬ r < y ——→

r r − y

q q + 1
:=

0 ≤ r ∧∧ r < y ∧∧ q * y + r = x

File View Derivations Actions Settings user1@company.com

(a) (b)

Figure 7. Final AnnotatedProgram for the Integer Division problem: a) Full annotations mode, b)
Minimal annotation mode.

derivation history in the form a derivation tree. Maintaining history also facilitates backtracking and
branching if the user wants to try out an alternative derivation strategy.

Backtracking and Branching.

In CAPS, we do not allow programmers to directly edit the program; users have to backtrack and branch
to try out different derivation strategies. This restriction ensures that the derivation tree contains all the
information necessary to reconstruct the program from scratch. All the design decisions are manifest in
the derivation tree which helps in understanding the rationale behind the introduction of various program
constructs and invariants. Using the branching functionality, users can explore multiple solutions for the
given programming task.

Navigating the Derivation tree

The conventional tree interface is not suitable to showing the derivation tree. At any point during a
derivation, we are interested in only the active path of the derivation tree. This active path is shown in

D. L. Chaudhari and O. Damani 11

Figure 8. Navigating the derivation tree: Fig. (a) shows schematic diagram of a derivation tree. Fig. (b)
shows the path in the derivation tree containing the currently selected node (node 12). A marker (a filled
circle) to the right of node 12 indicates the presence of a right-sibling node (node 37) in the derivation
tree. Users can click on this sibling marker to switch to the branch containing node 37.. The resulting
path is shown in Fig. (c).

the left panel in the GUI. To make it easy to navigate to other branches, we show siblings of the nodes
in the path. Users can navigate across the branches by clicking the sibling markers as shown in Fig. 8. If
there are multiple branches under the selected sibling, then the rightmost branch is selected.

8 Conclusions and Future Work

In this work, we have described the design of an IDE for the Calculational Derivation of Imperative
Programs. Our design focus has been on making the IDE accessible to nonexperts while retaining the
overall flavor of the pen-and-paper style derivation. We have used the CAPS system in an elective course
on Program Derivation taken by 2nd year students. The preliminary student response to the tool has
been very positive[12]. However, a thorough evaluation needs to be done on more challenging problems.

Based on the learnings from the first offering of the tool, we plan to enhance the tool in a number of
ways.

Richer Language Constructs.

We plan to target programs with richer constructs involving recursion, algebraic data types, and poly-
morphic types.

Executing programs.

We currently do not have a functionality to execute the derived programs in CAPS. We plan to explore the
possibility of executing not only the final program, but also the intermediate partially derived programs.

12 Building an IDE for the Calculational Derivation of Imperative Programs

Being able to simulate programs at the intermediate stages of behavioral abstraction has already been
identified[21] as one of the barriers in the adoption of the stepwise refinement based methods.

Integrating Synthesis Solvers.

We plan employ the synthesis solvers [4] during the interactive derivation when the specification of the
subprogram under consideration falls in a theory for which a synthesis solver is available. We will,
however, restrict the use of these solvers to the synthesis of loop-free programs.

Acknowledgements.

The work of the first author was supported by the Tata Consultancy Services (TCS) Research Fellowship
and a grant from the Ministry of Human Resource Development, Government of India.

References
[1] Backbone.js: a JavaScript library with a RESTful JSON interface. Available at http://backbonejs.org/.
[2] Play: an open source MVC web application framework. Available at http://www.playframework.com/.
[3] TypeScript: a language for application-scale JavaScript development, http://www.typescriptlang.org/. Avail-

able at http://www.typescriptlang.org/.
[4] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia,

Rishabh Singh, Armando Solar-Lezama, Emina Torlak & Abhishek Udupa (2013): Syntax-Guided Synthe-
sis. In: Proceedings of the IEEE International Conference on Formal Methods in Computer-Aided Design
(FMCAD), doi:10.1109/FMCAD.2013.6679385.

[5] Ralph Back, Jim Grundy & Joakim Von Wright (1997): Structured Calculational Proof. Formal Aspects of
Computing 9(5-6), pp. 469–483, doi:10.1007/BF01211456.

[6] Roland Backhouse & Diethard Michaelis (2006): Exercises in quantifier manipulation. In: Mathematics of
program construction, Springer, pp. 69–81, doi:10.1007/11783596 7.

[7] Yves Bertot, Thomas Kleymann-Schreiber & Dilip Sequeira (1997): Implementing Proof by Pointing without
a Structure Editor. Technical Report ECS-LFCS-97-368, University of Edinburgh. Available at http:
//www.inria.fr/RRRT/RR-3286.html.

[8] Richard Bornat & Bernard Sufrin (1997): Jape: A calculator for animating proof-on-paper. In: Automated
DeductionCADE-14, Springer, pp. 412–415, doi:10.1007/3-540-63104-6 41.

[9] Michael Butler & Thomas Långbacka (1996): Program Derivation Using the Refinement Calculator. In:
Theorem Proving in Higher Order Logics: 9th International Conference, volume 1125 of LNCS, Springer
Verlag, pp. 93–108, doi:10.1007/BFb0105399.

[10] David Carrington, Ian Hayes, Ray Nickson, G. N. Watson & Jim Welsh (1996): A Tool for Developing
Correct Programs by Refinement. Technical Report. Available at http://espace.library.uq.edu.au/
view/UQ:10768.

[11] Dipak L. Chaudhari & Om Damani (2014): Automated Theorem Prover Assisted Program Calculations. In
Elvira Albert & Emil Sekerinski, editors: Integrated Formal Methods, Lecture Notes in Computer Science,
Springer International Publishing, pp. 205–220, doi:10.1007/978-3-319-10181-1 13.

[12] Dipak L. Chaudhari & Om Damani (2015): Introducing Formal Methods via Program Derivation. In: Inno-
vation and Technology in Computer Science Education, ITiCSE 15.

[13] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal, Thomas Santen, Wol-
fram Schulte & Stephan Tobies (2009): VCC: A Practical System for Verifying Concurrent C. In: Theorem
Proving in Higher Order Logics, Springer, doi:10.1007/978-3-642-03359-9 2.

http://backbonejs.org/
http://www.playframework.com/
http://www.typescriptlang.org/
http://dx.doi.org/10.1109/FMCAD.2013.6679385
http://dx.doi.org/10.1007/BF01211456
http://dx.doi.org/10.1007/11783596_7
http://www.inria.fr/RRRT/RR-3286.html
http://www.inria.fr/RRRT/RR-3286.html
http://dx.doi.org/10.1007/3-540-63104-6_41
http://dx.doi.org/10.1007/BFb0105399
http://espace.library.uq.edu.au/view/UQ:10768
http://espace.library.uq.edu.au/view/UQ:10768
http://dx.doi.org/10.1007/978-3-319-10181-1_13
http://dx.doi.org/10.1007/978-3-642-03359-9_2

D. L. Chaudhari and O. Damani 13

[14] Edsger W. Dijkstra (1975): Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Com-
mun. ACM 18(8), pp. 453–457, doi:10.1145/360933.360975.

[15] Edsger W. Dijkstra & W. H. Feijen (1988): A Method of Programming. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

[16] Jean-Christophe Filliâtre & Andrei Paskevich (2013): Why3 – Where Programs Meet Provers. In: ESOP’13
22nd European Symposium on Programming, LNCS 7792, Springer, Rome, Italie, doi:10.1007/978-3-642-
37036-6 8.

[17] Michael Franssen (1999): Cocktail: A tool for deriving correct programs. In: Workshop on Automated
Reasoning.

[18] Bart Jacobs & Frank Piessens (2008): The VeriFast Program Verifier. Technical Report CW-520, Dept. of
Computer Science, Katholieke Universiteit Leuven. Available at http://www.cs.kuleuven.be/~bartj/
verifast/verifast.pdf.

[19] Anne Kaldewaij (1990): Programming: The Derivation of Algorithms. Prentice-Hall, Inc., NJ, USA.
[20] K. Rustan M. Leino (2010): Dafny: An Automatic Program Verifier for Functional Correctness. In: Logic

for Programming, Artificial Intelligence, and Reasoning, Springer, doi:10.1007/978-3-642-17511-4 20.
[21] K. Rustan M. Leino (2011): Tools and Behavioral Abstraction: A Direction for Software Engineering. In

Sebastian Nanz, editor: The Future of Software Engineering, Springer Berlin Heidelberg, pp. 115–124,
doi:10.1007/978-3-642-15187-3 7.

[22] Marcel Oliveira, Manuela Xavier & Ana Cavalcanti (2004): Refine and Gabriel: support for refinement
and tactics. In: Software Engineering and Formal Methods, 2004. SEFM 2004. Proceedings of the Second
International Conference on, IEEE, pp. 310–319, doi:10.1109/SEFM.2004.1347535.

[23] Anthony M. Sloane (2011): Lightweight Language Processing in Kiama. In JooM. Fernandes, Ralf Lmmel,
Joost Visser & Joo Saraiva, editors: Generative and Transformational Techniques in Software Engineering
III, Lecture Notes in Computer Science 6491, Springer Berlin Heidelberg, pp. 408–425, doi:10.1007/978-3-
642-18023-1 12.

[24] Douglas R. Smith (2008): Generating Programs Plus Proofs by Refinement. In Bertrand Meyer & Jim
Woodcock, editors: Verified Software: Theories, Tools, Experiments, Lecture Notes in Computer Science
4171, Springer Berlin Heidelberg, pp. 182–188, doi:10.1007/978-3-540-69149-5 20.

http://dx.doi.org/10.1145/360933.360975
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://www.cs.kuleuven.be/~bartj/verifast/verifast.pdf
http://www.cs.kuleuven.be/~bartj/verifast/verifast.pdf
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-642-15187-3_7
http://dx.doi.org/10.1109/SEFM.2004.1347535
http://dx.doi.org/10.1007/978-3-642-18023-1_12
http://dx.doi.org/10.1007/978-3-642-18023-1_12
http://dx.doi.org/10.1007/978-3-540-69149-5_20

	1 Introduction
	2 An Example of a Calculational Derivation
	3 CAPS
	3.1 Derivation Methodology
	3.2 Graphical User Interface
	3.3 System Architecture

	4 Textual vs Structured Representation
	5 Focusing on subcomponents
	6 Selective Display of Information
	7 Maintaining Derivation History
	8 Conclusions and Future Work

