
 1

Smart Middleware and Light Ends (SMILE)

for Simplifying Data Integration

Rob Strom Om P. Damani

IBM T.J. Watson Research Center,

Hawthorne, NY,10532, USA

strom@us.ibm.com

Indian Institute of Technology, Bombay

Mumbai, 400076, India

damani@it.iitb.ac.in

Abstract: SMILE is a stateful publish-subscribe system

that allows subscribers to request continually updated

derived views, specified as relational algebraic expressions

over published data histories. The derived views can be

specified using aggregations, joins, and other transforms.

We achieve these for applications that do not require ACID

properties but only require that the information they receive

is never false and arrives eventually. We formalize this by

introducing an “eventual correctness” guarantee and our

implementation enforces it using a monotonic type system.

We present preliminary performance results of our

implementation.

Keywords: Publish-subscribe, system integration,

continuous queries, streaming data

1. Introduction

1.1. Problem Statement

Distributed application integration is an expensive

problem for enterprise IT departments [13]. Application

integration middleware requirements are evolving from

simple event filtering and message-by-message

transformation to more complex event processing,

including such operations as window-based grouping

(“running average over the last hour”) join (“buy bids

unmatched by sell bids”), and top-k selection (“cheapest 3

flights to London with at least 5 unsold seats”). These

problems are challenging when the data sources and the

consumers are widely distributed.

In our experience, this integration problem is solved

with middleware solutions that consist of databases,

messaging middleware, and distributed object systems,

none of which solve the whole problem. We propose to

solve this problem by raising the middleware

programming level closer to that of database

programming. If one models data-streams as relational

tables then consumers can specify data-streams of interest

as derived views of these relations.

We have built a prototype implementation of SMILE

(Smart Middleware Light Ends), a stateful publish-

subscribe system that integrates messaging and transform

capabilities, and allows declarative specification of

subscriptions as derived views of data-streams.

1.2. Related Work

In publish-subscribe (pub/sub) systems [9], producers

and consumers of data register as ‘publishers’ and

‘subscribers’ respectively. Each instance of a sent or a

received data is called an event. The system decouples the

publishers and subscribers in space and time.

Using a database to deliver transforms of published

state is overkill if many subscribers of pub/sub systems do

not require ACID properties. For example, while stock

trades themselves are produced by transactional systems,

the information derived from trade events, e.g., alerts that

some stocks are being traded together, do not need to be

synchronously stored on stable storage.

Other aspects of the data integration problem have

been explored in the context of data streams [4][6][12],

continuous queries [7][11], event-driven systems[3][5],

and incremental view maintenance[10]. Except Borealis

[1], most data stream and continuous query systems do

not deal with wide-area systems requiring fault-tolerance.

1.3. The SMILE Approach

SMILE consists of several components: (1) a declarative

language for specifying subscriptions (2) a service

guarantee called eventual correctness, (3) a distributed

incremental update engine.

Fig. 1 shows the SMILE runtime system and the

deployment process. The following is a high level outline

of the architecture and functionality of the system:

1. Publishers define the schemas for the event streams

they publish. These streams are represented as time-

keyed relations that map each tick of time into a set of

event attributes, or into a silence (no event happened).

publishers

subscribers

Subscriber_View_1:

…..

Middleware Program sources

Compiled query
execution plans

Performance info

Broker Network

Placement Service

publishers

subscribers

Subscriber_View_1:

…..

Broker Network

MMPL Compiler

Fig. 1. SMILE Architecture

 2

2. Subscribers specify their subscriptions – logical views

derived from one or more publisher event streams – as

queries in a declarative language. This language

includes selection, projection, join, and aggregation

operators, as well as additional operators adapted for

streaming, such as latest, merge, and top-k.

3. The event transformation and routing engine consists

of a network of entities called brokers.

4. The messaging middleware consolidates and compiles

the various client subscriptions into a delivery plan

consisting of relation and transform objects that

incrementally compute and store intermediate views

and subscribed views in response to changes in inputs.

1.4. Example Application

Figure 2 shows a middleware program, called Trade-

Floor, adapted from an actual financial application based

upon a trading floor of a stock exchange.

In the Trade-Floor application, bidders publish buy or

sell bids for stock issues. Each bid is either a Buybids

event or a Sellbids event, uniquely identified by a

buyid or sellid. Matchers subscribe to the view

Matchable, where each row in Matchable is a

particular buyid-sellid pair, together with the number

of shares the buyer and the seller are offering to trade that

have not already been matched. External “matchers” then

select (via some proprietary algorithm) which buy and sell

bids shall be matched, and then publish these match

events to the stream Matches, identifying the buyid and

sellid of the buyer and seller, and the number of shares

to trade.

2. Concepts and Architecture

In this section, we describe the SMILE system concepts,

separating those visible to users from those pertaining to

the internals of our SMILE implementation.

2.1. Relations, Views, and MMPL

In SMILE, all data is modeled as relations. Published

streams are “base relations”. Other relations are views

derived from either base relations or from other views.

The view specification introduces and names a new

relation whose value is to be continuously maintained to

be equal to the result of evaluating the relational

expression. The relational expression defines a relational

algebraic function of one or more previously introduced

relations, which may either be base relations or other

views. Subscriptions are written in SMILESQL, a

declarative subset of SQL, extended with additional

operators. A pre-processor converts these subscriptions

into an intermediate language MMPL (Messaging

Middleware Programming Language), based on Date and

Darwen’s “Tutorial-D” relational algebraic language [8].

2.2. The SMILE Monotonic Type System

 MMPL is a strongly typed language. Each relation name

is a relation variable (relvar), having a static type and a

value which changes dynamically. The type of a relvar

determines the types of each key and non-key column.

Base relations have only one key column, representing

discrete ticks of time, with sufficient granularity such that

no two published events can occupy the same tick.

In MMPL’s type system, relation instances are

modeled as total functions from a key domain of k key

columns into a non-key domain of k’ non-key columns.

The function can be abstractly represented as a table

containing k+k’ columns and containing as many rows as

there are possible distinct values of the k key columns.

Each non-key column has a value belonging to some

monotonic domain which depends upon the column’s

data-type. A partial order →, meaning “evolvable to”, is

defined over the values in each such monotonic domain.

The k key columns never evolve; only the non-key

columns may evolve. Values of non-key columns may

only change to more evolved values as determined by the

relation →.

Each domain has a single “bottom” element, that is, an

element x such that x→ y for all y. All variables initially

have the bottom value. A domain may have multiple

“final” elements, that is, elements x such that x→ y is

false for all y != x.

CREATE STREAM BuyBids (buyid: time ->

issue: string, price: centspershare, #bid:

shares);

CREATE STREAM SellBids (sellid: time ->

issue: string, price: centspershare, #bid:

shares);

CREATE STREAM Matches (t: time ->

buyid: time, sellid: time, #traded: shares);

CREATE VIEW BuySatisfied (SELECT buyid,

SUM(#traded) AS total

FROM Matches GROUP BY buyid);

CREATE VIEW SellSatisfied (SELECT sellid,

SUM(#traded) AS total

FROM Matches GROUP BY sellid);

CREATE VIEW RemainingBuy (SELECT buyid,

issue, price, (#bid – total) as buyremaining

FROM BuyBids JOIN BuySatisfied USING(buyid)

WHERE buyremaining > 0);

CREATE VIEW RemainingSell (SELECT sellid,

issue, price, (#bid – total) as sellremaining

FROM SellBids JOIN SellSatisfied

USING(sellid) WHERE sellremaining > 0);

CREATE VIEW Matchable (SELECT * FROM

RemainingBuy JOIN RemainingSell USING(issue,

price);

subscriptions RemainingBuy, RemainingSell,

Matchable;

Fig. 2. Middleware program for a financial scenario

 3

The monotonic domains for columns in base relations

are generated by augmenting the domain determined by

the column’s data type with the special values “unknown”

(“?”) and “silence” (“S”). Figure 3 illustrates the domain

and its partial order for an attribute with range 0..3. A row

in a base relation corresponding to time tick t begins with

all its columns having value “?”, meaning that tick t

hasn’t happened yet, and each column evolves either to a

“silence” value (meaning that no event occurred at the

given tick), or to a value of the column’s data type.

Fig. 3. Domain for a base relation column

The domains for columns in views might be more

complex than the form shown in Fig. 3, including not only

a bottom value and final values but also intermediate

values showing partial information. For example, a value

of a count of events in a one-hour period might be a = “at

least 3”, which may evolve to a value b = “at least 4”,

which in turn might evolve to a value c = “exactly 4”

(reached when all the events in the period being counted

have reached a final value). For operators that are not

naturally monotonic (e.g. “latest price of IBM stock”), the

type will include a time tick component that will be

monotonic. The monotonic type system ensures that

clients can always distinguish older from newer

notifications of state changes and that clients know when

values are final.

The partial order → is extended in a straightforward

way to relation values: if R1 and R2 are possible values of

a relvar R, then R1 → R2 iff for each corresponding pair of

values (that is, with same row key and same column

name) v1 in R1 and v2 in R2, v1 → v2.

A key design principle in SMILE is: All operators on

relations are monotonicity-preserving, that is, if R1 →

R2, then for any operator F, F(R1) → F(R2). Base relations

are monotonic, and all operators preserve monotonicity;

therefore, all views are monotonic.

2.2. Eventual Correctness, Determinism

In SMILE, service guarantees to subscribers are weaker

than the ACID properties of databases. Given a derived

view V defined by some function F of some set of input

relation variables I, we provide an eventual correctness

guarantee defined by the following properties:

Safety: “Never show anything false”. For all times t,

if I takes the value I(t), and a subscriber sees a result V(t),

then V(t) → F(I(t)). Since I is monotonic, V(t) → F(I(t’))

for all t’ > t, and therefore any result seen is known to be

true forever.

Liveness: “Eventually show all that is true”. For all

times t, if I takes the value I(t), then eventually there will

exist a later time t’ when the subscriber will see a result

V(t) where F(I(t)) → V(t’).

Notice that with eventual correctness, subscribers are

not guaranteed to see every value that a view passes

through. For example, a view tracking the sum of a

column may see the value jump from 0 to “at least 10” to

“at least 30” but the system does not promise that the

subscriber will necessarily know whether it was ever

exactly 20. This weakening of guarantee enables us to

provide database like transforms at the speed of

messaging systems.

A second key design principle in SMILE is: All

operators are deterministic modulo eventual

correctness. For any set of input streams I, and for any

subscribed view V=F(I), for any value i of I, there is a

single value v of V resulting from F(i). A subscriber to V

will see V evolve in a way consistent with the

deterministic function F and with the safety and liveness

guarantees stated above. For example, a deterministic

merge (e.g. [2]) of two streams from two different brokers

will have a unique final result, even though in an

implementation that replays the two streams twice,

messages from the two streams might arrive in different

orders and pass through different intermediate steps.

2.3. Runtime System

When the SMILE system is running, there exists a current

middleware program defining the current set of base

relations in the system and the current set of views.

Individual clients may publish events to base relations,

may subscribe to derived views, or may add or delete

subscriptions. Subscribers receive messages

corresponding to changes in their view relations. The

Compilation System performs type analysis on MMPL

view expressions and generates tailored objects: relation

objects that store views, and transform objects that

incrementally update views. Each transform object

accepts inputs describing additions, deletions, or updates

to tuples, and outputs changes to a result view.

A SMILE system is deployed over an overlay network

of brokers. After compilation and deployment, each

broker contains a query execution plan consisting of a

graph of relation objects and transform objects. Published

messages enter the broker hosting the base relation.

Changes to base relations propagate through transforms to

derived relations, and in turn cascade towards subscribed

views. We call this propagation of information

downstream knowledge flow: downstream being the

direction from base relation to subscribed view, and

knowledge flow representing the incremental change to

monotonic knowledge.

There are also flows in the opposite or upstream

direction. These flows are called curiosity. Curiosity can

either be positive (requesting data that either was not sent

or was lost), or negative (requesting that the source stop

sending data that is no longer needed).

?

0 1 S 2 3

 4

3. Implementation

In this section, we discuss: (1) the type analysis which is

the basis for determining the monotonic domains, data

structures, messages, transforms, and recovery protocols

generated by the compiler; (2) the incremental transforms

generated by the compiler; (3) the recovery protocols.

3.1. Type Analysis

The goal of type analysis is to produce key signatures and

to derive information about the evolution patterns of non-

key columns for all derived views. This information is

required for two purposes: (1) to let subscribers know

whether a value is final or whether some predicate (like

“at least 3”) is final; (2) to allow processing nodes to

recover from out-of-order messages and to detect gaps.

Let us define a complex type as a type whose values

may change more than once before reaching finality. The

aggregation (sum, count, latest, min, max) operators are

one of the sources of complex types. We define the type

of a column containing an aggregation result as aggregate

type. An aggregate type captures the possible range of the

values of the column. In addition, the type carries

information about the maximum number of times a value

can change before reaching finality. This information is

especially useful in the cases when aggregation is defined

over a sliding window [12]. At run-time, the values of a

column of an aggregate type carry information about: (1)

the number of times the value changed so far (called the

steps component), and (2) the future potential range of the

ultimate result. The steps component allows the system to

handle duplicate and out of order messages.

Operations such as selection involving the aggregate

type result in further complex types. The selection

predicate involving columns of aggregate type is a variety

of Boolean type that may oscillate several times between

“true” and “false” before reaching the final value. Such a

Boolean type is called a mask type, because the value is

used to hide rows that fail the selection test and reveal the

rows that pass the test. The mask type contains the

maximum number of steps the Boolean component can

change. The columns in the rows that are selected when

the mask is true and hidden when the mask is false are

said to have a masked type. The bottom value for a

masked type is usually “?”.

Financial Example: Let us apply type inference to the

example in Fig. 2. As discussed in Section 2.2., non-key

columns of the published streams evolve only once: from

“?” (unknown) to either a value of the column’s domain

or to “S” (silence). The derived view, BuySatisfied,

has column total, of aggregate type. The maximum

value of total depends on the domain of t and buyid.

In practice, t will have some bound MAXTIME. Each

#traded value will be either “?”, “S” (treated as zero by

the summation operator), or a final value between 0 and

some MAXTRADE. The points in the domain are ranges

[lb:ub] with a maximum range of [0 ..

MAXTIME*MAXTRADE]. The maximum number of steps

the result can oscillate is MAXTIME. At run-time, each

successive value of #traded, k, contributed by some row

of some group will increase lb by k, decrease ub by

MAXTRADE−k, and increase the steps component by one.

The type analysis of the expression buyremaining =

#bid − total is more involved. Assuming that #bid is

[MINBID, MAXBID] and MINBID = 0 and MAXBID >

MAXTIME*MAXTRADE, the range for buyremaining is

[0..MAXBID]. The maximum number of oscillation steps

for the result is MAXTIME + 1, since total oscillates

MAXTIME times and #bid oscillates only once.

To determine the type of buyremaining in view

RemainingBuy, it is necessary to first evaluate the type

of the expression (buyremaining > 0). Variable

buyremaining begins at “?”, reaches a maximum

positive value, and then descends towards (or past) zero.

Therefore the value of the Boolean expression

buyremaining > 0 can evolve from a bottom value

(which we can think of as “temporarily false”, symbolized

by ‘f’), to a temporarily true value (symbolized by ‘t’),

and then either to a final true value (if MAXTIME is

bounded and insufficient matches occur by MAXTIME), or

to a final false value (if enough matches occur to bring the

buyremaining to zero). In the case where MAXTIME is

unbounded, the value final ‘T’ is not possible.

The Boolean mask value domain for the expression

(buyremaining > 0) is given in Fig. 4:

f

T

t

F

Fig. 4. Boolean domain for (buyremaining > 0)

The complex mask type value can be concisely

represented as Boolean with initial value false, final range

between [0,1] and the maximum number of oscillation

steps equal to 2.

Use of type analysis: The type analysis is used in

SMILE in following ways:

• To determine value representation: The type

determines which additional components are needed to

represent the value.

• To validate the well-formedness of queries.

• To permit queries on absence of information such as

“tell me whether more than 3 minutes have passed with

no event from a particular input stream”.

• To perform optimizations: The finality information is

used to perform memory and log clean-up.

3.2. Incremental Transformation

Each incremental transform takes as input, messages

denoting changes to one of the arguments of the

corresponding MMPL operation. We next describe some

of the transformations.

 5

Simple Aggregation: Let us begin with a simple

transform, the one that computes the new column total by

summing the #traded column in view BuySatisfied.

Each incremental change is expressed as a message

containing the outer key (buyid), the inner key (t), and

the change to traded. The type analysis says that the

only changes to traded are a change from unknown

(“?”) to either silent (“S”) or to a final numeric value.

Hence on receiving an update message, the current value

of total for the row keyed by buyid is incremented by the

numeric value of traded (and the upper bound

decremented by MAXTRADE minus that value) if it is

present, with “S” being treated as 0.

To take care of message loss, duplication, and

reordering, it is necessary to keep track of which ranges

of ticks are represented by the current running sum.

Therefore, we maintain a mapping from t to {T, F} to

indicate which ticks in t have been counted, via either a

value or a silence, in the running total. The

implementation is optimized assuming:

• Usually, updates will come in tick order.

• Gaps (ranges of unknown ticks between known ticks)

will be rare.

• Duplicate and straggling messages will typically be

from the recent past.

The representation of this mapping is a number h, such

that all ticks with time > h map to F. We supplement h

with a gap list, an ordered list of ranges beginning with

the oldest range mapping to F, and alternating T and F

ranges, ending with the youngest range mapping to T. A

tick t is non-redundant if its time is greater than h, or if it

can be found in an F range on the gap list.

The aggregation algorithm tests the update tick (or, in

the case of silences, the range of update ticks) for

redundancy. If it is non-redundant, then the running total

and the mapping are updated. The updates to the total

column are passed to the relation object, which then

propagates them downstream to any transform objects.

The monotonicity of the representation of the value of

total is sufficient to protect against out-of-order

propagations: older information is always recognizably

older and can be thrown away.

Simple Join: The incremental computation of the

views RemainingBuy and RemainingSell are

straightforward, as the equi-joins are being performed

over the key field. The type analysis described in section

3.1 determines that buyremaining should be represented

as a pair consisting of a single number (or unknown) for

the positive component (determined from bid) and a range

for the negative component (determined from total). The

restriction operator select … where (buyremaining

> 0) transforms this number into a masked number. Due

to type analysis, the transform is able to conclude that

when the expression becomes false, it is permanently

false, and the row can be dropped from the table.

Complex Join: The join that derives relation

Matchable is more complex, since it is an equi-join over

the non-key columns issue and price. If there are m rows

of RemainingBuy having a particular combination of

issue and price, and n rows of RemainingSell

having the same combination of issue and price, then

there will be mn rows in Matchable having that

combination, and a single append or update to

RemainingBuy with that issue-price combination can

cause changes to n rows in Matchable.

3.3. Replaying the Event Stream Log:

Logs at all entry points in the system are retained until

the system can guarantee that no downstream relation will

ever need them.

In stateful publish-subscribe systems such as SMILE,

where subscriptions can include aggregations over long

time periods, recovery from a crash by replaying

published messages may require the replay of an

unacceptably large number of messages if publisher log

streams were the only vehicle for recovery.

To mitigate this problem, SMILE includes a “soft

checkpointing” facility by which recent states of

aggregated relation objects can be saved to persistent

storage. It is “soft” in that: (1) no protocol needs to wait

for the checkpointing to commit, and (2) failure of a

checkpoint to be written does not impact the correctness

of the service.

There are several choices about how to save data on

the disk. One can use a main-memory database like

implementation. Or one can checkpoint the entire

application process. Instead, we use an append-only log

by exploiting the fact that most of our writes will never be

read. We will need to read a soft-checkpoint only when a

broker crashes or when a message is lost in transit and

needs to be retrieved from upstream and the upstream

broker has shed parts of the required state. This design

reduces the incremental overhead of soft checkpointing

during normal failure-free operation, at the expense of a

small increase in the cost of recovering the state after

failure. Recovery cost increase since unlike the other two

approaches, required data cannot be directly read from the

disk but needs to be recreated by replaying the append-

only log.

4. Performance Analysis

We built a test driver that simulated multiple bidder

clients publishing buy and sell bids, and simulated

matcher clients subscribing to the Matchable view and

publishing to the Matches base relation.

We developed two configurations of the test

application: a 1-broker version where a single broker

performs all the transform computations; and a 4-broker

version, where the BuyBids, SellBids, Matches and

Matchable (see Fig. 6) compute in different brokers.

 6

The 1-broker version allowed a fair comparison of the

SMILE incremental transforms to a single node database

implementation. The 4-broker configuration allowed

spreading the computation and communication load and

was designed to test the distributed aspects of the system.

A 1.8 GHz and a 1.2 GHz machines with 1 Gig RAM

were used for the experiments. The machines were

connected by a LAN with latency of ~5 ms.

The results of our experiments are shown in Figure 5.

30

87.1

155.6

0

20

40

60

80

100

120

140

160

180

E
v
e
n
ts

 p
e
r

s
e
c
o
n
d

Database based

solution

One Broker

Configuration

Four Broker

Configuration

Figure 5: SMILE vs. existing solutions

4.1. Comparison with a Database Solution

To compare with existing solutions, we have built a

best-effort prototype of the same financial integration

application on a commercial database using database

triggers and stored procedures that issue transactions to:

(1) insert a buy bid, (2) insert a sell bid, and (3) query the

Matchable view and insert a Matches event. Using the

same driver, this test showed performance of

approximately 30 Matches events per second on the 1.8

GHz machine. This same driver, when run on a 1-broker

SMILE configuration, generated a maximum throughput

of 87.1 Matches events per second.

4.2. Increasing the number of Brokers

Fig. 6. Four-broker configuration for the experiment

The 4-broker test ran on two PCs hosting two brokers

each as well as a client. We found the performance to be

CPU-bound with client taking about 20% of the machine

load and the brokers taking the rest. The results of this

experiment are also shown in Figure 5.

After starting the test we increased the publish rate for

buyers and sellers until the broker CPUs reached their

maximum and recorded the rate on the Matches base

relation to be 155.6 events per second. Going from one

machine to two, we see a near linear increase in

performance.

5. Conclusions and Future Work

In the SMILE system, declaratively specified relational

subscriptions are converted into message-by-message

incremental transforms. By doing incremental updates

and by not having to be transactional, even on a single

machine, our raw, unoptimized prototype outperformed a

database – not surprising, since our target applications are

not in the standard design point for databases. We have

also introduced a type system for derived views based on

monotonic knowledge, which allows us to provide a

rigorous eventual correctness guarantee and to implement

it using deterministic replay protocols.

Though the unoptimized SMILE prototype has shown

a reasonable performance, considerable challenges remain

for future work, such as finding efficient algorithms for a

richer set of operators, and translating client service level

agreements into priorities for placement optimization.

6. References

[1] Abadi, D., Ahmad, Y., et. Al..: The Design of the Borealis

Stream Processing Engine. Second Biennial Conference on

Innovative Data Systems Research, January 2005.

[2] Aguilera, M., Strom, R: Efficient Atomic Broadcast Using

Deterministic Merge. PODC 2000.

[3] Bhola, S., Strom, R., et. Al..: Exactly Once Delivery in a

Content-Based Publish-Subscribe System, Intl. Conference

on Dependable Systems and Networks, June 2002.

[4] Carney, D. et. al.: Monitoring Streams – A New Class of

Data Management Applications. VLDB 2002.

[5] Carzaniga, A., Rosenblum, D.S., and Wolf, A.L.:

Achieving Expressiveness and Scalability in an Internet

Scale Event Notification Service. PODC 2000.

[6] Chandrasekaran, S., and Franklin, M., Streaming Queries

over Streaming Data, In Proc. of the 28th VLDB

Conference, Hong Kong, China, 2002.

[7] Chen, J., DeWitt, D., Tian, F., and Wang, Y.: NiagaraCQ:

A scalable continuous query system for internet databases.

In ACM SIGMOD, 2000.

[8] Darwen, H., and Date, C.J.: Foundation for

Object/Relational Databases: The Third Manifesto.

Addison-Wesley. June, 1998.

[9] Eugster P., Felber P., Guerraoui R., and Kermarrec A. M.:

The many faces of publish/subscribe. ACM Computing

Surveys, 35 (2), June 2003.

[10] Jagadish, H., Mumick, I., and Silberschatz, A.: View

Maintenance Issues for the Chronicle Data Model, ACM

PODS, pp. 113-124, 1995.

[11] Liu, L., Pu, C. et. al.: Continual queries for internet-scale

event-driven information delivery. IEEE Knowledge and

Data Engineering, Special Issue on Web Technology, 1999.

[12] Motwani, R., Widom, J., et. al..: Query Processing,

Approximation, and Resource Management in a Data

Stream Management System. CIDR 2003.

[13] The State of the CIO, CIO Magazine, Executive Survey

Results, Mar. 2002.

