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Abstract: SMILE is a stateful publish-subscribe system 

that allows subscribers to request continually updated 

derived views, specified as relational algebraic expressions 

over published data histories. The derived views can be 

specified using aggregations, joins, and other transforms. 

We achieve these for applications that do not require ACID 

properties but only require that the information they receive 

is never false and arrives eventually. We formalize this by 

introducing an “eventual correctness” guarantee and our 

implementation enforces it using a monotonic type system.  

We present preliminary performance results of our 

implementation.  
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1. Introduction 

1.1. Problem Statement 

Distributed application integration is an expensive 

problem for enterprise IT departments [13].  Application 

integration middleware requirements are evolving from 

simple event filtering and message-by-message 

transformation to more complex event processing, 

including such operations as window-based grouping 

(“running average over the last hour”) join (“buy bids 

unmatched by sell bids”), and top-k selection (“cheapest 3 

flights to London with at least 5 unsold seats”). These 

problems are challenging when the data sources and the 

consumers are widely distributed. 

In our experience, this integration problem is solved 

with middleware solutions that consist of databases, 

messaging middleware, and distributed object systems, 

none of which solve the whole problem.  We propose to 

solve this problem by raising the middleware 

programming level closer to that of database 

programming. If one models data-streams as relational 

tables then consumers can specify data-streams of interest 

as derived views of these relations.  

We have built a prototype implementation of SMILE 

(Smart Middleware Light Ends), a stateful publish-

subscribe system that integrates messaging and transform 

capabilities, and allows declarative specification of 

subscriptions as derived views of data-streams.  

1.2. Related Work 

In publish-subscribe (pub/sub) systems [9], producers 

and consumers of data register as ‘publishers’ and 

‘subscribers’ respectively. Each instance of a sent or a 

received data is called an event. The system decouples the 

publishers and subscribers in space and time.  

Using a database to deliver transforms of published 

state is overkill if many subscribers of pub/sub systems do 

not require ACID properties. For example, while stock 

trades themselves are produced by transactional systems, 

the information derived from trade events, e.g., alerts that 

some stocks are being traded together, do not need to be 

synchronously stored on stable storage.   

Other aspects of the data integration problem have 

been explored in the context of data streams [4][6][12], 

continuous queries [7][11], event-driven systems[3][5], 

and incremental view maintenance[10]. Except Borealis 

[1], most data stream and continuous query systems do 

not deal with wide-area systems requiring fault-tolerance. 

1.3. The SMILE Approach 

SMILE consists of several components: (1) a declarative 

language for specifying subscriptions (2) a service 

guarantee called eventual correctness, (3) a distributed 

incremental update engine.   

Fig. 1 shows the SMILE runtime system and the 

deployment process. The following is a high level outline 

of the architecture and functionality of the system: 

1. Publishers define the schemas for the event streams 

they publish. These streams are represented as time-

keyed relations that map each tick of time into a set of 

event attributes, or into a silence (no event happened). 
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2. Subscribers specify their subscriptions – logical views 

derived from one or more publisher event streams – as 

queries in a declarative language. This language 

includes selection, projection, join, and aggregation 

operators, as well as additional operators adapted for 

streaming, such as latest, merge, and top-k. 

3. The event transformation and routing engine consists 

of a network of entities called brokers.  

4. The messaging middleware consolidates and compiles 

the various client subscriptions into a delivery plan 

consisting of relation and transform objects that 

incrementally compute and store intermediate views 

and subscribed views in response to changes in inputs.  

1.4. Example Application 

Figure 2 shows a middleware program, called Trade-

Floor, adapted from an actual financial application based 

upon a trading floor of a stock exchange.   

In the Trade-Floor application, bidders publish buy or 

sell bids for stock issues. Each bid is either a Buybids 

event or a Sellbids event, uniquely identified by a 

buyid or sellid. Matchers subscribe to the view 

Matchable, where each row in Matchable is a 

particular buyid-sellid pair, together with the number 

of shares the buyer and the seller are offering to trade that 

have not already been matched.  External “matchers” then 

select (via some proprietary algorithm) which buy and sell 

bids shall be matched, and then publish these match 

events to the stream Matches, identifying the buyid and 

sellid of the buyer and seller, and the number of shares 

to trade.   

2. Concepts and Architecture  

In this section, we describe the SMILE system concepts, 

separating those visible to users from those pertaining to 

the internals of our SMILE implementation. 

2.1. Relations, Views, and MMPL 

In SMILE, all data is modeled as relations. Published 

streams are “base relations”. Other relations are views 

derived from either base relations or from other views.  

The view specification introduces and names a new 

relation whose value is to be continuously maintained to 

be equal to the result of evaluating the relational 

expression. The relational expression defines a relational 

algebraic function of one or more previously introduced 

relations, which may either be base relations or other 

views. Subscriptions are written in SMILESQL, a 

declarative subset of SQL, extended with additional 

operators. A pre-processor converts these subscriptions 

into an intermediate language MMPL (Messaging 

Middleware Programming Language), based on Date and 

Darwen’s “Tutorial-D” relational algebraic language [8]. 

2.2. The SMILE Monotonic Type System 

 MMPL is a strongly typed language.  Each relation name 

is a relation variable (relvar), having a static type and a 

value which changes dynamically.  The type of a relvar 

determines the types of each key and non-key column.   

Base relations have only one key column, representing 

discrete ticks of time, with sufficient granularity such that 

no two published events can occupy the same tick.   

In MMPL’s type system, relation instances are 

modeled as total functions from a key domain of k key 

columns into a non-key domain of k’ non-key columns.  

The function can be abstractly represented as a table 

containing k+k’ columns and containing as many rows as 

there are possible distinct values of the k key columns. 

Each non-key column has a value belonging to some 

monotonic domain which depends upon the column’s 

data-type. A partial order →, meaning “evolvable to”, is 

defined over the values in each such monotonic domain. 

The k key columns never evolve; only the non-key 

columns may evolve. Values of non-key columns may 

only change to more evolved values as determined by the 

relation →. 

Each domain has a single “bottom” element, that is, an 

element x such that x→ y for all y. All variables initially 

have the bottom value. A domain may have multiple 

“final” elements, that is, elements x such that x→ y is 

false for all y != x.   

 

CREATE STREAM BuyBids (buyid: time ->  

issue: string, price: centspershare, #bid: 

shares); 

 

CREATE STREAM SellBids (sellid: time ->  

issue: string, price: centspershare, #bid: 

shares); 

 

CREATE STREAM Matches (t: time ->  

buyid: time, sellid: time, #traded: shares);  

 

CREATE VIEW BuySatisfied (SELECT buyid, 

SUM(#traded) AS total  

FROM Matches GROUP BY buyid); 

 

CREATE VIEW SellSatisfied (SELECT sellid, 

SUM(#traded) AS total  

FROM Matches GROUP BY sellid); 

 

CREATE VIEW RemainingBuy (SELECT buyid, 

issue, price, (#bid – total) as buyremaining 

FROM BuyBids JOIN BuySatisfied USING(buyid) 

WHERE buyremaining > 0); 

  

CREATE VIEW RemainingSell (SELECT sellid, 

issue, price, (#bid – total) as sellremaining 

FROM SellBids JOIN SellSatisfied 

USING(sellid) WHERE sellremaining > 0); 

 

CREATE VIEW Matchable (SELECT * FROM 

RemainingBuy JOIN RemainingSell USING(issue, 

price); 

 

subscriptions RemainingBuy, RemainingSell, 

Matchable; 

Fig. 2. Middleware program for a financial scenario 
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The monotonic domains for columns in base relations 

are generated by augmenting the domain determined by 

the column’s data type with the special values “unknown” 

(“?”) and “silence” (“S”). Figure 3 illustrates the domain 

and its partial order for an attribute with range 0..3. A row 

in a base relation corresponding to time tick t begins with 

all its columns having value “?”, meaning that tick t 

hasn’t happened yet, and each column evolves either to a 

“silence” value (meaning that no event occurred at the 

given tick), or to a value of the column’s data type.  

 
Fig. 3. Domain for a base relation column 

The domains for columns in views might be more 

complex than the form shown in Fig. 3, including not only 

a bottom value and final values but also intermediate 

values showing partial information. For example, a value 

of a count of events in a one-hour period might be a = “at 

least 3”, which may evolve to a value b = “at least 4”, 

which in turn might evolve to a value c = “exactly 4” 

(reached when all the events in the period being counted 

have reached a final value). For operators that are not 

naturally monotonic (e.g. “latest price of IBM stock”), the 

type will include a time tick component that will be 

monotonic. The monotonic type system ensures that 

clients can always distinguish older from newer 

notifications of state changes and that clients know when 

values are final.   

The partial order → is extended in a straightforward 

way to relation values:  if R1 and R2 are possible values of 

a relvar R, then R1 → R2 iff for each corresponding pair of 

values (that is, with same row key and same column 

name) v1 in R1 and v2 in R2, v1 → v2.   

A key design principle in SMILE is: All operators on 

relations are monotonicity-preserving, that is, if R1 → 

R2, then for any operator F, F(R1) → F(R2). Base relations 

are monotonic, and all operators preserve monotonicity; 

therefore, all views are monotonic. 

2.2. Eventual Correctness, Determinism 

In SMILE, service guarantees to subscribers are weaker 

than the ACID properties of databases.  Given a derived 

view V defined by some function F of some set of input 

relation variables I, we provide an eventual correctness 

guarantee defined by the following properties: 

Safety:  “Never show anything false”.  For all times t, 

if I takes the value I(t), and a subscriber sees a result V(t), 

then V(t) → F(I(t)).   Since I is monotonic, V(t) → F(I(t’)) 

for all t’ > t, and therefore any result seen is known to be 

true forever.   

Liveness: “Eventually show all that is true”.  For all 

times t, if I takes the value I(t), then eventually there will 

exist a later time t’ when the subscriber will see a result 

V(t) where F(I(t)) → V(t’). 

Notice that with eventual correctness, subscribers are 

not guaranteed to see every value that a view passes 

through.  For example, a view tracking the sum of a 

column may see the value jump from 0 to “at least 10” to 

“at least 30” but the system does not promise that the 

subscriber will necessarily know whether it was ever 

exactly 20.  This weakening of guarantee enables us to 

provide database like transforms at the speed of 

messaging systems. 

A second key design principle in SMILE is: All 

operators are deterministic modulo eventual 

correctness. For any set of input streams I, and for any 

subscribed view V=F(I), for any value i of I, there is a 

single value v of V resulting from F(i).  A subscriber to V 

will see V evolve in a way consistent with the 

deterministic function F and with the safety and liveness 

guarantees stated above.  For example, a deterministic 

merge (e.g. [2]) of two streams from two different brokers 

will have a unique final result, even though in an 

implementation that replays the two streams twice, 

messages from the two streams might arrive in different 

orders and pass through different intermediate steps. 

2.3. Runtime System 

When the SMILE system is running, there exists a current 

middleware program defining the current set of base 

relations in the system and the current set of views.  

Individual clients may publish events to base relations, 

may subscribe to derived views, or may add or delete 

subscriptions. Subscribers receive messages 

corresponding to changes in their view relations.  The 

Compilation System performs type analysis on MMPL 

view expressions and generates tailored objects: relation 

objects that store views, and transform objects that 

incrementally update views.  Each transform object 

accepts inputs describing additions, deletions, or updates 

to tuples, and outputs changes to a result view.   

A SMILE system is deployed over an overlay network 

of brokers. After compilation and deployment, each 

broker contains a query execution plan consisting of a 

graph of relation objects and transform objects. Published 

messages enter the broker hosting the base relation.  

Changes to base relations propagate through transforms to 

derived relations, and in turn cascade towards subscribed 

views. We call this propagation of information 

downstream knowledge flow: downstream being the 

direction from base relation to subscribed view, and 

knowledge flow representing the incremental change to 

monotonic knowledge.  

There are also flows in the opposite or upstream 

direction.  These flows are called curiosity.  Curiosity can 

either be positive (requesting data that either was not sent 

or was lost), or negative (requesting that the source stop 

sending data that is no longer needed).   

? 

0 1 S 2 3 
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3. Implementation 

In this section, we discuss: (1) the type analysis which is 

the basis for determining the monotonic domains, data 

structures, messages, transforms, and recovery protocols 

generated by the compiler; (2) the incremental transforms 

generated by the compiler; (3) the recovery protocols. 

3.1. Type Analysis 

The goal of type analysis is to produce key signatures and 

to derive information about the evolution patterns of non-

key columns for all derived views. This information is 

required for two purposes: (1) to let subscribers know 

whether a value is final or whether some predicate (like 

“at least 3”) is final; (2) to allow processing nodes to 

recover from out-of-order messages and to detect gaps.  

Let us define a complex type as a type whose values 

may change more than once before reaching finality. The 

aggregation (sum, count, latest, min, max) operators are 

one of the sources of complex types. We define the type 

of a column containing an aggregation result as aggregate 

type. An aggregate type captures the possible range of the 

values of the column. In addition, the type carries 

information about the maximum number of times a value 

can change before reaching finality. This information is 

especially useful in the cases when aggregation is defined 

over a sliding window [12].  At run-time, the values of a 

column of an aggregate type carry information about: (1) 

the number of times the value changed so far (called the 

steps component), and (2) the future potential range of the 

ultimate result. The steps component allows the system to 

handle duplicate and out of order messages. 

Operations such as selection involving the aggregate 

type result in further complex types. The selection 

predicate involving columns of aggregate type is a variety 

of Boolean type that may oscillate several times between 

“true” and “false” before reaching the final value. Such a 

Boolean type is called a mask type, because the value is 

used to hide rows that fail the selection test and reveal the 

rows that pass the test. The mask type contains the 

maximum number of steps the Boolean component can 

change.  The columns in the rows that are selected when 

the mask is true and hidden when the mask is false are 

said to have a masked type. The bottom value for a 

masked type is usually “?”.  

Financial Example: Let us apply type inference to the 

example in Fig. 2.  As discussed in Section 2.2., non-key 

columns of the published streams evolve only once: from 

“?” (unknown) to either a value of the column’s domain 

or to “S” (silence). The derived view, BuySatisfied, 

has column total, of aggregate type. The maximum 

value of total depends on the domain of t and buyid. 

In practice, t will have some bound MAXTIME.  Each 

#traded value will be either “?”, “S” (treated as zero by 

the summation operator), or a final value between 0 and 

some MAXTRADE.  The points in the domain are ranges 

[lb:ub] with a maximum range of [0 .. 

MAXTIME*MAXTRADE]. The maximum number of steps 

the result can oscillate is MAXTIME. At run-time, each 

successive value of #traded, k, contributed by some row 

of some group will increase lb by k, decrease ub by 

MAXTRADE−k, and increase the steps component by one.   

The type analysis of the expression buyremaining = 

#bid − total is more involved. Assuming that #bid is 

[MINBID, MAXBID] and MINBID = 0 and MAXBID > 

MAXTIME*MAXTRADE, the range for buyremaining is 

[0..MAXBID]. The maximum number of oscillation steps 

for the result is MAXTIME + 1, since total oscillates 

MAXTIME times and #bid oscillates only once. 

To determine the type of buyremaining in view 

RemainingBuy, it is necessary to first evaluate the type 

of the expression (buyremaining > 0).  Variable 

buyremaining begins at “?”, reaches a maximum 

positive value, and then descends towards (or past) zero.  

Therefore the value of the Boolean expression 

buyremaining > 0 can evolve from a bottom value 

(which we can think of as “temporarily false”, symbolized 

by ‘f’), to a temporarily true value (symbolized by ‘t’), 

and then either to a final true value (if MAXTIME is 

bounded and insufficient matches occur by MAXTIME), or 

to a final false value (if enough matches occur to bring the 

buyremaining to zero). In the case where MAXTIME is 

unbounded, the value final ‘T’ is not possible. 

The Boolean mask value domain for the expression 

(buyremaining > 0) is given in Fig. 4: 

 

f

T

t

F

 
Fig. 4. Boolean domain for (buyremaining > 0) 

The complex mask type value can be concisely 

represented as Boolean with initial value false, final range 

between [0,1] and the maximum number of oscillation 

steps equal to 2.  

Use of type analysis: The type analysis is used in 

SMILE in following ways: 

• To determine value representation: The type 

determines which additional components are needed to 

represent the value.  

• To validate the well-formedness of queries.  

• To permit queries on absence of information such as 

“tell me whether more than 3 minutes have passed with 

no event from a particular input stream”.  

• To perform optimizations: The finality information is 

used to perform memory and log clean-up.   

3.2. Incremental Transformation 

Each incremental transform takes as input, messages 

denoting changes to one of the arguments of the 

corresponding MMPL operation. We next describe some 

of the transformations. 
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Simple Aggregation: Let us begin with a simple 

transform, the one that computes the new column total by 

summing the #traded column in view BuySatisfied. 

Each incremental change is expressed as a message 

containing the outer key (buyid), the inner key (t), and 

the change to traded.  The type analysis says that the 

only changes to traded are a change from unknown 

(“?”) to either silent (“S”) or to a final numeric value.  

Hence on receiving an update message, the current value 

of total for the row keyed by buyid is incremented by the 

numeric value of traded (and the upper bound 

decremented by MAXTRADE minus that value) if it is 

present, with “S” being treated as 0.   

To take care of message loss, duplication, and 

reordering, it is necessary to keep track of which ranges 

of ticks are represented by the current running sum.    

Therefore, we maintain a mapping from t to {T, F} to 

indicate which ticks in t have been counted, via either a 

value or a silence, in the running total. The 

implementation is optimized assuming: 

• Usually, updates will come in tick order. 

• Gaps (ranges of unknown ticks between known ticks) 

will be rare. 

• Duplicate and straggling messages will typically be 

from the recent past. 

The representation of this mapping is a number h, such 

that all ticks with time > h map to F.  We supplement h 

with a gap list, an ordered list of ranges beginning with 

the oldest range mapping to F, and alternating T and F 

ranges, ending with the youngest range mapping to T.  A 

tick t is non-redundant if its time is greater than h, or if it 

can be found in an F range on the gap list. 

The aggregation algorithm tests the update tick (or, in 

the case of silences, the range of update ticks) for 

redundancy.  If it is non-redundant, then the running total 

and the mapping are updated.  The updates to the total 

column are passed to the relation object, which then 

propagates them downstream to any transform objects.  

The monotonicity of the representation of the value of 

total is sufficient to protect against out-of-order 

propagations:  older information is always recognizably 

older and can be thrown away. 

Simple Join: The incremental computation of the 

views RemainingBuy and RemainingSell are 

straightforward, as the equi-joins are being performed 

over the key field. The type analysis described in section 

3.1 determines that buyremaining should be represented 

as a pair consisting of a single number (or unknown) for 

the positive component (determined from bid) and a range 

for the negative component (determined from total).  The 

restriction operator select … where (buyremaining 

> 0) transforms this number into a masked number.  Due 

to type analysis, the transform is able to conclude that 

when the expression becomes false, it is permanently 

false, and the row can be dropped from the table.  

Complex Join: The join that derives relation 

Matchable is more complex, since it is an equi-join over 

the non-key columns issue and price.  If there are m rows 

of RemainingBuy having a particular combination of 

issue and price, and n rows of RemainingSell 

having the same combination of issue and price, then 

there will be mn rows in Matchable having that 

combination, and a single append or update to 

RemainingBuy with that issue-price combination can 

cause changes to n rows in Matchable.  

3.3. Replaying the Event Stream Log:  

Logs at all entry points in the system are retained until 

the system can guarantee that no downstream relation will 

ever need them. 

In stateful publish-subscribe systems such as SMILE, 

where subscriptions can include aggregations over long 

time periods, recovery from a crash by replaying 

published messages may require the replay of an 

unacceptably large number of messages if publisher log 

streams were the only vehicle for recovery. 

To mitigate this problem, SMILE includes a “soft 

checkpointing” facility by which recent states of 

aggregated relation objects can be saved to persistent 

storage.  It is “soft” in that: (1) no protocol needs to wait 

for the checkpointing to commit, and (2) failure of a 

checkpoint to be written does not impact the correctness 

of the service.   

There are several choices about how to save data on 

the disk. One can use a main-memory database like 

implementation. Or one can checkpoint the entire 

application process. Instead, we use an append-only log 

by exploiting the fact that most of our writes will never be 

read. We will need to read a soft-checkpoint only when a 

broker crashes or when a message is lost in transit and 

needs to be retrieved from upstream and the upstream 

broker has shed parts of the required state.  This design 

reduces the incremental overhead of soft checkpointing 

during normal failure-free operation, at the expense of a 

small increase in the cost of recovering the state after 

failure.  Recovery cost increase since unlike the other two 

approaches, required data cannot be directly read from the 

disk but needs to be recreated by replaying the append-

only log.  

4. Performance Analysis 

We built a test driver that simulated multiple bidder 

clients publishing buy and sell bids, and simulated 

matcher clients subscribing to the Matchable view and 

publishing to the Matches base relation.    

We developed two configurations of the test 

application:  a 1-broker version where a single broker 

performs all the transform computations; and a 4-broker 

version, where the BuyBids, SellBids, Matches and 

Matchable (see Fig. 6) compute in different brokers. 
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The 1-broker version allowed a fair comparison of the 

SMILE incremental transforms to a single node database 

implementation. The 4-broker configuration allowed 

spreading the computation and communication load and 

was designed to test the distributed aspects of the system. 

A 1.8 GHz and a 1.2 GHz machines with 1 Gig RAM 

were used for the experiments.  The machines were 

connected by a LAN with latency of ~5 ms. 

The results of our experiments are shown in Figure 5. 
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Figure 5: SMILE vs. existing solutions 

4.1. Comparison with a Database Solution  

To compare with existing solutions, we have built a 

best-effort prototype of the same financial integration 

application on a commercial database using database 

triggers and stored procedures that issue transactions to: 

(1) insert a buy bid, (2) insert a sell bid, and (3) query the 

Matchable view and insert a Matches event. Using the 

same driver, this test showed performance of 

approximately 30 Matches events per second on the 1.8 

GHz machine. This same driver, when run on a 1-broker 

SMILE configuration, generated a maximum throughput 

of 87.1 Matches events per second.  

4.2. Increasing the number of Brokers 

 
Fig. 6. Four-broker configuration for the experiment 

The 4-broker test ran on two PCs hosting two brokers 

each as well as a client. We found the performance to be 

CPU-bound with client taking about 20% of the machine 

load and the brokers taking the rest. The results of this 

experiment are also shown in Figure 5. 

After starting the test we increased the publish rate for 

buyers and sellers until the broker CPUs reached their 

maximum and recorded the rate on the Matches base 

relation to be 155.6 events per second. Going from one 

machine to two, we see a near linear increase in 

performance.  

5. Conclusions and Future Work 

In the SMILE system, declaratively specified relational 

subscriptions are converted into message-by-message 

incremental transforms.  By doing incremental updates 

and by not having to be transactional, even on a single 

machine, our raw, unoptimized prototype outperformed a 

database – not surprising, since our target applications are 

not in the standard design point for databases. We have 

also introduced a type system for derived views based on 

monotonic knowledge, which allows us to provide a 

rigorous eventual correctness guarantee and to implement 

it using deterministic replay protocols. 

Though the unoptimized SMILE prototype has shown 

a reasonable performance, considerable challenges remain 

for future work, such as finding efficient algorithms for a 

richer set of operators, and translating client service level 

agreements into priorities for placement optimization. 
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