
Optimistic Distributed Simulation Based on Transitive Dependency
Tracking

Om P. Damani Yi-Min Wang Vijay I<. Garg*
Dept. of Computer Sci. AT&T Labs-Research Dept. of Elect. & Comp. Eng
Uni. of Texas at Austin Murray Hill, NJ Uni. of Texas at Austin
damani@cs.utexas.edu ymwangQresearch.att.com garg@ece.utexas.edu

Abstract
In traditional optimistic distributed simulation pro-

tocols, a logical process(LP) receiving a straggler rolls
back and sends out anti-messages. Receiver of an
anti-message may also roll back and send out more
anti-messages. So a single straggler may result in
a large number of anti-messages and multiple roll-
backs of some LPs. In our protocol, an LP receiv-
ing a straggler broadcasts its rollback. On receiving
this announcement, other LPs may roll back but they
do not announce their rollbacks. So each LP rolls
back at most once in response to each straggler. Anti-
messages are not used. This eliminates the need for
output queues and results in simple memory manage-
ment. It also eliminates the problem of cascading roll-
backs and echoing, and results in faster simulation.
All this is achieved by a scheme for maintaining tran-
sitive dependency information. The cost incurred in-
cludes the tagging of each message with extm depen-
dency information and the increased processing time
upon receiving a message. We also present the simi-
larities between the two areas of distributed simulation
and distributed recovery. We show how the solutions
for one area can be applied to the other area.

1 Introduction
We modify the time warp algorithm to quickly stop

the spread of erroneous computation. Our scheme
does not require output queues and anti-messages.
This results in less memory overhead and simple mem-
ory management algorithms. It also eliminates the
problem of cascading rollbacks and echoing [15], re-
sulting in faster simulation. We use aggressive cancel-
lation [7].

Our protocol is an adaptation of a similar protocol
for the problem of distributed recovery [4, 211. We

*supported in part by the NSF Grants CCR-9520540 and
ECS-9414780, a TRW faculty assistantship award, a General
Motors Fellowship, and an IBM grant.

1084-4097/97 $10.00 0 1997 IEEE

illustrate the main concept behind this scheme with
the help of Figure 1. In the figure, horizontal arrows
show the direction of the simulation time. Messages
are shown by the inter-process directed arrows. Circles
represent states. State transition is caused by acting
on the message associated with the incoming arrow.
For example, the state transition of Pl from ~10 to
sll happened when Pl acted on m0. In the time
warp scheme, when a logical process (LP) P2 receives
a straggler (i.e., a message which schedules an event in
P2’s past) it rolls back the state s20 and sends an anti-
message corresponding to message m2. On receiving
this anti-message, Pl rolls back state s10 and sends
an anti-message corresponding to ml. It then acts on
the next message in its message queue, which happens
to be m0. On receiving the anti-message for ml, PO
rolls back so0 and sends an anti-message for m0. On
receiving this anti-message, Pl rolls back sll.

In our scheme, transitive dependency information is
maintained with all states and messages. After rolling
back s20 due to a straggler, P2 broadcasts that ~20
has been rolled back. On receiving this announce-
ment, Pl rolls back s10 as it finds that s10 is tran-
sitively dependent on ~20. Pl also finds that m0 is
transitively dependent on s20 and discards it. Sim-
ilarly PO rolls back so0 on receiving the broadcast,
We see that Pl was able to discard m0 faster com-
pared to the previous scheme. Even PO would likely
receive the broadcast faster than receiving the anti-
message for ml as that can be sent only after Pl has
rolled back ~10. Therefore, simulation should proceed
faster. As explained later, we use incarnation num-
ber to distinguish between two states with the same
timestamp, one of which is committed and the other
is rolled back.

We only need the LP that receives a straggler to
broadcast the timestamp of the straggler. Every other
LP can determine whether they need to roll back or
not by comparing their local dependency information

90

---ll__-_ - .- -- -I_--__~-. . - - ._..... _- _ -- ___ --

with the broadcast timestamp. Other LPs that roll
back in response to a rollback announcement do not
send any announcement or anti-messages. Hence, each
LP rolls back at most once in response to a strag-
gler, and the problem of multiple rollbacks is avoided.
Several schemes have been proposed to minimize the

Figure 1: A Distributed Simulation.

spread of erroneous computations. A survey of these
schemes can be found in [7]. The Filter protocol by
Prakash and Subramanian [l?] is most closely related
to our work. It maintain a list of assumptions with
each message, which describe the class of straggler
events that could cause this message to be canceled.
It maintains one assumption per channel, whereas our
protocol can be viewed as maintaining one assumption
per LP. In the worst case, Filter tags each message
with 0(n2) integers whereas our protocol tags O(n)
integers, where n is the number of LPs in the sys-
tem. Since for some applications even O(n)-tagging
may not be acceptable, we also describe techniques to
further reduce this overhead. If a subset of LPs inter-
act mostly with each other, then, for most of the time,
the tag size of their messages will be bounded by the
size of the subset.

The paper is organized as follows. Section 2 de-
scribes the basic model of simulation; Section 3 in-
troduces the happen before relation between states
and the simulation vector which serves as the basis of
our optimistic simulation protocol; Section 4 describes
the protocol and gives a correctness proof; Section 5
presents optimization techniques to reduce the over-
head of the protocol; Section 6 compares distributed
simulation with distributed recovery.

2 Model of Simulation
We consider event-driven optimistic simulation.

The execution of an LP consists of a sequence of states
where each state transition is caused by the execution
of an event. If there are multiple events scheduled
at the same time, it can execute those events in an
arbitrary order. In addition to causing a state transi-
tion, executing an event may also schedule new events
for other LPs (or the local LP) by sending messages.

When LP Pl acts on a message from P2, Pl becomes
dependent on P2. This dependency relation is transi-
tive.

The arrival of a straggler causes an LP to roll back.
A state that is rolled back, or is transitively dependent
on a rolled back state is called an orphan state. A
message sent from an orphan state is called an orphan
message. For correctness of a simulation, all orphan
states must be rolled back and all orphan messages
must be discarded.

An example of a distributed simulation is shown
in Figure 2. Numbers shown in parentheses are ei-
ther the virtual times of states or the virtual times of
scheduled events carried by messages. Solid lines indi-
cate useful computations, while dashed lines indicate
rolled back computations. In Figure 2(a), ~00 sched-
ules an event for Pl at time 5 by sending message
m0. Pl optimistically executes this event, resulting
in a state transition from ~10 to sll, and schedules an
event for P2 at time 7 by sending message ml. Then
Pl receives message m2 which schedules an event at
time 2 and is detected as a straggler. Execution after
the arrival of this straggler is shown in Figure 2(b).
Pl rolls back, restores ~10, takes actions needed for
maintaining the correctness of the simulation (to be
described later) and restarts from state r10. Then it
broadcasts a rollback announcement (shown by dot-
ted arrows), acts on m2, and then acts on m0. Upon
receiving the rollback announcement from Pl, P2 re-
alizes that it is dependent on a rolled back state and
so it also rolls back, restores state ~20, takes actions
needed, and restarts from state r20. Finally, the or-
phan message ml is discarded by P2.

3 Dependency %acking
From here on, i,j refer to LP numbers; k refers to

incarnation number; s,u,w,x refer to states; Pi refers
to logical process i; s.p refers to the number associated
with the LP to which s belongs, that is, s.p = i + s E
Pi; m refers to a message and e refers to an event.

3.1 Happen Before Relation
Lamport defined the happen before(+) relation be-

tween events in a rollback-free distributed computa-
tion [12]. To take rollbacks into account, we extend
this relation. As in [4, 211, we define it for the states.
For any two states s and u, s + u is the transitive
closure of the relation defined by the following three
conditions:

1. s.p= u.p and s immediately precedes u.

2. s.p = u.p and s is the state restored after a roll-
back and u is the state after Pu.+ has taken the

91

PO

Pl

P2

(a) 04
Figure 2: Using Simulation Vector for Distributed Simulation. (a) Pm-straggler computation. (b) Post-straggler
computation.

actions needed to maintain the correctness of sim-
ulation despite the rollbacks. For example, in Fig-
ure 2(b), s20 + ~20.

3. s is the sender of a message m and u is the re-
ceiver’s state after the event scheduled by m is
executed.

For example, in Figure 2(a), ~10 + sll and so0 -+
~21, and in Figure 2(b) sll f, ~10. Saying s happened
before u is equivalent to saying that u is transitively
dependent on s.

For our protocol, “actions needed to maintain the
correctness of simulation” include broadcasting a roll-
back announcement and incrementing the incarnation
number. For other protocols, the actions may be dif-
ferent. For example, in time warp, these actions in-
clude the sending of anti-messages. Our definition of
happen before is independent of such actions. The
terms “rollback announcements” and “tokens” will be
used interchangeably. Tokens do not contribute to the
happen before relation. So if u receives a token from
s, u does not become transitively dependent on s due
to this token.

3.2 Simulation Vector
A vector clock is a vector of size n where n is the

number of processes in the system [16]. Each vector
entry is a timestamp that usually counts the num-
ber of send and receive events of a process. In the
context of distributed simulation, we modify and ex-
tend the notion of vector clock, and define a Simula-
tion Vector (SV) as follows. To maintain dependency
in the presence of rollbacks, we extend each entry to

92

contain both a timestamp and an incarnation num-
ber [19]. The timestamp in the it* entry of the SV of
Pi corresponds to the virtual time of Pi. The times-
tamp in the jth entry corresponds to the virtual time
of the latest state of Pj on which Pi depends. The
incarnation number in the it* entry is equal to the
number of times Pi has rolled back. The incarnation
number in the jth entry is equal to the highest incar-
nation number of Pj on which Pi depends. Let entry
en be a tuple (incarnation u, timestamp i). We define
a lexicographical ordering between entries as follows:
en1 < en2 E (VI < 212) V [(q = 4 A (t* < i2)].

Simulation vectors are used to maintain transitive
dependency information. Suppose Pi schedules an
event e for Pj at time t by sending a message m. Pi
attaches its current SV to m. By “virtual time of m”,
we mean the scheduled time of the event e. If m is
neither an orphan nor a straggler, it is kept in the in-
coming queue by Pj. When the event corresponding
to m is executed, Pj updates its SV with m’s SV by
taking the componentwise lexicographical maximum.
Then Pj updates its virtual time (denoted by the jt”
timestamp in its SV) to the virtual time of m. A for-
mal description of the SV protocol is given in Figure
3. Examples of SV are shown in Figure 2 whew the
SV of each state is shown in the box near it.

The SV has properties similar to a vector clock,
It can be used to detect the transitive dependencies
between states. The following theorem shows the re-
lationship between virtual time and SV.

Theorem 1 The timestamp in the ith entry of Pi’s
SV corresponds to the virtual time of Pi.

LPPi:

type entry = (int inc, int ts)
/* incarnation, timestamp */

var sv: array [O..n-l] of entry
Initialize :

Vj: sv~].inc = 0 ; svlj].ts = -1 ;
sv[i].ts = 0 ;

Sondmessage(m) :
m.sv = sv ;
m.ts = time at which m should be executed ;
send (m.data, m.ts, m.sv) ;

Executemessage (m.duta, m.ts, m.sv) :
/* Pi executes event scheduled by m */
V j: svb] = max(svli],m.svb]) ;
sv[i].ts = m.ts ;

Rollback :
/* State s is restored. So, sv = s.sv */
sv[i].inc + + ;

Figure 3: Formal description of the Simulation Vector
protocol

Proof. By Induction. The above claim is true for
the initial state of Pi. While executing a message, the
virtual time of the Pi is correctly set. After a rollback,
virtual time of the restored state remains unchanged.

Let s.sv denote the SV of Pf.p in state s. We define
the ordering between two SV’s c and d as follows.

c < d z (Vi : c[i] 2 d[i]).

*th In Pi’s SV, the J timestamp denotes the maximum
virtual time of Pj on which Pi depends. This times-
tamp should not be greater than Pi’s own virtual time.
Lemma 1 formalizes the above notion.

Lemma 1 The timestump in the it* entry of the SV
of a state of Pi hus the highest value among all the
timestumps in this SV.

Proof By induction. The lemma is true for the initial
state of Pi. Assume that state s of Pj sent a mes-
sage m to Pi. State u of Pi executed m, resulting in
state w. By induction hypothesis, s.svljl.ts and the
u.sv[i].ts are the highest timestamps in their SV’s. So
the maximum of these two timestamps is greater than
all the timestamps in w.sv after the maxoperation in
Execute-message. Now m.ts, the virtual time of mes-
sage m, is not less than the virtual time of the state s
sending the message. It is also not less than the virtual
time of the state u acting on the message, otherwise,
it would have caused a rollback. So by theorem 1,

m.ts is not less than the masimum of s.svljJ.ts and
the u.sv[i].ts. Hence setting the w.sv[i].ts to m.ts pre-
serves the above property. All other routines do not
change the timestamps. I

The following two lemmas give the relationship be-
tween the SV and the happen before relation.

Lemma 2 Ifs happens before u, then s.sv is less than
or equal to 21.~21.

Proof. By induction. Consider any two states s and u
such that s happens before u by applying one of the
three rules in the definition of happen before. In case
of rule 1, state s is changed to state u by acting on
a message m. The update of the SV by taking the
maximum in the routine Execute-message maintains
the above property. Now consider the next action in
which u.sv[u.p].ts is set to m.ts. Since virtual time
of m cannot be less than the virtual time of state s
executing it, this operation also maintains the above
property.

In case of rule 2, in routine Rollback, the update of
the SV by incrementing the incarnation number pre-
serves the above property. The case of rule 3 is similar
to that of the rule 1. Let state w change to state u by
acting on the message m sent by state s. By lemma 1,
in m’s SV, s.pth timestamp is not less than the u.pth
timestamp. Also the virtual time of m is not less than
the s.p th timestamp in its SV. Hence setting the it*
timestamp to the virtual time of m, after taking mux,
preserves the above property. I

The following lemmashows that LPs acquire times-
tamps by becoming dependent on other LPs. This
property is later used to detect orphans. This lemma

-th states that if J timestamp in state w’s SV is not mi-
nus one (an impossible virtual time) then w must be
dependent. on a state u of Pj, where the virtual time
of u is w.sv[jl.ts .

Lemma 3 Vw, j : j # w-p : (w.svlj].ts = -1) V (3u :
(u.p = j) A (u + w) A (u.svb] = w.svj-j])).

Proof. By induction. Initialize trivially satisfies the
above property. In Execute-message, let x be the state
that sends m and let state s change to state w by
acting on m. By induction hypothesis, x and s satisfy
the lemma.

In taking maximum, let the jth entry from t is se-
lected. If j is x.p then x itself plays the role of u.
Else, by induction hypothesis, (x.sv[j].ts = -1)V(3u :
(u.p = j) A (u + x) A u.svli] = x.svb]). Hence either
w.svljl.ts is -1 or by transitivity, u happens before w.

93

The same argument also applies to the case where the 4 The Protocol
jth entry comes from s. Our protocol for distributed simulation is shown

In case of Rollback, let s be the state restored and in Figure 4. To keep the presentation and correct-
let w be the state resulting from s by taking the ac- ness proof clear, optimization techniques for reducing
tions needed for the correct simulation. By induction overhead are not included in this protocol, They are
hypothesis, s satisfies the lemma. Now s.sv and w.sv described in the next section. Besides a simulation
differ only in w.pth entry and all states that happened vector, each LP Pi also maintains an incarnation end
before s also happened before w. Hence w satisfies the table (iet). The jth component of iet is a set of entries
lemma. I of the form (k,ts), where ts is the timestamp of the

straggler that caused the rollback of the kth incarna-
tion of Pj. All states of the kth incarnation of Pj with

LP Pi : timestamp greater than ts have been rolled back, The

type entry = (int inc, int ts) iet allows an LP to detect orphan messages.

var sv : array[O..n-1] of entry; /* simulation vector */ When Pi is ready for the next event, it acts on the

iet : array[O..n-1] of set of entry; message with the lowest virtual time. As explained in

/* incarnation end table */ Section 3, Pi updates its SV and the internal state, and

token : entry; /* rollback announcement */ possibly schedules events for itself and for the other

Initialize : LPs by sending messages.

Q j : svljl.inc = 0 ; svCjl.ts = -1 ; Upon receiving a message m, Pi discards m if m is
sv[i].ts = 0 ; an orphan. This is the case when, for some j, Pi’s iet
Q j : ietb] = {} ; /* empty set */ and the jth entry of m’s SV indicate that m is depen-

Receive-message(m) : dent on a rolled back state of Pj. If Pi detects that m
if 3j, t : ((m.svbJ .inc, t) E ietb]) A (t < m.svljl.ts) is a straggler with virtual time t, it broadcasts a token

then discard m ; containing t and its current incarnation number k. It
else if m.ts < sv[i].ts then rolls back all states with virtual time greater than t

/* m is a straggler */ and increments its incarnation number, as shown in
token = (sv[i].inc, m.ts) ; Rollback, Thus, the token basically indicates that all
Broadcast(token) ; states of incarnation k with virtual time greater than t

/* Pi receives its own broadcast and rolls back. */ are orphans. States dependent on any of these orphan
Block till all LPs acknowledge broadcast ; states are also orphans.

Execute-message : When an LP receives a token containing virtual
m = messages with the lowest value of m.ts ; time t from Pj, it rolls back all states with the jth
Q j: sv[jl = max(sv~J,m.sv~]) ; timestamp greater than t, discards all orphan mes-
sv[i].ts = m.ts ; sages in its input queue, and increments its incarna-
Act on the event scheduled by m ; tion number. It does not broadcast a token, which

Receive-token(v, t) from Pj : is an important property of our protocol. This works
Send acknowledgement ; because transitive dependencies are maintained, Sup-
ietb] = ietb] U {(q-t)} ; pose state w of Pi is dependent on a rolled back state
Qm E input-queue : u of Pj. Then any state x dependent on w must also

if (m.sv[j].inc = v) A (t < m.svb].ts) be dependent on u. So x can be detected as an orphan
then discard m ; state when the token from Pj arrives at P%.,,, without

if (sv[j].inc = v) A (t < sw[j].ts) the need of an additional token from Pi. The argu-
then Rollback(j, (v,t)) ; ment for the detection of orphan messages is similar.

Rollback(j, (v, t)) : We require an LP to block its execution after broad-
Save the iet ; casting a token until it receives acknowledgments from
Restore the latest state s such that all the other LPs. This ensures that a token for a

svb] 2 (?I$) . ..(Cl) lower incarnation of Pj reaches all LPs before they
Discard the states that follow s ; can become dependent on any higher incarnation of
Restore the saved iet ; sv[i].inc + + ; Pj. This greatly simplifies the design because, when

Figure 4: Our protocol for distributed simulation a dependency entry is overwritten by an entry from
a higher incarnation in the lexicographical maximum
operation, it is guaranteed that no future rollback can

94

---_------ ---, -- .~ .-~ -__

occur due to the overwritten entry (as the correspond-
ing token must have arrived). While blocked, an LP
acknowledges the received broadcasts.
4.1 Proof of Correctness

Suppose state u of Pj is rolled back due to the ar-
rival of a straggler. The simulation is correct if all the
states that are dependent on u are also rolled back.
The following theorem proves that our protocol cor-
rectly implements the simulation.

Theorem 2 A state is rolled back due to either a
straggler or a token. A state is rolled back due to a
token if and only if it is dependerit on a state that has
been rolled back due to a straggler.

Proof. The routine Rollback is called from two places:
Receive-message and Receive-token. States that are
rolled back in a call from Receive-message are rolled
back due to a straggler. Suppose Pj receives a strag-
gler. Let u be one of the states of Pj that are rolled
back due to this straggler. In the call from routine Re-
ceive-token, any state w not satisfying condition (Cl)
is rolled back. Since the virtual time of u is greater
than the virtual time of the straggler, by Lemma 2,
any state w dependent on u will not satisfy condition
(Cl). In the future, no state can become dependent
on u because any message causing such dependency is
discarded: if it arrives after the token, it is discarded
by the first test in the routine Receive-message; if it
arrives before the token, it is discarded by the first
test in the routine Receive-token. So all orphan states
are rolled back.

From Lemma 3, for any state w not satisfying con-
dition (Cl) and thus rolled back, there exists a state u
which is rolled back due to the straggler, and u + w.
That means no state is unnecessarily rolled back. I

5 Reducing the Overhead
For systems with a large number of LP’s, the over-

head of SV and the delay due to the blocking can be
substantial. In this section, we describe several op-
timization techniques for reducing the overhead and
blocking.
5.1 Reducing the blocking

For simplicity, the protocol description in Figure 4
increments the incarnation number upon a rollback
due to a token (although it does not broadcast an-
other token). We next argue that the protocol works
even if the incarnation number is not incremented.
This modification then allows an optimization to re-
duce the blocking. We use the example in Figure 2(b)
to illustrate this modification. Suppose Pz executes

an event and makes a state transition from r20 to ~22
with virtual time 7 (not shown in the figure). If P2
does not increment its incarnation number on rolling
back due to the token from Pl, then ~22 will have
(0,7) as the 3rd entry of its SV, which is the same as
~21’s 3rd entry in Figure 2(a). Now suppose the 3rd
entry of a state w of another LP P3 is (0,7). How
does P3 decide whether w is dependent on ~21 which
is rolled back or ~22 which is not rolled back? The
answer is that, if w is dependent on ~21, then it is
also dependent on sll. Therefore, its orphan status
will be identified by its 2nd entry, without relying on
the 3rd entry.

The above modification ensures that, for every new
incarnation, a token is broadcast and so every LP will
have an iet entry for it. This allows the following opti-
mization technique for reducing the blocking. Suppose
Pi receives a straggler and broadcasts a token. Instead
of requiring Pi to block until it receives all acknowl-
edgements, we allow Pi to continue its execution in
the new incarnation. One problem that needs to be
solved is that dependencies on the new incarnation of
Pi may reach an LP Pj (through a chain of messages)
before the corresponding token does. If Pj has a de-
pendency entry on any rolled back state of the old
incarnation then it should be identified as an orphan
when the token arrives. Overwriting the old entry
with the new entry via the lexicographical maximum
operation results in undetected orphans and hence in-
correct simulation. The solution is to force Pj to block
for the token before acquiring any dependency on the
new incarnation. We conjecture that this blocking at
the token receiver’s side would be a improvement over
the original blocking at the token sender’s side if the
number of LPs (and hence acknowledgements) is large.

5.2 Reducing the size of simulation vec-
tors

The Global Virtual Time(GVT) is the virtual time
at a given point in simulation such that no state with
virtual time less than GVT will ever be rolled back. It
is the minimum of the virtual times of all LPs and all
the messages in transit at the given instant. Several
algorithms have been developed for computing GVT
[2, 201. To reduce the size of simulation vectors, any
entry that has a timestamp less than the GVT can be
set to NULL, and NULL entries need not be transmit-
ted with the message. This does not affect the correct-
ness of simulation because: (1) the virtual time of any
message must be greater than or equal to the GVT,
and so timestamps less than the GVT are never use-
ful for detecting stragglers; (2) the virtual time con-
tained in any token must be greater than or equal to

95

the GVT, and so timestamps less than the GVT are
never useful for detecting orphans. Since most of the
SV entries are initialized to -1 (see Figure 3) which
must be less than the GVT, this optimization allows a
simulation to start with very small vectors, and is par-
ticularly effective if there is high locality in message
activities.

Following [21], we can also use a K-optimistic pro-
tocol. In this scheme, an LP is allowed to act on a
message only if that will not result in more than Ii
non-NULL entries in its SV. Otherwise it blocks. This
ensures that an LP can be rolled back by at most .K
other LPs. In this sense optimistic protocols are N-
optimistic and pessimistic protocols are O-optimistic.

Another approach to reducing the size of simula-
tion vectors is to divide the LPs into clusters. Several
designs are possible. If the interaction inside a clus-
ter is optimistic while inter-cluster messages are sent
conservatively [18], independent SV’s can be used in-
side each cluster, involving only the LPs in the clus-
ter. If intra-cluster execution is sequential while inter-
cluster execution is optimistic [l], SV’s can be used for
inter-cluster messages with one entry per cluster. Sim-
ilarly one can devise a scheme where inter-cluster and
intra-cluster executions are both optimistic but em-
ploy different simulation vectors. This can be further
generalized to a hierarchy of clusters and simulation
vectors. In general, however, inter-cluster simulation
vectors introduce false dependencies [14] which may
result in unnecessary rollbacks. So there is a trade-off
between the size of simulation vectors and unneces-
sary rollbacks. But it does not affect the correctness
of the simulation.

6 Distributed Simulation and Dis-
tributed Recovery

The problem of failure recovery in distributed sys-
tems [6] is very similar to the problem of distributed
simulation. Upon a failure, a process typically restores
its last checkpoint and starts execution from there.
However, process states that were lost upon the fail-
ure may create orphans and cause the system state
to become inconsistent. A consistent system state is
one where the send of a message must be recorded if
its receive is recorded [6]. In pessimistic logging [6],
every message is logged before the receiver acts on it.
When a process fails, it restores its last checkpoint
and replays the logged messages in the original or-
der. This ensures that the pre-failure state is recreated
and no other process needs to be rolled back. But the
synchronization between message logging and message
processing reduces the speed of computation. In op-
timistic logging [19], messages are stored in a volatile

! 96

memory buffer and logged asynchronously to the sta-
ble storage. Since the content of volatile memory is
lost upon a failure, some of the messages are no longer
available for replay after the failure. Thus, some of the
process states are lost in the failure. States in other
processes that are dependent on these lost states then
become orphan states. Any optimistic logging proto-
col must roll back all orphan states in order to bring
the system back to a consistent state.

There are many parallels between the issues in dis-
tributed recovery and distributed simulation. A sur-
vey of different approaches to distributed recovery can
be found in [6]. In Table 1, we list the equivalent terms
from these two domains. References are omitted for
those terms that are widely used. The equivalence is
exact in many cases, but only approximate in other
cases.

Stragglers trigger rollbacks in distributed simula-
tion, while failures trigger rollbacks in distributed re-
covery. Conservative simulation [7] ensures that the
current state will never need to roll back. Similarly,
pessimistic logging [6] ensures that the current state
is always recoverable after a failure. In other words,
although a rollback does occur, the rolled back states
can always be reconstructed.

The time warp optimistic approach [lo] inspired the
seminal work on optimistic message logging [19]. The
optimistic protocol presented in this paper is based on
the optimistic recovery protocol presented in [4, 211.
In the simulation scheme by Dickens and Reynolds [5],
any results of an optimistically processed event are not
sent to other processes until they become definite [3],
In the recovery scheme by Jalote [ll], any messages
originating from an unstable state interval are not sent
to other processes until the interval becomes stable [6],
Both schemes confine the loss of computation, either
due to a straggler or a failure, to the local process.

Distributed Simulation
Logical Process

Virtual Time
Sim. Vector (this paper)

Straggler
Anti-Message

Fossil Collection [lo]
Global Virtual Time [2]
Conservative Schemes

Optimistic Schemes
Causality Error

Cascading Rollback [15]
Echoing [15]

Conditional Event [3]
Definite Event [3]

Distributed Recovery
Recovery Unit [19]

State Interval Index
Trans. Dep. Vector [19]

Failure
Rollback Announcement
Garbage Collection [6]

Global Recovery Line [6]
Pessimistic Schemes
Optimistic Schemes
Orphan Detection
Domino Effect [6]

Livelock [6]
Unstable State [6]

Stable State [6]

Table 1: Parallel terms from Distributed Simula-

-.--. -------~--~ .---. _-~-- ----_ -.- ---.-___~ -_-_~ ._~__ _____ _-_

tion and Recovery
Conservative and optimistic simulations are com-

bined in [l, 181 by dividing LPs into clusters and
having different schemes for inter-cluster and intra-
cluster executions. In distributed recovery, the paper
by Lowry et al. [14] describes an idea similar to the
conservative time windows in the simulation literature

[71*
Now we list some of the main differences between

the two areas. While the arrival of a straggler can
be prevented, the occurrence of a failure cannot. But
pessimistic logging can cancel the effect of a failure
through message logging and replaying. The arrival
of a straggler in optimistic simulation does not cause
any loss of information, while the occurrence of a fail-
ure in optimistic logging causes volatile message logs
to be lost. So some recovery protocols have to deal
with “lost in-transit message” problem [6] which is not
present in distributed simulation protocols. Incoming
messages from different channels can be processed in
an arbitrary order, while event messages in distributed
simulat,ion must be executed in the order of increas-
ing timestamps. Due to these differences, some of the
protocols presented in one area may not be applicable
to the other area.

Distributed recovery can potentially benefit from
the advances in distributed simulation in the areas of
memory management [13], analytical modeling to de-
termine checkpoint frequency [$I, checkpointing mech-
anisms [22], and time constrained systems [9]. Simi-
larly, research work on coordinated checkpointing, op-
timal checkpoint garbage collection, and dependency
tracking [6] can potentially be applied to distributed
simulation.

References
[l] H. Avril and C. Tropper. Clustered Time Warp and

Logic Simulation. Proc. 9th Workshop on Parallel and
Distributed Simulation, 112-119, 1995.

I?] S. Bellenot. Global Virtual Time Algorithms. Proc.
hfulticonference on Distributed Simulation, 122-127,
1990.

[3] 1~. M. Chandy and R. Sherman. The Conditional
Event Approach to Distributed Simulation. Proc.
SCS hfulticonference on Distributed Simulation, 93
99, 1959.

[<I] 0. P. Damani and V. 1~. Garg. How to Recover Ef-
ficiently and Asynchronously when Optimism Fails.
Proc. fGth IEEE Intl. Conf. Distributed Computing
Systems, 103-115, 1996.

[5] P. M. Dickens and P. F. Reynolds Jr. SRADS with
Local Rollback. Proc. SCS hfulticonference on Disk
Simulation, 161-164, 1990.

[(I] E. N. Elnozahy, D. B. Johnson and Y. M. Wang. A
Survey of Rollback-Recovery Protocols in Message-

[7] R. Fujimoto. ParaIIel Discrete Event Simulation.

I PI

PI

[lOI

Pll

D21

P31

P41

P51

P61

WI

DSI

PI

PO1

WI

PA

Comm. ACM, 33(10), 36-53, Oct. 1990.
J. Fleischmann and P. A. WiIsey. Comparative AnaIy-
sis of Periodic State Saving Techniques in Time Warp
Simulators. Proc. 9th Workshop on Parall. and Dist.
Simulation., 50-58, 1995.
K. Ghosh, R. M. Fujimoto, and K. Schwan. Time
Warp Simulation in Time Constrained Systems. Proc.
7th Workshop on Parallel and Distributed Simulation,
163-166, 1993.
D. R. Jefferson. Virtual Time. ACM Trans. Prog.
Lang. and Sys., 7(3), 404-425, 1985.
P. JaIote. Fault Tolerant Processes. Distributed Com-
puting, 3, 187-195, 1989.
L. Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. Communications of
the ACM, vol. 21, no. 7, 553-565, 1978.
Y. B. Lin. Memory Management Algorithms for Op-
timistic Parallel Simulation. Proc. 6th Workshop on
Parallel and Distributed Simulation, 43-52, 1992.
A. Lowry, J. R. Russel and A. P. Goldberg. Optimistic
Failure Recovery for Very Large Networks. Proc. Proc.
10th IEEE Symp. on Reliable Distributed Systems, 66
75, 1991.
B. D. Lubachevsky, A. Schwartz, and A. Weiss. RoII-
back Sometimes Works . . . if Filtered. Proc. 1989 Ivin-
ter Simulation Conference, 630-639, 19S9.
F. Mattern. Virtual Time and Global States of
Distributed Systems. Parallel and Distributed Algo-
rithms: Proc. of the Intl. Workshop on Parallel and
Distributed Algorithms, Elseuier Science Publishers
B. V.(North Holland), 215-226, 1989.
A. P&ash and R. Subramanian. An Efficient Opti-
mistic Distributed Simulation Scheme Based on Con-
ditional Knowledge. Proc. 6th Workshop on Parallel
and Dist. Simulation, 85-94, 1992.
H. Rajaei, R. Ayani, and L. E. Thorehi. The Local
Time Warp Approach to Parallel Simulation. Proc.
7th Workshop on Parallel and Distributed Simulation,
119-126, 1993.
R. E. Strom and S. Yemini. Optimistic Recovery in
Distributed Systems. AChl Trans. on Computer Sys-
tems, 204-226, August 1985.
A. I. TomIinson and V. K. Garg. An Algorithm for
Minimally Latent Global Virtual Time. Proc. 7th
Won&hop on Parallel and Distributed Simulation, 35-
42, 1993.
Y. M. Wang, 0. P. Damani, and V. K. Garg. Dis-
tributed Recovery with I<-Optimistic Logging. To ap
pear in Proc. the 17th IEEE Intl. Conf. Distributed
Computing Systems, 1997.
D. West and K. Panesar. Automatic Incremental
State Saving. Proc. 10th Workshop on Parallel and
Distributed Simulation, 78-85, 1996.

Passing Systems. Tech. Rep. No. CMU-CS-96-181,
Dept. of Computer Science, Carnegie Mellon Uniuer-
sity, ftp://ftp.cs.cmu.edu/user/mootaz/papers/S.ps,
1996.

97

