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Abstract 
In traditional optimistic distributed simulation pro- 

tocols, a logical process(LP) receiving a straggler rolls 
back and sends out anti-messages. Receiver of an 
anti-message may also roll back and send out more 
anti-messages. So a single straggler may result in 
a large number of anti-messages and multiple roll- 
backs of some LPs. In our protocol, an LP receiv- 
ing a straggler broadcasts its rollback. On receiving 
this announcement, other LPs may roll back but they 
do not announce their rollbacks. So each LP rolls 
back at most once in response to each straggler. Anti- 
messages are not used. This eliminates the need for 
output queues and results in simple memory manage- 
ment. It also eliminates the problem of cascading roll- 
backs and echoing, and results in faster simulation. 
All this is achieved by a scheme for maintaining tran- 
sitive dependency information. The cost incurred in- 
cludes the tagging of each message with extm depen- 
dency information and the increased processing time 
upon receiving a message. We also present the simi- 
larities between the two areas of distributed simulation 
and distributed recovery. We show how the solutions 
for one area can be applied to the other area. 

1 Introduction 
We modify the time warp algorithm to quickly stop 

the spread of erroneous computation. Our scheme 
does not require output queues and anti-messages. 
This results in less memory overhead and simple mem- 
ory management algorithms. It also eliminates the 
problem of cascading rollbacks and echoing [15], re- 
sulting in faster simulation. We use aggressive cancel- 
lation [7]. 

Our protocol is an adaptation of a similar protocol 
for the problem of distributed recovery [4, 211. We 
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illustrate the main concept behind this scheme with 
the help of Figure 1. In the figure, horizontal arrows 
show the direction of the simulation time. Messages 
are shown by the inter-process directed arrows. Circles 
represent states. State transition is caused by acting 
on the message associated with the incoming arrow. 
For example, the state transition of Pl from ~10 to 
sll happened when Pl acted on m0. In the time 
warp scheme, when a logical process (LP) P2 receives 
a straggler (i.e., a message which schedules an event in 
P2’s past) it rolls back the state s20 and sends an anti- 
message corresponding to message m2. On receiving 
this anti-message, Pl rolls back state s10 and sends 
an anti-message corresponding to ml. It then acts on 
the next message in its message queue, which happens 
to be m0. On receiving the anti-message for ml, PO 
rolls back so0 and sends an anti-message for m0. On 
receiving this anti-message, Pl rolls back sll. 

In our scheme, transitive dependency information is 
maintained with all states and messages. After rolling 
back s20 due to a straggler, P2 broadcasts that ~20 
has been rolled back. On receiving this announce- 
ment, Pl rolls back s10 as it finds that s10 is tran- 
sitively dependent on ~20. Pl also finds that m0 is 
transitively dependent on s20 and discards it. Sim- 
ilarly PO rolls back so0 on receiving the broadcast, 
We see that Pl was able to discard m0 faster com- 
pared to the previous scheme. Even PO would likely 
receive the broadcast faster than receiving the anti- 
message for ml as that can be sent only after Pl has 
rolled back ~10. Therefore, simulation should proceed 
faster. As explained later, we use incarnation num- 
ber to distinguish between two states with the same 
timestamp, one of which is committed and the other 
is rolled back. 

We only need the LP that receives a straggler to 
broadcast the timestamp of the straggler. Every other 
LP can determine whether they need to roll back or 
not by comparing their local dependency information 
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with the broadcast timestamp. Other LPs that roll 
back in response to a rollback announcement do not 
send any announcement or anti-messages. Hence, each 
LP rolls back at most once in response to a strag- 
gler, and the problem of multiple rollbacks is avoided. 
Several schemes have been proposed to minimize the 

Figure 1: A Distributed Simulation. 

spread of erroneous computations. A survey of these 
schemes can be found in [7]. The Filter protocol by 
Prakash and Subramanian [l?] is most closely related 
to our work. It maintain a list of assumptions with 
each message, which describe the class of straggler 
events that could cause this message to be canceled. 
It maintains one assumption per channel, whereas our 
protocol can be viewed as maintaining one assumption 
per LP. In the worst case, Filter tags each message 
with 0(n2) integers whereas our protocol tags O(n) 
integers, where n is the number of LPs in the sys- 
tem. Since for some applications even O(n)-tagging 
may not be acceptable, we also describe techniques to 
further reduce this overhead. If a subset of LPs inter- 
act mostly with each other, then, for most of the time, 
the tag size of their messages will be bounded by the 
size of the subset. 

The paper is organized as follows. Section 2 de- 
scribes the basic model of simulation; Section 3 in- 
troduces the happen before relation between states 
and the simulation vector which serves as the basis of 
our optimistic simulation protocol; Section 4 describes 
the protocol and gives a correctness proof; Section 5 
presents optimization techniques to reduce the over- 
head of the protocol; Section 6 compares distributed 
simulation with distributed recovery. 

2 Model of Simulation 
We consider event-driven optimistic simulation. 

The execution of an LP consists of a sequence of states 
where each state transition is caused by the execution 
of an event. If there are multiple events scheduled 
at the same time, it can execute those events in an 
arbitrary order. In addition to causing a state transi- 
tion, executing an event may also schedule new events 
for other LPs (or the local LP) by sending messages. 

When LP Pl acts on a message from P2, Pl becomes 
dependent on P2. This dependency relation is transi- 
tive. 

The arrival of a straggler causes an LP to roll back. 
A state that is rolled back, or is transitively dependent 
on a rolled back state is called an orphan state. A 
message sent from an orphan state is called an orphan 
message. For correctness of a simulation, all orphan 
states must be rolled back and all orphan messages 
must be discarded. 

An example of a distributed simulation is shown 
in Figure 2. Numbers shown in parentheses are ei- 
ther the virtual times of states or the virtual times of 
scheduled events carried by messages. Solid lines indi- 
cate useful computations, while dashed lines indicate 
rolled back computations. In Figure 2(a), ~00 sched- 
ules an event for Pl at time 5 by sending message 
m0. Pl optimistically executes this event, resulting 
in a state transition from ~10 to sll, and schedules an 
event for P2 at time 7 by sending message ml. Then 
Pl receives message m2 which schedules an event at 
time 2 and is detected as a straggler. Execution after 
the arrival of this straggler is shown in Figure 2(b). 
Pl rolls back, restores ~10, takes actions needed for 
maintaining the correctness of the simulation (to be 
described later) and restarts from state r10. Then it 
broadcasts a rollback announcement (shown by dot- 
ted arrows), acts on m2, and then acts on m0. Upon 
receiving the rollback announcement from Pl, P2 re- 
alizes that it is dependent on a rolled back state and 
so it also rolls back, restores state ~20, takes actions 
needed, and restarts from state r20. Finally, the or- 
phan message ml is discarded by P2. 

3 Dependency %acking 
From here on, i,j refer to LP numbers; k refers to 

incarnation number; s,u,w,x refer to states; Pi refers 
to logical process i; s.p refers to the number associated 
with the LP to which s belongs, that is, s.p = i + s E 
Pi; m refers to a message and e refers to an event. 

3.1 Happen Before Relation 
Lamport defined the happen before(+) relation be- 

tween events in a rollback-free distributed computa- 
tion [12]. To take rollbacks into account, we extend 
this relation. As in [4, 211, we define it for the states. 
For any two states s and u, s + u is the transitive 
closure of the relation defined by the following three 
conditions: 

1. s.p= u.p and s immediately precedes u. 

2. s.p = u.p and s is the state restored after a roll- 
back and u is the state after Pu.+ has taken the 
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Figure 2: Using Simulation Vector for Distributed Simulation. (a) Pm-straggler computation. (b) Post-straggler 
computation. 

actions needed to maintain the correctness of sim- 
ulation despite the rollbacks. For example, in Fig- 
ure 2(b), s20 + ~20. 

3. s is the sender of a message m and u is the re- 
ceiver’s state after the event scheduled by m is 
executed. 

For example, in Figure 2(a), ~10 + sll and so0 -+ 
~21, and in Figure 2(b) sll f, ~10. Saying s happened 
before u is equivalent to saying that u is transitively 
dependent on s. 

For our protocol, “actions needed to maintain the 
correctness of simulation” include broadcasting a roll- 
back announcement and incrementing the incarnation 
number. For other protocols, the actions may be dif- 
ferent. For example, in time warp, these actions in- 
clude the sending of anti-messages. Our definition of 
happen before is independent of such actions. The 
terms “rollback announcements” and “tokens” will be 
used interchangeably. Tokens do not contribute to the 
happen before relation. So if u receives a token from 
s, u does not become transitively dependent on s due 
to this token. 

3.2 Simulation Vector 
A vector clock is a vector of size n where n is the 

number of processes in the system [16]. Each vector 
entry is a timestamp that usually counts the num- 
ber of send and receive events of a process. In the 
context of distributed simulation, we modify and ex- 
tend the notion of vector clock, and define a Simula- 
tion Vector (SV) as follows. To maintain dependency 
in the presence of rollbacks, we extend each entry to 
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contain both a timestamp and an incarnation num- 
ber [19]. The timestamp in the it* entry of the SV of 
Pi corresponds to the virtual time of Pi. The times- 
tamp in the jth entry corresponds to the virtual time 
of the latest state of Pj on which Pi depends. The 
incarnation number in the it* entry is equal to the 
number of times Pi has rolled back. The incarnation 
number in the jth entry is equal to the highest incar- 
nation number of Pj on which Pi depends. Let entry 
en be a tuple (incarnation u, timestamp i). We define 
a lexicographical ordering between entries as follows: 
en1 < en2 E (VI < 212) V [(q = 4 A (t* < i2)]. 

Simulation vectors are used to maintain transitive 
dependency information. Suppose Pi schedules an 
event e for Pj at time t by sending a message m. Pi 
attaches its current SV to m. By “virtual time of m”, 
we mean the scheduled time of the event e. If m is 
neither an orphan nor a straggler, it is kept in the in- 
coming queue by Pj. When the event corresponding 
to m is executed, Pj updates its SV with m’s SV by 
taking the componentwise lexicographical maximum. 
Then Pj updates its virtual time (denoted by the jt” 
timestamp in its SV) to the virtual time of m. A for- 
mal description of the SV protocol is given in Figure 
3. Examples of SV are shown in Figure 2 whew the 
SV of each state is shown in the box near it. 

The SV has properties similar to a vector clock, 
It can be used to detect the transitive dependencies 
between states. The following theorem shows the re- 
lationship between virtual time and SV. 

Theorem 1 The timestamp in the ith entry of Pi’s 
SV corresponds to the virtual time of Pi. 



LPPi: 

type entry = (int inc, int ts) 
/* incarnation, timestamp */ 

var sv: array [O..n-l] of entry 
Initialize : 

Vj: sv~].inc = 0 ; svlj].ts = -1 ; 
sv[i].ts = 0 ; 

Sondmessage(m) : 
m.sv = sv ; 
m.ts = time at which m should be executed ; 
send (m.data, m.ts, m.sv) ; 

Executemessage (m.duta, m.ts, m.sv) : 
/* Pi executes event scheduled by m */ 
V j: svb] = max(svli],m.svb]) ; 
sv[i].ts = m.ts ; 

Rollback : 
/* State s is restored. So, sv = s.sv */ 
sv[i].inc + + ; 

Figure 3: Formal description of the Simulation Vector 
protocol 

Proof. By Induction. The above claim is true for 
the initial state of Pi. While executing a message, the 
virtual time of the Pi is correctly set. After a rollback, 
virtual time of the restored state remains unchanged. 

Let s.sv denote the SV of Pf.p in state s. We define 
the ordering between two SV’s c and d as follows. 

c < d z (Vi : c[i] 2 d[i]). 

*th In Pi’s SV, the J timestamp denotes the maximum 
virtual time of Pj on which Pi depends. This times- 
tamp should not be greater than Pi’s own virtual time. 
Lemma 1 formalizes the above notion. 

Lemma 1 The timestump in the it* entry of the SV 
of a state of Pi hus the highest value among all the 
timestumps in this SV. 

Proof By induction. The lemma is true for the initial 
state of Pi. Assume that state s of Pj sent a mes- 
sage m to Pi. State u of Pi executed m, resulting in 
state w. By induction hypothesis, s.svljl.ts and the 
u.sv[i].ts are the highest timestamps in their SV’s. So 
the maximum of these two timestamps is greater than 
all the timestamps in w.sv after the maxoperation in 
Execute-message. Now m.ts, the virtual time of mes- 
sage m, is not less than the virtual time of the state s 
sending the message. It is also not less than the virtual 
time of the state u acting on the message, otherwise, 
it would have caused a rollback. So by theorem 1, 

m.ts is not less than the masimum of s.svljJ.ts and 
the u.sv[i].ts. Hence setting the w.sv[i].ts to m.ts pre- 
serves the above property. All other routines do not 
change the timestamps. I 

The following two lemmas give the relationship be- 
tween the SV and the happen before relation. 

Lemma 2 Ifs happens before u, then s.sv is less than 
or equal to 21.~21. 

Proof. By induction. Consider any two states s and u 
such that s happens before u by applying one of the 
three rules in the definition of happen before. In case 
of rule 1, state s is changed to state u by acting on 
a message m. The update of the SV by taking the 
maximum in the routine Execute-message maintains 
the above property. Now consider the next action in 
which u.sv[u.p].ts is set to m.ts. Since virtual time 
of m cannot be less than the virtual time of state s 
executing it, this operation also maintains the above 
property. 

In case of rule 2, in routine Rollback, the update of 
the SV by incrementing the incarnation number pre- 
serves the above property. The case of rule 3 is similar 
to that of the rule 1. Let state w change to state u by 
acting on the message m sent by state s. By lemma 1, 
in m’s SV, s.pth timestamp is not less than the u.pth 
timestamp. Also the virtual time of m is not less than 
the s.p th timestamp in its SV. Hence setting the it* 
timestamp to the virtual time of m, after taking mux, 
preserves the above property. I 

The following lemmashows that LPs acquire times- 
tamps by becoming dependent on other LPs. This 
property is later used to detect orphans. This lemma 

-th states that if J timestamp in state w’s SV is not mi- 
nus one (an impossible virtual time) then w must be 
dependent. on a state u of Pj, where the virtual time 
of u is w.sv[jl.ts . 

Lemma 3 Vw, j : j # w-p : (w.svlj].ts = -1) V (3u : 
(u.p = j) A (u + w) A (u.svb] = w.svj-j])). 

Proof. By induction. Initialize trivially satisfies the 
above property. In Execute-message, let x be the state 
that sends m and let state s change to state w by 
acting on m. By induction hypothesis, x and s satisfy 
the lemma. 

In taking maximum, let the jth entry from t is se- 
lected. If j is x.p then x itself plays the role of u. 
Else, by induction hypothesis, (x.sv[j].ts = -1)V(3u : 
(u.p = j) A (u + x) A u.svli] = x.svb]). Hence either 
w.svljl.ts is -1 or by transitivity, u happens before w. 
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The same argument also applies to the case where the 4 The Protocol 
jth entry comes from s. Our protocol for distributed simulation is shown 

In case of Rollback, let s be the state restored and in Figure 4. To keep the presentation and correct- 
let w be the state resulting from s by taking the ac- ness proof clear, optimization techniques for reducing 
tions needed for the correct simulation. By induction overhead are not included in this protocol, They are 
hypothesis, s satisfies the lemma. Now s.sv and w.sv described in the next section. Besides a simulation 
differ only in w.pth entry and all states that happened vector, each LP Pi also maintains an incarnation end 
before s also happened before w. Hence w satisfies the table (iet). The jth component of iet is a set of entries 
lemma. I of the form (k,ts), where ts is the timestamp of the 

straggler that caused the rollback of the kth incarna- 
tion of Pj. All states of the kth incarnation of Pj with 

LP Pi : timestamp greater than ts have been rolled back, The 

type entry = (int inc, int ts) iet allows an LP to detect orphan messages. 

var sv : array[O..n-1] of entry; /* simulation vector */ When Pi is ready for the next event, it acts on the 

iet : array[O..n-1] of set of entry; message with the lowest virtual time. As explained in 

/* incarnation end table */ Section 3, Pi updates its SV and the internal state, and 

token : entry; /* rollback announcement */ possibly schedules events for itself and for the other 

Initialize : LPs by sending messages. 

Q j : svljl.inc = 0 ; svCjl.ts = -1 ; Upon receiving a message m, Pi discards m if m is 
sv[i].ts = 0 ; an orphan. This is the case when, for some j, Pi’s iet 
Q j : ietb] = {} ; /* empty set */ and the jth entry of m’s SV indicate that m is depen- 

Receive-message(m) : dent on a rolled back state of Pj. If Pi detects that m 
if 3j, t : ((m.svbJ .inc, t) E ietb]) A (t < m.svljl.ts) is a straggler with virtual time t, it broadcasts a token 

then discard m ; containing t and its current incarnation number k. It 
else if m.ts < sv[i].ts then rolls back all states with virtual time greater than t 

/* m is a straggler */ and increments its incarnation number, as shown in 
token = (sv[i].inc, m.ts) ; Rollback, Thus, the token basically indicates that all 
Broadcast(token) ; states of incarnation k with virtual time greater than t 

/* Pi receives its own broadcast and rolls back. */ are orphans. States dependent on any of these orphan 
Block till all LPs acknowledge broadcast ; states are also orphans. 

Execute-message : When an LP receives a token containing virtual 
m = messages with the lowest value of m.ts ; time t from Pj, it rolls back all states with the jth 
Q j: sv[jl = max(sv~J,m.sv~]) ; timestamp greater than t, discards all orphan mes- 
sv[i].ts = m.ts ; sages in its input queue, and increments its incarna- 
Act on the event scheduled by m ; tion number. It does not broadcast a token, which 

Receive-token(v, t) from Pj : is an important property of our protocol. This works 
Send acknowledgement ; because transitive dependencies are maintained, Sup- 
ietb] = ietb] U {(q-t)} ; pose state w of Pi is dependent on a rolled back state 
Qm E input-queue : u of Pj. Then any state x dependent on w must also 

if (m.sv[j].inc = v) A (t < m.svb].ts) be dependent on u. So x can be detected as an orphan 
then discard m ; state when the token from Pj arrives at P%.,,, without 

if (sv[j].inc = v) A (t < sw[j].ts) the need of an additional token from Pi. The argu- 
then Rollback(j, (v,t)) ; ment for the detection of orphan messages is similar. 

Rollback( j, (v, t)) : We require an LP to block its execution after broad- 
Save the iet ; casting a token until it receives acknowledgments from 
Restore the latest state s such that all the other LPs. This ensures that a token for a 

svb] 2 (?I$) . ..(Cl) lower incarnation of Pj reaches all LPs before they 
Discard the states that follow s ; can become dependent on any higher incarnation of 
Restore the saved iet ; sv[i].inc + + ; Pj. This greatly simplifies the design because, when 

Figure 4: Our protocol for distributed simulation a dependency entry is overwritten by an entry from 
a higher incarnation in the lexicographical maximum 
operation, it is guaranteed that no future rollback can 
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occur due to the overwritten entry (as the correspond- 
ing token must have arrived). While blocked, an LP 
acknowledges the received broadcasts. 
4.1 Proof of Correctness 

Suppose state u of Pj is rolled back due to the ar- 
rival of a straggler. The simulation is correct if all the 
states that are dependent on u are also rolled back. 
The following theorem proves that our protocol cor- 
rectly implements the simulation. 

Theorem 2 A state is rolled back due to either a 
straggler or a token. A state is rolled back due to a 
token if and only if it is dependerit on a state that has 
been rolled back due to a straggler. 

Proof. The routine Rollback is called from two places: 
Receive-message and Receive-token. States that are 
rolled back in a call from Receive-message are rolled 
back due to a straggler. Suppose Pj receives a strag- 
gler. Let u be one of the states of Pj that are rolled 
back due to this straggler. In the call from routine Re- 
ceive-token, any state w not satisfying condition (Cl) 
is rolled back. Since the virtual time of u is greater 
than the virtual time of the straggler, by Lemma 2, 
any state w dependent on u will not satisfy condition 
(Cl). In the future, no state can become dependent 
on u because any message causing such dependency is 
discarded: if it arrives after the token, it is discarded 
by the first test in the routine Receive-message; if it 
arrives before the token, it is discarded by the first 
test in the routine Receive-token. So all orphan states 
are rolled back. 

From Lemma 3, for any state w not satisfying con- 
dition (Cl) and thus rolled back, there exists a state u 
which is rolled back due to the straggler, and u + w. 
That means no state is unnecessarily rolled back. I 

5 Reducing the Overhead 
For systems with a large number of LP’s, the over- 

head of SV and the delay due to the blocking can be 
substantial. In this section, we describe several op- 
timization techniques for reducing the overhead and 
blocking. 
5.1 Reducing the blocking 

For simplicity, the protocol description in Figure 4 
increments the incarnation number upon a rollback 
due to a token (although it does not broadcast an- 
other token). We next argue that the protocol works 
even if the incarnation number is not incremented. 
This modification then allows an optimization to re- 
duce the blocking. We use the example in Figure 2(b) 
to illustrate this modification. Suppose Pz executes 

an event and makes a state transition from r20 to ~22 
with virtual time 7 (not shown in the figure). If P2 
does not increment its incarnation number on rolling 
back due to the token from Pl, then ~22 will have 
(0,7) as the 3rd entry of its SV, which is the same as 
~21’s 3rd entry in Figure 2(a). Now suppose the 3rd 
entry of a state w of another LP P3 is (0,7). How 
does P3 decide whether w is dependent on ~21 which 
is rolled back or ~22 which is not rolled back? The 
answer is that, if w is dependent on ~21, then it is 
also dependent on sll. Therefore, its orphan status 
will be identified by its 2nd entry, without relying on 
the 3rd entry. 

The above modification ensures that, for every new 
incarnation, a token is broadcast and so every LP will 
have an iet entry for it. This allows the following opti- 
mization technique for reducing the blocking. Suppose 
Pi receives a straggler and broadcasts a token. Instead 
of requiring Pi to block until it receives all acknowl- 
edgements, we allow Pi to continue its execution in 
the new incarnation. One problem that needs to be 
solved is that dependencies on the new incarnation of 
Pi may reach an LP Pj (through a chain of messages) 
before the corresponding token does. If Pj has a de- 
pendency entry on any rolled back state of the old 
incarnation then it should be identified as an orphan 
when the token arrives. Overwriting the old entry 
with the new entry via the lexicographical maximum 
operation results in undetected orphans and hence in- 
correct simulation. The solution is to force Pj to block 
for the token before acquiring any dependency on the 
new incarnation. We conjecture that this blocking at 
the token receiver’s side would be a improvement over 
the original blocking at the token sender’s side if the 
number of LPs (and hence acknowledgements) is large. 

5.2 Reducing the size of simulation vec- 
tors 

The Global Virtual Time(GVT) is the virtual time 
at a given point in simulation such that no state with 
virtual time less than GVT will ever be rolled back. It 
is the minimum of the virtual times of all LPs and all 
the messages in transit at the given instant. Several 
algorithms have been developed for computing GVT 
[2, 201. To reduce the size of simulation vectors, any 
entry that has a timestamp less than the GVT can be 
set to NULL, and NULL entries need not be transmit- 
ted with the message. This does not affect the correct- 
ness of simulation because: (1) the virtual time of any 
message must be greater than or equal to the GVT, 
and so timestamps less than the GVT are never use- 
ful for detecting stragglers; (2) the virtual time con- 
tained in any token must be greater than or equal to 
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the GVT, and so timestamps less than the GVT are 
never useful for detecting orphans. Since most of the 
SV entries are initialized to -1 (see Figure 3) which 
must be less than the GVT, this optimization allows a 
simulation to start with very small vectors, and is par- 
ticularly effective if there is high locality in message 
activities. 

Following [21], we can also use a K-optimistic pro- 
tocol. In this scheme, an LP is allowed to act on a 
message only if that will not result in more than Ii 
non-NULL entries in its SV. Otherwise it blocks. This 
ensures that an LP can be rolled back by at most .K 
other LPs. In this sense optimistic protocols are N- 
optimistic and pessimistic protocols are O-optimistic. 

Another approach to reducing the size of simula- 
tion vectors is to divide the LPs into clusters. Several 
designs are possible. If the interaction inside a clus- 
ter is optimistic while inter-cluster messages are sent 
conservatively [18], independent SV’s can be used in- 
side each cluster, involving only the LPs in the clus- 
ter. If intra-cluster execution is sequential while inter- 
cluster execution is optimistic [l], SV’s can be used for 
inter-cluster messages with one entry per cluster. Sim- 
ilarly one can devise a scheme where inter-cluster and 
intra-cluster executions are both optimistic but em- 
ploy different simulation vectors. This can be further 
generalized to a hierarchy of clusters and simulation 
vectors. In general, however, inter-cluster simulation 
vectors introduce false dependencies [14] which may 
result in unnecessary rollbacks. So there is a trade-off 
between the size of simulation vectors and unneces- 
sary rollbacks. But it does not affect the correctness 
of the simulation. 

6 Distributed Simulation and Dis- 
tributed Recovery 

The problem of failure recovery in distributed sys- 
tems [6] is very similar to the problem of distributed 
simulation. Upon a failure, a process typically restores 
its last checkpoint and starts execution from there. 
However, process states that were lost upon the fail- 
ure may create orphans and cause the system state 
to become inconsistent. A consistent system state is 
one where the send of a message must be recorded if 
its receive is recorded [6]. In pessimistic logging [6], 
every message is logged before the receiver acts on it. 
When a process fails, it restores its last checkpoint 
and replays the logged messages in the original or- 
der. This ensures that the pre-failure state is recreated 
and no other process needs to be rolled back. But the 
synchronization between message logging and message 
processing reduces the speed of computation. In op- 
timistic logging [19], messages are stored in a volatile 
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memory buffer and logged asynchronously to the sta- 
ble storage. Since the content of volatile memory is 
lost upon a failure, some of the messages are no longer 
available for replay after the failure. Thus, some of the 
process states are lost in the failure. States in other 
processes that are dependent on these lost states then 
become orphan states. Any optimistic logging proto- 
col must roll back all orphan states in order to bring 
the system back to a consistent state. 

There are many parallels between the issues in dis- 
tributed recovery and distributed simulation. A sur- 
vey of different approaches to distributed recovery can 
be found in [6]. In Table 1, we list the equivalent terms 
from these two domains. References are omitted for 
those terms that are widely used. The equivalence is 
exact in many cases, but only approximate in other 
cases. 

Stragglers trigger rollbacks in distributed simula- 
tion, while failures trigger rollbacks in distributed re- 
covery. Conservative simulation [7] ensures that the 
current state will never need to roll back. Similarly, 
pessimistic logging [6] ensures that the current state 
is always recoverable after a failure. In other words, 
although a rollback does occur, the rolled back states 
can always be reconstructed. 

The time warp optimistic approach [lo] inspired the 
seminal work on optimistic message logging [19]. The 
optimistic protocol presented in this paper is based on 
the optimistic recovery protocol presented in [4, 211. 
In the simulation scheme by Dickens and Reynolds [5], 
any results of an optimistically processed event are not 
sent to other processes until they become definite [3], 
In the recovery scheme by Jalote [ll], any messages 
originating from an unstable state interval are not sent 
to other processes until the interval becomes stable [6], 
Both schemes confine the loss of computation, either 
due to a straggler or a failure, to the local process. 

Distributed Simulation 
Logical Process 

Virtual Time 
Sim. Vector (this paper) 

Straggler 
Anti-Message 

Fossil Collection [lo] 
Global Virtual Time [2] 
Conservative Schemes 

Optimistic Schemes 
Causality Error 

Cascading Rollback [15] 
Echoing [15] 

Conditional Event [3] 
Definite Event [3] 

Distributed Recovery 
Recovery Unit [19] 

State Interval Index 
Trans. Dep. Vector [19] 

Failure 
Rollback Announcement 
Garbage Collection [6] 

Global Recovery Line [6] 
Pessimistic Schemes 
Optimistic Schemes 
Orphan Detection 
Domino Effect [6] 

Livelock [6] 
Unstable State [6] 

Stable State [6] 

Table 1: Parallel terms from Distributed Simula- 
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tion and Recovery 
Conservative and optimistic simulations are com- 

bined in [l, 181 by dividing LPs into clusters and 
having different schemes for inter-cluster and intra- 
cluster executions. In distributed recovery, the paper 
by Lowry et al. [14] describes an idea similar to the 
conservative time windows in the simulation literature 

[71* 
Now we list some of the main differences between 

the two areas. While the arrival of a straggler can 
be prevented, the occurrence of a failure cannot. But 
pessimistic logging can cancel the effect of a failure 
through message logging and replaying. The arrival 
of a straggler in optimistic simulation does not cause 
any loss of information, while the occurrence of a fail- 
ure in optimistic logging causes volatile message logs 
to be lost. So some recovery protocols have to deal 
with “lost in-transit message” problem [6] which is not 
present in distributed simulation protocols. Incoming 
messages from different channels can be processed in 
an arbitrary order, while event messages in distributed 
simulat,ion must be executed in the order of increas- 
ing timestamps. Due to these differences, some of the 
protocols presented in one area may not be applicable 
to the other area. 

Distributed recovery can potentially benefit from 
the advances in distributed simulation in the areas of 
memory management [13], analytical modeling to de- 
termine checkpoint frequency [$I, checkpointing mech- 
anisms [22], and time constrained systems [9]. Simi- 
larly, research work on coordinated checkpointing, op- 
timal checkpoint garbage collection, and dependency 
tracking [6] can potentially be applied to distributed 
simulation. 
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