
2014 International Conference on Electronics and Communication System (JCECS -2014)

A Reduced Overhead Replacement Policy for

Chip Multiprocessors having Victim Retention

Shirshendu Das, Dhantu Buragohain and Hemangee K. Kapoor

Dept. o{Computer Science and Engineering
Indian Institute o{Technology Guwahati,
Guwahtai, Assam, India - 781039
email: (shirshendu, dhantu.buragohain, hemangee)@iitg.ernet.in

Abstract-Due to the non-uniform distribution of the memory

accesses for today's applications some sets of the cache are

heavily used while some other sets remain underutilized. CMP­

VR is an approach to dynamically increase the associativity of

heavily used sets without increasing the cache size. It achieves

this by reserving certain number of ways in each set to be shared

with other sets and the remaining are private to the set. These

shared ways from all sets form common reserve storage, while

the private ways form the normal storage. In both the partitions

it uses LRU replacement policy. This paper presents an

optimization on CMP-VR by removing the LRU policy from the

normal storage of the set. A victim from this normal storage can

reside in the reserved/shared area and will get evicted from here

using the LRU policy. Thus our optimization does not hamper

cache performance. At the same time it helps to remove the

complexity of implementing true LRU. Storage analysis shows 7-
18% reduction in the replacement cost. CPI and miss rate also

improve by 4% and 16% respectively for a 4MB 8 way

associative LLC.

Keywords-component; LRU, Pseudo-LRU, Tiled CMP, NUCA,
Random-LRU

I. INTRODUCTION

The main component for building today's computer
systems is Chip Multiprocessors (CMPs) where multiple CPUs
(cores) are placed on the same chip [1]. On-chip caches have
multiple levels. In this paper we concentrate on the last level
cache (LLC). With increasing associativity of LLCs,
implementing effective replacement policy plays a major role
in improving the performance of CMP [2]. The best policy for
replacement is to always discard the cache blocks which will
not be needed for the longest time in the future. This optimal
policy is called Belady's optimal algorithm [3]. But since it is
generally impossible to predict how far in future the
information will be needed, the policy is not implementable in
practice. Due to this reason other replacement policies like
least recently used (LRU) and pseudo-LRU are mostly used.

In case of highly associative LLC's, true LRU impose
additional complexity and area overheads. There are some
other interesting proposals for cache replacement policies
(discussed in Section II); but most of them have complex
mechanism and hardware overhead for maintaining aging bits,
counters etc. LRU performs better in many applications having
higher temporal locality [I]. Hence, instead of completely
removing the concept of LRU, researchers proposed innovative

techniques to improve the performance of LRU based policies
[4], [5], [6], [7].

In LRU a cache block can remain long time in the cache
even after its last use. This is because it takes a long time to
make the block as LRU block. Such types of blocks are called
dead blocks [8]. Also there can be some blocks in L2 which
may never be reused in future; such blocks are immediately
dead after loading into L2 cache. These blocks are called
never-reused blocks [8]. Dead and never-reused blocks are an
unnecessary burden of LRU policy and degrade performance.

Though the size of LLC available in CMPs is increasing, an
efficient utilization of it remains an issue. The non-uniform
memory access distribution causes some sets to be used heavily
while other remains underutilized. To overcome such problem
the associativity of each individual set must be allowed to
increase/decrease dynamically based on the requirement of the
executing application [9]. Dynamic management of
associativity allows a heavily used set to increase its
associativity by using the so called "idle" ways of the
underutilized sets. It improves performance without changing
the actual size of the cache [9]. But implementing such
dynamic associativity management for a cache with optimized
power and area consumption is a major challenge.

In an earlier work we proposed a technique called CMP-VR
[10] to dynamically manage the associativity of LLC sets. It
divides the ways of each set into two storage groups: normal
storage (NT) and reserve storage (RT). NT behaves same as
conventional cache while RT takes 25% to 50% ways from
each set and the entire RT can be used by any set in the cache.
A heavily used set can use the RT section of other
underutilized sets to dynamically increase its associativity. The
RT behaves as a fully associative cache and a separate fully
associative tag-array (TGS) is required to manage it. Instead of
removing the conventional one-to-one mapping from the entire
cache (as done in [9], [11]) CMP-VR removes it only from RT.
Also no forwardlbackward pointers have been used which
results in much lesser storage overhead than V -way. CMP-VR
gives 14% performance improvement over conventional cache.

A major challenge in CMP-VR is to reduce the hardware
cost of TGS. Though reserving 50% ways for RT gives better
improvements, it consumes much higher energy and power
than reserving 25%. This is because of the larger size of TGS.
In CMP-VR, NT section of each set has its own LRU stack and

2014 International Conference on Electronics and Communication System (JCECS -2014)

all the lines in RT section uses a common global LRU stack. In
this paper we propose a mechanism to reduce the hardware
overhead of the replacement policy used in CMP-VR. We used
the concept of random-LRU [12] in CMP-VR and applies
random replacement policy for the NT section of all the sets.
The LRU policy is now only maintained in the RT section.
This reduces the hardware overhead of the replacement policy
used in CMP-VR by 9% and hence the additional cost of larger
TGS can be partially compensated. We call the newly proposed
CMP-VR as RCMP-VR.

The rest of the paper is organized as follows. The next
section presents the related works in CMP cache architectures
and replacement policies. Section III describes our proposed
cache replacement policy for CMP-YR. Section IV covers
performance evaluation using full-system simulation. Finally
Section V concludes the paper.

II. RELATED WORK

Recent chip multiprocessors (CMPs) consist of multiple
tiles connected with some low-radix (2D-mesh) network of

interconnects [1]. Each tile has its own processor, private L1
cache and either a private or a public L2 cache [13],

[14], [15].The L2 cache is divided into multiple banks and each
tile contains one L2-bank.

The non-uniform distribution of memory access is a major
cause for higher conflict misses [9]. A conventional set­

associative cache cannot adjust its associativity dynamically

because of the static one-to-one mapping between tag entries

and data lines. V -way [9] and Z-cache [11] both can manage
the associativity of each set dynamically. But to support

dynamic associativity management, they completely removed

the conventional static one-to-one tag-data mappings. CMP­

VR [lO] on the other hand has partially removed the traditional

one-to-one mapping for implementing such dynamic

associativity.

Replacement policies have been well-studied in past
[16], [2]. But emergence of larger sized LLCs in CMP,
motivated researchers for more innovation in this field. It has

been generally believed that some version of LRU based
policy performs better than other replacement policies [1]. But

multi core and hierarchical cache organizations affect the
performance as well as the cost of LRU policies. The pros and

cons of both local and global replacement policies are

discussed in [17].

Cache replacement policy is a major area of research and

there are many more innovative ideas already been proposed.
Some recent papers in this area include [6], [18], [19], [20].

Most of the LRU based policies [2], [7], [8], [17], [16]

perform better than LRU but most of them are more

performance oriented than hardware cost. Random-LRU [12]

is an alternative of such replacement policies with much lesser
hardware requirements. Most of above proposals implemented
their replacement policy for the entire set but in random-LRU

the LRU policy is not implemented for the entire set and

random replacement policy having no additional hardware
requirements, is used for some number of ways (min. 50%

from each set).

III. PROPOSED ARCHITECTURE

A. CMP-VR

In an earlier work (as discussed in section I) we proposed a
tag-array based technique (CMP-VR [10]) for dynamic
associativity management. In CMP-VR a set can access or use
the reserve storage (ways) of any other set in the cache which
means that any RT location can store blocks from any set and
to search a block in RT the entire RT has to be searched.
Searching the entire RT directly from the cache is an expensive
operation, as it has to search all the sets into the cache (RT
sections have ways from each set). An additional tag-array
(TGS) for RT has been used to overcome the problem. Each
RT location (L) has a corresponding entry in TGS which
contains the tag address of the block currently residing in L. An
example of CMP-VR together with TGS is given in figure 1.

OJ " OJ
... '" o
'"

M total ways

��� __ � __ �P-� __ � ______ � (M-R norm�l ways R reserve ways \
,�

f---+-+-+------jf-+-� + + 1·········· 1
: .

I �
i �
: :

1---+-+-+-----1---+---1·······+······················1·········
:·········· 1

'--____ �y J�
RT

Fig. 1. CMP-VR: way distribution and tag array.

TGS

" :.
... o
�
0:

If a block is not present in NT then the block may be
available in RT. In CMP-VR, tag matching for a block in NT
and TGS (not in RT) is done simultaneously. If the tag is found
in NT then it is a direct hit and if the tag matches in TGS then
it is an indirect hit. In case of indirect hit the block is in RT and
needs to be moved into NT. Moving the block from RT to NT
is easy provided NT has a free (invalid) way, otherwise it has
to swap the block with the LRU block of NT.

During replacement, instead of removing a victim block
(LRU) completely from the cache, CMP-VR moves it to RT.
Moving a victim block (V) to RT is easy if RT has a free
(invalid) location, otherwise it needs to replace the LRU block
of RT with V . Note that, whenever we refer to NT, we only
consider the dedicated set on which the block is mapped into.
Whereas in the case of RT we consider the entire RT. Also,
CMP-VR do not search RT directly, instead it searches the
TGS which has a dedicated location for each corresponding RT
location. CMP-VR is only proposed for LLC and it does not
change the architectures of the upper level caches.

B. RCMP-VR

In CMP-VR, each set uses its own LRU policy for the NT
and all the sets share a common global LRU policy for the RT.

Each block evicted from NT is moved to RT and returned
back to NT whenever it is requested again (indirect hit) in

future. Hence to evict a block completely from the cache, first

it has to become LRU in NT and then eventually become LRU
in RT. This motivated us to remove the LRU policy from NT

2014 International Conference on Electronics and Communication System (JCECS -2014)

and instead select the victim block randomly. Since the

randomly selected victim block from NT is not evicted from

the cache, but is moved to the MRU position of RT, the
applications having higher temporal locality will not be

affected by this random selection. If the randomly selected

block is a highly requested block, then during its next access it

will be found in RT (indirect hit) and moved back to NT.
Hence, random replacement policy for NT does not hamper

block availability in comparison to LRU and at the same time
it can reduce the replacement cost of CMP-YR. Another major

challenge in CMP-VR is to reduce the hardware overhead of
TGS when the number of ways in RT increases; this being the

reason why it has been advised to use only 25% of ways from

each set as RT even when reserving 50% gives better
performance. Our claim is that the higher hardware cost of
TGS in CMP-VR can be compensated (to some extent) by

reducing the cost of the replacement policy of the NT.
Similar to CMP-VR, in RCMP-VR all the cache-hits within

the NT are treated as in regular CMPs, without any changes.

The modifications are only required for the misses in NT. The

necessary changes are discussed below:

On NT miss (block not in NT): Search the TGS. Upon a tag

match in TGS identify the corresponding block in RT and
move it to NT. If tag match fails in TGS, it is a cache-miss.

Move a block B from RT to NT: If free space (way) is
available in the desired set of NT, then move B in that free
space. Otherwise, swap B with a randomly selected block in

the corresponding set of (NT).

On Cache Miss: Bring block from main memory and store it

in the desired set of NT.

Store a newly arrived block B into NT: If free space (way)
is available in the desired set of NT then place B into the free

space. Otherwise make space in NT by evicting a random

block. This evicted block moves to RT.

Store block V (evicted from NT) into RT : Search the TGS.

If space available in RT then move V into the free space of
RT. Otherwise select a victim block (V) from RT (based on
LRU replacement policy) and replace it with V . The new

victim V is evicted from the cache bank and written back to

the main memory (if required). Update TGS entry by
overwriting the tag of V by the tag of V.

IV. EXPERIMENTAL EVALUATION

A. Tiled Chip Multiprocessor (TLA)

We used 16 core Tiled CMP architecture (TLA) [1] as the

baseline design. Both CMP-VR and RCMP-VR has been

implemented on top of it. In TLA, each tile has a processor, a
private Ll-cache and a shared L2-cache. The tiles (or
processor nodes) are connected to each other over a 20 mesh

popularly known as network-on-chip (NoC). All the

experimental results shown in this section are for the entire

LLC (L2), combining the results of all the banks together.

B. Experimental Setup

Both RCMP-VR and CMP-VR are implemented separately
on each tile of the TLA, i.e. , each tile has its own NT, RT and
TGS. In order to evaluate, simulations are performed by

running benchmarks on a multi-core simulator GEMS [21]
with the help of SIMICS [22], a full-system functional

simulator. Six multi-threaded benchmarks from PARSEC [23]

benchmark suite has been used for simulation. The

benchmarks are: swaptions(swap), bodytrack(body),
ferret(fert), freqmine(freq), vips and x264(x64).

TABLE I
SYSTEM PARAMETERS

Component

No. of tiles

Parameters

16

Processor UltraSP ARClll

Ll liD cache 64KB, 4-way

L2 cache bank 256KB, 4-way/8-way

Memory Bank IGB,4KB/page

CMP-VR/RCMP-VR: reserve ways per set 50%

A TLA having 16 tiles and the L2 cache size of 4MB is

used for the experiments. The size of each L2-bank is

4MB/l6=256KB. Number of reserve ways per set is
considered as 50% for all the experiments. Performance

comparison of RCMP-VR and CMP-VR has been given for
both 4 way and 8 way associative L2-banks. The detailed

configurations are given in table I. Random replacement

policy in NT helps to remove the dead blocks and never­
reused blocks from NT early. This improves the miss rate and

CPI of RCMP-VR.

Figure 2 shows the performance comparison of RCMP-VR

with CMP-VR for 4-way associative L2-banks. Both graphs in

the figure show the results normalized to the corresponding
values of the baseline design. Figure 2(a) shows that RCMP­

VR gets 2.22% to 22.48% reduction in miss-rate with an

average of 16%. Figure 2(b) shows the performance

comparison in terms of CPI. It shows that in case of RCMP­
VR, CPI improves by 0.05% to 4.8% with an average

improvement of 2.47%.

o � J
06 1
0.4

0.2

• CMP·VR 0 RCMP·
VR

O T T
swp vips freq fret body x264

(a) Miss Rate

• CMP·VR 0 RCMP·
VR

�:1
0.7

0.6

0.5 +-L..J.., �...ya...J. �-y-..Jc,.-'--'1
swp vips freq fret body x264

(b) Cycles per instruction.

2014 International Conference on Electronics and Communication System (JCECS -2014)

Fig.2. Normalized performance comparison of RCMP-VR

with CMP-VR. Total cache size 4MB, cache banl<­

size=256KB, associativity=4, reserve ways per set=2.

Figure 3 shows the performance comparison of RCMP-VR

with CMP-VR for 8-way associative L2-banks. Figure 3(a)
shows that RCMP-VR gets 1.93% to 43.57% reduction in

miss-rate with an average of 15.84%. Figure 3(b) shows the
performance comparison in terms of CPI. It shows that in case
of RCMP-VR, CPI improves by 0.52% to 12.20% with an

average improvement of 4%. Table II lists the various values.

• CMP·VR 0 RCMP·
VR

• CMP·VR 0 RCMP·
VR

1 .. r -·.r �r- � -'� .. -. 1 .. r- � �r- ,.�� .. r,
0.8

0.6

- 0.9

0.8

0.4 0.7

02 0.6

o M

-.b-.-t-.I-- -- -

swp vips freq fret body x264 swp vips freq fret body x264

(a) Miss Rate (b) Cycles per instruction.

Fig.3. Normalized performance comparison of RCMP-VR

with CMP-VR. Total cache size 4MB, cache banl<­
size=256KB, associativity=8, reserve ways per set=4.

Comparison with TLA: CMP-VR is built on top of TLA and

gives 14% and 45.5% improvements on CPI and miss rate
respectively as compared to the baseline. The main focus of

RCMP-VR is to reduce the cost of replacement policy used in
CMP-VR. So we can conclude that RCMP-VR having 4MB

LLC (L2) with 16 4-way set associative L2-banks improves

performance by (14+2.47) =16.47% and (45.5+16) =61.5% on

CPI and miss rate respectively when compared with same size

TLA.

Storage analysis of replacement policy: As explained in

[24] each cache block needs to be augmented with some
additional bits to specify the position of the block in the LRU

stack. Hence the total number of additional bits required for

each block depends on the associativity of the cache. If A is
the associativity of the cache then the additional bits required

for each cache line is log2(A). Hence the total additional bits

required is S* A *logz(A), where S is the number of sets in the

cache. For example, in a 4-way set associative cache, 2 bits
are required to specify the stack positions (e.g. 11 for MRU,

00 for LRU etc). When a new block arrives, the cache

controller chooses a victim by searching the LRU stack having

stack position bit value as 00. On each cache access

corresponding bits needs to be changed for managing the LRU

policy. So true LRU increases design complexity as well as

leads to a high area and power overhead of replacement
policy. In CMP-VR each set maintains its own LRU stack for

the ways belonging to NT and all the sets maintain a common

global LRU stack for the ways in RT. In a TLA, the additional
storage bits required by each LLC bank to implement LRU

policy for its NT section (NTBits) can be calculated as:

NTBits = S * (A - R) * log2 (A - R).

Where S is the number of sets in the bank, A is the set

associativity and R is the number of ways reserved for RT per

set. Since each bank maintains only one LRU stack for the

entire RT, the additional bits required for RT (RTBits) can be
calculated as:

RTBits = S * R * log2(S * R)

TABLE II

PERFORMANCE IMPROVEMENT (IN %) CHART OF RCMP-VR
OVER CMP-VR (CACHE SIZE=4MB, RESERVE WAYS PER

SET=50%). 4W MEANS 4 WAV ASSOCIATIVE L2 BANK AND 8W
MEANS 8-Way ASSOCIATIVE L2-BANK

CPI Miss Rate

- 4W 8W 4W 8W

swp 4.21 3.69 17.40 15.30

vips 2.02 12.2 17.86 43.57

freq 0.05 2.54 2.22 5.71

fret 4.82 0.52 20.38 12.68

body 1.23 1.51 22.48 1.93

x264 2.88 3.34 2.37 17.5

Now, the total number of additional bits required for

implementing replacement policy in CMP-VR (only for LLC)

can be calculated as:

TotalcMP_vR = B * (NTBits + RTBits)

Where, B is the total number of banks in the TLA. Since

RCMP-VR has no LRU stack for NT, the total additional

storage cost of RCMP-VR (only for LLC) is:

TotaIRcMP_VR = B * RTBits

For example, considering a 4MB TLA with 16 banks where
each bank is 4-way associative and 2 ways from every set are

reserved for RT. There are 1024 sets in one bank. Now the

storage bits required can be calculated as:

NTBits = 1024 * 2 * 1 = 2048 bits.
RTBits = 1024 * 2 * 11 = 22528 bits.
TotalcMP_vR = 16 * (2048 + 22528) = 49152 Bytes.
TotalRcMP_vR = 16 * 22528 = 45056 Bytes.

Table III shows the improvement of RCMP-VR over CMP­
VR in terms of storage consumption for replacement policy

for various size caches. It can be observed from the table that,
as the associativity increase the percentage savings in terms of
replacement cost also increases. In particular for a 16MB

cache we obtain 7% reduction for 4-way associativity,
whereas the reduction increases to 18.75% for 16-way
associati vity.

2014 International Conference on Electronics and Communication System (JCECS -2014)

Area and power analysis: Since RCMP-VR uses less

number of LRU stacks the replacement policy of RCMP-VR
consumes less area and power as compared to CMP-VR.

IV. CONCLUSION

CMP-VR can dynamically increase the assocIatIvIty of

heavily used sets without increasing the cache size. It divides

the last level cache (LLC) into two sections: normal storage
(NT) and reserve storage (RT). From each set, 25 to 50% ways
are reserved for RT and the remaining ways belongs to NT. It
allows a heavily used set to use the RT section of other

underutilized sets and hence increase the associativity of the

set dynamically without increasing the cache size. CMP-VR

used LRU replacement policy for each set separately in NT
but uses a common global LRU policy for the entire RT.

TABLE III

COMPARISON OF ADDITIONAL STORAGE REQUIRED FOR
IMPLEMENTING REPLACEMENT POLICY OF CMP-VR AND
RCMP-VR.THE NUMBER OF WAYS RESERVED FROM EACH SET
IS TAKEN AS 50%.

Size Ass Banks CMP-VR RCMP- Improvement

oc (bytes) VR (%)

(bytes)

4MB 4 16 49152 45056 8.38
4MB 8 16 53248 45056 15.38

8MB 4 16 106496 98304 7.69

8MB 8 16 114688 98304 14.29

16MB 4 16 229376 212992 7.14
16MB 8 16 245688 212992 13.31
16MB 16 16 262144 212992 18.75

As the number of cores and associativity of the last level

cache (LLC) on Chip Multi-processor increases, the role of

replacement policies becomes more vital. True LRU imposes

additional complexity and area overheads when implemented

on highly associative LLCs. Hence, we propose a less
expensive replacement policy for CMP-YR. The LRU policy

from the NT section is replaced with random replacement

policy. Such combination helps to reduce the hardware cost as
well as for the early removal of dead blocks from the cache,

resulting in performance improvement. Replacement cost
reduces by 7-18%. Comparing with CMP-VR, CPI and miss

rate improves by 4% and 16% respectively for a 4MB 8-way

associative LLC. On the other hand, the improvement is

16.47% and 61.5% in terms of CPI and miss rate respectively

when compared with shared tile based CMP or TLA.

ACKNOWLEDGMENT

We wish to acknowledge Department of Electronics &
Information Technology (Deity), Ministry of Communications

& IT, Government of India, for the financial assistance
provided for this work.

REFERENCES

[I] Balasubramonian, R., Jouppi, N.P., Muralimanohar, N.: Multi-Core
Cache Hierarchies. Morgan & Claypool Publishers (2011)

[2] Wong, W., Baer, J.L.: Modified lru policies for improving second-level
cache behavior. In: High-Performance Computer Architecture, 2000.

HPCA-6. Proceedings. Sixth International Symposium on. (2000) 49
-60

[3] Belady, L.: A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal 5(2) (1966) 78-101

[4] Qureshi, M.K., Jaleel, A, Patt, YN., Steely, S.c., Emer, 1.: Adaptive
insertion policies for high performance caching. SIGARCH Comput.

Archit. News 35(2) (June 2007) 381-391
[5] Wong, W., Baer, J.L.: Modified lru policies for improving second-level

cache behavior. In: High-Performance Computer Architecture, 2000.
HPCA-6. Proceedings. Sixth International Symposium on. (2000) 49-

60
[6] Jain, A, Shrivastava, A, Chakrabarti, C.: La-lru: A latency-aware

replacement policy for variation tolerant caches. In: VLSI Design (VLSI
Design), 2011 24th International Conference on. (2011) 298-303

[7] Qureshi, M.K., Lynch, D.N., Mutlu, 0., Patt, Y.N.: A case for mlp-aware
cache replacement. SIGARCH Comput. Archit. News 34(2) (May 2006)

167-178
[8] Kharbutli, M., Solihin, Y.: Counter-based cache replacement and

bypassing algorithms. IEEE Trans. Comput. 57(4) (April 2008) 433-447
[9] Qureshi, M.K., Thompson, D., Patt, YN.: The v-way cache: Demand

based associativity via global replacement. SIGARCH Comput. Archit.
News 33(2) (May 2005) 544-555

[10] Das, S., Kapoor, H.K.: Victim retention for reducing cache misses in
tiled chip multiprocessors. Elsevier Journal of
Microprocessorsand Microsystems 001:
10.1016/j.micpro.2013.11.005.

[11] Sanchez, D., Kozyrakis, C.: The zcache: Decoupling ways and
associativity. In: Proceedings of the 2010 43rd AnnuaI IEEE/ACM
International Symposium on Microarchitecture. MICRO '43
(2010) 187-198

[12] Das, S., Polavarapu, N., Halwe, p.o., Kapoor, H.K.: Random
LRU:A replacement policy for chip multiprocessors. In: Inte­
rnational Symposium on VLSI Design and Test (VDAT) , 2013.

[13] Kim, C., Burger, D., Keckler, S.W.: An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches.
SIGOPS Oper. Syst. Rev. 36 (October 2002) 211-222

[14] Beckmann, B.M., Wood, D.A.: Managing wire delay in large chip
multiprocessor caches. In: Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitecture.
MICRO 37, IEEE Computer Society (2004) 319-330

[15] Huh, J., Kim, C., Shafi, H., Zhang, L., Burger, D., Keckler, S.w.:
A nuca substrate for flexible cmp cache sharing. In: Proceedings
of the 19th annual international conference on Supercomputing.
ICS '05 (2005) 31-40

[16] Belady, L.: A study of replacement algorithms for a virtual­
storage computer. IBM Systems Journal (1966)

[17] Zahran, M.: Cache replacement policy revisited. In: The Annual
Workshop on Duplicating, Deconstructing, and Debunking
(WOOD) held in conjunction with the International Symposium on
Computer Architecture (ISCA). Uun 2007)

[18] Fricker, C., Robert, P., Roberts, J.: A versatile and accurate
approximation for Iru cache performance. In: Teletraffic Congress
(ITC 24), 2012 24th International. (2012) 1-8

[19] Morales, K., Lee, B.K.: Fixed segmented Iru cache replacement
scheme with selective caching. In: Performance Computing and
Communications Conference (IPCCC), 2012 IEEE 31st
International. (2012) 199-200

[20] Juan, F., Chengyan, L.: An improved multi-core shared cache
replacement algorithm. In: Distributed Computing and
Applications to Business, Engineering Science (DCABES), 2012
11th International Symposium on. (2012) 13-17

[21] Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu,
M.Alameldeen, A.R., Moore, K.E., Hill, M.D., Wood, D.A.:
Multifacet's general execution-driven multiprocessor simulator

2014 International Conference on Electronics and Communication System (JCECS -2014)

(gems) toolset. SIGARCH Comput. Archit. News 33(4)
(November 2005) 92-99 [22] Magnusson, P.S., Christensson,
M., Eskilson, J., Forsgren, D.,Waliberg, G., H·ogberg, J.,
Larsson, F., Moestedt, A., Werner, B.: Simics: A full system
simulation platform. Computer 35(2) (February 2002) 50-58

[23] Bienia, C.: Benchmarking Modern Multiprocessors. PhD thesis,

Princeton University (January 2011)
[24] Kedzierski, K., Moreto, M., Cazorla, F., Valero, M.: Adapting

cache partitioning algorithms to pseudo-Iru replacement policies.
In: Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on. (2010) 1-12

