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Abstract-Due to the non-uniform distribution of the memory 

accesses for today's applications some sets of the cache are 

heavily used while some other sets remain underutilized. CMP­

VR is an approach to dynamically increase the associativity of 

heavily used sets without increasing the cache size. It achieves 

this by reserving certain number of ways in each set to be shared 

with other sets and the remaining are private to the set. These 

shared ways from all sets form common reserve storage, while 

the private ways form the normal storage. In both the partitions 

it uses LRU replacement policy. This paper presents an 

optimization on CMP-VR by removing the LRU policy from the 

normal storage of the set. A victim from this normal storage can 

reside in the reserved/shared area and will get evicted from here 

using the LRU policy. Thus our optimization does not hamper 

cache performance. At the same time it helps to remove the 

complexity of implementing true LRU. Storage analysis shows 7-
18% reduction in the replacement cost. CPI and miss rate also 

improve by 4% and 16% respectively for a 4MB 8 way 

associative LLC. 
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I. INTRODUCTION 

The main component for building today's computer 
systems is Chip Multiprocessors (CMPs) where multiple CPUs 
(cores) are placed on the same chip [1]. On-chip caches have 
multiple levels. In this paper we concentrate on the last level 
cache (LLC). With increasing associativity of LLCs, 
implementing effective replacement policy plays a major role 
in improving the performance of CMP [2]. The best policy for 
replacement is to always discard the cache blocks which will 
not be needed for the longest time in the future. This optimal 
policy is called Belady's optimal algorithm [3]. But since it is 
generally impossible to predict how far in future the 
information will be needed, the policy is not implementable in 
practice. Due to this reason other replacement policies like 
least recently used (LRU) and pseudo-LRU are mostly used. 

In case of highly associative LLC's, true LRU impose 
additional complexity and area overheads. There are some 
other interesting proposals for cache replacement policies 
(discussed in Section II); but most of them have complex 
mechanism and hardware overhead for maintaining aging bits, 
counters etc. LRU performs better in many applications having 
higher temporal locality [I ]. Hence, instead of completely 
removing the concept of LRU, researchers proposed innovative 

techniques to improve the performance of LRU based policies 
[4], [5], [6], [7]. 

In LRU a cache block can remain long time in the cache 
even after its last use. This is because it takes a long time to 
make the block as LRU block. Such types of blocks are called 
dead blocks [8]. Also there can be some blocks in L2 which 
may never be reused in future; such blocks are immediately 
dead after loading into L2 cache. These blocks are called 
never-reused blocks [8]. Dead and never-reused blocks are an 
unnecessary burden of LRU policy and degrade performance. 

Though the size of LLC available in CMPs is increasing, an 
efficient utilization of it remains an issue. The non-uniform 
memory access distribution causes some sets to be used heavily 
while other remains underutilized. To overcome such problem 
the associativity of each individual set must be allowed to 
increase/decrease dynamically based on the requirement of the 
executing application [9]. Dynamic management of 
associativity allows a heavily used set to increase its 
associativity by using the so called "idle" ways of the 
underutilized sets. It improves performance without changing 
the actual size of the cache [9]. But implementing such 
dynamic associativity management for a cache with optimized 
power and area consumption is a major challenge. 

In an earlier work we proposed a technique called CMP-VR 
[10] to dynamically manage the associativity of LLC sets. It 
divides the ways of each set into two storage groups: normal 
storage (NT) and reserve storage (RT). NT behaves same as 
conventional cache while RT takes 25% to 50% ways from 
each set and the entire RT can be used by any set in the cache. 
A heavily used set can use the RT section of other 
underutilized sets to dynamically increase its associativity. The 
RT behaves as a fully associative cache and a separate fully 
associative tag-array (TGS) is required to manage it. Instead of 
removing the conventional one-to-one mapping from the entire 
cache (as done in [9], [11]) CMP-VR removes it only from RT. 
Also no forwardlbackward pointers have been used which 
results in much lesser storage overhead than V -way. CMP-VR 
gives 14% performance improvement over conventional cache. 

A major challenge in CMP-VR is to reduce the hardware 
cost of TGS. Though reserving 50% ways for RT gives better 
improvements, it consumes much higher energy and power 
than reserving 25%. This is because of the larger size of TGS. 
In CMP-VR, NT section of each set has its own LRU stack and 
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all the lines in RT section uses a common global LRU stack. In 
this paper we propose a mechanism to reduce the hardware 
overhead of the replacement policy used in CMP-VR. We used 
the concept of random-LRU [12] in CMP-VR and applies 
random replacement policy for the NT section of all the sets. 
The LRU policy is now only maintained in the RT section. 
This reduces the hardware overhead of the replacement policy 
used in CMP-VR by 9% and hence the additional cost of larger 
TGS can be partially compensated. We call the newly proposed 
CMP-VR as RCMP-VR. 

The rest of the paper is organized as follows. The next 
section presents the related works in CMP cache architectures 
and replacement policies. Section III describes our proposed 
cache replacement policy for CMP-YR. Section IV covers 
performance evaluation using full-system simulation. Finally 
Section V concludes the paper. 

II. RELATED WORK 

Recent chip multiprocessors (CMPs) consist of multiple 
tiles connected with some low-radix (2D-mesh) network of 

interconnects [1]. Each tile has its own processor, private L1 
cache and either a private or a public L2 cache [13], 

[14], [15].The L2 cache is divided into multiple banks and each 
tile contains one L2-bank. 

The non-uniform distribution of memory access is a major 
cause for higher conflict misses [9]. A conventional set­

associative cache cannot adjust its associativity dynamically 

because of the static one-to-one mapping between tag entries 

and data lines. V -way [9] and Z-cache [11] both can manage 
the associativity of each set dynamically. But to support 

dynamic associativity management, they completely removed 

the conventional static one-to-one tag-data mappings. CMP­

VR [lO] on the other hand has partially removed the traditional 

one-to-one mapping for implementing such dynamic 

associativity. 

Replacement policies have been well-studied in past 
[16], [2]. But emergence of larger sized LLCs in CMP, 
motivated researchers for more innovation in this field. It has 

been generally believed that some version of LRU based 
policy performs better than other replacement policies [1]. But 

multi core and hierarchical cache organizations affect the 
performance as well as the cost of LRU policies. The pros and 

cons of both local and global replacement policies are 

discussed in [17]. 

Cache replacement policy is a major area of research and 

there are many more innovative ideas already been proposed. 
Some recent papers in this area include [ 6], [18], [19], [20]. 

Most of the LRU based policies [2], [7], [8], [17], [16] 

perform better than LRU but most of them are more 

performance oriented than hardware cost. Random-LRU [12] 

is an alternative of such replacement policies with much lesser 
hardware requirements. Most of above proposals implemented 
their replacement policy for the entire set but in random-LRU 

the LRU policy is not implemented for the entire set and 

random replacement policy having no additional hardware 
requirements, is used for some number of ways (min. 50% 

from each set). 

III. PROPOSED ARCHITECTURE 

A. CMP-VR 

In an earlier work (as discussed in section I) we proposed a 
tag-array based technique (CMP-VR [10]) for dynamic 
associativity management. In CMP-VR a set can access or use 
the reserve storage (ways) of any other set in the cache which 
means that any RT location can store blocks from any set and 
to search a block in RT the entire RT has to be searched. 
Searching the entire RT directly from the cache is an expensive 
operation, as it has to search all the sets into the cache (RT 
sections have ways from each set). An additional tag-array 
(TGS) for RT has been used to overcome the problem. Each 
RT location (L) has a corresponding entry in TGS which 
contains the tag address of the block currently residing in L. An 
example of CMP-VR together with TGS is given in figure 1. 
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Fig. 1. CMP-VR: way distribution and tag array. 
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If a block is not present in NT then the block may be 
available in RT. In CMP-VR, tag matching for a block in NT 
and TGS (not in RT) is done simultaneously. If the tag is found 
in NT then it is a direct hit and if the tag matches in TGS then 
it is an indirect hit. In case of indirect hit the block is in RT and 
needs to be moved into NT. Moving the block from RT to NT 
is easy provided NT has a free (invalid) way, otherwise it has 
to swap the block with the LRU block of NT. 

During replacement, instead of removing a victim block 
(LRU) completely from the cache, CMP-VR moves it to RT. 
Moving a victim block (V ) to RT is easy if RT has a free 
(invalid) location, otherwise it needs to replace the LRU block 
of RT with V . Note that, whenever we refer to NT, we only 
consider the dedicated set on which the block is mapped into. 
Whereas in the case of RT we consider the entire RT. Also, 
CMP-VR do not search RT directly, instead it searches the 
TGS which has a dedicated location for each corresponding RT 
location. CMP-VR is only proposed for LLC and it does not 
change the architectures of the upper level caches. 

B. RCMP-VR 

In CMP-VR, each set uses its own LRU policy for the NT 
and all the sets share a common global LRU policy for the RT. 

Each block evicted from NT is moved to RT and returned 
back to NT whenever it is requested again (indirect hit) in 

future. Hence to evict a block completely from the cache, first 

it has to become LRU in NT and then eventually become LRU 
in RT. This motivated us to remove the LRU policy from NT 
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and instead select the victim block randomly. Since the 

randomly selected victim block from NT is not evicted from 

the cache, but is moved to the MRU position of RT, the 
applications having higher temporal locality will not be 

affected by this random selection. If the randomly selected 

block is a highly requested block, then during its next access it 

will be found in RT (indirect hit) and moved back to NT. 
Hence, random replacement policy for NT does not hamper 

block availability in comparison to LRU and at the same time 
it can reduce the replacement cost of CMP-YR. Another major 

challenge in CMP-VR is to reduce the hardware overhead of 
TGS when the number of ways in RT increases; this being the 

reason why it has been advised to use only 25% of ways from 

each set as RT even when reserving 50% gives better 
performance. Our claim is that the higher hardware cost of 
TGS in CMP-VR can be compensated (to some extent) by 

reducing the cost of the replacement policy of the NT. 
Similar to CMP-VR, in RCMP-VR all the cache-hits within 

the NT are treated as in regular CMPs, without any changes. 

The modifications are only required for the misses in NT. The 

necessary changes are discussed below: 

On NT miss (block not in NT): Search the TGS. Upon a tag 

match in TGS identify the corresponding block in RT and 
move it to NT. If tag match fails in TGS, it is a cache-miss. 

Move a block B from RT to NT: If free space (way) is 
available in the desired set of NT, then move B in that free 
space. Otherwise, swap B with a randomly selected block in 

the corresponding set of (NT). 

On Cache Miss: Bring block from main memory and store it 

in the desired set of NT. 

Store a newly arrived block B into NT: If free space (way) 
is available in the desired set of NT then place B into the free 

space. Otherwise make space in NT by evicting a random 

block. This evicted block moves to RT. 

Store block V (evicted from NT) into RT : Search the TGS. 

If space available in RT then move V into the free space of 
RT. Otherwise select a victim block (V ) from RT (based on 
LRU replacement policy) and replace it with V . The new 

victim V is evicted from the cache bank and written back to 

the main memory (if required). Update TGS entry by 
overwriting the tag of V by the tag of V. 

IV. EXPERIMENTAL EVALUATION 

A. Tiled Chip Multiprocessor (TLA) 

We used 16 core Tiled CMP architecture (TLA) [1] as the 

baseline design. Both CMP-VR and RCMP-VR has been 

implemented on top of it. In TLA, each tile has a processor, a 
private Ll-cache and a shared L2-cache. The tiles (or 
processor nodes) are connected to each other over a 20 mesh 

popularly known as network-on-chip (NoC). All the 

experimental results shown in this section are for the entire 

LLC (L2), combining the results of all the banks together. 

B. Experimental Setup 

Both RCMP-VR and CMP-VR are implemented separately 
on each tile of the TLA, i.e. , each tile has its own NT, RT and 
TGS. In order to evaluate, simulations are performed by 

running benchmarks on a multi-core simulator GEMS [21] 
with the help of SIMICS [22], a full-system functional 

simulator. Six multi-threaded benchmarks from PARSEC [23] 

benchmark suite has been used for simulation. The 

benchmarks are: swaptions(swap), bodytrack(body), 
ferret(fert), freqmine(freq), vips and x264(x64). 

TABLE I 
SYSTEM PARAMETERS 

Component 

No. of tiles 

Parameters 

16 

Processor UltraSP ARClll 

Ll liD cache 64KB, 4-way 

L2 cache bank 256KB, 4-way/8-way 

Memory Bank IGB,4KB/page 

CMP-VR/RCMP-VR: reserve ways per set 50% 

A TLA having 16 tiles and the L2 cache size of 4MB is 

used for the experiments. The size of each L2-bank is 

4MB/l6=256KB. Number of reserve ways per set is 
considered as 50% for all the experiments. Performance 

comparison of RCMP-VR and CMP-VR has been given for 
both 4 way and 8 way associative L2-banks. The detailed 

configurations are given in table I. Random replacement 

policy in NT helps to remove the dead blocks and never­
reused blocks from NT early. This improves the miss rate and 

CPI of RCMP-VR. 

Figure 2 shows the performance comparison of RCMP-VR 

with CMP-VR for 4-way associative L2-banks. Both graphs in 

the figure show the results normalized to the corresponding 
values of the baseline design. Figure 2(a) shows that RCMP­

VR gets 2.22% to 22.48% reduction in miss-rate with an 

average of 16%. Figure 2(b) shows the performance 

comparison in terms of CPI. It shows that in case of RCMP­
VR, CPI improves by 0.05% to 4.8% with an average 

improvement of 2.47%. 
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Fig.2. Normalized performance comparison of RCMP-VR 

with CMP-VR. Total cache size 4MB, cache banl<­

size=256KB, associativity=4, reserve ways per set=2. 

Figure 3 shows the performance comparison of RCMP-VR 

with CMP-VR for 8-way associative L2-banks. Figure 3(a) 
shows that RCMP-VR gets 1.93% to 43.57% reduction in 

miss-rate with an average of 15.84%. Figure 3(b) shows the 
performance comparison in terms of CPI. It shows that in case 
of RCMP-VR, CPI improves by 0.52% to 12.20% with an 

average improvement of 4%. Table II lists the various values. 
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Fig.3. Normalized performance comparison of RCMP-VR 

with CMP-VR. Total cache size 4MB, cache banl<­
size=256KB, associativity=8, reserve ways per set=4. 

Comparison with TLA: CMP-VR is built on top of TLA and 

gives 14% and 45.5% improvements on CPI and miss rate 
respectively as compared to the baseline. The main focus of 

RCMP-VR is to reduce the cost of replacement policy used in 
CMP-VR. So we can conclude that RCMP-VR having 4MB 

LLC (L2) with 16 4-way set associative L2-banks improves 

performance by (14+2.47) =16.47% and (45.5+16) =61.5% on 

CPI and miss rate respectively when compared with same size 

TLA. 

Storage analysis of replacement policy: As explained in 

[24] each cache block needs to be augmented with some 
additional bits to specify the position of the block in the LRU 

stack. Hence the total number of additional bits required for 

each block depends on the associativity of the cache. If A is 
the associativity of the cache then the additional bits required 

for each cache line is log2(A). Hence the total additional bits 

required is S* A *logz(A), where S is the number of sets in the 

cache. For example, in a 4-way set associative cache, 2 bits 
are required to specify the stack positions (e.g. 11 for MRU, 

00 for LRU etc). When a new block arrives, the cache 

controller chooses a victim by searching the LRU stack having 

stack position bit value as 00. On each cache access 

corresponding bits needs to be changed for managing the LRU 

policy. So true LRU increases design complexity as well as 

leads to a high area and power overhead of replacement 
policy. In CMP-VR each set maintains its own LRU stack for 

the ways belonging to NT and all the sets maintain a common 

global LRU stack for the ways in RT. In a TLA, the additional 
storage bits required by each LLC bank to implement LRU 

policy for its NT section (NTBits) can be calculated as: 

NTBits = S * (A - R) * log2 (A - R). 

Where S is the number of sets in the bank, A is the set 

associativity and R is the number of ways reserved for RT per 

set. Since each bank maintains only one LRU stack for the 

entire RT, the additional bits required for RT (RTBits) can be 
calculated as: 

RTBits = S * R * log2(S * R) 

TABLE II 

PERFORMANCE IMPROVEMENT (IN %) CHART OF RCMP-VR 
OVER CMP-VR (CACHE SIZE=4MB, RESERVE WAYS PER 

SET=50%). 4W MEANS 4 WAV ASSOCIATIVE L2 BANK AND 8W 
MEANS 8-Way ASSOCIATIVE L2-BANK 

CPI Miss Rate 

- 4W 8W 4W 8W 

swp 4.21 3.69 17.40 15.30 

vips 2.02 12.2 17.86 43.57 

freq 0.05 2.54 2.22 5.71 

fret 4.82 0.52 20.38 12.68 

body 1.23 1.51 22.48 1.93 

x264 2.88 3.34 2.37 17.5 

Now, the total number of additional bits required for 

implementing replacement policy in CMP-VR (only for LLC) 

can be calculated as: 

TotalcMP_vR = B * (NTBits + RTBits) 

Where, B is the total number of banks in the TLA. Since 

RCMP-VR has no LRU stack for NT, the total additional 

storage cost of RCMP-VR (only for LLC) is: 

TotaIRcMP_VR = B * RTBits 

For example, considering a 4MB TLA with 16 banks where 
each bank is 4-way associative and 2 ways from every set are 

reserved for RT. There are 1024 sets in one bank. Now the 

storage bits required can be calculated as: 

NTBits = 1024 * 2 * 1 = 2048 bits. 
RTBits = 1024 * 2 * 11 = 22528 bits. 
TotalcMP_vR = 16 * (2048 + 22528) = 49152 Bytes. 
TotalRcMP_vR = 16 * 22528 = 45056 Bytes. 

Table III shows the improvement of RCMP-VR over CMP­
VR in terms of storage consumption for replacement policy 

for various size caches. It can be observed from the table that, 
as the associativity increase the percentage savings in terms of 
replacement cost also increases. In particular for a 16MB 

cache we obtain 7% reduction for 4-way associativity, 
whereas the reduction increases to 18.75% for 16-way 
associati vity. 
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Area and power analysis: Since RCMP-VR uses less 

number of LRU stacks the replacement policy of RCMP-VR 
consumes less area and power as compared to CMP-VR. 

IV. CONCLUSION 

CMP-VR can dynamically increase the assocIatIvIty of 

heavily used sets without increasing the cache size. It divides 

the last level cache (LLC) into two sections: normal storage 
(NT) and reserve storage (RT). From each set, 25 to 50% ways 
are reserved for RT and the remaining ways belongs to NT. It 
allows a heavily used set to use the RT section of other 

underutilized sets and hence increase the associativity of the 

set dynamically without increasing the cache size. CMP-VR 

used LRU replacement policy for each set separately in NT 
but uses a common global LRU policy for the entire RT. 

TABLE III 

COMPARISON OF ADDITIONAL STORAGE REQUIRED FOR 
IMPLEMENTING REPLACEMENT POLICY OF CMP-VR AND 
RCMP-VR.THE NUMBER OF WAYS RESERVED FROM EACH SET 
IS TAKEN AS 50%. 

Size Ass Banks CMP-VR RCMP- Improvement 

oc (bytes) VR (%) 

(bytes) 

4MB 4 16 49152 45056 8.38 
4MB 8 16 53248 45056 15.38 

8MB 4 16 106496 98304 7.69 

8MB 8 16 114688 98304 14.29 

16MB 4 16 229376 212992 7.14 
16MB 8 16 245688 212992 13.31 
16MB 16 16 262144 212992 18.75 

As the number of cores and associativity of the last level 

cache (LLC) on Chip Multi-processor increases, the role of 

replacement policies becomes more vital. True LRU imposes 

additional complexity and area overheads when implemented 

on highly associative LLCs. Hence, we propose a less 
expensive replacement policy for CMP-YR. The LRU policy 

from the NT section is replaced with random replacement 

policy. Such combination helps to reduce the hardware cost as 
well as for the early removal of dead blocks from the cache, 

resulting in performance improvement. Replacement cost 
reduces by 7-18%. Comparing with CMP-VR, CPI and miss 

rate improves by 4% and 16% respectively for a 4MB 8-way 

associative LLC. On the other hand, the improvement is 

16.47% and 61.5% in terms of CPI and miss rate respectively 

when compared with shared tile based CMP or TLA. 
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