
Derivation Examples

In this document, we present calculational derivations of some simple pro-
grams. These derivations are based on the derivations in [Coh90, Kal90, Gri87].

1 Integer Division

Specification:

con x : int {x ≥ 0}
con y : int {y > 0}
var q : int, r : int
Integer Division

Postcondition : 0 ≤ r < y ∧ (q ∗ y + r = x)

The program should not contain division operation.

Step1

We treat the preconditions x ≥ 0 and y > 0 as global invariants since the
predicates involve only immutable variables. We apply the Take conjuncts as
invariant heuristics and select 0 ≤ r ∧ (q ∗ y + r = x) as an invariant to arrive
at the following program.

{true}
unkprog2

{0 ≤ r ∧ q ∗ y + r = x}
while {inv : 0 ≤ r ∧ q ∗ y + r = x}
¬ (r < y)→

{inv ∧ ¬ (r < y)}
unkprog3

{inv}
end

{0 ≤ r < y ∧ q ∗ y + r = x}

Step 2

We directly guess assignment q, r := 0, x for unkprog2 as it establishes the
invariant at the entry of the loop.

Step 3

We envision an assignment r, q := r−e′, q′ for unkprog3 where e′ is a metavari-
able such that e′ > 0. Proof obligation for unkprog3 : r, q := r − e′, q′ is :

inv ∧ ¬(r < y)⇒ inv(r, q := r − e′, q′) ∧ e′ > 0

1



We assume the antecedent and manipulate the consequent to find expressions
for the metavariables e′ and q′.

inv(r, q := r − e′, q′) ∧ e′ > 0
≡ { Definition of inv; textual substitution }

0 ≤ r − e′ ∧ (q′ ∗ y + r − e′ = x) ∧ e′ > 0
≡ { Simplify }

e′ ≤ r ∧ (q′ ∗ y + r − e′ = x) ∧ e′ > 0
≡ { y ≤ r; y > 0; instantiate e′ as y; simplify }
q′ ∗ y + r − y = x

≡ { Simplify }
(q′ − 1) ∗ y + r = x

≡ { q ∗ y + r = x; instantiate q′ as q + 1; simplify }
true

We have derived assignment r, q := r − y, q + 1 for unkprog3. The final
derived program is:

{true}
q, r := 0, x

{0 ≤ r ∧ q ∗ y + r = x}
while {inv : 0 ≤ r ∧ q ∗ y + r = x}
¬ (r < y)→

{inv ∧ ¬ (r < y)}
r, q := r − y, q + 1
{inv}

end
{0 ≤ r < y ∧ q ∗ y + r = x}

2 Table of cubes

We want to derive a program for constructing a table of cubes using only additive
operations.

The problem can be specified as follows.

con N : int {N ≥ 0} ;
var c : array [0..N) of int;

S{
R :

(
∀i : 0 ≤ i < N : c[i] = i3

)}
Our task is to derive program S to establish the postcondition R. We are

not allowed to use exponentiation or multiplication operation in the solution.

Step 1

We start by applying the heuristic of replacing the constant N by a fresh variable
n and rewrite the postcondition as P0 ∧ (n = N) where P0 is defined as follows.

P0 :
(
∀i : 0 ≤ i < n : c[i] = i3

)
2



After rewriting the postcondition, we arrive at the following program.

con N : int {N ≥ 0} ;
var c : array [0..N) of int;
var n : int;

S
{P0 ∧ (n = N)}

Note that the new postcondition P0 ∧ (n = N) implies the original postcon-
dition R.

Step 2

We now apply the well-known heuristic of taking a conjunct as an invariant.
We introduce a while loop and select P0 as an invariant and the negation of
the remaining conjunct as the guard of the while loop. We follow the general
guideline of adding bounds on the introduced variables by adding P1 : 0 ≤
n ≤ N as an additional invariant. We also initialize n with 0 to establish the
invariants at the start of the loop and increment n inside the loop body.

var n : int;
n := 0;
while {Inv : P0 ∧ P1}
n 6= N →
S1;
n := n + 1

end
{P0 ∧ (n = N)}

Step 3

We can select S1 to be c[n] := n3 as it preserves the invariants. However, we are
not allowed to use exponentiation. To eliminate exponentiation, we introduce
fresh variable x, and rewrite our program as:

var n : int;
n := 0;
while {Inv : P0 ∧ P1}
n 6= N →

//establish P2 : x = n3

c[n] := x;
n := n + 1;

end
{P0 ∧ (n = N)}

This program is correct provided P2 : x = n3 is a precondition of the state-
ment c[n] := x. In order to establish P2 as a precondition to c[n] := x, we

3



maintain P2 as a loop invariant. After adding P2 as an invariant we arrive at
the program

var n, x : int;
n, x := 0, 0;
while {Inv : P0 ∧ P1 ∧ P2}
n 6= N →
c[n] := x;
n, x := n + 1, x′;

end

where x′ must be chosen to maintain P2.

Step 4

The invariant P2 is available before the assignment n, x := n + 1, x′ since the
preceding statement (c[n] := x) does not change its validity. We now calculate
x′ such that P2 in preserved by the loop body:

wp((n, x := n + 1, x′), P2)
≡ { Definition of P2 and assignment }
x′ = (n + 1)3

≡ { Arithmetic }
x′ = n3 + 3 ∗ n2 + 3 ∗ n + 1

≡ { P2, to eliminate an exponentiation }
x′ = x + 3 ∗ n2 + 3 ∗ n + 1

≡
{

Assume P3 : y = 3 ∗ n2 + 3 ∗ n + 1 to eliminate
the exponentiation and the multiplications

}
x′ = x + y

During the calculation of x′, to eliminate exponentiation and multiplications,
we assumed that P3 holds. This can be ensured by maintaining P3 as a loop
invariant. The following program is correct provided y′ is chosen to maintain
the invariance of P3.

var n, x, y : int;
n, x, y := 0, 0, 1;
while {Inv : P0 ∧ P1 ∧ P2 ∧ P3}
n 6= N →

c[n] := x;
n, x, y := n + 1, x + y, y′;

end

Step 5

We now calculate x′ such that P3 in preserved by the loop body:

4



wp((n, x, y := n + 1, x + y, y′), P3)
≡ { Definitions of P3 and assignment }
y′ = 3 ∗ (n + 1)2 + 3 ∗ (n + 1) + 1

≡ { Arithmetic}
y′ = 3 ∗ n2 + 9 ∗ n + 7

≡ { P3}
y′ = y + 6 ∗ n + 6

After substituting y + 6 ∗ n+ 6 for y in the program from the previous step,
we arrive at the following program.

con N : int {N ≥ 0} ;
var c : array [0..N) of int;
var n, x, y : int;
n, x, y := 0, 0, 1;
while {Inv : P0 ∧ P1 ∧ P2 ∧ P3}
n 6= N →
c[n] := x;
n, x, y := n + 1, x + y, y + 6 ∗ n + 6

end

The term 6 ∗ n can be easily rewritten using only the addition operation.
We now have a linear-time solution for the problem.

3 Dutch National Flag

The specification of the Dutch National Flag program is

con N : int {N ≥ 0} ;
var a : array [0..N) of [red, white, blue];
var r : int, w : int;
Dutch National Flag
R : {Red(a, 0, r) ∧White(a, r, w) ∧Blue(a,w,N)
∧ 0 ≤ r ≤ w ≤ N}

where,

Red(a, x, y) , (∀ i : x ≤ i < y : a[i] = red) ,

White(a, x, y) , (∀ i : x ≤ i < y : a[i] = white) ,

Blue(a, x, y) , (∀ i : x ≤ i < y : a[i] = blue)

where only array swap operations are allowed on the array a.

Step 1

The specification can be represented as the following annotated program.

5



con N : int
var a : array [0..N) of [red, white, blue];
var r : int, w : int;
Global Inv: N ≥ 0
{true}
unkprog1

{Red(a, 0, r) ∧White(a, r, w) ∧Blue(a,w,N)
∧ 0 ≤ r ≤ w ≤ N}

Step 2: Rewrite the postcondition

We replace the term w in Blue(w,N) by a fresh variable b. We add bounds on
b: (w ≤ b ≤ N) and also add conjuct b = w to the postcondition so that new
postcondition implies the original postcondition. The program now becomes:

{true}
var b;
unkprog2

{Red(a, 0, r) ∧White(a, r, w) ∧Blue(a, b,N)
∧ 0 ≤ r ≤ w ≤ N ∧ w ≤ b ≤ N ∧ b = w}

Step 3: Introduce while loop

We now apply the take conjucts as invariants heuristic and introduce a while
loop with the following invariant and guard.

Invariant P : Red(a, 0, r) ∧White(a, r, w) ∧Blue(a, b,N) ∧ 0 ≤ r ≤ w ≤ b ≤ N
Guard : b 6= w

{true}
unkprog3

{P}
while {inv : P}
b 6= w →

{P ∧ b 6= w}
unkprog4

{P}
end

{P ∧ (b = w)}

The invariant P can be easily established at the entry of the loop by the
assignment r, w, b := 0, 0, N .

6



Step 4

The elements a[w..b) are not yet inspected. We can choose to inspect a[w] or
a[b− 1] inside the loop body. Here we choose to inspect a[w]. We introduce an
if construct to handle the three cases depending on the color of a[w].

{true}
r, w, b := 0, 0, N
{P}
while {inv : P}
b 6= w →

{P ∧ b 6= w}
if

a[w] = red→ unkprog5

a[w] = white→ unkprog6

a[w] = blue→ unkprog7

end
{P}

end
{P ∧ b = w}

Step 5

The precondition of the loop body is

Red(a, 0, r) ∧White(a, r, w) ∧Blue(a, b,N)
∧ 0 ≤ r ≤ w < b ≤ N

We have following four segments in the array.

a[0, r) : red elements
a[r, w) : white elements
a[w, b) : uninspected elements
a[b,N) : blue elements

Thinking of just the indices, for the case “a[w] = red”, we will need to
increment r as well as w; for the case “a[w] = white”, only w needs to be incre-
mented; and for the “a[w] = blue” case b needs to be decremented. Furthermore,
it is clear that for the “a[w] = white” case, no other operation is required apart
from the incrementing w. With this, we arrive at the follwing program.

7



{P ∧ b 6= w}
if
a[w] = red→ unkprog8

r, w := r + 1, w + 1
a[w] = white→ w := w + 1
a[w] = blue→ unkprog9

b := b− 1
end
{P}

Step 6

The program unkprog8 with its precondition and postcondition is given below.

{P ∧ b 6= w ∧ a[w] = red}
unkprog8

{P (r, w := r + 1, w + 1)}

The before-after predicate for this program is given below.

Red(a, 0, r) ∧White(a, r, w) ∧Blue(a, b,N)
∧ 0 ≤ r ≤ w < b ≤ N ∧ (a[w] = red)

⇒
Red(a′, 0, r + 1) ∧White(a′, r + 1, w + 1) ∧Blue(a′, b,N)
∧ 0 ≤ r + 1 ≤ w + 1 ≤ b ≤ N

In the above formula, a′ denotes the value of array a in the postcondition.
We assume the antecedent and manipulate the consequent in order to find value
for a′.

Red(a′, 0, r + 1) ∧White(a′, r + 1, w + 1) ∧Blue(a′, b,N)
∧ 0 ≤ r + 1 ≤ w + 1 ≤ b ≤ N

≡ { 0 ≤ r ≤ w < b ≤ N }
Red(a′, 0, r + 1) ∧White(a′, r + 1, w + 1) ∧Blue(a′, b,N)
≡ { Assume a′[b,N) = a[b,N) and notice that Blue(b,N)}
Red(a′, 0, r + 1) ∧White(a′, r + 1, w + 1)
≡ { Range Split }
Red(a′, 0, r) ∧ (a′[r] = red) ∧White(a′, r + 1, w) ∧ (a′[w] = white)
≡ { Assume a′[0, r) = a[0, r) and notice that Red(0, r)}

(a′[r] = red) ∧White(a′, r + 1, w) ∧ (a′[w] = white)
≡ { Assume a′[r + 1, w) = a[r + 1, w) and notice that White(r, w) }

(a′[r] = red) ∧ (a′[w] = white)
≡ { Notice a[r] = white and a[w] = red; Assume a′[r] = a[w] and a′[w] = a[r] }
true

8



In the above calculation, we have assumed following predicates about a′.

a′[0, r) = a[0, r)
a′[r] = a[w]
a′[r + 1, w) = a[r + 1, w)
a′[w] = a[r]
a′[b,N) = a[b,N)

The above assumptions can be satisfied if we choose unkprog8 to be Swap(a, r, w).
Similarly, we can derive unkprog9 to be Swap(a,w, b−1) The final program

is given below.

{true}
r, w, b := 0, 0, N

{P}
while {inv : P}
b 6= w →

{P ∧ b 6= w}
if
a[w] = red→ Swap(a, r, w)

r, w := r + 1, w + 1
a[w] = white→ w := w + 1
a[w] = blue→ Swap(a,w, b− 1)

b := b− 1
end
{P}

end
{P ∧ (b = w)}

References

[Coh90] Edward Cohen. Programming in the 1990s - An Introduction to the
Calculation of Programs. Texts and Monographs in Computer Science.
Springer, 1990.

[Gri87] David Gries. The Science of Programming. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1st edition, 1987.

[Kal90] Anne Kaldewaij. Programming: The Derivation of Algorithms.
Prentice-Hall, Inc., NJ, USA, 1990.

9


	1 Integer Division
	2 Table of cubes
	3 Dutch National Flag

