
Under consideration for publication in Formal Aspects of Computing

Assumption Propagation through
Annotated Programs
Dipak L. Chaudhari and Om Damani
Indian Institute of Technology, Bombay, India

Abstract.
In the correct-by-construction programming methodology, programs are incrementally derived from their

formal specifications, by repeatedly applying transformations to partially derived programs. At an inter-
mediate stage in a derivation, users may have to make certain assumptions to proceed further. To ensure
that the assumptions hold true at that point in the program, certain other assumptions may need to be
introduced upstream as loop invariants or preconditions. Typically these other assumptions are made in an
ad hoc fashion and may result in unnecessary rework, or worse, complete exclusion of some of the alternative
solutions. In this work, we present rules for propagating assumptions through annotated programs. We show
how these rules can be integrated in a top-down derivation methodology to provide a systematic approach
for propagating the assumptions, materializing them with executable statements at a place different from
the place of introduction, and strengthening of loop invariants with minimal additional proof efforts.

Keywords: Assumption Propagation, Annotated Programs, Program Derivation, Correct-by-construction

1. Introduction

In the correct-by-construction style of programming [Dij76, Kal90, Gri87], programs are systematically de-
rived from their formal specifications in a top-down manner. At each step, a derivation rule is applied to a
partially derived program at hand, finally resulting in the fully derived program. The refinement calculus
[Mor90, BvW98] further formalizes this top-down derivation approach.

Such refinement-based program derivation systems provide a set of formally verified transformation rules.
At an intermediate stage in a top down derivation, users may have to make certain assumptions to proceed
further. To ensure that the assumptions hold true at that point in the program, certain other assumptions
may need to be introduced upstream as loop invariants or preconditions. Typically these other assumptions
are made in an ad hoc fashion. It is not always possible to come up with the right predicates on the first

Correspondence and offprint requests to: Dipak L. Chaudhari, Kresit, Indian Institute of Technology, Bombay, Mumbai, 400076,
India, e-mail: dipakc@cse.iitb.ac.in
This paper is an extended version of: Dipak L. Chaudhari and Om P. Damani. Combining top-down and bottom-up techniques
in program derivation. In Logic-Based Program Synthesis and Transformation - 25th International Symposium, LOPSTR 2015,
Lecture Notes in Computer Science, vol 9527, pp 244-258.[CD15].

2 D. L. Chaudhari and O. Damani

attempt. Users often need to backtrack and try out different possibilities. The failed attempts, however, often
provide added insight which help, to some extent, in deciding the future course of action. In the words of
Morgan [Mor90]: “excursions like the above ... are not fruitless...we have discovered that we need the extra
conjunct in the precondition, and so we simply place it in the invariant and try again.” Although the failed
attempts are not fruitless, and provide some insight, the learnings from these attempts may not be directly
applicable; some guesswork is still needed to determine the location for the required modifications and the
exact modifications to be made. For example, as we will see in the next section, simply strengthening the loop
invariant with the predicate required for the derivation of the loop body might not always work. Moreover,
the trying again results in rework. The derived program fragments (and the discharged proof obligations)
need to be recalculated (redischarged) during the next attempt. The failed attempts also break the flow of
the derivations and make them difficult to organize.

Tools supporting the refinement-based formal program derivation (Cocktail [Fra99], Refine [OXC04],
Refinement Calculator [BL96] and PRT [CHN+96]) mostly follow the top-down methodology. Not much
emphasis has been given on avoiding the unnecessary backtrackings. The refinement strategies cataloged by
these tools help to some extent in avoiding the common pitfalls. However, a general framework for allowing
users to assume predicates and propagating them to appropriate locations is missing.

In this context, we make the following contributions in this paper:

1. We discuss the problems resulting from ad hoc reasoning involved in propagation of assumptions made
during a top-down derivation of programs. To address these problems, we present correctness preserving
rules for propagating assumptions through annotated programs.

2. We show how these rules can be integrated in a top-down derivation methodology to provide a systematic
approach for propagating the assumptions, materializing them with executable statements at a place
different from the place of introduction, and strengthening of loop invariants/preconditions with minimal
additional proof efforts.

3. We have implemented these rules in the CAPS1 system[CD14]. With the help of examples, we demonstrate
how these rules help users in avoiding unnecessary rework and also help them explore alternative solutions.

2. Preliminaries

In this section, we present some of the basic definitions and general notations used in the paper.

2.1. Hoare Triple, Weakest Precondition, and Strongest Postcondition

For program S and predicates P and Q, a Hoare triple [Hoa69], denoted as {P}S {Q}, is a boolean that has
the value true if and only if every terminating execution of program S starting in a state satisfying predicate
P terminates in a final state satisfying predicate Q. This notion of correctness is called partial correctness
since termination is not guaranteed.

The weakest precondition of S with respect to Q, denoted as wp(S,Q), is the weakest predicate P for
which {P}S {Q} holds[Dij76]. More formally {P}S {Q} ≡ [P ⇒ wp(S,Q)] where the square brackets
denote universal quantification over the points in state space[DS90]. The notation [R] is an abbreviation for
(∀x1 . . . ∀xn R) where x1, . . . , xn are the program variables in predicate R. The weakest precondition for the
multiple assignment x, y := E,F is defined as:

wp((x, y := E,F), Q) ≡ Q(x, y := E,F)

Here, the expression Q(x, y := E,F) denotes a predicate obtained by substituting E and F for the free
occurrences of variables x and y in the predicate Q.

Dual to the notion of weakest precondition is the notion of strongest postcondition [Gri87, DS90]. The
strongest postcondition of program S with respect to predicate P , denoted as sp(S, P), is the strongest
predicate Q for which {P}S {Q} holds.

1 The CAPS system is available at http://www.cse.iitb.ac.in/~damani/CAPS

http://www.cse.iitb.ac.in/~damani/CAPS

Assumption Propagation through Annotated Programs 3

2.2. Eindhoven Notation

For representing quantified expressions, we use the Eindhoven notation [Dij75, BM06] (OP i : R : T)
where OP is the quantifier version of a symmetric and associative binary operator op, i is a list of quan-
tified variables, R is the Range - a boolean expression involving the quantified variables, and T is the
Term - an expression. For example, the expression

∑10
i=0 i

2 in the conventional notation is expressed as(∑
i : 0 ≤ i ≤ 10 : i2

)
in the Eindhoven notation. We also use the Eindhoven notation for the logical

quantifiers (∀ and ∃). For example, the expressions ∀i R(i) ⇒ T (i) and ∃i R(i) ∧ T (i) in the conventional
notation are expressed as (∀i : R(i) : T (i)) and (∃i : R(i) : T (i)) respectively in the Eindhoven notation.

3. Motivating Example

To illustrate top-down derivations using annotated programs, and some of the ad hoc decision making
involved in these derivations, we present a sketch of the derivation for the maximum segment sum program.
The derivation sketch presented in this section is based on the derivations given in [Kal90] and [Coh90]. For
readers unfamiliar with the area of calculational program derivation, we have presented a simpler derivation
in Appendix A. For a thorough introduction to the area, we refer readers to the excellent textbooks [Kal90]
and [Coh90].

3.1. Maximum Segment Sum Derivation

In the Maximum Segment Sum problem, we are required to compute the maximum of all the segment sums
of a given integer array. A segment sum of an array segment is the sum of all the elements of the segment.

Fig. 1 depicts the derivation process for this program. We start the derivation by providing the formal
specification (node A) of the program. In the postcondition of the program, the symbol Max denotes the
quantifier version of the binary infix max operator in the Eindhoven notation. After inspecting the postcon-
dition, we apply the Replace Constant by a Variable[Kal90] heuristic to replace the constant N with a fresh
variable n as shown in node B. We follow the general guideline of adding bounds on the introduced variable
n by adding a conjunct P1 : 0 ≤ n ≤ N to the postcondition. Although this conjunct looks redundant due
to the existence of the stronger predicate n = N , it is used later and becomes part of the loop invariant. We
then apply the Take Conjuncts as Invariants[Kal90] heuristic to select conjuncts P0 and P1 as invariants
and the negation of the remaining conjunct n = N as a guard of the while loop. We choose to traverse the
array from left to right and envision an assignment r, n := r′, n+1, where r′ is a metavariable – a placeholder
for an unknown program expression (a quantifier free program term). The partially derived program at this
stage is shown in node C. To calculate the metavariable r′, we now step into the proof obligation for the
invariance of P0 and try to manipulate the formula with the aim of finding a program expression for r′. After
several formula transformations, we arrive at a formula r′ = r max Q(n+ 1) shown in node G where Q(n)

is defined as (Max p : 0 ≤ p ≤ n : Sum.p.n), where Sum.p.n , (
∑

i : p ≤ i < n : A[i]).
At this point, we realize that we can not represent r′ in terms of the existing program variables as the

expression Q(n + 1) involves quantifiers. After analyzing the derivation, we speculate that if we introduce
a fresh variable (say s) and maintain s = Q(n) as an additional loop invariant then we might be able to
express r′ in terms of the program variables.

We backtrack to the program shown in node C, introduce a fresh variable s, and envision a while program
with the strengthened invariant. This time, we are able to calculate r′ as r max s with the help of the
newly introduced invariant s = Q(n). After the calculation of r′, we proceed further with the derivation of
s′ and arrive at the formula s′ = (s + A[n]) max 0 (node L to node M). To make this formula valid, we
instantiate the metavariable s′ with the expression (s+A[n]) max 0. After substituting s′ with the expression
(s+A[n]) max 0 in the program shown in node K, we arrive at the final program shown in node N.

3.2. Ad Hoc Decision Making

The above derivation involves two ad hoc decisions. First, at the time of introducing variable n, we also
introduced the upper and lower bounds for n. While the upper bound n ≤ N is necessary to ensure that the

4 D. L. Chaudhari and O. Damani

con N : int {N ≥ 0}; con A: array [0..N) of int;
var r: int;

S
R : {r = (Max p, q : 0 ≤ p ≤ q ≤ N : Sum.p.q)}

Replacing constant N by variable n

var n: int;
S




P0 : r = (Max p, q : 0 ≤ p ≤ q ≤ n : Sum.p.q)
∧ P1 : 0 ≤ n ≤ N
∧ E : n = N





Take conjucts as invariants and increment n.

{invariant : P0 ∧ P1}
while (n 6= N)

S0:
r := r’ ;
n := n+ 1

end{
P0 ∧ P1 ∧ n = N

}

wp (r := r′, wp (n := n+ 1, P0))

≡ { Definition of P0 and wp }

r′ = (Max p, q : 0 ≤ p ≤ q ≤ n+ 1 : Sum.p.q)

r′ = rmaxQ(n+ 1)

r′ = rmax (Max p : 0 ≤ p ≤ n+ 1 : Sum.p.(n+ 1))

Strengthen invariant with
s = Q(n)

{
loop inv : P0 ∧ P1 ∧ s = Q(n)

}

while n 6= N →
s := s’ ;

S0 : r := r’ ;
n := n+ 1

end
{
P0 ∧ P1 ∧ s = Q(n) ∧ n = N

}

...

Calculate r′

r′ = rmax s

r, n, s := 0, 0, 0;{
loop inv : P0 ∧ P1 ∧ s = Q(n)

}

while n 6= N →
S2 : s := s’ ;
{ s = Q(n+ 1) }
r := rmax s;
{ P0(n := n+ 1) }
n := n+ 1;

end

...

Calculate s′

s′ = (s+A[n]) max 0

r, n, s := 0, 0, 0;{
loop inv : P0 ∧ P1 ∧ s = Q(n)

}

while n 6= N →
s := (s+A[n])max 0;
{ s = Q(n+ 1) }
r := rmax s;
{ P0(n := n+ 1) }
n := n+ 1;

end

A

B

C

D

E

F

G

H

I

J

K

L

M

N

≡
{

Introduce predicate Q(n).

Q(n) , (Max p : 0 ≤ p ≤ n : Sum.p.n)

}

Fig. 1. Sketch of the top-down derivation of the Maximum Segment Sum problem.
Sum.p.q , (Σi : p ≤ i < q : A[i]); Q(n) , (Max p : 0 ≤ p ≤ n : Sum.p.n)

P0 , (r = (Max p, q : 0 ≤ p ≤ q ≤ n : Sum.p.q)); P1 , 0 ≤ n ≤ N

expression P0 is well-defined, at that point in derivation, there is no need to introduce the lower bound. The
expression remains well-defined even for negative values of n.

The second ad hoc decision was that, we did not select s = Q(n+ 1) as an invariant even though that is
the formula which is required at node F . Instead we selected s = Q(n) as an additional invariant. Selection
of this formula needs a foresight that the occurrences of n are textually substituted by n + 1 during the
derivation (step D-E), so we will get the desired formula at node G, if we strengthen the invariant with
s = Q(n).

These ad hoc decisions result in the problem of rework and premature reduction of solution space.

Assumption Propagation through Annotated Programs 5

annGCL ::= {assertion} program {assertion}
program ::= skip

|assume(assertion)

|unkprog

| var1, . . . , varn := expn1, . . . , expnn

| if bexpn1 → annGCL1 [] . . . [] bexpnn → annGCLn end

|while {inv:assertion} bexpn→ annGCL end

| annGCL1; . . . ; annGCLn

Fig. 2. annGCL grammar

Rework. After backtracking to program C and strengthening invariant, we try to calculate r′. The steps
from node I to node J correspond to the calculation of r′. These steps are similar to the calculation of
r′ in the failed attempt (node E to node F). We need to carry out these steps again to ensure that the
newly added invariant does not violate the correctness of the existing program fragments.

Premature reduction of solution space. As shown later in Section 6.2, the above two decisions prema-
turely reduced the solution space preventing us from arriving at an alternative solution. The alternative
solution (Fig. 22, node W) derived using the assumption propagation rules initializes n with −1 and uses
an invariant involving the term s = Q(n+ 1).

3.3. Motivation for Assumption Propagation

As discussed above, having made an arbitrary choice of introducing the invariant 0 ≤ n, when later faced
with the problem of materializing the expression s = Q(n + 1), a loop invariant s = Q(n) is introduced in
an ad hoc fashion. The textbook by Cohen argues that “The question might arise as to why the following
was not chosen instead: s = Q(n+ 1). The reason is that this invariant cannot be established initially...A[0]
is undefined when N = 0” 2[Coh90]. Similarly, the textbook by Kaldewaij does not consider strengthening
the invariant with s = Q(n + 1) on the ground that “... for n = N (which is not excluded by P1) this
predicate is not defined. Replacing all occurrences of n by n − 1 yields an expression that is defined for all
0 ≤ n ≤ N .”[Kal90]

We find two justifications for the exclusion of an invariant involving the term s = Q(n + 1); one on the
ground of an initialization error while the other on the ground of a termination related error. Whereas the
real problem lies in the fact that one is trying to make a guess without calculating the logically required
expressions. The assumption propagation technique proposed in Section 5 enables the users to make assump-
tions in order to proceed and later propagate these assumptions to appropriate places where they can be
materialized by introducing executable program constructs.

4. Program Derivation by Annotated Program Transformations

The program derivation methodology that we adopt is similar in spirit to the one followed in the motivating
example. We start with the specification and incrementally transform it into a fully derived correct program.
In this section, we introduce the concepts and notations relevant to the assumption propagation technique.

4.1. Annotated Programs

For representing a program fragment and its specification, we use an extension of the Guarded Command
Language (GCL) [Dij75] called annGCL. It is obtained by augmenting each program construct in the GCL
with its precondition and postcondition. The grammar for the annGCL language is given in Fig. 2.

2 The notations in this quote have be adapted to match our notation.

6 D. L. Chaudhari and O. Damani

Table 1. Partial correctness proof obligations for annGCL constructs

Annotated program (annGCL) Correctness proof obligation of A
A po (A)

{α}
skip

{β}
α⇒ β

{α}
assume(θ)

{β}
α ∧ θ ⇒ β

{α}
unkprog

{β}
true

{α}
x1, . . . , xn := E1, . . . , En

{β}
α⇒ β(x1, . . . , xn := E1, . . . , En)

{α}
if
| G1 → {ϕ1}S1 {ψ1}
.

| Gn → {ϕn}Sn {ψn}
end

{β}

pocoverage ∧ poentry ∧ pobody ∧ poexit
where,
pocoverage : α⇒

∨
i∈[1,n]Gi

poentry :
∧

i∈[1,n] (α ∧Gi ⇒ ϕi)

pobody :
∧

i∈[1,n] (po ({ϕi}Si {ψi}))

poexit :
∧

i∈[1,n] (ψi ⇒ β)

{α}
while {Inv: ω}
G→ {ϕ}

S
{ψ}

end
{β}

poinit ∧ poentry ∧ pobody ∧ poinv ∧ poexit
where,
poinit : α⇒ ω
poentry : ω ∧G⇒ ϕ
pobody : po ({ϕ}S {ψ})
poinv : ψ ⇒ ω
poexit : ω ∧ ¬G⇒ β

{α}
{ϕ1}S1 {ψ1}

. . .
{ϕn}Sn {ψn}

{β}

poentry ∧ pobody ∧ pojoins ∧ poexit
where,
poentry : α⇒ ϕ1

pobody :
∧

i∈[1,n] (po ({ϕi}Si {ψi}))

pojoins :
∧

i∈[1,n−1] (ψi ⇒ ϕi+1)

poexit : ψn ⇒ β

For the sake of simplicity, we exclude variable declarations from the grammar. Also, the grammars for
variables (var), expressions (expn), boolean expressions (bexpn), and assertions (assertion) are not described
here. We use the formulas in sorted first-order predicate logic for expressing the assertions. We adopt the
Eindhoven notation [BM06] for representing the quantified formulas. We have introduced program constructs
unkprog and assume to represent unimplemented program fragments.

Note that in an annGCL program, all its subprograms (and not just the outermost program) are annotated
with the pre- and postconditions.

Correctness of Annotated Programs

Definition 1 (Correctness of an annotated program). An annGCL program A is correct iff the proof
obligation of A (denoted by po(A) in Table 1) is valid.

The proof obligations for the newly introduced program constructs unkprog and assume deserve some
explanation. The proof obligation for the annGCL program {α} unkprog {β} is true. In other words, unkprog
is correct by definition and hence can represent any arbitrary unsynthesized program. The proof obligation
for {α} assume(θ) {β} is α ∧ θ ⇒ β. From this it follows that the program {α} assume(θ) {α ∧ θ} is always
correct. The assume program is used to represent an unsynthesized program fragment that preserves the
precondition α while establishing θ.

The proof obligations of the composite constructs are defined inductively. The pobody proof obligation for
the if, while, and composition constructs asserts the correctness of corresponding subprograms. We do not

Assumption Propagation through Annotated Programs 7

use the Hoare triple notation for specifying correctness of programs since our notation for annGCL programs
{ϕ}S {ψ} conflicts with that of a Hoare triple. Instead, to express that an annGCL program A is correct,
we explicitly state that “po(A) is valid”.

4.2. Transformation Rules

Definition 2 (Annotated program transformation rule). An annotated program transformation rule
(R) is a partial function from annGCL into itself which transforms a source annGCL program {α}S {β} to
a target annGCL program {α}T {β} with the same precondition and postcondition.

Some of the transformation rules have associated applicability conditions (also called proviso). A rule can be
applied only when the associated applicability condition is satisfied.

Definition 3 (Correctness preserving transformation rule). An annotated program transformation
rule R is correctness preserving if for all the annGCL programs S for which the rule is applicable, if S is
correct then R(S) is also correct.

Nature of the transformation rules. In the stepwise refinement-based approaches [Mor90, BvW98], a
formal specification is incrementally transformed into a concrete program. A specification (pre- and post-
conditions) is treated as an abstract program (called a specification statement). At any intermediate stage
during the derivation, a program might contain specification statements as well as executable constructs.
The traditional refinement rules are transformations that convert a specification statement into another
program which may in turn contain specifications statements and the concrete constructs. In the conventional
approach, once a specification statement is transformed into a concrete construct, its pre- and postconditions
are not carried forward.

In contrast to the conventional approach, we maintain the specifications of all the subprogram (concrete
as well as unsynthesized). This allows us to provide rules which transform any correct program (not just
a specification statement) into another correct program with minimal proof effort. These rules reuse the
already derived program fragments and the already discharged proof obligations to ensure correctness.

5. Assumption Propagation

5.1. Assumption Propagation for Bottom up Derivation

Assumption propagation can be seen as a bottom-up derivation approach since we delay certain decisions by
making assumptions and then propagate the information upstream. In order to incorporate the bottom-up
approach in a primarily top-down methodology, we need a way to accumulate assumptions made during
the derivation and then to propagate these assumptions upstream. After propagating the assumptions to
appropriate locations in the derived program, user can introduce appropriate program constructs to establish
the assumptions.

This bottom-up phase has three main steps.

• Assume: To derive a program fragment with precondition α and postcondition β, we start with the
annGCL program {α}unkprog1 {β}. Now suppose that, in order to proceed further, we decide to assume
θ.
For example, we can envision a program construct in which the unknown program expressions are repre-
sented by metavariables. We then focus our attention on the correctness proof obligation of the envisioned
program and try to guess suitable expressions for the metavariables with the objective of discharging the
proof obligation. While doing so, we might need to assume θ.
Instead of backtracking and figuring out the modifications to be done to the rest of the program to make
θ hold at the point of assumption, we just accumulate the assumptions and proceed further with the
derivation to arrive at program S. In the resulting annGCL program (Fig. 3), assume(θ) establishes the
assumed predicate θ while preserving α. For brevity, we abbreviate the statement assume(θ) as A(θ).

• Propagate: We may not want to materialize the program to establish θ at the current program location.
We can propagate the assume(θ) statement upstream to an appropriate program location. The assumed

8 D. L. Chaudhari and O. Damani

{α}
{α}
A(θ)

{α ∧ θ}
S

{β}
{β}

Fig. 3. Result of assuming precondition θ in the
derivation of {α}unkprog1 {β}

{α}
skip
{β}
A(θ)

{β ∧ θ}

{α}
A(θ)

{α ∧ θ}
skip
{β ∧ θ}

Fig. 4. SkipUp rule

{α}
A(η)

{α ∧ η}
A(θ)

{α ∧ η ∧ θ}

{α}
A(θ)

{α ∧ θ}
A(η)

{α ∧ θ ∧ η}

Fig. 5. AssumeUp rule

{α}
A(η)

{α ∧ η}
A(θ)

{α ∧ η ∧ θ}

{α}
A(η ∧ θ)

{α ∧ η ∧ θ}

Fig. 6. AssumeMerge rule

predicate θ is modified appropriately depending on the program constructs through which it is propa-
gated. The pre- and postconditions of the intermediate program constructs are also updated to preserve
correctness.

• Realize: Once the assume statement is at a desired location, we can materialize it by deriving cor-
responding executable program constructs that establish the assumption. Note that this might not be
a single step process. We might replace the assume statement with another partially derived program
which might in turn have other assume/unkprog statements in addition to some executable constructs.

We repeat the process till we eliminate all the assume and unkprog statements.

5.2. Precondition Exploration

We can propagate the assumptions made during the derivation all the way to the top. Let us say, we arrive
at a program shown in Fig. 3. If the overall precondition of the program α implies the assumption θ then we
can get rid of the assume statement and arrive at a program {α}S {β}. If this is not the case, we can either
go about materializing the assumption or accept the assumption θ as an additional precondition. So we now
have an annGCL program {α ∧ θ}S {β} which is a solution for a different specification whose precondition
is stronger than the original precondition.

This could be called precondition exploration; where for the given precondition α and postcondition β,
we would like to derive a program S and assumption θ such that the annGCL program {α ∧ θ}S {β} is
correct.

5.3. Rules for Propagating and Establishing Assumptions

The propagation step described in Section 5.1 is an important step in the bottom up phase. We have
developed correctness preserving transformation rules for propagating the assumptions upstream through
the annGCL program constructs. In the coming sections, we present transformation rules for assumption
propagation.

5.3.1. Atomic Constructs

Atomic constructs are the program constructs that do not have subprograms. For every atomic construct,
there is a rule for up-propagating an assumption through the construct. For atomic constructs that repre-
sent unsynthesized programs (assume and unkprog), there are additional rules for merging statements or
establishing the assumptions.

Assumption Propagation through Annotated Programs 9

{α}
unkprog1

{β}
A(θ)

{β ∧ θ}

{α}
A(θ))

{α ∧ θ}
unkprog2

{β ∧ θ}

Fig. 7. UnkProgUp rule

{α}
unkprog1

{β}
A(θ)

{β ∧ θ}

{α}
unkprog2

{β ∧ θ}

Fig. 8. UnkProgEst rule

{α}
x := E

{β}
A(θ)

{β ∧ θ}

{α}
A(wp(x := E, θ))

{α ∧ wp(x := E, θ)}
x := E

{β ∧ θ}

Fig. 9. AssignmentUp rule.

skip. The SkipUp rule (Fig. 4) propagates an assumption θ through a skip statement. No change is required
in the assumed predicate as it is propagated through the skip statement.

assume. The AssumeUp rule (Fig. 5) propagates an assumption θ through an assume program A(η). This
transformation just changes the order of the assume statements. Instead of propagating the assumption θ,
we can choose to merge it into the statement A(η) by applying the AssumeMerge rule (Fig. 6). Applying
this rule results in a single assume statement A(η ∧ θ).

unkprog. Fig. 7 shows the UnkProgUp rule which propagates an assumption upward through an unknown
program fragment (unkprog1). Note that pre- and post-conditions of unkprog2 are strengthened with
θ. Here, we are demanding that unkprog2 should preserve θ. We may prefer to establish θ instead of
propagating. The UnkProgEst rule (Fig. 8) can be used for this purpose.

assignment. Fig. 9 shows the AssignmentUp rule for propagating an assumption upwards through an
assignment. The assumed predicate θ gets modified to wp(x := E, θ) as it is propagated through the
assignment x := E.

5.3.2. Composition

We need to consider the following two cases for propagating assumptions through a composition program.

Case 1: The assume statement is immediately after the composition program.
Fig. 10 shows a composition program which is composed of another composition and an assume(θ)
statement. The CompositionIn rule can be used to propagate the assumption θ inside the composition
construct. The assumption can then be propagated upwards through the subprograms of the composition
(Sn to S1) using appropriate rules.

Case 2: The assume statement is the first statement in the composition program.
The CompositionOut rule (Fig. 11) propagates the assume statement at a location before the composition
statement. The target program does not contain the predicate ϕ since, from the correctness of the source
program, ϕ is implied by the precondition α.
We also provide the CompoToIf rule (Fig. 12) which establishes the assumption θ by introducing an
if program in which the assumed predicate θ appears as the guard of the program. Another guarded

{α}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}

{β}
A(θ)

{β ∧ θ}

{α}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}
{β} A(θ) {β ∧ θ}

{β ∧ θ}

Fig. 10. CompositionIn rule

{α}
{ϕ} A(θ) {ϕ ∧ θ}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}

{β}

{α}
A(θ)

{α ∧ θ}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}

{β}

Fig. 11. CompositionOut rule

10 D. L. Chaudhari and O. Damani

{α}
{ϕ} A(θ) {ϕ ∧ θ}
{ϕ ∧ θ}S {ψ}

{β}

{α}
if
| θ → {ϕ ∧ θ}S {ψ}
| ¬θ → {ϕ ∧ ¬θ}unkprog {ψ}
end
{β}

Fig. 12. CompoToIf rule: Transforms a composition to an if program.

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gi → {ϕi}Si {ψi}
. . .
| Gn → {ϕn}Sn {ψn}
end

{β}
A(θ)

{β ∧ θ}

{α}
if
| G1 → {ϕ1}S1 {ψ1} A(θ){ψ1 ∧ θ}
. . .
| Gi → {ϕi}Si {ψi} A(θ){ψi ∧ θ}
. . .
| Gn → {ϕn}Sn {ψn} A(θ){ψn ∧ θ}
end

{β ∧ θ}

Fig. 13. IfIn rule.

command is added to handle the complementary case. This rule has a proviso that θ is a valid program
expression. This rule allows users to delay the decision about the type of the program constructs. For
example, users may envision an assignment, which can be turned later into an if program if required.

If the assume statement is at a location inside the composition program which does not fall under these
two cases, then appropriate rule should be selected based on the type of the program immediately preceding
the assume statement. Nested composition construct can be collapsed to form a single composition. However,
this construct is useful when we want to apply a rule to a subcomposition.

5.3.3. If

We need to consider the following two cases for propagating assumptions through an if program.

Case 1: The assume statement is immediately after the if program.
In order to make predicate θ available after the if program, θ must hold after the execution of every
guarded command. The IfIn rule (Fig. 13) propagates an assume statement that appears immediately
after an if construct in the source program inside the if construct in the target program. In the target
program, θ is assumed at the end of every guarded command.

Case 2: The assume statement is the first statement in the body of one of the guarded commands.
To make θ available as a precondition of the body of one of the guarded commands, θ must hold as
a precondition of the if program. (In fact, we can assume a weaker predicate as discussed below.)

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm → {ϕm}A(θ) {ϕm ∧ θ}Sm {ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end
{β}

{α}
A(θ∗)

{α ∧ θ∗}
if
| G1 → {ϕ1 ∧ θ∗}S1 {ψ1}
. . .
| Gm → {ϕm ∧ θ}Sm {ψm}
. . .
| Gn → {ϕn ∧ θ∗}Sn {ψn}
end
{β}

Fig. 14. IfOut rule. θ∗ , Gm ⇒ θ

Assumption Propagation through Annotated Programs 11

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm → {ϕm}A(θ){ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end
{β}

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm ∧ θ → {ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
| Gm ∧ ¬θ → {α ∧Gm ∧ ¬θ}unkprog{β}
end

{β}

Fig. 15. IfGrd rule

Fig. 14 shows the IfOut rule corresponding to this case. In the source program, θ is assumed before the
subprogram Sm, whereas in the target program, θ∗ is assumed before the if program. Note that θ∗ (which
is defined as (Gm ⇒ θ)) is weaker than θ. This weakening is possible since, by the semantics of the if
construct, the guard predicate Gm is already available as a precondition to the program Sm.

As a result of assuming θ∗ before the if construct, we also strengthen the precondition of the other
guarded commands. Note that program fragments S1 to Sn may contain yet to be synthesized unkprog
fragments. This strengthening of the preconditions by θ∗ might be helpful in the task of deriving these
unknown program fragments.

In this case, instead of propagating assumption θ, we can make it available as a precondition to the
body of the guarded command (Sm) by simply strengthening the corresponding guard with θ. The IfGrd
rule (Fig. 15) can be applied for this purpose. Since we are strengthening the guard of one of the guarded
commands (Gm) with θ, an additional guarded command (with a guard Gm ∧ ¬θ) needs to be added to
ensure that all the cases are handled.

5.3.4. While

The assumption propagation rules involving the while construct are more complex than those for the other
constructs since strengthening an invariant strengthens the precondition as well as the postcondition of the
loop body. Depending on the location of the assume statement with respect the while construct, we have
the following two cases.

Case 1: The assume statement is immediately after the while program.
Fig. 16 shows the WhileIn rule applicable to this case. The source program has an assumption after the
while loop. In order to propagate the assumption θ upward, we strengthen the invariant of the while loop
with ¬G ⇒ θ. This is the weakest formula that will assert θ after the while loop. We add an assume
statement after the loop body to maintain the invariant and another assume statement before the loop
to establish the invariant at the entry of the loop.

Case 2: The assume statement is the first statement in the body of while program.
There are two options available to the user in this case depending on whether the user chooses to
strengthen the postcondition of the loop body by propagating the assumed predicate forward through
the loop body. The rules corresponding to these two alternatives are given below.

WhileStrInv rule. In the source program (Fig. 17), the predicate θ is assumed at the start of the
loop body. To make θ valid at the start of the loop body S, we strengthen the invariant with (G ⇒ θ).
An assume statement A(G ⇒ θ) is added after the loop body to ensure that invariant is preserved.
Another assume statement is added before the while loop to establish the invariant at the entry of the
loop.

WhilePostStrInv rule. There are two steps in this rule (Fig. 18). In the first step, the postcondi-
tion of the program S is strengthened with θ∗ which is the strongest postcondition of θ with respect
to S. In the second step, the invariant of the while loop is strengthened with θ∗. An unknown program
fragment is added before S to establish θ. An assume statement is added before the while program to
establish θ∗ at the entry of the loop.
Strongest postconditions involve existential quantifiers. To simplify the formulas, these quantifiers should

12 D. L. Chaudhari and O. Damani

{α}
while {Inv : ω}
G→
{ϕ}
S

{ψ}
end

{β}
A(θ)

{β ∧ θ}

{α}
A(¬G⇒ θ)

{α ∧ (¬G⇒ θ)}
while {Inv : ω ∧ (¬G⇒ θ)}
G→
{ϕ}
S
{ψ}
A(¬G⇒ θ)

{ψ ∧ (¬G⇒ θ)}
end
{β ∧ θ}

Fig. 16. WhileIn rule: Strengthens the invariant with ¬G⇒ θ

{α}
while {Inv : ω}
G→
{ϕ}
A(θ)

{ϕ ∧ θ}
S

{ψ}
end

{β}

{α}
A(G⇒ θ)

{α ∧ (G⇒ θ)}
while {Inv : ω ∧ (G⇒ θ)}
G→
{ϕ ∧ θ}
S
{ψ}
A(G⇒ θ)

{ψ ∧ (G⇒ θ)}
end
{β}

Fig. 17. WhileStrInv rule: Strengthens the invariant with G⇒ θ

be eliminated whenever possible. In this rule, we have defined θ∗ to be the sp(S, θ). However, any formula
θw weaker than the strongest postcondition will also work provided the program {ϕ ∧ θw} unkprog{ϕ ∧ θ}
can be derived.

5.4. Correctness of the Transformation Rules

To prove that a transformation ruleR : src 7→ target is correctness preserving, we need to prove [proviso(src)]⇒
[po(src)] ⇒ [po(target)] where the square brackets denote universal quantification over the points in state
space as explained in Section 2.1. The proviso is optional and is assumed to be true if not mentioned. In this
section, we give the proof of correctness preservation of the WhilePostStrInv rule. The proofs of correctness
preservation for the other rules are given in Appendix B.

Theorem 5.1. WhilePostStrInv rule is correctness preserving.

Proof. There is no proviso for this rule. To prove that the rule is correctness preserving, we need to prove
[po(src)] ⇒ [po(target)]. In this proof, we will prove [po(src) ⇒ po(target)] which implies [po(src)] ⇒
[po(target)].

Proof obligations of the src program and the target program for the WhilePostStrInv are given in Fig 19.

Assumption Propagation through Annotated Programs 13

{α}
while {Inv : ω}
G→
{ϕ}
A(θ)

{ϕ ∧ θ}
S
{ψ}

end
{β}

{α}
while {Inv : ω}
G→
{ϕ}
A(θ)

{ϕ ∧ θ}
S

{ψ ∧ θ∗}
end

{β}

{α}
A(θ∗)

{α ∧ θ∗}
while {Inv : ω ∧ θ∗}
G→
{ϕ ∧ θ∗}
unkprog

{ϕ ∧ θ}
S

{ψ ∧ θ∗}
end

{β}

Fig. 18. WhilePostStrInv rule: Strengthens the loop invariant with θ∗ where θ∗ , sp(S, θ)

po(src) =
∧

i Γi

Γ1 : α⇒ ω
Γ2 : ω ∧G⇒ ϕ
Γ3 : po ({ϕ}A(θ) {ϕ ∧ θ})
Γ4 : po ({ϕ ∧ θ}S {ψ})
Γ5 : ψ ⇒ ω
Γ6 : ω ∧ ¬G⇒ β

po(target) =
∧

i ∆i

∆1 : po ({α}A(θ∗) {α ∧ θ∗})
∆2 : α ∧ θ∗ ⇒ ω ∧ θ∗
∆3 : ω ∧ θ∗ ∧G⇒ ϕ ∧ θ∗
∆4 : po ({ϕ ∧ θ∗}unkprog {ϕ ∧ θ})
∆5 : po ({ϕ ∧ θ}S {ψ ∧ θ∗})
∆6 : ψ ∧ θ∗ ⇒ ω ∧ θ∗
∆7 : ω ∧ θ∗ ∧ ¬G⇒ β

Fig. 19. Proof obligations of the src and the target programs for the WhilePostStrInv Rule.

We assume the correctness of the src program and prove the proof obligations of the target program,
i.e.

∧
i∈[1,6] Γi ⇒

∧
i∈[1,7] ∆i.

∆1 :

po ({α}A(θ∗) {α ∧ θ∗})
≡ { definition of assume }
α ∧ θ∗ ⇒ α ∧ θ∗

≡ { predicate calculus }
true

∆2 :

α ∧ θ∗ ⇒ ω ∧ θ∗
⇐ { predicate calculus }
α⇒ ω

≡ { Γ1 }
true

∆3 :

ω ∧ θ∗ ∧G⇒ ϕ ∧ θ∗
⇐ { predicate calculus }
ω ∧G⇒ ϕ

≡ { Γ2 }
true

∆4 :

po ({ϕ ∧ θ∗}unkprog {ϕ ∧ θ})
≡ { definition of unkProg }
true

∆5 :

po ({ϕ ∧ θ}S {ψ ∧ θ∗})
≡ { po is conjunctive in postcondition }
po ({ϕ ∧ θ}S {ψ}) ∧ po ({ϕ ∧ θ}S {θ∗})

≡ { Γ4 }
po ({ϕ ∧ θ}S {θ∗})

≡ { definition of θ∗ }
true

∆6 :

ψ ∧ θ∗ ⇒ ω ∧ θ∗
⇐ { predicate calculus }
ψ ⇒ ω

≡ { Γ5 }
true

∆7 :

ω ∧ θ∗ ∧ ¬G⇒ β
⇐ { predicate calculus }
ω ∧ ¬G⇒ β

≡ { Γ6 }
true

14 D. L. Chaudhari and O. Damani

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm → {ϕm}A(θ){ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end
{β}

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm ∧ θ → {ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end

{β}

Proviso :
α⇒

((∨
i∈[1,n]∧i 6=mGi

)
∨ θ
)

Fig. 20. IfGrd2 rule: A variation of the IfGrd rule(Fig. 15).

5.5. Adding New Transformation Rules

New rules can be introduced as long as they are correctness preserving. For example, we can come up a
IfGrd2 (Fig. 20) rule which is a variation of the IfGrd rule (Fig. 15) where the rule is similar to the IfGrd
except for the following differences.

1. This rule has a proviso α⇒
((∨

i∈[1,n]∧i6=mGi

)
∨ θ
)

.

2. The target program in this case does not contain the guarded command with the guard (Gm ∧ ¬θ).

In the next section we present some guidelines for selecting appropriate assumption propagation rules that
are likely to result in concrete programs.

5.6. Selecting Appropriate Rules

When encountered with an assume statement, we need to decide whether to establish (materialize) the
assumption at its current location or to propagate it upstream. In many cases, this decision depends on the
location of the assume statement. For example, if the assume statement is inside the body of a while loop,
and materializing it will result in an inner loop, we may prefer to propagate it upstream and strengthen the
invariant in order to derive an efficient program.

For propagating assumptions, our choices are limited by the location of the assume statement and the
preceding program construct. For example, consider a scenario where an assume statement comes immedi-
ately after an if program. Although there are four rules for the if construct, only the IfIn rule is applicable
in this case. In cases where multiple rules are applicable, select a rule that results in a simpler program. For
example, if the assume statement is the first statement in the body of an if construct, there are two choices
namely the IfGrd rule and the IfGrd2 rule. In this case, it is desirable to apply the IfGrd2 rule (provided
the corresponding proviso is valid) since it results in a simpler program.

Another choice that one has to make quite often is between the WhileStrInv rule and the WhilePostStrInv
rule. We select a rule that results in invariants that are easier to establish at the entry of the loop. In some
cases (as discussed later in Section 6.2), both the paths may lead to concrete programs. One might have to
proceed one or two steps and decide if a particular line of derivation is worth trying. This is much simpler
than the ad hoc trial and error discussed in Section 3.2 where we had to guess the right predicates.

5.7. Down-propagating the Assertions

Note that dual to act of propagating assumptions upstream is the act of propagating assertions down-
stream by computing the strongest postconditions. A typical derivation involves interleaved instances of
up-propagation of the assume statements and down-propagation of the assertions. We present one such
example in Section 6.1.

Assumption Propagation through Annotated Programs 15

while {Inv : P}
n 6= N →
{P}
assume(P2);
{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n+ 1)}
n := n+ 1
{P}

end {R}

while {Inv : P ∧ P2}
n 6= N →
{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n+ 1)}
n := n+ 1
{P}
assume(P2)
{P ∧ P2}

end {R}

while {Inv : P ∧ P2}
n 6= N →
{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n+ 1)}
assume(P2(n := n+ 1)){
P (n := n+ 1)
∧P2(n := n+ 1)

}

n := n+ 1
{P ∧ P2}

end {R}

while {Inv : P ∧ P2}
n 6= N →
{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n+ 1) ∧ P2}
assume(P2(n := n+ 1)){
P (n := n+ 1)
∧P2(n := n+ 1)

}

n := n+ 1
{P ∧ P2}

end {R}

Add P2 to invariant

Propagate assume up Strengthen post of r asgn

(a)
(b)

(c) (d)

P : r =
(∑

i : 0 ≤ i < n : c[i] ∗ xi
)
∧ 0 ≤ n ≤ N

P2 : y = xn

Fig. 21. Some steps in the derivation of a program for the Horner’s rule. Invariant initializations at the entry
of the loop are not shown.

6. Derivation Examples

6.1. Evaluating Polynomials

To demonstrate the interleaving of up-propagation of the assumptions and down-propagation of the asser-
tions, we present some of the steps from the derivation of a program for evaluating a polynomial whose
coefficients are stored in an array (also called Horner’s rule). The program is specified as follows.

con A[0..N) array of int {N ≥ 0};
con x : int; var r : int;
S{
R : r =

(∑
i : 0 ≤ i < N : c[i] ∗ xi

)}

We skip the initial rule applications and directly jump to the program shown in Fig. 21(a). The user
has already assumed predicate P2 : y = xn during the calculation of r′ (not shown). We next apply the
WhileStrInv rule to strengthen the invariant with P2 to arrive at program shown in the figure (b). We then
propagate the assume statement upwards through n := n+1 to arrive at the program shown in figure (c). We
would like to synthesize the assumption here but the precondition is not sufficient. Next, we strengthen the
postcondition of the assignment statement for r to arrive at program shown in the figure (d). The assumption
P2(n := n+ 1) can now be easily established as y := y ∗ x. Note that alternative solutions are also possible.

With the combinations of steps involving up-propagation of the assume statements and down-propagation

16 D. L. Chaudhari and O. Damani

of the assertions, we can propagate the missing fragments to an appropriate location and then synthesize
them.

6.2. Back to the Motivating Example

Next, we derive the motivating example from Section 3 using the assumption propagation approach. The
initial derivation up to node G in Fig. 1 will remain the same except for the fact that we do not add 0 ≤ n
as an invariant initially. For the purpose of this example, P1 is just n ≤ N .

At node G, we are not able to express the formula Q(n+1) as a program expression. Instead of speculating
about what we should add at an upstream location so that we get Q(n + 1) at the current node, node G,
we just assume the predicate that is needed at the current location. Instead of backtracking, we introduce a
fresh variable s and assume the formula s ≡ Q(n+ 1) and proceed further with the calculation.

. . .
r′ = r max Q(n+ 1)

≡
{

introduce variable s and
assume s ≡ Q(n+ 1)

}

r′ = r max s
≡ { ... }

After instantiating r′ to r max s, we arrive at a while program (node O in Fig. 22) where the body of the
loop contains the statement assume(s ≡ Q(n+ 1)) as the first statement. We can establish the assumption
at the current location, however that would be expensive since we would need to traverse the array inside
the loop body. We therefore decide to propagate the assumption upwards out of the loop body. We now have
two choices; we can apply the WhilePostStrInv rule or the WhileStrInv rule. We first show application of
the WhilePostStrInv rule.

Application of the WhilePostStrInv rule strengthens the invariant by s ≡ Q(n) and yields the program
shown in node P in Fig. 22. We can now proceed further with the derivation of the unkprog fragment and
the initialization assume statement as usual. The additional invariant 0 ≤ n is added later when another
assume statement (in node R) is propagated upwards. The final solution is shown in node S. This solution
is derived in a linear fashion without any backtracking, thus avoiding the unnecessary rework.

Alternative solution

We now apply the WhileStrInv rule at node O in Fig. 22. Application of this rule adds n 6= N ⇒ s = Q(n+1)
as an invariant and results in the program shown in node T. We can now materialize the assume statements
by deriving the corresponding program. The final solution is shown in node W. (For brevity, we have not
shown the guarded command if the body of the guarded command contains only a skip statement.)
Remark. In section 3.2, we did not select s = Q(n + 1) as an invariant since our informal analysis warned
us of an access to an undefined array element. As a result of this analysis, we discarded a possible program
derivation path. However, if we apply the WhileStrInv rule, the array initialization problem does not occur
as the term s = Q(n+1) is suitably modified before adding it to the invariant. The rules are driven by logical
necessity; program constructs are added only when they are logically necessary to preserve correctness. In
this case, the appropriate guards are automatically added to safeguard us from accessing an undefined array
element.

7. Implementing Assumption Propagation

The assumption propagation technique as described here can be adapted for use in any correct by construction
program development environment. We have implemented it in the CAPS system [CD14]. CAPS is a tactic
based interactive program derivation system. In the CAPS system, users incrementally transform a formal
specification into a fully synthesized annGCL program by repeatedly applying predefined transformation
rules called Derivation Tactics. The complete derivation history is recorded in the form of a Derivation Tree.
The system provides various features like stepping into subcomponents, backtracking, branching. The system
automates most of the mundane tasks and employs the automated theorem provers Alt-Ergo [CC], CVC3

Assumption Propagation through Annotated Programs 17

{true}
unkprog1

{P0 ∧ P1}
while {inv : P0 ∧ P1}
(n 6= N)→

{P0 ∧ P1 ∧ n 6= N}
assume(s = Q(n+ 1)){
P0 ∧ P1 ∧ n 6= N
∧s = Q(n+ 1)

}

r, n := r max s, n+ 1
{P0 ∧ P1}

end{
P0 ∧ P1 ∧ n = N

}

{true}
unkprog1

{P0 ∧ P1}
assume(s = Q(n)){
P0 ∧ P1 ∧ s = Q(n)

}

while
{
inv : P0 ∧ P1 ∧ s = Q(n)

}

(n 6= N)→{
P0 ∧ P1 ∧ n 6= N ∧ s = Q(n)

}

unkprog2{
P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1)

}

r, n := r max s, n+ 1{
P0 ∧ P1 ∧ s = Q(n)

}

end
{P0 ∧ P1 ∧ n = N}

{true}
unkprog3

{P0 ∧ P1 ∧ s = Q(n)}
while {inv : P0 ∧ P1 ∧ s = Q(n)}
(n 6= N)→

{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n)}
unkprog2

{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1)}
r, n := r max s, n+ 1
{P0 ∧ P1 ∧ s = Q(n)}

end
{P0 ∧ P1 ∧ n = N}

{true}
unkprog3

{P0 ∧ P1 ∧ s = Q(n)}
while {inv : P0 ∧ P1 ∧ s = Q(n)}
(n 6= N)→

{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n)}
assume (0 ≤ n) ;
s := (s+A[n]) max 0

{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1)}
r, n := r max s, n+ 1
{P0 ∧ P1 ∧ s = Q(n)}

end
{P0 ∧ P1 ∧ n = N}

{true}
r, n, s := 0, 0, 0;
{P0 ∧ P1 ∧ s = Q(n) ∧ 0 ≤ n}
while {inv : P0 ∧ P1 ∧ s = Q(n) ∧ 0 ≤ n}
(n 6= N)→

{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n) ∧ 0 ≤ n}
s := (s+A[n]) max 0
{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1) ∧ 0 ≤ n}
r, n := r max s, n+ 1
{P0 ∧ P1 ∧ s = Q(n) ∧ 0 ≤ n}

end
{P0 ∧ P1 ∧ n = N}

{true}
unkprog1

{P0 ∧ P1}
assume(n 6= N ⇒ s = Q(n+ 1)){
P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))

}

while
{
inv : P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))

}

(n 6= N)→{
P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1)

}

r, n := r max s, n+ 1
{P0 ∧ P1}

assume(n 6= N ⇒ s = Q(n+ 1))
{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}

end{
P0 ∧ P1 ∧ n = N

}

{true}
unkprog4

{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}
while {inv : P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}
(n 6= N)→

{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1)}
r, n := r max s, n+ 1
{P0 ∧ P1}
assume(n 6= N ⇒ s = Q(n+ 1))
{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}

end{
P0 ∧ P1 ∧ n = N

}

{true}
unkprog4

{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}
while {inv : P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}
(n 6= N)→
{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1)}
r, n := r max s, n+ 1
{P0 ∧ P1 ∧ s = Q(n)}

assume (0 ≤ n) ;
if n 6= N → s := (s+A[n]) max 0 end

{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}
end{
P0 ∧ P1 ∧ n = N

}

{true}
r, n, s := −∞,−1, 0;
{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1)) ∧ 0 ≤ n+ 1}
while {inv : P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1)) ∧ 0 ≤ n+ 1}
(n 6= N)→
{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1) ∧ 0 ≤ n+ 1}
r, n := r max s, n+ 1
{P0 ∧ P1 ∧ s = Q(n) ∧ 0 ≤ n}

if n 6= N → s := (s+A[n]) max 0 end
{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1)) ∧ 0 ≤ n+ 1}

end{
P0 ∧ P1 ∧ n = N

}

WhilePostStrInv rule WhileStrInv rule

Merge unkprog and
assume, and materialize

Merge unkprog and
assume,
and materialize

O

P

Q

R

S

T

U

Materialize
the unkprog2

Materialize
the assume

V

W

Propagate assume;
Apply WhileStrInv ;
Materialize the
unkprog ;
and simplify

Apply WhileStrInv ;
Materialize the
unkprog ;
and simplify

Fig. 22. Derivations using the assumption propagation rules WhilePostStrInv and WhileStrInv.
The following predicate definitions are same as those in Fig. 1 except for P1.
P0 , r = (Max p, q : 0 ≤ p ≤ q ≤ n : Sum.p.q) ; P1 , n ≤ N
Q(n) , (Max p : 0 ≤ p ≤ n : Sum.p.n)

18 D. L. Chaudhari and O. Damani

[BT07], SPASS [WBH+02] and Z3 [DMB08] for discharging proof obligations. The Why3 tool [FP13] is used
to interface with these theorem provers.

Program and Formula Modes

The CAPS system provides tactics for transforming partially derived programs as well as the proof obligation
formulas. These two modes are referred as the Program Mode and the Formula Mode respectively. Users
can envision missing program fragments in terms of metavariables which are then derived by manipulating
the proof obligation formulas. The StepIntoPO (Step Into Proof Obligation) tactic is used to transition
from programs to corresponding proof obligation formulas. On applying the tactic to an annGCL program
containing metavariables, a new formula node representing the proof obligations (verification conditions) is
created in the derivation tree. This formula is then incrementally transformed to a form, from which it is
easier to instantiate the metavariables. After successfully discharging the proof obligation and instantiating
all the metavariables, a tactic called StepOut is applied to get an annGCL program with all the metavariables
replaced by the corresponding instantiations.

Assumptions are typically made in the formula mode after stepping into the proof obligation. After
stepping out of the formula mode, they are added as assume statements to the resulting annGCL programs.
The assumption propagation tactics available in the program mode can then be used to move these assume
statements.

For the ease of derivation, the CAPS system provides a metatactic called PropagateAssumption which
can propagate a selected assumption from its current location to any desired upstream location, provided
there are no intermediate loops in the path. When multiple rules are applicable during this propagation, the
metatactic chooses certain predefined default rules. For propagating assumptions through loops, WhileIn,
WhileStrInv, and WhilePostStrInv rules are implemented. Assertions can also be propagated downwards
when needed. We have implemented heuristics for simplifying the formulas by eliminating the existential
quantifiers in the strongest postconditions.

8. Related Work

The work most closely related to our assumption propagation is that of [LvW97] and [BvW98] on context
assumptions. However, their main purpose in propagating assumptions is to move them to another place
in the program where the existing annotations would imply the assumptions being made. In contrast, our
focus is to propagate assumptions to a suitable place where they can be materialized by introducing concrete
program fragments. The rule set given in [LvW97] and [BvW98] is weaker in that they do not have assumption
propagation rules related to loops. As Back et. al. say, “...there is no rule for loops, we assume that whenever
a loop is introduced, sufficient information about the loop is added as an assertion after the loop”. As shown
in the examples in Section 6, for the purpose of our work, the assumption propagation rules related to loops
are often the most important ones in practice.

In the context of data refinement, Morgan [Mor90] introduces the concept of coercions for making a
formula true at a given point in a program. However, the focus of their work is on refining abstract variables
with concrete variables and has rules for adding variables (augment coercion) and removing variables (dimin-
ish coercion). Groves uses in [Gro98] the concept of coercions in the context of specification modifications.
His purpose is to modify a given implementation when the postcondition of the program is strengthened.

Various tools exist for refinement-based formal program derivation. Refinement Calculator [BL96] pro-
vides a general mechanism for refinement-based transformational reasoning on top of HOL. The PRT
tool [CHN+96] extends the Ergo theorem prover and supports refinement-based program development with
a close integration of refinements and proof support in a single tool. The Cocktail [Fra99] tool supports the
derivation programs from specifications using the Hoare/Dijkstra method with support for interactive proof
construction as well as automatic theorem proving.

Assumption Propagation through Annotated Programs 19

9. Conclusion

We have discussed the problems associated with the ad hoc reasoning involved during the top-down derivation
of programs. To address these problems, we have proposed an assumption propagation technique wherein
users can make assumptions whenever needed and then propagate them to an appropriate location before
finally materializing them. We have presented transformation rules for propagating assumptions through
annotated programs while preserving correctness with minimal additional proof efforts. We have implemented
these rules in the CAPS system and described how these rules can be systematically integrated in a top-down
derivation methodology. With the help of examples, we have shown how the assumption propagation rules
reduce the need for ad hoc reasoning. These rules help exploration of alternative solutions and also help
avoid unnecessary branching and rework during program derivations.

Acknowledgements.

The work of the first author was supported by the Tata Consultancy Services (TCS) Research Fellowship
and an assistantship from the Ministry of Human Resource Development(MHRD), Government of India.

References

[BL96] Michael Butler and Thomas L̊angbacka. Program derivation using the refinement calculator. In Theorem Proving
in Higher Order Logics: 9th International Conference, volume 1125 of LNCS, pages 93–108. Springer Verlag, 1996.

[BM06] Roland Backhouse and Diethard Michaelis. Exercises in quantifier manipulation. In Mathematics of program
construction, pages 69–81. Springer, 2006.

[BT07] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Hermanns, editors, CAV, volume 4590 of
LNCS, pages 298–302. Springer, 2007.

[BvW98] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic Introduction. Graduate Texts in
Computer Science. Springer-Verlag, Berlin, 1998.

[CC] Sylvain Conchon and Evelyne Contejean. The alt-ergo automatic theorem prover, 2008.
[CD14] Dipak L. Chaudhari and Om Damani. Automated theorem prover assisted program calculations. In Elvira Albert

and Emil Sekerinski, editors, Integrated Formal Methods, Lecture Notes in Computer Science, pages 205–220.
Springer International Publishing, 2014.

[CD15] Dipak L. Chaudhari and Om P. Damani. Combining top-down and bottom-up techniques in program derivation.
In Logic-Based Program Synthesis and Transformation - 25th International Symposium, LOPSTR 2015, Siena,
Italy, July 13-15, 2015. Revised Selected Papers, pages 244–258, 2015.

[CHN+96] David Carrington, Ian Hayes, Ray Nickson, G. N. Watson, and Jim Welsh. A tool for developing correct programs
by refinement. Technical report, 1996.

[Coh90] Edward Cohen. Programming in the 1990s - An Introduction to the Calculation of Programs. Texts and Mono-
graphs in Computer Science. Springer, 1990.

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM,
18(8):453–457, 1975.

[Dij76] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and Algorithms for the Construction

and Analysis of Systems. Springer, 2008.
[DS90] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Semantics. Springer-Verlag, Berlin,

1990.
[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 – Where Programs Meet Provers. In ESOP’13 22nd

European Symposium on Programming, volume 7792 of LNCS, Rome, Italie, 2013. Springer.
[Fra99] Michael Franssen. Cocktail: A tool for deriving correct programs. In Workshop on Automated Reasoning, 1999.
[Gri87] David Gries. The Science of Programming. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edition, 1987.
[Gro98] Lindsay Groves. Adapting program derivations using program conjunction. In International Refinement Workshop

and Formal Methods Pacific, volume 98, pages 145–164. Citeseer, 1998.
[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. CACM: Communications of the ACM, 12, 1969.
[Kal90] Anne Kaldewaij. Programming: The Derivation of Algorithms. Prentice-Hall, Inc., NJ, USA, 1990.
[LvW97] Linas Laibinis and Joakim von Wright. Context handling in the refinement calculus framework. Technical Report

TUCS-TR-118, Turku Centre for Computer Science, Finland, August 21, 1997.
[Mor90] Carroll Morgan. Programming from Specifications. Prentice-Hall, Inc., 1990.
[OXC04] Marcel Oliveira, Manuela Xavier, and Ana Cavalcanti. Refine and gabriel: support for refinement and tactics. In

Software Engineering and Formal Methods, 2004. SEFM 2004. Proceedings of the Second International Conference
on, pages 310–319. IEEE, 2004.

[WBH+02] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand, Enno Keen, Christian Theobalt, and Dalibor Topic.
SPASS version 2.0. In Andrei Voronkov, editor, Automated Deduction – CADE-18, volume 2392 of Lecture Notes
in Computer Science, pages 275–279. Springer-Verlag, 2002.

20 D. L. Chaudhari and O. Damani

A. An Introductory Program Derivation Example

To introduce beginners to the calculational style of program derivation, we present a simple but interesting
derivation of a program for constructing a table of cubes using only additive operations. This derivation is
based on the derivation in [Coh90].

The problem can be specified as follows.

con N : int {N ≥ 0} ;
var c : array [0..N) of int;

S{
R :

(
∀i : 0 ≤ i < N : c[i] = i3

)}

Our task is to derive program S to establish the postcondition R. We are not allowed to use exponentiation
or multiplication in the solution.

Step 1

We start by applying the heuristic of replacing the constant N by a fresh variable n and rewrite the post-
condition as P0 ∧ (n = N) where P0 is defined as follows.

P0 :
(
∀i : 0 ≤ i < n : c[i] = i3

)

After rewriting the postcondition, we arrive at the following program.

con N : int {N ≥ 0} ;
var c : array [0..N) of int;
var n : int;

S
{P0 ∧ (n = N)}

Note that the new postcondition P0 ∧ (n = N) implies the original postcondition R.

Step 2

We now apply the well-known heuristic of taking a conjunct as an invariant. We introduce a while loop and
select P0 as an invariant and the negation of the remaining conjunct as the guard of the while loop. We
follow the general guideline of adding bounds on the introduced variables by adding P1 : 0 ≤ n ≤ N as
an additional invariant. We also initialize n with 0 to establish the invariants at the start of the loop and
increment n inside the loop body.

var n : int;
n := 0;
while {Inv : P0 ∧ P1}
n 6= N →
S1;
n := n+ 1

end
{P0 ∧ (n = N)}

Step 3

We can select S1 to be c[n] := n3 as it preserves the invariants. However, we are not allowed to use expo-
nentiation. To eliminate exponentiation, we introduce fresh variable x, and rewrite our program as:

Assumption Propagation through Annotated Programs 21

var n : int;
n := 0;
while {Inv : P0 ∧ P1}
n 6= N →
//establish P2 : x = n3

c[n] := x;
n := n+ 1;

end
{P0 ∧ (n = N)}

This program is correct provided P2 : x = n3 is a precondition of the statement c[n] := x. In order
to establish P2 as a precondition to c[n] := x, we maintain P2 as a loop invariant. After adding P2 as an
invariant we arrive at the program

var n, x : int;
n, x := 0, 0;
while {Inv : P0 ∧ P1 ∧ P2}
n 6= N →
c[n] := x;
n, x := n+ 1, x′;

end

where x′ must be chosen to maintain P2.

Step 4

The invariant P2 is available before the assignment n, x := n+1, x′ since the preceding statement (c[n] := x)
does not change its validity. We now calculate x′ such that P2 in preserved by the loop body:

wp((n, x := n+ 1, x′), P2)
≡ { Definition of P2 and assignment }
x′ = (n+ 1)3

≡ { Arithmetic }
x′ = n3 + 3 ∗ n2 + 3 ∗ n+ 1

≡ { P2, to eliminate an exponentiation }
x′ = x+ 3 ∗ n2 + 3 ∗ n+ 1

≡
{

Assume P3 : y = 3 ∗ n2 + 3 ∗ n+ 1 to eliminate the exponentiation and the multiplications
}

x′ = x+ y

During the calculation of x′, to eliminate exponentiation and multiplications, we assumed that P3 holds.
This can be ensured by maintaining P3 as a loop invariant. The following program is correct provided y′ is
chosen to maintain the invariance of P3.

var n, x, y : int;
n, x, y := 0, 0, 1;
while {Inv : P0 ∧ P1 ∧ P2 ∧ P3}
n 6= N →
c[n] := x;
n, x, y := n+ 1, x+ y, y′;

end

Step 5

We now calculate x′ such that P3 in preserved by the loop body:

22 D. L. Chaudhari and O. Damani

wp((n, x, y := n+ 1, x+ y, y′), P3)
≡ { Definitions of P3 and assignment }
y′ = 3 ∗ (n+ 1)2 + 3 ∗ (n+ 1) + 1
≡ { Arithmetic}
y′ = 3 ∗ n2 + 9 ∗ n+ 7
≡ { P3}
y′ = y + 6 ∗ n+ 6

After substituting y + 6 ∗ n + 6 for y in the program from the previous step, we arrive at the following
program.

con N : int {N ≥ 0} ;
var c : array [0..N) of int;
var n, x, y : int;
n, x, y := 0, 0, 1;
while {Inv : P0 ∧ P1 ∧ P2 ∧ P3}
n 6= N →
c[n] := x;
n, x, y := n+ 1, x+ y, y + 6 ∗ n+ 6

end

The term 6 ∗ n can be easily rewritten using only the addition operation. We now have a linear-time
solution for the problem.

B. Correctness Proofs

To prove that a ruleR : src 7→ target is correctness preserving, we need to prove [proviso(src)]⇒ [po(src)]⇒
[po(target)]. In the following proofs, we will prove [proviso(src) ⇒ po(src) ⇒ po(target)] which implies
[proviso(src)]⇒ po(src)]⇒ [po(target)].

Let Γi be the proof obligation of the src program and ∆i be the proof obligations of the target program.
To prove [

∧
i Γi ⇒

∧
i ∆i], we will assume the antecedents and prove the proof obligations of the target

programs(∆i) separately using the calculational style.

B.1. SkipUp Rule

Rule:
{α}
skip
{β}
A(θ)

{β ∧ θ}

{α}
A(θ)

{α ∧ θ}
skip
{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : po ({α} skip {β})
Γ2 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : po ({α}A(θ) {α ∧ θ})
∆2 : po ({α ∧ θ} skip {β ∧ θ})

Theorem B.1. SkipUp rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of the target program(∆i)
separately.

Assumption Propagation through Annotated Programs 23

∆1 :

po ({α}A(θ) {α ∧ θ})
≡ { definition of assume }
α ∧ θ ⇒ α ∧ θ

≡ { predicate calculus }
true

∆2 :

po ({α ∧ θ} skip {β ∧ θ})
≡ { definition of skip }
α ∧ θ ⇒ β ∧ θ

⇐ { predicate calculus }
α⇒ β

≡ { Γ1 }
true

B.2. AssumeUp Rule

Rule:
{α}
A(η)

{α ∧ η}
A(θ)

{α ∧ η ∧ θ}

{α}
A(θ)

{α ∧ θ}
A(η)

{α ∧ θ ∧ η}

po(src) =
∧

i Γi

Γ1 : po ({α}A(η) {α ∧ η})
Γ2 : po ({α ∧ η}A(θ) {α ∧ η ∧ θ})

po(target) =
∧

i ∆i

∆1 : po ({α}A(θ) {α ∧ θ})
∆2 : po ({α ∧ θ}A(η) {α ∧ θ ∧ η})

Theorem B.2. AssumeUp rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of the target program(∆i)
separately.

∆1 :

po ({α}A(θ) {α ∧ θ})
≡ { definition of assume }
α ∧ θ ⇒ α ∧ θ

≡ { predicate calculus }
true

∆2 :

po ({α ∧ θ}A(η) {α ∧ θ ∧ η})
≡ { definition of assume }
α ∧ θ ∧ η ⇒ α ∧ θ ∧ η
≡ { predicate calculus }
true

B.3. AssumeMerge Rule

Rule:
{α}
A(η)

{α ∧ η}
A(θ)

{α ∧ η ∧ θ}

{α}
A(η ∧ θ)

{α ∧ η ∧ θ}

po(src) =
∧

i Γi

Γ1 : po ({α}A(η) {α ∧ η})
Γ2 : po ({α ∧ η}A(θ) {α ∧ η ∧ θ})

po(target) = ∆1

∆1 : po ({α}A(η ∧ θ) {α ∧ η ∧ θ})

Theorem B.3. AssumeMerge rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligation of the target program(∆1).

24 D. L. Chaudhari and O. Damani

∆1 :

po ({α}A(η ∧ θ) {α ∧ η ∧ θ})
≡ { definition of assume }
α ∧ η ∧ θ ⇒ α ∧ η ∧ θ

≡ { predicate calculus }
true

B.4. AssignmentUp Rule

Rule:
{α}
x := E

{β}
A(θ)

{β ∧ θ}

{α}
A(wp(x := E, θ))

{α ∧ wp(x := E, θ)}
x := E

{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : α⇒ β(x := E)
Γ2 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : po ({α}A(wp(x := E, θ)) {α ∧ wp(x := E, θ)})
∆2 : po ({α ∧ wp(x := E, θ)}x := E {β ∧ θ})

Theorem B.4. AssignmentUp rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of the target program(∆i)
separately.

∆1 :

po ({α}A(wp(x := E, θ)) {α ∧ wp(x := E, θ)})
≡ { definition of assume }
α ∧ wp(x := E, θ)⇒ α ∧ wp(x := E, θ)

≡ { predicate calculus }
true

∆2 :

po ({α ∧ wp(x := E, θ)}x := E {β ∧ θ})
≡ { definition of assignment }
α ∧ wp(x := E, θ)⇒ (β ∧ θ)(x := E)

≡
{

definition of weakest precondition;
substitution distributes over conjunction

}

α ∧ θ(x := E)⇒ β(x := E) ∧ θ(x := E)
⇐ { predicate calculus }
α⇒ β(x := E)
≡ { Γ1 }
true

B.5. UnkProgUp Rule

Rule:

{α}
unkprog1

{β}
A(θ)

{β ∧ θ}

{α}
A(θ))

{α ∧ θ}
unkprog2

{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : po ({α}unkprog1 {β})
Γ2 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : po ({α}A(θ) {α ∧ θ})
∆2 : po ({α ∧ θ}unkprog2 {β ∧ θ})

Assumption Propagation through Annotated Programs 25

Theorem B.5. UnkProgUp rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of the target program(∆i)
separately.

∆1 :

po ({α}A(θ) {α ∧ θ})
≡ { definition of assumption }
α ∧ θ ⇒ α ∧ θ

≡ { predicate calculus }
true

∆2

po ({α ∧ θ}unkprog2 {β ∧ θ})
≡ { definition of unkprog }
true

B.6. UnkProgEst Rule

Rule:
{α}
unkprog1

{β}
A(θ)

{β ∧ θ}

{α}
unkprog2

{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : po ({α}unkprog1 {β})
Γ2 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : po ({α}unkprog2 {β ∧ θ})

Theorem B.6. UnkProgEst rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of the target program(∆i)
separately.
∆1 :

po ({α}unkprog2 {β ∧ θ})
≡ { definition of unkprog}
true

B.7. CompositionIn Rule

Rule:
{α}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}

{β}
A(θ)

{β ∧ θ}

{α}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}
{β} A(θ) {β ∧ θ}

{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : α⇒ ϕ1

Γ2 :
(∧

i∈[1,n] po ({ϕi}Si {ψi})
)

Γ3 :
(∧

i∈[1,n−1] ψi ⇒ ϕi+1

)

Γ4 : ψn ⇒ β
Γ5 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : α⇒ ϕ1

∆2 :
(∧

i∈[1,n] po ({ϕi}Si {ψi})
)

∆3 :
(∧

i∈[1,n−1] ψi ⇒ ϕi+1

)

∆4 : ψn ⇒ β
∆5 : po ({β}A(θ) {β ∧ θ})
∆6 : β ∧ θ ⇒ β ∧ θ

26 D. L. Chaudhari and O. Damani

Theorem B.7. CompositionIn rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of the target program(∆i)
separately.

∆1 :

α⇒ ϕ1

≡ { Γ1 }
true

∆2 :(∧
i∈[1,n] po ({ϕi}Si {ψi})

)

≡ { Γ2 }
true

∆3 :(∧
i∈[1,n−1] ψi ⇒ ϕi+1

)

≡ { Γ3 }
true

∆4 :

ψn ⇒ β
≡ { Γ4 }
true

∆5 :

po ({β}A(θ) {β ∧ θ})
≡ { Γ5 }
true

∆6 :

β ∧ θ ⇒ β ∧ θ
≡ { predicate calculus }
true

B.8. CompositionOut Rule

Rule:

{α}
{ϕ} A(θ) {ϕ ∧ θ}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}

{β}

{α}
A(θ)

{α ∧ θ}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}

{β}
po(src) =

∧
i Γi

Γ1 : α⇒ ϕ
Γ2 : po ({ϕ}A(θ) {ϕ ∧ θ})
Γ3 : ϕ ∧ θ ⇒ ϕ1

Γ4 :
∧

i∈[1,n] po ({ϕi}Si {ψi})
Γ5 :

∧
i∈[1,n−1] (ψi ⇒ ϕi+1)

Γ6 : ψn ⇒ β

po(target) =
∧

i ∆i

∆1 : po ({α}A(θ) {α ∧ θ})
∆2 : α ∧ θ ⇒ ϕ1

∆3 :
∧

i∈[1,n] po ({ϕi}Si {ψi})
∆4 :

∧
i∈[1,n−1] (ψi ⇒ ϕi+1)

∆5 : ψn ⇒ β

Theorem B.8. UnkProgUp rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of the target programs(∆i)
separately.

∆1 :

po ({α}A(θ) {α ∧ θ})
≡ { definition of assume }
α ∧ θ ⇒ α ∧ θ

≡ { predicate calculus }
true

∆2 :

α ∧ θ ⇒ ϕ1

⇐ { Γ1; Γ3 }
true

Assumption Propagation through Annotated Programs 27

∆3 :∧
i∈[1,n] po ({ϕi}Si {ψi})

≡ { Γ4 }
true

∆4 :∧
i∈[1,n−1] (ψi ⇒ ϕi+1)

≡ { Γ5 }
true

∆5 :

ψn ⇒ β
≡ { Γ6 }
true

B.9. CompoToIf Rule

Rule:

{α}
{ϕ} A(θ) {ϕ ∧ θ}
{ϕ ∧ θ}S {ψ}

{β}

{α}
if
| θ → {ϕ ∧ θ}S {ψ}
| ¬θ → {ϕ ∧ ¬θ}unkprog {ψ}
end
{β}

po(src) =
∧

i Γi

Γ1 : α⇒ ϕ
Γ2 : po ({ϕ}A(θ) {ϕ ∧ θ})
Γ3 : po ({ϕ ∧ θ}S {ψ})
Γ4 : ψ ⇒ β

po(target) =
∧

i ∆i

∆1 : α⇒ θ ∨ ¬θ
∆2 : α ∧ θ ⇒ ϕ ∧ θ
∆3 : po ({ϕ ∧ θ}S {ψ})
∆4 : α ∧ ¬θ ⇒ ϕ ∧ ¬θ
∆5 : po ({ϕ ∧ ¬θ}unkprog {ψ})
∆6 : ψ ⇒ β

Theorem B.9. CompoToIf rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of the target program(∆i)
separately.

∆1 :

α⇒ θ ∨ ¬θ
≡ { predicate calculus }
α⇒ true

≡ { predicate calculus }
true

∆2 :

α ∧ θ ⇒ ϕ ∧ θ
⇐ { predicate calculus }
α⇒ ϕ

≡ { Γ1 }
true

∆3 :

po ({ϕ ∧ θ}S {ψ})
≡ { Γ3 }
true

∆4 :

α ∧ ¬θ ⇒ ϕ ∧ ¬θ
⇐ { predicate calculus }
α⇒ ϕ

≡ { Γ1 }
true

∆5 :

po ({ϕ ∧ ¬θ}unkprog {ψ})
≡ { definition of unkprog }
true

∆6 :

ψ ⇒ β
≡ { Γ4 }
true

28 D. L. Chaudhari and O. Damani

B.10. IfIn Rule

Rule:
{α}

if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gi → {ϕi}Si {ψi}
. . .
| Gn → {ϕn}Sn {ψn}
end

{β}
A(θ)

{β ∧ θ}

{α}
if
| G1 → {ϕ1}S1 {ψ1} A(θ){ψ1 ∧ θ}
. . .
| Gi → {ϕi}Si {ψi} A(θ){ψi ∧ θ}
. . .
| Gn → {ϕn}Sn {ψn} A(θ){ψn ∧ θ}
end

{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : α⇒ ∨
i∈[1,n]Gi

Γ2 :
∧

i∈[1,n] α ∧Gi ⇒ ϕi

Γ3 :
∧

i∈[1,n] po ({ϕi}Si {ψi})
Γ4 :

∧
i∈[1,n] ψi ⇒ β

Γ5 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : α⇒ ∨
i∈[1,n]Gi

∆2 :
∧

i∈[1,n] α ∧Gi ⇒ ϕi

∆3 :
∧

i∈[1,n] po ({ϕi}Si {ψi}) ∧ po ({ψi}A(θ) {ψi ∧ θ})
∆4 :

∧
i∈[1,n] ψi ∧ θ ⇒ β ∧ θ

Theorem B.10. IfIn rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of the target program(∆i)
separately.

∆1 :

α⇒ ∨
i∈[1,n]Gi

≡ { Γ1 }
true

∆2 :∧
i∈[1,n] α ∧Gi ⇒ ϕi

≡ { Γ2 }
true

∆3 :∧
i∈[1,n] po ({ϕi}Si {ψi}) ∧ po ({ψi}A(θ) {ψi ∧ θ})

≡ { definition of assume }∧
i∈[1,n] po ({ϕi}Si {ψi}) ∧ (ψi ∧ θ ⇒ ψi ∧ θ)

≡ { predicate calculus }∧
i∈[1,n] po ({ϕi}Si {ψi})

≡ { Γ3 }
true

∆4 :∧
i∈[1,n] ψi ∧ θ ⇒ β ∧ θ

⇐ { predicate calculus }∧
i∈[1,n] ψi ⇒ β

≡ { Γ4 }
true

Assumption Propagation through Annotated Programs 29

B.11. IfOut Rule

Rule:

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm → {ϕm}A(θ) {ϕm ∧ θ}Sm {ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end

{β}

{α}
A(θ∗)

{α ∧ θ∗}
if
| G1 → {ϕ1 ∧ θ∗}S1 {ψ1}
. . .
| Gm → {ϕm ∧ θ}Sm {ψm}
. . .
| Gn → {ϕn ∧ θ∗}Sn {ψn}
end

{β}

po(src) =
∧

i Γi

Γ1 : α⇒ ∨
i∈[1,n]Gi

Γ2 :
∧

i∈[1,n] α ∧Gi ⇒ ϕi

Γ3 :
∧

i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})
Γ4 : po ({ϕm}A(θ) {ϕm ∧ θ}) ∧ po ({ϕm ∧ θ}Sm {ψm})
Γ5 :

∧
i∈[1,n] ψi ⇒ β

po(target) =
∧

i ∆i

∆1 : po ({α}A(θ∗) {α ∧ θ∗})
∆2 : α ∧ θ∗ ⇒ ∨

i∈[1,n]Gi

∆3 :
∧

i∈[1,n]∧i 6=m α ∧ θ∗ ∧Gi ⇒ ϕi ∧ θ∗
∆4 : α ∧ θ∗ ∧Gm ⇒ ϕm ∧ θ
∆5 :

∧
i∈[1,n]∧i 6=m po ({ϕi ∧ θ∗}Si {ψi})

∆6 : po ({ϕm ∧ θ}Sm {ψm})
∆7 :

∧
i∈[1,n] ψi ⇒ β

IfOut rule. θ∗ , Gm ⇒ θ

Theorem B.11. IfOut rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of the target program(∆i)
separately.

∆1 :

po ({α}A(θ∗) {α ∧ θ∗})
≡ { definition of assume }
α ∧ θ∗ ⇒ α ∧ θ∗

≡ { predicate calculus }
true

∆2 :

α ∧ θ∗ ⇒ ∨
i∈[1,n]Gi

⇐ { predicate calculus }
α⇒ ∨

i∈[1,n]Gi

≡ { Γ1 }
true

∆3 :∧
i∈[1,n]∧i6=m α ∧ θ∗ ∧Gi ⇒ ϕi ∧ θ∗

⇐ { predicate calculus }∧
i∈[1,n]∧i6=m α ∧Gi ⇒ ϕi

⇐ { Γ2 }
true

∆4 :

α ∧ θ∗ ∧Gm ⇒ ϕm ∧ θ
⇐ { definition of θ∗ }
α ∧ (Gm ⇒ θ) ∧Gm ⇒ ϕm ∧ θ
≡ { predicate calculus }
α ∧Gm ∧ θ ⇒ ϕm ∧ θ
⇐ { predicate calculus }
α ∧Gm ⇒ ϕm

⇐ { Γ2 }
true

∆5 :∧
i∈[1,n]∧i 6=m po ({ϕi ∧ θ∗}Si {ψi})

⇐ { ϕi ∧ θ∗ ⇒ ϕi }∧
i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})

≡ { Γ3 }
true

∆6 :

po ({ϕm ∧ θ}Sm {ψm})
⇐ { Γ4 }
true

30 D. L. Chaudhari and O. Damani

∆7 :∧
i∈[1,n] ψi ⇒ β

≡ { Γ5 }
true

B.12. IfGrd Rule

Rule:

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm → {ϕm}A(θ){ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end

{β}

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm ∧ θ → {ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
| Gm ∧ ¬θ → {α ∧Gm ∧ ¬θ}unkprog{β}
end

{β}

po(src) =
∧

i Γi

Γ1 : α⇒ ∨
i∈[1,n]Gi

Γ2 :
∧

i∈[1,n] α ∧Gi ⇒ ϕi

Γ3 :
∧

i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})
Γ4 : po ({ϕm}A(θ) {ϕm ∧ θ})
Γ5 : po ({ϕm ∧ θ}Sm {ψm})
Γ6 :

∧
i∈[1,n] ψi ⇒ β

po(target) =
∧

i ∆i

∆1 : α⇒ (G1 ∨ . . . ∨ (Gm ∧ θ) ∨ . . . ∨Gn ∨ (Gm ∧ ¬θ))
∆2 :

∧
i∈[1,n]∧i 6=m (α ∧Gi ⇒ ϕi)

∆3 : α ∧Gm ∧ θ ⇒ ϕm ∧ θ
∆4 : α ∧Gm ∧ ¬θ ⇒ α ∧Gm ∧ ¬θ
∆5 :

∧
i∈[1,n]∧i6=m po ({ϕi}Si {ψi})

∆6 : po ({ϕm ∧ θ}Sm {ψm})
∆7 : po ({α ∧Gm ∧ ¬θ}unkprog {β})
∆8 :

∧
i∈[1,n] (ψi ⇒ β)

Theorem B.12. IfGrd rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of the target program(∆i)
separately.

∆1 :

α⇒ (G1 ∨ . . . ∨ (Gm ∧ θ) ∨ . . . ∨Gn ∨ (Gm ∧ ¬θ))
≡ { (Gm ∧ θ) ∨ (Gm ∧ ¬θ) ≡ Gm }
α⇒ (G1 ∨ . . . ∨Gm ∨ . . . ∨Gn)

≡ { Γ1 }
true

∆2 :∧
i∈[1,n]∧i 6=m (α ∧Gi ⇒ ϕi)

≡ { Γ2 }
true

∆3 :

α ∧Gm ∧ θ ⇒ ϕm ∧ θ
⇐ { predicate calculus }
α ∧Gm ⇒ ϕm

≡ { Γ2 }
true

∆4 :

α ∧Gm ∧ ¬θ ⇒ α ∧Gm ∧ ¬θ
≡ { predicate calculus }
true

∆5 :∧
i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})

≡ { Γ3 }
true

∆6 :

po ({ϕm ∧ θ}Sm {ψm})
≡ { Γ5 }
true

Assumption Propagation through Annotated Programs 31

∆7 :

po ({α ∧Gm ∧ ¬θ}unkprog {β})
≡ { definition of unkProg }
true

∧
i∈[1,n] (ψi ⇒ β)

≡ { Γ6 }
true

B.13. IfGrd2 Rule

Rule:
{α}

if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm → {ϕm}A(θ){ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end

{β}

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm ∧ θ → {ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end

{β}

Proviso :
α⇒

((∨
i∈[1,n]∧i6=mGi

)
∨ θ
)

po(src) =
∧

i Γi

Γ1 : α⇒ ∨
i∈[1,n]Gi

Γ2 :
∧

i∈[1,n] α ∧Gi ⇒ ϕi

Γ3 :
∧

i∈[1,n]∧i6=m po ({ϕi}Si {ψi})
Γ4 : po ({ϕm}A(θ) {ϕm ∧ θ})
Γ5 : po ({ϕm ∧ θ}Sm {ψm})
Γ6 :

∧
i∈[1,n] ψi ⇒ β

po(target) =
∧

i ∆i

∆1 : α⇒ (G1 ∨ . . . ∨ (Gm ∧ θ) ∨ . . . ∨Gn)
∆2 :

∧
i∈[1,n]∧i 6=m (α ∧Gi ⇒ ϕi)

∆3 : α ∧Gm ∧ θ ⇒ ϕm ∧ θ
∆4 :

∧
i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})

∆5 : po ({ϕm ∧ θ}Sm {ψm})
∆6 :

∧
i∈[1,n] (ψi ⇒ β)

IfGrd2 rule: A variation of the IfGrd rule(Fig. 15).

Theorem B.13. IfGrd2 rule is correctness preserving.

Proof. We assume the correctness of the src program and the proviso, and prove the proof obligations of
the target program(∆i) separately.

∆1 :

α⇒ (G1 ∨ . . . ∨ (Gm ∧ θ) ∨ . . . ∨Gn)
≡ { distributivity }
α⇒

(∨
i∈[1,n]Gi

)
∧
((∨

i∈[1,n]∧i 6=mGi

)
∨ θ
)

≡ { Γ1 }
α⇒

(∨
i∈[1,n]∧i6=mGi

)
∨ θ

≡ { proviso }
true

∆2 :∧
i∈[1,n]∧i 6=m (α ∧Gi ⇒ ϕi)

≡ { Γ2 }
true

∆3 :

α ∧Gm ∧ θ ⇒ ϕm ∧ θ
⇐ { predicate calculus }
α ∧Gm ⇒ ϕm

≡ { Γ2 }
true

∆4 :∧
i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})

≡ { Γ3 }
true

∆5 :

po ({ϕm ∧ θ}Sm {ψm})
≡ { Γ5 }
true

∆6 :∧
i∈[1,n] (ψi ⇒ β)

≡ { Γ6 }
true

32 D. L. Chaudhari and O. Damani

B.14. WhileIn Rule

Rule:

{α}
while {Inv : ω}
G→
{ϕ}
S

{ψ}
end

{β}
A(θ)

{β ∧ θ}

{α}
A(¬G⇒ θ)

{α ∧ (¬G⇒ θ)}
while {Inv : ω ∧ (¬G⇒ θ)}
G→
{ϕ}
S
{ψ}
A(¬G⇒ θ)

{ψ ∧ (¬G⇒ θ)}
end
{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : α⇒ ω
Γ2 : ω ∧G⇒ ϕ
Γ3 : po ({ϕ}S {ψ})
Γ4 : ψ ⇒ ω
Γ5 : ω ∧ ¬G⇒ β
Γ6 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : po ({α}A(¬G⇒ θ) {α ∧ (¬G⇒ θ)})
∆2 : α ∧ (¬G⇒ θ)⇒ ω ∧ (¬G⇒ θ)
∆3 : ω ∧ (¬G⇒ θ) ∧G⇒ ϕ
∆4 : po ({ϕ}S {ψ})
∆5 : po ({ψ}A(¬G⇒ θ) {ψ ∧ (¬G⇒ θ)})
∆6 : ψ ∧ (¬G⇒ θ)⇒ ω ∧ (¬G⇒ θ)
∆7 : ω ∧ (¬G⇒ θ) ∧ ¬G⇒ β ∧ θ

Theorem B.14. WhileIn rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of the target program(∆i)
separately.

∆1 :

po ({α}A(¬G⇒ θ) {α ∧ (¬G⇒ θ)})
≡ { definition of assume}
α ∧ (¬G⇒ θ)⇒ α ∧ (¬G⇒ θ)

≡ { predicate calculus}
true

∆2 :

α ∧ (¬G⇒ θ)⇒ ω ∧ (¬G⇒ θ)
≡ { predicate calculus }
α ∧ (¬G⇒ θ)⇒ ω

⇐ { predicate calculus }
α⇒ ω

≡ { Γ1 }
true

∆3

ω ∧ (¬G⇒ θ) ∧G⇒ ϕ
⇐ { predicate calculus }
ω ∧G⇒ ϕ

≡ { Γ2 }
true

∆4 :

po ({ϕ}S {ψ})
≡ { Γ3 }
true

∆5 :

po ({ψ}A(¬G⇒ θ) {ψ ∧ (¬G⇒ θ)})
≡ { definition of assume }
ψ ∧ (¬G⇒ θ)⇒ ψ ∧ (¬G⇒ θ)

≡ { predicate calculus }
true

∆6 :

ψ ∧ (¬G⇒ θ)⇒ ω ∧ (¬G⇒ θ)
≡ { predicate calculus }
ψ ∧ (¬G⇒ θ)⇒ ω

⇐ { Γ4 }
true

Assumption Propagation through Annotated Programs 33

∆7 :

ω ∧ (¬G⇒ θ) ∧ ¬G⇒ β ∧ θ
≡ { predicate calculus }
ω ∧ ¬G ∧ θ ⇒ β ∧ θ

⇐ { predicate calculus }
ω ∧ ¬G⇒ β

≡ { Γ5 }
true

B.15. WhileStrInv Rule

Rule:

{α}
while {Inv : ω}
G→
{ϕ}
A(θ)

{ϕ ∧ θ}
S

{ψ}
end

{β}

{α}
A(G⇒ θ)

{α ∧ (G⇒ θ)}
while {Inv : ω ∧ (G⇒ θ)}
G→
{ϕ ∧ θ}
S

{ψ}
A(G⇒ θ)

{ψ ∧ (G⇒ θ)}
end

{β}

po(src) =
∧

i Γi

Γ1 : α⇒ ω
Γ2 : ω ∧G⇒ ϕ
Γ3 : po ({ϕ}A(θ) {ϕ ∧ θ})
Γ4 : po ({ϕ ∧ θ}S {ψ})
Γ5 : ψ ⇒ ω
Γ6 : ω ∧ ¬G⇒ β

po(target) =
∧

i ∆i

∆1 : po ({α}A(G⇒ θ) {α ∧ (G⇒ θ)})
∆2 : α ∧ (G⇒ θ)⇒ ω ∧ (G⇒ θ)
∆3 : ω ∧ (G⇒ θ) ∧G⇒ ϕ ∧ θ
∆4 : po ({ϕ ∧ θ}S {ψ})
∆5 : po ({ψ}A(G⇒ θ) {ψ ∧ (G⇒ θ)})
∆6 : ψ ∧ (G⇒ θ)⇒ ω ∧ (G⇒ θ)
∆7 : ω ∧ (G⇒ θ) ∧ ¬G⇒ β

Theorem B.15. WhileStrInv rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of the target program(∆i)
separately.

∆1 :

po ({α}A(G⇒ θ) {α ∧ (G⇒ θ)})
≡ { definition of assume }
α ∧ (G⇒ θ)⇒ α ∧ (G⇒ θ)

≡ { predicate calculus }
true

∆2 :

α ∧ (G⇒ θ)⇒ ω ∧ (G⇒ θ)
≡ { predicate calculus }
α ∧ (G⇒ θ)⇒ ω

≡ { Γ1 }
true

∆3 :

ω ∧ (G⇒ θ) ∧G⇒ ϕ ∧ θ
≡ { predicate calculus }
ω ∧G ∧ θ ⇒ ϕ ∧ θ

⇐ { preciate calculus }
ω ∧ θ ⇒ ϕ

≡ { Γ2 }
true

∆4 :

po ({ϕ ∧ θ}S {ψ})
≡ { Γ4 }
true

34 D. L. Chaudhari and O. Damani

∆5 :

po ({ψ}A(G⇒ θ) {ψ ∧ (G⇒ θ)})
≡ { definition of assume }
ψ ∧ (G⇒ θ)⇒ ψ ∧ (G⇒ θ)

≡ { predicate calculus }
true

∆6 :

ψ ∧ (G⇒ θ)⇒ ω ∧ (G⇒ θ)
⇐ { predicate calculus }
ψ ⇒ ω

≡ { Γ5 }
true

∆7 :

ω ∧ (G⇒ θ) ∧ ¬G⇒ β
≡ { predicate calculus }
ω ∧ ¬G⇒ β

≡ { Γ6 }
true

	1 Introduction
	2 Preliminaries
	2.1 Hoare Triple, Weakest Precondition, and Strongest Postcondition
	2.2 Eindhoven Notation

	3 Motivating Example
	3.1 Maximum Segment Sum Derivation
	3.2 Ad Hoc Decision Making
	3.3 Motivation for Assumption Propagation

	4 Program Derivation by Annotated Program Transformations
	4.1 Annotated Programs
	4.2 Transformation Rules

	5 Assumption Propagation
	5.1 Assumption Propagation for Bottom up Derivation
	5.2 Precondition Exploration
	5.3 Rules for Propagating and Establishing Assumptions
	5.4 Correctness of the Transformation Rules
	5.5 Adding New Transformation Rules
	5.6 Selecting Appropriate Rules
	5.7 Down-propagating the Assertions

	6 Derivation Examples
	6.1 Evaluating Polynomials
	6.2 Back to the Motivating Example

	7 Implementing Assumption Propagation
	8 Related Work
	9 Conclusion
	References
	A An Introductory Program Derivation Example
	B Correctness Proofs
	B.1 SkipUp Rule
	B.2 AssumeUp Rule
	B.3 AssumeMerge Rule
	B.4 AssignmentUp Rule
	B.5 UnkProgUp Rule
	B.6 UnkProgEst Rule
	B.7 CompositionIn Rule
	B.8 CompositionOut Rule
	B.9 CompoToIf Rule
	B.10 IfIn Rule
	B.11 IfOut Rule
	B.12 IfGrd Rule
	B.13 IfGrd2 Rule
	B.14 WhileIn Rule
	B.15 WhileStrInv Rule

