
TransChat: Cross-Lingual Instant Messaging for Indian
Languages

Diptesh Kanojia1 Shehzaad Dhuliawala1 Abhijit Mishra1

Naman Gupta2 Pushpak Bhattacharyya1

1Center for Indian Language Technology, CSE Department
1IIT Bombay, India, 2Yahoo Labs, Japan

1{diptesh,shehzaadzd,abhijitmishra,pb}@cse.iitb.ac.in
2naman.bbps@gmail.com

Abstract

We present TransChat1, an open
source, cross platform, Indian language
Instant Messaging (IM) application
that facilitates cross lingual textual
communication over English and multi-
ple Indian Languages. The application
is a client-server IM architecture based
chat system with multiple Statistical
Machine Translation (SMT) engines
working towards efficient translation
and transmission of messages. Tran-
sChat allows users to select their pre-
ferred language and internally, selects
appropriate translation engine based
on the input configuration. For trans-
lation quality enhancement, necessary
pre- and post-processing steps are ap-
plied on the input and output chat-
texts. We demonstrate the efficacy of
TransChat through a series of qualita-
tive evaluations that test- (a) The us-
ability of the system (b) The quality of
the translation output. In a multilin-
gual country like India, such applica-
tions can help overcome language bar-
rier in domains like tourism, agricul-
ture and health.

1 Introduction
In a multilingual country like India which
has around 22 official languages spoken across
29 states by more than one billion people,
it often becomes quite difficult for a non-
speaker of a particular language to commu-
nicate with peers following the same lan-
guage. Be it a non-Indian tourist visiting In-
dia for the first time or a farmer from Pun-
jab trying to get tips from a Tamil speak-

1http://www.cfilt.iitb.ac.in/transchat/

ing professor on modern agricultural tools
and techniques, communication is often hin-
dered by language barrier. This problem
has been recognized and well-studied by com-
putational linguists as a result of which a
large number of automatic translation sys-
tems have been proposed and modified in the
last 30 years. Some of the notable Indian
Language translation systems include Angla-
bharati (Sinha et al., 1995), Anusaraka (Pad-
manathrao, 2009), Sampark (Anthes, 2010)
and Sata-Anuvaadak2 (Kunchukuttan et al.,
2014). Popular organizations like Google and
Microsoft also provide translation solutions for
Indian languages through Google- and Bing-
Translation systems. Stymne (2011) demon-
strate techniques for replacement of unknown
words and data cleaning for Haitian Creole
SMS translation, which can be utilized in a
chat scenario. But even after so many years
of MT research, one can still claim that these
systems have not been able to attract a lot of
users. This can be attributed to factors like-
(a) poor user experience in terms of UI de-
sign, (b) systems being highly computational-
resource intensive and slow in terms of re-
sponse time, and (c) bad quality translation
output. Moreover, the current MT interfaces
do not provide a natural environment to at-
tract more number of users to use the sys-
tem in an effective way. As Flournoy and
Callison-Burch (2000) point out, a successful
translation application is one that can recon-
cile overly optimistic user expectations with
the limited capabilities of current MT tech-
nologies. We believe, a chat application like
TransChat bridges the current web program-
ming paradigms with MT to provide users a
powerful yet natural mode of communication.

2http://www.cfilt.iitb.ac.in/
indic-translator



Our work is motivated by the following fac-
tors,

• The ever-increasing usage of hand-held
devices and Instant messaging provides us
a rich platform to float our application.
We can expect a large number of users to
download and use it.

• Unavailability of cross lingual instant
messaging applications for Indian lan-
guages motivates us to build and open-
source our application that can be modi-
fied by developers as per the needs.

There are several challenges in building such
an application. Some of them are,

1. IM users often abbreviate text (especially
when the input language is English) to
save time. (e.g. “Hw r u?” instead
of “How are you?”). A translation sys-
tem is often built on top of human-crafted
rules (RBMT) or by automatically learn-
ing patterns from examples (EBMT) or
by memorizing pattens(SMT). In all of
these cases, the systems require the input
text to be grammatically correct, thereby,
making it necessary to deal with ungram-
matical input text

2. To provide a rich User Experience, the ba-
sic requirement of an IM system is that it
should transmit messages with ease and
speed. Hence, language processing mod-
ules should be light-weight in order not to
incur delay.

We try to handle these challenges by making
use of appropriate language processing mod-
ules. The novelty of our work is three fold:

• Our system is scalable, i.e., it allows large
number of concurrent user access.

• It handles ungrammatical input through
fast efficient text normalization and spell
checking.

• We have tried to build a flexible sys-
tem, i.e it can work with multiple transla-
tion engines built using different Machine
Translation toolkits.

In the following sections we describe the
system architecture, UI design and evaluation
methodologies.

2 System Architecture

Figure 1: Chat Architecture

Figure 1 shows the system architecture
of TransChat. Our system consists of a
highly scalable chat server ejabberd3 based
on Extensible Messaging and Presence Proto-
col(XMPP)4 protocol.

It is extensible via modules, which can pro-
vide support for additional capabilities such as
saving offline messages, connecting with IRC
channels, or a user database which makes use
of user’s vCards. It handles the chat requests,
users and message transactions from one user
to another.

We build our chat client using publicly avail-
able Smack library APIs5 , which is easily
portable to Android devices, thus, providing
cross device integration for our chat system.

A user logs in to the server with their respec-
tive chat client and gets an option to select a
language for his chats. The user then sends a
message which is transferred via XMPP proto-
col to the server where it’s processed and then
shown to the user at the other end.

Figure 2 shows in detail the processes
through which a message passes. The message
is processed using the following techniques de-
scribed in sections 2.1, 2.2, 2.3, and 2.5

2.1 Compression
While chatting, users often express their emo-
tions/mood by stressing over a few characters
in the word. For example, usage of words
like thankssss, hellpppp, sryy, byeeee, wowww,
goood corresponds the person being obliged,
needy, apologetic, emotional, amazed, etc.

As far as we know, it is unlikely for an En-
glish word to contain the same character con-

3https://www.process-one.net/en/ejabberd/
4http://xmpp.org/xmpp-protocols/
5https://www.igniterealtime.org/projects/smack/



Figure 2: Server Side Processing of TransChat

Input Sentence Output Sentence
I feeellll soooooo gooood I feel so good
I m veryyyy happyyyyy I m very happy
Table 1: Sample output of Compression module

secutively for three or more times. We, hence,
compress all the repeated windows of charac-
ter length greater than two, to two charac-
ters. For example “pleeeeeeeaaaaaassseeee”is
converted to “pleeaassee”.

Each window now contains two characters of
the same alphabet in cases of repetition. Let n
be the number of windows, obtained from the
previous step. Since average length of English
word (Mayzner, 1965) is approximately 4.9 ,
we apply brute force search over 2n possibili-
ties to select a valid dictionary word. If none
of the combinations form a valid English word,
the compressed form is used for normalization.

Table 1 contains sanitized sample output
from our compression module for further pro-
cessing.

2.2 Normalization

Text Message Normalization is the process of
translating ad-hoc abbreviations, typographi-
cal errors, phonetic substitution and ungram-
matical structures used in text messaging
(SMS and Chatting) to plain English. Use of
such language (often referred as Chatting Lan-
guage) induces noise which poses additional
processing challenges. While dictionary look-
up based methods6 are popular for Normal-
ization, they can not make use of context and
domain knowledge. For example, yr can have
multiple translations like year, your.

We tackle this by implementing a normal-

6http://www.lingo2word.com

ization system7(Raghunathan and Krawczyk,
2009) as a Phrase Based Machine Transla-
tion System, that learns normalization pat-
terns from a large number of training exam-
ples. We use Moses (Koehn et al., 2007), a
statistical machine translation system that al-
lows training of translation models.

Training process requires a Language Model
of the target language and a parallel corpora
containing aligned un-normalized and normal-
ized word pairs. Our language model consists
of 15000 English words taken from the web.

Parallel corpora was collected from the fol-
lowing sources :

1. Stanford Normalization Corpora which
consists of 9122 pair of un-normalized and
normalized words / phrases.

2. The above corpora, however, lacks
acronyms and short hand texts like 2mrw,
l8r, b4 which are frequently used in
chatting. We collected additional data
through crowd-sourcing involving peers
from CFILT lab8. They were asked
to enter commonly used chatting sen-
tences/acronyms and their normalized
versions. We collected 215 pairs un-
normalized to normalized word/phrase
mappings.

3. Dictionary of Internet slang words was ex-
tracted from http://www.noslang.com.

Table 2 contains input and normalized
output from our module.

7Normalization Model: http://www.cfilt.iitb.
ac.in/Normalization.rar

8http://www.cfilt.iitb.ac.in



Input Sentence Output Sentence
shd v go 2 ur house should we go to your house

u r awesm you are awesome
hw do u knw how do you know

Table 2: Sample output of Normalization module

2.3 Spell Checking
Users often make spelling mistakes while
chatting. A spell checker makes sure that a
valid English word is sent to the Translation
system and for such a word, a valid output
is produced. We take this problem into
account and introduce a spell checker as a
pre-processing module before the sentence is
sent for translation. We have used the JAVA
API of Jazzy spell checker9 for handling
spelling mistakes.

An example of correction provided by
the Spell Checker module is given below:-

Input: Today is mnday
Output: Today is monday

Please note that, our current system per-
forms compression, normalization and spell-
checking if the input language is English. If
the user selects one of the available Indian
Languages as the input language, the input
text bypasses these stages and is fed to the
translation system directly. We, however, plan
to include such modules for Indian Languages
in future.

If the input language is not English, the user
can type the text in the form of Romanized
script, which will get transliterated to indic-
script with the help of Google’s transliteration
API. The user can also input the text directly
using an in-script keyboard (available in Win-
dows and Android platforms), in which case
the transliteration has to be switched off.

2.4 Translation
Translation system is a plug-able module that
provides translation between two language
pairs. Currently TransChat is designed for
translation between English to five Indian
languages namely, Hindi, Gujarati, Punjabi,
Marathi and Malayalam. Translations be-
tween these languages are carried out using
Statistical Phrase Based Machine Translation

9http://sourceforge.net/projects/jazzy/

paradigm, powered by the Sata-Anuvadak10

system.

2.5 Transliteration
There is a high probability that a chat will con-
tain many Named Entities and Out of Vocab-
ulary (OOV) words. Such words are not parts
of the training corpora of a translation sys-
tem, and thus do not get translated. For such
words, we use Google Transliteration API11

as a post processing step, so that the output
comes out in the desired script. Table 3 con-
tains the sample output from our Translitera-
tion module.

3 User Interface

We designed the interface using HTML, CSS,
JavaScript and JSP on the front end as a
wrapper on our system based on Tomcat web
server. We have used Bootstrap12 and Seman-
tic UI13 CSS frameworks for the beautification
of our interface. The design of our system is
simple and sends the chat message using socket
to the chat server and receives the response
from the server, and shown on the interface.

We use a similar interface for the mobile ver-
sion of our applications. We have used Web-
View class in Android, and Windows applica-
tions, and UIWebView for iOS. Figure 3 shows
a screen-shot of the interface.

Figure 3: Chat Screenshot

10http://www.cfilt.iitb.ac.in/static/download.html
11https://developers.google.com/

transliterate/
12http://getbootstrap.com/
13http://semantic-ui.com/



Input Sentence Output Sentence

Example 1
Putin अमेøरका आए थे ।

(Putin amerika aaye the)
(Putin visited America)

पुितन अमेøरका आए थे ।
(Putin amerika aaye the)
(Putin visited America)

Example 2
Telangana भारत का नया राज्य है

(telangaana bhaarat ka nayaa rajya hai)
(Telangana is a new state of India)

तेलगंाना भारत का नया राज्य है ।
(telangaana bhaarat ka nayaa rajya hai)

(Telangana is a new state of India)
Table 3: Sample output of Transliteration module

BLEU
(Google)

BLEU
(SATA)

BLEU
Bing

METEOR
(Google)

METEOR
(SATA)

METEOR
(Bing)

Hindi 0.1991 0.1757 0.0497 0.2323 0.1529 0.2217
Marathi 0.088 0.0185 NA 0.1478 0.0843 NA
Punjabi 0.2277 0.0481 NA 0.2084 0.0902 NA
Gujarati 0.0446 0.0511 NA 0.1354 0.1255 NA
Malayalam 0.0612 0.0084 NA 0.1259 0.0666 NA

Table 4: Evaluation Statistics on Normalized input

P1 P2 P3
P1 1
P2 .63 1
P3 .67 .61 1

Table 6: Inter Annotator Agreement for User experi-
ence evaluation

4 Evaluation Details
We do a two fold evaluation of our system that
ensures the following

• Good user experience in terms of (a) using
the system and (b) acceptable translation
quality etc.

• The pre- and post-processing steps em-
ployed helped enhance the quality of
translated chat.

We study the first point qualitatively by em-
ploying three human users who are asked to
use the system by giving 20 messages each.
They have to eventually assign three scores to
the system, Usability score, Fluency score of
the chat output and Adequacy score of the chat
output. Fluency indicates the grammatical
correctness where as adequacy indicates how
appropriate the machine translation is, when
it comes to semantic transfer. We then com-
pute the average Inter Annotator Agreement
(IAA) between their scores. Table 6 presents
the results. We have obtained a substantial
IAA via Fliess’ Kappa evaluation.

To justify the second point, we input the
un-normalized chat messages to three differ-
ent translators viz. Google, Bing and Sata-

Anuvaadak. We then obtain the BLEU (Pap-
ineni et al., 2002) and METEOR (Denkowski
and Lavie, 2014) translation scores. We then
compute the evaluation scores after applying
the pre- and post-processing steps explained in
section 2. Table 4 and 5 present the scores for
processed and un-processed inputs. As we can
see, applying pre- and post-processing steps
help us achieve better evaluation scores.

We observe a slight inconsistency between
BLEU and METEOR scores for some cases.
BLEU has been shown to be less effective for
systems involving Indian Languages due to
language divergence, free-word order and mor-
phological richness (Ananthakrishnan et al.,
2007). On the other hand, our METEOR
module has been modified to support stem-
ming, paraphrasing and lemmatization (Dun-
garwal et al., 2014) for Indian Languages,
tackling such nuances to some extent. This
may have accounted for the score differences.

5 Conclusion and Future Work
In today’s era of short messaging and chatting,
there is a great need to make available a mul-
tilingual chat system where users can inter-
act despite the language barrier. We present
such an Indian language IM application that
facilitates cross lingual text based communi-
cation. Our success in developing such an ap-
plication for English to Indian languages is a
small step in providing people with easy ac-
cess to such a chat system. We plan to make
efforts towards improving this application to
enable chatting in all Indian languages via a



BLEU
(Google)

BLEU
(SATA)

BLEU
(Bing)

METEOR
(Google)

METEOR
(SATA)

METEOR
(Bing)

Hindi 0.0306 0.0091 0.0413 0.0688 0.053 0.0778
Marathi 0.0046 0.0045 NA 0.0396 0.0487 NA
Punjabi 0.0196 0.0038 NA 0.0464 0.0235 NA
Gujrati 0.0446 0.0109 NA 0.1354 0.06 NA
Malyalam 0.0089 0.0168 NA 0.0358 0.1045 NA

Table 5: Evaluation Statistics on Unnormalized input

common interface. We also plan to inculcate
Word Suggestions based on corpora statistics,
as they are being typed, so that the user is
presented with better lexical choices as a sen-
tence is being formed. We can also perform
emotional analysis of the chat messages and
introduce linguistic improvements such as eu-
phemism for sensitive dialogues.

Such an application can have a huge impact
on communication, especially in the rural and
semi-urban areas, along with enabling people
to understand each other.

6 Acknowledgment
We would like to thank CFILT, IIT Bombay
for granting us the computational resources,
and annotation of our experiments. We would
also like to thank Avneesh Kumar, who helped
us setup the experiment in its initial phase.

References
R Ananthakrishnan, Pushpak Bhattacharyya,

M Sasikumar, and Ritesh M Shah. 2007. Some
issues in automatic evaluation of english-hindi
mt: More blues for bleu. ICON.

Gary Anthes. 2010. Automated translation of in-
dian languages. Communications of the ACM,
53(1):24–26.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evalua-
tion for any target language. In Proceedings of
the EACL 2014 Workshop on Statistical Machine
Translation.

Piyush Dungarwal, Rajen Chatterjee, Abhijit
Mishra, Anoop Kunchukuttan, Ritesh Shah,
and Pushpak Bhattacharyya. 2014. The iit
bombay hindi� english translation system at
wmt 2014. ACL 2014, page 90.

Raymond S Flournoy and Christopher Callison-
Burch. 2000. Reconciling user expectations and
translation technology to create a useful real-
world application. In Proceedings of the 22nd
International Conference on Translating and the
Computer, pages 16–17.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Chris Dyer, Ondřej Bo-
jar, Alexandra Constantin, and Evan Herbst.
2007. Moses: Open source toolkit for statisti-
cal machine translation. In Proceedings of the
45th Annual Meeting of the ACL on Interactive
Poster and Demonstration Sessions, ACL ’07,
pages 177–180, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Anoop Kunchukuttan, Abhijit Mishra, Rajen
Chatterjee, Ritesh Shah, and Pushpak Bhat-
tacharyya. 2014. Sata-anuvadak: Tackling mul-
tiway translation of indian languages.

S. Mayzner. 1965. Tables of Single-letter and Di-
gram Frequency Counts for Various Word-length
and Letter-position Combinations. Psychonomic
monograph supplements. Psychonomic Press.

Anantpur Amba Padmanathrao. 2009.
Anusaaraka: An approach for mt taking
insights from the indian grammatical tradition.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for au-
tomatic evaluation of machine translation. In
Proceedings of the 40th annual meeting on asso-
ciation for computational linguistics, pages 311–
318. Association for Computational Linguistics.

Karthik Raghunathan and Stefan Krawczyk. 2009.
Cs224n: Investigating sms text normalization
using statistical machine translation. Depart-
ment of Computer Science, Stanford University.

RMK Sinha, K Sivaraman, A Agrawal, R Jain,
R Srivastava, and A Jain. 1995. Anglabharti:
a multilingual machine aided translation project
on translation from english to indian languages.
In Systems, Man and Cybernetics, 1995. Intelli-
gent Systems for the 21st Century., IEEE Inter-
national Conference on, volume 2, pages 1609–
1614. IEEE.

Sara Stymne. 2011. Spell checking techniques for
replacement of unknown words and data clean-
ing for haitian creole sms translation. In Pro-
ceedings of the Sixth Workshop on Statistical
Machine Translation, WMT ’11, pages 470–477,
Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.


