
Information Processing Letters 85 (2003) 145–152

www.elsevier.com/locate/ipl

A compact execution history for dynamic slicing

Dhananjay M. Dhamdhere∗, K. Gururaja, Prajakta G. Ganu

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay, India

Received 17 July 2001; received in revised form 3 May 2002

Communicated by R. Backhouse

Keywords:Software design and implementation; Dynamic slicing; Execution history; Data dependence; Control dependence

1. Introduction

A sliceof a program P with respect to a slicing cri-
terionC ≡ ({var},c_stmt) is a subset of the program
which includes all statements that directly or indirectly
affect the value of variablevar in c_stmt [1,10–12].
A static sliceincludes all statements whichmight af-
fect the value ofvar. It is constructed using program
analysis techniques. Adynamic sliceconsists of only
those statements that actually influence the value of
var in an execution of the program. It is built using
run-time information. A dynamic slice is more precise
than a static slice because it contains only those state-
ments which have actually influencedvar in an execu-
tion.

A dynamic slice of a program is constructed by
analyzing anexecution historyof the program to
discover data and control dependences.1 A complete
execution history records all actions performed during
an execution of a program. A lot of this information is

* Corresponding author.
E-mail addresses:dmd@cse.iitb.ac.in (D.M. Dhamdhere),

kgururaj@cse.iitb.ac.in (K. Gururaja), prajakta@cse.iitb.ac.in
(P.G. Ganu).

1 An alternative approach uses program dependence graphs [1,
11].

redundant for dynamic slicing. We develop a compact
execution history for dynamic slicing of programs
using the notion ofcritical statementsin a program.
Only critical statements need to appear more than once
in an execution history; all other statements appear
at most once. Performance studies show that our
execution histories are at least an order of magnitude
smaller than complete execution histories in most
cases; for some programs they are smaller by several
orders of magnitude.

2. Dynamic slicing

Slicing was first discussed by Weiser [12]. Korel
and Laski introduced dynamic slicing [10]. Other
relevant papers are [1,7,9,11]. This section presents
dynamic slicing along the lines described in [10].

2.1. Dynamic slicing algorithm

An execution history is a sequence. . . J q−1Iq

Kq+1 . . . , where I, J and K are statements in the
program andq − 1, q and q + 1 are their positions
in the sequence.Iq is called a statement occurrence
of I . Many occurrences of a statement may exist in
an execution history. A dynamic slicing criterion is

0020-0190/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(02)00322-8

146 D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145–152

defined as C≡ (input,V , Iq) where input is the set
of values of input variables for which the program is
executed,Iq is a specific execution ofI , andV is the
set of variables of interest. To obtain a dynamic slice
for this criterion, we use an execution history of the
program constructed when it is executed withinput as
the set of input values. Hence the shorter specification
(V , Iq) suffices for dynamic slicing using a specific
execution history.

Notions of data dependence and control depen-
dence analogous to those defined in [8] are used to
identify statements which are relevant to the statement
in the slicing criterion. Letsj be the criterion state-
ment.sj is dynamically data dependenton a statement
si if sj uses a variablevar defined bysi and execution
of the program traverses a path fromsi to sj along
which var is not redefined. Ifvar ∈ V , si affects the
value ofvar at sj , hencesi is included in the slice.sj
is dynamically control dependenton a statementsi if si
contains a predicate which decides whethersj would
be executed. Hencesi is included in the slice. Control
dependence is caused by statements like looping state-
ments,if statements andswitch (or case) statements.
Static and dynamic control dependences are different
in programs which containif . . . then goto. . . state-
ments.

Fig. 1 shows the dynamic slicing algorithm. It uses
three functions:Previous_def(var, I q) returns the de-
finition of var on whichIq is dynamically data depen-
dent [7].In_control_of(I) returns the set of statements
in the program on whichI is statically control depen-
dent.Use(I) returns the variables referenced inI .

ProcedureGet_dynamic_sliceis called with argu-
mentsV , I andq , whereV ⊆ Use(I). Setstmt_occ
contains statement occurrences which must be proces-
sed to discover all data and control dependences. It is
initialized to Iq and statement occurrences are added
to it on the basis of data and control dependences. All
occurrences of statements inIn_control_of(I) which
precedeIq in the execution history are included in set
C. SetD is then constructed to contain definitions of
variables inV on which some occurrence ofI before
Iq or Iq itself (i.e., occurrenceI r , r � q) is data de-
pendent. The procedure now calls itself recursively to
discover data and control dependences of all occur-
rences of statements inC andD which precedeIq . At
end,slice is constructed as a set of statements whose
occurrences exist instmt_occ.

program Dynamic_slicing
stmt_occ:= {Iq};
call Get_dynamic_slice(V , I, q);
slice:= {si | ∃sri ∈ stmt_occ for somer};

end;

procedure Get_dynamic_slice(V , I, q)
C := {Jp | J ∈ In_control_of(I) andp � q};
D := {};
∀ var ∈ V

∀ I r � r � q

D :=D ∪ {Previous_def(var, I r)};
temp:=C ∪D − stmt_occ;
stmt_occ:= stmt_occ∪ temp;
∀Jp ∈ temp
W := Use(Jp);
call Get_dynamic_slice(W,J, q);

end Get_dynamic_slice;

function Previous_def(var, I q)
return Jp , the last definition ofvar in

execution history such thatp < q.
end Previous_def;

Fig. 1. Dynamic slicing algorithm.

3. Some execution trajectories

We use the termexecution trajectory(ET) for an
execution history. LetG = (N,E,n0) be a program
flow graph (PFG) [2]. For simplicity of exposition, we
assume each nodeNi to contain a single statement
si , however our scheme is applicable even if this
requirement is not met. (A node is broken up if it
contains> 1 statement. If parts of a statement—e.g., a
for statement—belong to different nodes, each part is
analysed as a separate statement.)

We follow the approach used in [7] to construct an
ET. A variabletimei , initialized to 0, is associated with
each nodeNi of PFG. Atime-stampis the value in an
integer counter which is incremented by 1 whenever
execution of a node begins. Code instrumentation [5]
is used for this purpose. Every timeNi is executed,
the time-stamp is copied intotimei . A block is a pair
(Ni, tj), where tj is the time-stamp whenNi was
executed. Thus block (Ni, tj) represents an execution
of nodeNi . If statementI is located in nodeNi , block
(Ni, tj) represents same information asI tj .

A complete execution trajectory(CET) contains
blocks representing every execution of every node dur-

D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145–152 147

ing the program’s execution. The memory requirement
of CET is unbounded because a node can figure in
any number of blocks. Aminimal execution trajec-
tory (MET) [6] is constructed as follows: At the end
of program execution, a block(Ni, timei) is formed
for each nodeNi in G such thattimei �= 0. The blocks
are sorted in ascending order by time-stamp to form
MET. Thus each (Ni, tj) in MET represents the last
execution, if any, ofNi . The memory requirement of
MET is O(|N |). Fig. 3 shows CET and MET for an
execution of the program of Fig. 2 in which branches
(N3,N5), (N3,N4) and(N3,N5) are taken in the first
three iterations before execution reaches the start of
nodeN6.

It is not possible to use MET for dynamic slic-
ing. Consider construction of dynamic slice of the
program of Fig. 2 for the slicing criterion({v}, s15

6).
The slice consists of statementss1, s2, s3, s5, s6, s7.
However if the MET of Fig. 3 is used, procedure
Get_dynamic_slicefails to find dynamic data depen-
dence ofs2, i.e.,v := a, on s5, i.e.,a := 5 because the
only occurrence ofs5 in MET follows the occurrence
of s2. CET of Fig. 3 is adequate, however many blocks
in it are redundant for the purpose of constructing

Fig. 2. A program flow graph.

CET: (N1,1), (N2,2), (N3,3), (N5,4), (N6,5), (N7,6),
(N2,7), (N3,8), (N4,9), (N6,10), (N7,11),
(N2,12), (N3,13), (N5,14), (N6,15)

MET: (N1,1), (N4,9), (N7,11), (N2,12), (N3,13),
(N5,14), (N6,15)

Fig. 3. CET and MET.

this slice, for example blocks(N6,5), (N7,6), (N2,7),
(N3,8), (N4,9), (N6,10), (N3,13) and(N5,14).

A selective execution trajectory(SET) is a via
media between a CET and a MET. It contains fewer
redundancies than CET, but it is adequate for dynamic
slicing.

4. A SET for dynamic slicing

c_stmt is the statement mentioned in the slicing
criterion. DCsi is a set containingsi and statements
on which si is data or control dependent.DC∗

si
is

the closure ofDCsi . It contains a statementsj iff a
sequencesj ≡ s0, s1, . . . , sn ≡ si such that fork =
1, . . . , n sk−1 ∈ DCsk can be constructed for some
n. node(si) denotes the node ofG which contains
statementsi . PredicateSame_loop(si , sj) is true only
if some loop encloses bothsi andsj . VIsi is the set of
variables of interest while processing statementsi . If
si ≡ c_stmt,VIsi = V , elseVIsi = Use(si). Rsi,var is
the set of definitions ofvar ∈ VIsi which reachsi .

4.1. Critical nodes

The slicing algorithm of Fig. 1 uses an ET to
discover data and control dependences. MET contains
the last execution of a node. It is adequate for slicing
if a statementsi is data or control dependent only on
one statement, say,sj , and sj always occurs earlier
in MET. When these conditions do not hold, an ET
must contain some previous occurrences ofsi or sj .
Such statements are calledcritical statements(CSs),
and nodes containing them are calledcritical nodes
(CNs).

We determine criticality of a node under the as-
sumption that the slicing criterion is of the form
(V ,c_stmtf) wherec_stmtf is the last statement oc-
currence forc_stmtin ET andV ⊆ Use(c_stmt).

Definition 1 (Critical statement). Statementsi is a
critical statement if it satisfies one of the following
conditions:

(a) si ∈ DC∗
c_stmt, |Rsi,var − {si}|> 1 and

Same_loop(si , sj) for somesj ∈Rsi ,var − {si}.
(b) For somesj ∈ DC∗

c_stmt, si ∈ DCsj , Same_loop(si ,
sj) andsj is not included in some pathsi . . .c_stmt.

148 D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145–152

(c) sl is a critical statement by part (b),si ∈ DC∗
sl

and
Same_loop(si , sl).

(d) Some pathsi . . . sk . . . sm exists inG such thatsm
is a critical statement by part (a),si , sk ∈ Rsm,var−
{sm}, Same_loop(si, sm) andSame_loop(sk, sm).

The slicing algorithm of Fig. 1 adds statements in
DC∗

c_stmt to the slice. Part (a) of Definition 1 is obvi-
ous. Since|Rsi,var − {si}| > 1 andSame_loop(si , sj),
more than one definition ofvar may dynamically
reachsi . These dynamic dependences can be discov-
ered only if si appears more than once in the ET.
si ∈ Rsi,var is ignored becausesi ∈ DC∗

c_stmt ensures
that it would be added to the slice.

Let sj be control or data dependent onsi . Part (b)
identifies conditions whensi may occur later in ET
thansj . A previous execution ofsi must exist in ET if
sj ’s data and control dependences are to be discovered
correctly. Hencesi is a critical statement.

Let sl be a critical statement by part (b) of De-
finition 1. The slicing algorithm of Fig. 1 may in-
clude some occurrencesrl , which is not its last occur-
rence, instmt_occ. Control and data dependences of
srl are discovered through a backward search in ET.
Hence if statements on whichsl is data or control de-
pendent are located in the same loop assl , they too
must appear multiple times in ET. This effect is incor-
porated by part (c) of Definition 1. Part (d) is moti-
vated by the fact that if a CET contains a subsequence
si . . . sm . . . si . . . sk . . . sm, data dependence ofsm on si
would be discovered only ifsi is a CS.

Consider the criterion({v}, s15
6) in the program of

Fig. 2. NodeN2 is a CN according to part (a) of
Definition 1 becauses2 usesa and two definitions ofa
reach it. NodeN5 is a CN becauses5, s2 satisfy part (b)
of Definition 1 due to pathN5–N6. NodesN3,N7
are CNs becauses3, s5 and s7, s5 satisfy part (c) of
Definition 1. These pairs of statements also satisfy
part (b) of Definition 1.

4.2. Design of SET

We construct the selective execution trajectory
(SET) for dynamic slicing as follows: Program instru-
mentation is used to build two kinds of trajectories

• MET is built using time-stamping information as
described in [7].

• A critical nodes execution trajectory(CNET)
is built by inserting a block (Ni, tj) in CNET
every time a critical nodeNi is visited during
an execution. Note that the size of CNET is
unbounded, however CNET is smaller in size than
CET for most program executions.

SET is formed by merging these trajectories, where
merging is performed by arranging all blocks in MET
∪ CNET in ascending order by time-stamps and
deleting duplicates.

NodesN2,N3,N5 andN7 are critical nodes in the
program of Fig. 2, hence CNET consists of blocks
(N2,2), (N3,3), (N5,4), (N7,6), (N2,7), (N3,8),
(N7,11), (N2,12), (N3,13), (N5,14). SET is there-
fore(N1,1), (N2,2), (N3,3), (N5,4), (N7,6), (N2,7),
(N3,8), (N4,9), (N7,11), (N2,12), (N3,13), (N5,14),
(N6,15). Some of the redundancies of CET, viz.
blocks(N6,5) and(N6,10) do not appear in SET.

Slice construction for criterion({v}, s15
6) by the

algorithm of Fig. 1 using SET would proceed as
follows: s15

6 would be added tostmt_occ. SetsC, D
would be{s11

7 , s6
7} and{s2

2, s
7
2, s

12
2 }. Recursive call for

the criterion({v}, s12
2) leads toC = {s11

7 , s6
7} andD =

{s4
5, s

1
1}. Recursive call for the criterion ({a}, s4

5) leads
to C = {s3

3, s
8
3, s

13
3 } andD = {}. At end stmt_occ=

{s1
1, s

3
3, s

4
5, s

6
7, s

8
3, s

11
7 , s12

2 , s13
3 , s15

6 } and slice = {s1,
s2, s3, s5, s6, s7}.

4.3. Instrumentation to build SET

We instrument the program to be sliced as follows:
As described in Section 3, a variabletimei is associ-
ated with every nodeNi . Whenever a critical nodeNi

is executed, the instrumented code constructs a block
(Ni, timei) and enters it into CNET. At the end of ex-
ecution, time-stamps are used to build MET. This is
done only for non-critical nodes.

Instrumentation analysis is performed by procedure
Instrumentation(see Fig. 4) which constructs the set
of critical nodesSCN. Parts (a), (b) of Definition 1
are implemented by this procedure. The basic ap-
proach is as follows: Critical nodes are identified for
the criterion(V , si). SetDCsi contains statements on
which si is control or data dependent. Analysis is now
performed recursively for the criteria (Use(sk), sk)
for eachsk ∈ DCsi . ProcedureInclude_in_CNimple-

D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145–152 149

procedure Instrumentation(criterion, flag)
Let criterion≡ (V , si).
if flag= “any” then call Include_in_CN(si);
if somesk ∈ DCsi andsi satisfy part (b) of Definition 1∧
sk is not i-markedthen call Include_in_CN(sk);

if si satisfies part (a) of Definition 1then
SCN= SCN∪ {node(si)};

∀ sk ∈ DCsi

if sk is not r-marked and not i-markedthen
r-marksk ;
call Instrumentation((Use(sk), sk), “ last”);

call Prune_CN;
end Instrumentation;
Procedure Include_in_CN(sl)
i-mark sl ;
SCN= SCN∪ {node(sl)};
∀ sk ∈ DCsl � sk is not i-marked∧Same_loop(sk, sl)

call Include_in_CN(sk);
end Include_in_CN;
Procedure Prune_CN
∀ i, j ∈ SCN� i is a unique predecessor ofj

andj is a unique successor ofi
Delete nodei from SCN;

end Prune_CN;

Fig. 4. Instrumentation for dynamic slicing.

ments part (c) of Definition 1 by invoking itself re-
cursively for all statements inDCsl . Sincesk may be
included in setDC for many statements, we prevent
repeated recursive calls by r-markingsk and i-marking
sl in proceduresInstrumentationandInclude_in_CN,
respectively. An i-marked statement is not processed
by Instrumentation, but an r-marked statement is
processed byInclude_in_CNbecause processing per-
formed by Include_in_CNsubsumes that performed
by Instrumentation.

Definition 1 identifies critical nodes if slicing is
performed for the last execution ofc_stmt. If slic-
ing is desired for any execution ofc_stmt, all occur-
rences ofc_stmt, and all occurrences of statements in
DC∗

c_stmt which are in same loop should also appear
in ET. This requirement is incorporated by invoking
Include_in_CNfor si whenflag= “any”.

ProcedurePrune_CNimplements an obvious op-
timization by deleting a node fromSCN if it al-
ways precedes another node inSCN. Occurrences of
this node can be simply inserted after CNET is con-
structed. The only exception is if nodej involves a

function/procedure call, since statements of the func-
tion/procedure body may occur betweeni andj (see
Section 4.5).

Two other simple optimizations are possible.
A statementsi which satisfies part (a) of Definition 1
need not be a CS if it is data dependent on two def-
initions one of which is itself data dependent on the
other definition. For example, ifsi which usesi is data
dependent oni:=i+1 in same loop andi:=... out-
side the loop,si need not be a CS because ifi:=i+1
is added to slice,i:=0 will also be added. Afor state-
ment causes both data and control dependence. Con-
trol dependence ensures that it is included in a slice
if some statement in its body is included. Hence afor
(i=0;i<...;i++) need not be made a CS even if
use ofi in its body andi++ of the for statement sat-
isfy part (b) of Definition 1.

For the program of Fig. 2 and slicing criterion
({v}, s15

6), call Instrumentation({v}, s6, “last”) leads to
a recursive call for the criterion({a}, s2). This call
identifiesN2 as a CN by part (a) of Definition 1, and
N5 as a CN by part (b) of Definition 1 because of path
N5 . . .N6. It makes a callInclude_in_CN(s5) which
marksN3 andN7 as CN. Other recursive calls do not
identify any CNs.

4.4. Proof of adequacy of SET

Let si be a definition ofv. Let sri <· spj indicate

that occurrencesri precedes occurrencespj in SET, and

let sri → s
p
j indicate thatsri reachesspj in SET (i.e.,

sri <· spj and no other definition ofv occurs betweensri
andspj). sj may be added to a slice to satisfy control
or data dependences (see setsC andD in the slicing
algorithm). We show that all dynamic control and data
dependences ofsj can be discovered using SET.

Lemma 1. ∀sqj ∈ stmt_occ,

(a) If sj is dynamically data dependent onsi : v :=
. . . , sri → s

p

j for somer and somep � q .
(b) If sj is dynamically control dependent onsi , sri <·

s
p
j for somer and somep � q .

Proof. Proof is by contradiction.
Part (a): Let CET contain a subsequencesri . . . s

p
j ,

p � q but¬(sri → s
p
j). Three possibilities exist.

150 D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145–152

Case1: CET contains the sequencesri . . . s
t
j . . . s

l
m

. . . s
q

j , wheresm is a definition ofv and sj is not a
CS. This implies thatsj is executed both before and
after sm, Same_loop(sj , sm), and two definitions of
v—si andsm—reachsj . Sincesqj is added to a slice,
sj ∈ DC∗

c_stmt (see Fig. 1). Hencesj is a CS by part (a)
of Definition 1. This is a contradiction.

Case2: si is executed again such that CET contains
a subsequencesri . . . s

q
j . . . s

h
i butsi is not a CS. Subse-

quencesri . . . s
q
j . . . s

h
i implies thatSame_loop(si , sj),

and a path exists fromsi to c_stmtwhich does not
containsj . Hencesi is a critical node by part (b) of
Definition 1. This is a contradiction.

Case3: CET contains a subsequencesri . . . s
f
j . . .

s
g
k . . . s

h
i . . . s

l
m . . . s

t
j , wheresm is a definition ofv, sqj is

eithersfj or stj , andsi is not a CS. Sincesj is executed
before and after bothsi and sm, Same_loop(si , sj) ∧
Same_loop(sm, sj). Hencesj is a CS by part (a) of

Definition 1. sfj is not the last occurrence ofsj in

SET. If sfj is added tostmt_occby the algorithm in
Fig. 1 becausesk ∈ DC∗

c_stmt andsk is data dependent
on sj , sj is a CS also by part (b) of Definition 1. Ifstj
is added tostmt_occ, sj ∈ DC∗

c_stmt hencesi is a CS
from part (d) of Definition 1. In both cases we have a
contradiction.

Part (b): Let SET be. . . sqj . . . s
t
i . From the defini-

tion of dynamic control dependence,si must execute
beforesj , hence CET must be. . . sri . . . s

q
j . . . s

t
i . Simi-

lar to Case 2 of part (a), this is a contradiction.✷
4.5. Handling functions and arrays

Functions require special handling during critical-
ity analysis because of interprocedural data depen-
dences. Instrumentation analysis is simple if each
function call is expanded in-line. However, such ex-
pansion may be infeasible or impossible if calls are
deeply nested or recursive. In such cases we use sum-
mary information GMOD and GREF which represent
the effect of a function call in terms of modification
and use of actual parameters and global variables, re-
spectively [3,4], to prepare a program for instrumen-
tation analysis. Every call on a functionf is replaced
by a function expression(FE). FE consists of a single
occurrence of a variable arity fictitious operator ‘@’,
whose operands are the globals and parameters off

whose values are used in computing the expression in
the return statement off . FE’s operands are given by
GP∩⋃

si∈DC∗
return

Use(si), where GP is the set of glob-
als and parameters off . The modified call statement
is followed by adeemed definitionfor each variable
in GMOD of f . A deemed definitionsk : v := @(. . .)

‘corresponds to’ all definitions ofv in the function
body which reach its exit.CO(sk) is the set of such de-
finitions. The rhs expression of a deemed definitionsk
contains variables given byGP∩⋃

si∈DC∗
CO(sk)

Use(si).

Instrumentation analysis of the calling program
is performed after these modifications. If more than
one definition in the function body corresponds to a
deemed definition, this fact is noted for use while
applying part (a) of Definition 1. If a call statement
or a deemed definition is a CS, some statements in
the function body also become CSs as follows: If a
statement containing a call onf is a CS, the return
statement off becomes a CS. If a deemed definition
sk is a CS, all definitions inCO(sk), and all statements
in

⋃
sj∈CO(sk) DC∗

sj
become CSs. A recursive call site

is always considered to be a CS.
Special provisions are needed when> 1 call site

exists for a function. Consider a statementsi , already
included in a slice, which is data dependent on a
deemed definitionsl . In effect, si is data dependent
on ansj ∈ CO(sl). This data dependence can be dis-
covered during slice construction only if an occurrence
of sj precedes that ofsi in ET. However, the function
may have been called a few times after this data de-
pendence was created, hencesj may occur aftersi in
MET. Sincesj should precedesi in SET, sj should
be included inSCNand must appear in CNET. This
effect is incorporated by considering a deemed defini-
tion to be a critical statement if it is inDC∗

c_stmt. State-
ments executed during different invocations of a func-
tion may be data dependent on one another. This ef-
fect is incorporated by assuming a loop to enclose the
body of a function during instrumentation analysis of
the function. Criticality analysis is now performed for
statements containing references/definitions of nonlo-
cal variables and parameters which are identical for
two or more call sites.

Instrumentation analysis of the body of functionf
is performed as follows:IASf is the set of statements
for which the instrumentation analysis off should be
performed. We begin by putting the return statement
in IASf . If a deemed definitionsi is in DC∗

c_stmt,

D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145–152 151

then CO(si) is added toIASf . ∀sj ∈ IASf a call on
procedureInstrumentationis made with the criterion
(Use(sj), sj).

During program execution, a function call state-
ment is entered in CNET when execution returns from
that call. Additionally, some annotations regarding ac-
tual parameters are also entered in CNET at this time.
Following changes are made in the dynamic slicing al-
gorithm of Fig. 1 to handle function calls and function
bodies: When a definition of a variable in GP located
in a function body is added tostmt_occ, the function
call statement is also added tostmt_occ. When a state-
ment involving a function call is added tostmt_occ,
the return statement of the function in also added to
stmt_occ. When a recursive call onGet_dynamic_slice
is made for a return statementJp, Use(J) contains all
variables occurring in FE.

4.5.1. Handling subscripted variables
The scheme for recovering values of subscripted

variables described in [7] can be extended for slicing
programs using subscripted variables. Consider an
assignmenta[i] := . . . x . . . b[j] . . . situated in node
Ni . To identify statements on which this statement
is data dependent, we proceed as if the assignment
is of the form a := fa[i](i, . . . x, . . . , j, b[j]). This
approach ensures that assignments ofi, x, j andb[j]
will be included in the slice. Assignments of the
form b[k] := . . . for somek which reach nodeNi

should also be considered for inclusion unless it can
be inferred during instrumentation time (using static
analysis) thatk cannot have the same value as the
value of j when the assignment toa[i] is executed.
Criticality analysis should proceed along similar lines.
Thus apart from nodes containing assignments tob[j],
nodes containing assignments toi, x, j andb[k] may
also become critical nodes.

5. Concluding remarks

Table 1 summarizes performance for some bench-
mark programs using the criterion (V, si) whereV is
the set of all variables used in the main program andsi
is a fictitious statement which immediately precedes
the end statement in it. ET size is in terms of num-
ber of source statements executed; afor statement is
counted as 1 even if its parts are executed separately. It

Table 1
Performance summary

Program CET # SET
Name Size # Proc size CN size

Towers 83 3 637E6 4 146
of Hanoi+

Heapsort 254 3 592E6 24 326E6
Dhrystone 400 13 108E6 4 3.99E6
Matrix Mult@ 537 14 870E5 5 542
SIM 1285 15 105E6 85 10.4E6

+: For no of disks from 15 to 25.
@: array size 350×350.
637E6: 637× 106.

is observed that SET is at least an order of magnitude
smaller than CET in most cases. For a Korel–Laski
style slicing approach, e.g., the algorithm of Fig. 1,
part (c) of Definition 1 can be omitted since the slicing
algorithm considers data and control dependences of
all execution occurrences of a statement inDC∗

c_stmt.
This would reduce SET sizes further.

For some programs SET is several orders of mag-
nitude smaller than CET. This behaviour is observed
when none of the critical statements executes a large
number of times. It provides an obvious hint to ef-
fectiveness of SET in practice: SET will be much
smaller than CET if results of criticality analysis su-
perimposed on an execution profile of a program show
that none of its hotspots (i.e., most frequently executed
statements) are critical statements.

ProcedureInstrumentationrequires data flow analy-
sis to determine reaching definitions, and loop identi-
fication to implementSame_loop, both of which re-
quire quadratic effort in terms of program size. Pro-
cedureInstrumentationis itself quadratic in program
size, because it checks criticality of each node once, if
at all, and part (b) of Definition 1 involves path tracing
whose effort is linear in program size. Hence complex-
ity of program instrumentation is O(|N |2).

References

[1] H. Agrawal, J. Horgan, Dynamic program slicing, ACM
SIGPLAN Notices 25 (6) (1990) 246–256.

[2] A.V. Aho, R. Sethi, J.D. Ullman, Compilers—Principles,
Techniques and Tools, Addison-Wesley, Reading, MA, 1986.

[3] J.P. Banning, An efficient way to find the side effect of
procedure calls and aliases of variables, in: Conference Record

152 D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145–152

of Sixth ACM Symposium on Principles of Programming
Languages, 1979, pp. 29–41.

[4] K.D. Cooper, K. Kennedy, Interprocedural side-effect analysis
in linear time, ACM SIGPLAN Notices 23 (7) (1988) 57–66.

[5] M. Copperman, J. Thomas, Poor man’s watchpoints, ACM
SIGPLAN Notices 30 (1) (1995) 37–44.

[6] D.M. Dhamdhere, Effective execution histories for debugging
and dynamic slicing, Technical Report, CSE Department, IIT
Bombay, 2000.

[7] D.M. Dhamdhere, K.V. Sankaranarayanan, Dynamic currency
determination in optimized code, ACM TOPLAS 20 (6) (1998)
1111–1130.

[8] J. Ferrante, K. Ottenstein, J.D. Warren, The program depen-
dence graph and its use in optimization, ACM TOPLAS 9 (3)
(1987) 319–349.

[9] S. Horwitz, T. Reps, D. Binkley, Interprocedural slicing using
dependence graphs, ACM TOPLAS 12 (1) (1990) 26–60.

[10] B. Korel, J. Laski, Dynamic program slicing, Inform. Process.
Lett. 29 (1988) 155–163.

[11] F. Tip, A survey of program slicing techniques, J. Programming
Languages 3 (3) (1995) 121–189.

[12] M. Weiser, Program slicing, IEEE Transactions on Software
Engineering 10 (4) (1984) 352–357.

