CI/% Available at

= www.ComputerScienceWeb.com Information
@% POWERED BY SCIENCE DIRECT® Processing
Letters
ELSEVIER Information Processing Letters 85 (2003) 145-152

www.elsevier.com/locatefipl

A compact execution history for dynamic slicing

Dhananjay M. DhamdhergK. Gururaja, Prajakta G. Ganu

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay, India
Received 17 July 2001, received in revised form 3 May 2002

Communicated by R. Backhouse

Keywords:Software design and implementation; Dynamic slicing; Execution history; Data dependence; Control dependence

1. Introduction redundant for dynamic slicing. We develop a compact
execution history for dynamic slicing of programs

A sliceof a program P with respect to a slicing cri-  Using the notion otritical statementsn a program.

terion C = ({var}, c_stmj is a subset of the program  Only critical statements need to appear more than once

which includes all statements that directly or indirectly N an execution history; all other statements appear

affect the value of variablear in c¢_stmt[1,10-12]. at most once. Performance studies show that our

A static sliceincludes all statements whichight af- execution histories are at least an order of magnitude

fect the value ofar. It is constructed using program smaller than complete execution histories in most

analysis techniques. dynamic sliceconsists of only ~ cases; for some programs they are smaller by several

those statements that actually influence the value of ©rders of magnitude.

var in an execution of the program. It is built using

run-time information. A dynamic slice is more precise o

than a static slice because it contains only those state-2- Dynamic slicing

ments which have actually influencedr in an execu-

tion. Slicing was first discussed by Weiser [12]. Korel
A dynamic slice of a program is constructed by and Laski introduced dynamic slicing [10]. Other

analyzing anexecution historyof the program to  relevant papers are [1,7,9,11]. This section presents

discover data and control dependentéscomplete  dynamic slicing along the lines described in [10].

execution history records all actions performed during

an execution of a program. A lot of this informationis  2.1. Dynamic slicing algorithm

An execution history is a sequence.J 97114

" Corresponding author. ) _ K1 .. wherel,J and K are statements in the
E-mall adc_l_resse_sdmd@cse.ut_b.ac.m_(D.M. Dhanjdhere_), program andg — 1, ¢ andg + 1 are their positions
kgururaj@cse.iitb.ac.in (K. Gururaja), prajakta@cse.iitb.ac.in . g
(P.G. Ganu). in the sequencel? is called a statement occurrence
1 An alternative approach uses program dependence graphs [1, Of - Man)_/ occurrences of a St_ateme.nt may e.X|5t. In
11]. an execution history. A dynamic slicing criterion is

0020-0190/02/$ — see front mattér 2002 Elsevier Science B.V. All rights reserved.
PI1l: S0020-0190(02)00322-8



146 D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145-152

defined as G= (input, V, I7) whereinput is the set program Dynamic_slicing
of values of input variables for which the program is stmt occ:= {79};
executed/? is a specific execution af, andV is the call Get dynamicslice(V, 7, ¢);
set of variables of interest. To obtain a dynamic slice slice:= {s; | 3s; < stmt occfor somer};
for this criterion, we use an execution history of the end;
program constructed when it is executed withut as procedure Get dynamic slice(V, I, ¢)
the set of input values. Hence the shorter specification C:={J?|J €lIn_control_of (/) andp < ¢};
(V, 11) suffices for dynamic slicing using a specific D:={};
execution history. VvareV
Notions of data dependence and control depen- VI'3r<gq

D := D U {Previous def(var, I")};
temp:= C U D — stmt ocg
stmt occ:= stmt occU temp

dence analogous to those defined in [8] are used to
identify statements which are relevant to the statement
in the slicing criterion. Lets; be the criterion state-

! ; VJP etemp
ment.s; is dynamically data dependeon a statement W = UseJP);
s; if s; uses a variablear defined bys; and execution call Get dynamic slice(W, J, ¢);
of the program traverses a path framto s; along end Get dynamic slice

which var is not redefined. Ivar € V, s; affects the

yalue ofv_ar ats;, hences; is included in the sliqesj return J7, the last definition ofar in
is dyngmmally cgntrol dependeo.n astatement if s; execution history such that < ¢.
contains a predicate which decides whethewould end Previous_def

be executed. Hencg is included in the slice. Control
dependence is caused by statements like looping state-
ments,if statements andgwitch (or casg statements.
Static and dynamic control dependences are different ) ) )
in programs which contaiif ... then goto... state- 3 SOmeexecution trajectories

ments.

Fig. 1 shows the dynamic slicing algorithm. Ituses ~ We use the ternexecution trajectoryET) for an
three functionsPrevious def(var, 19) returns the de-  execution history. LeG = (N, E, no) be a program
finition of var on whichI9 is dynamically data depen-  flow graph (PFG) [2]. For simplicity of exposition, we
dent [7].In_control of (1) returns the set of statements assume each nod¥; to contain a single statement
in the program on whicli is statically control depen-  si, however our scheme is applicable even if this
dent.Usg(1) returns the variables referencedlin requirement is not met. (A node is broken up if it

ProcedureGet_dynamic_slicés called with argu- contains> 1 statement. If parts of a statement—e.g., a
mentsV, I andg, whereV C Usgl). Setstmt occ for statement—Dbelong to different nodes, each part is
contains statement occurrences which must be proces-analysed as a separate statement.)
sed to discover all data and control dependences. Itis  We follow the approach used in [7] to construct an
initialized to 79 and statement occurrences are added ET. A variabletime, initialized to 0, is associated with
to it on the basis of data and control dependences. All each nodeV; of PFG. Atime-stamps the value in an
occurrences of statementslim control of (1) which integer counter which is incremented by 1 whenever
precedd? in the execution history are included in set execution of a node begins. Code instrumentation [5]
C. SetD is then constructed to contain definitions of is used for this purpose. Every timé is executed,
variables inV on which some occurrence éfbefore the time-stamp is copied intime . A blockis a pair
17 or 11 itself (i.e., occurrencé”, r < q) is data de- (Ni, tj), wheret; is the time-stamp whemV; was
pendent. The procedure now calls itself recursively to executed. Thus block\;, ¢;) represents an execution
discover data and control dependences of all occur- of noden;. If statement is located in nodev;, block
rences of statements @ and D which precedd?. At (N, tj) represents same information Hs.
end,sliceis constructed as a set of statements whose A complete execution trajectorfCET) contains
occurrences exist istmt_occ blocks representing every execution of every node dur-

function Previous def(var, 19)

Fig. 1. Dynamic slicing algorithm.



D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145-152

147

ing the program’s execution. The memory requirement this slice, for example blocksVs, 5), (N7, 6), (N2, 7),
of CET is unbounded because a node can figure in (N3, 8), (N4, 9), (Ns, 10), (N3, 13) and(Ns, 14).

any number of blocks. Aninimal execution trajec-
tory (MET) [6] is constructed as follows: At the end
of program execution, a blockV;, time) is formed

for each nodeV; in G such thatime # 0. The blocks
are sorted in ascending order by time-stamp to form
MET. Thus each ¥, ¢;) in MET represents the last
execution, if any, ofvV;. The memory requirement of
MET is O(|N]). Fig. 3 shows CET and MET for an
execution of the program of Fig. 2 in which branches
(N3, Ns), (N3, Ng) and(N3, Ns) are taken in the first

A selective execution trajector{SET) is a via
media between a CET and a MET. It contains fewer
redundancies than CET, but it is adequate for dynamic
slicing.

4. A SET for dynamic dlicing

c_stmtis the statement mentioned in the slicing
criterion. DC;; is a set containing; and statements

three iterations before execution reaches the start ofon which s; is data or control dependerdCy is

nodeNg.

It is not possible to use MET for dynamic slic-
ing. Consider construction of dynamic slice of the
program of Fig. 2 for the slicing criteriof{v}, s3°).
The slice consists of statemends, so, 53, 55, 56, 57.
However if the MET of Fig. 3 is used, procedure
Get_dynamic_slicéails to find dynamic data depen-
dence ofsy, i.e.,v:=a, Onss, i.e.,a := 5 because the
only occurrence ofs in MET follows the occurrence
of so. CET of Fig. 3 is adequate, however many blocks
in it are redundant for the purpose of constructing

Fig. 2. A program flow graph.

CET:  (N1,1),(N2,2),(N3,3), (N5, 4), (N, 5), (N7, 6),
(N2,7),(N3,8),(Na,9), (Ng, 10), (N7, 11),
(N2,12), (N3, 13), (N5, 14), (Ng, 15)

MET: (N1,1),(Ng,9), (N7,11), (N2, 12), (N3, 13),

(Ns, 14), (Ng, 15

Fig. 3. CET and MET.

the closure ofDC;,. It contains a statement; iff a
sequence; = s°, 51, ..., 5" =5 such that fork =
1,...,n s*~1 € DCy can be constructed for some
n. nodds;) denotes the node off which contains
statemens;. PredicateSameloop(s;, s;) is true only

if some loop encloses both ands;. VI, is the set of
variables of interest while processing statemgntf

si =c_stmt Vi, =V, elseVl;, = Use(s;). Ry, var IS
the set of definitions ofar € VI, which reacts;.

4.1. Critical nodes

The slicing algorithm of Fig. 1 uses an ET to
discover data and control dependences. MET contains
the last execution of a node. It is adequate for slicing
if a statemens; is data or control dependent only on
one statement, say,, ands; always occurs earlier
in MET. When these conditions do not hold, an ET
must contain some previous occurrences;obr s; .
Such statements are calledtical statement{CSs),
and nodes containing them are callexitical nodes
(CNs).

We determine criticality of a node under the as-
sumption that the slicing criterion is of the form
(V, c_stmt’) wherec_stmt’ is the last statement oc-
currence forc_stmtin ET andV C Usgc_stmj.

Definition 1 (Critical statement Statements; is a
critical statement if it satisfies one of the following
conditions:

(a) S; € DC:_S'[I’T](’ |RS,',VaI' - {Si}| > 1 and
Sameloop(s;, s;) for somes; € R; var — {s:}.

(b) Forsome; € DC{ gy si € DCy;, Sameloop(s;,
sj) ands; is notincluded in some pash. . .c_stmt



148 D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145-152

(c) s is acritical statement by part (b}, € DC{, and e A critical nodes execution trajectoryCNET)
Sameloop(s;, ;). is built by inserting a block X, ;) in CNET
(d) Some path; ...si...s, exists inG such thats,, every time a critical nodeV; is visited during
is a critical statement by part (&), sk € Rs,, var— an execution. Note that the size of CNET is
{sm}, Sameloop(s;, s, ) andSameloop(sk, sm)- unbounded, however CNET is smaller in size than

CET for most program executions.
The slicing algorithm of Fig. 1 adds statements in
DC{ gimtto the slice. Part (a) of Definition 1 is obvi- SET is formed by merging these trajectories, where
ous. SincgRy; var — {si}| > 1 andSameloop(s;, s;), merging is performed by arranging all blocks in MET
more than one definition ofar may dynamically U CNET in ascending order by time-stamps and
reachs;. These dynamic dependences can be discov- deleting duplicates.

ered only ifs; appears more than once in the ET. NodesN», N3, N5 and N7 are critical nodes in the
si € Ry, var is ignored because € DC¢ g ensures  program of Fig. 2, hence CNET consists of blocks

Let s; be control or data dependent gn Part (b) (N7,11), (N2,12), (N3,13), (N5, 14). SET is there-
identifies conditions whes; may occur later in ET  fore(Ny, 1), (No, 2), (N3, 3), (N5, 4), (N7, 6), (N2, 7),
thans;. A previous execution of; must exist in ET if (N3, 8), (Na, 9), (N7,11), (N2, 12), (N3, 13), (Ns, 14),
s;'s data and control dependences are to be discovered(Ng, 15). Some of the redundancies of CET, viz.
correctly. Hence; is a critical statement. blocks(Ng, 5) and(Ng, 10) do not appear in SET.

Let s; be a critical statement by part (b) of De- Slice construction for criterior({v}, s3°) by the
finition 1. The slicing algorithm of Fig. 1 may in-  algorithm of Fig. 1 using SET would proceed as
clude some occurrensg, which is not its last occur-  follows: sé5 would be added tstmt occ SetsC, D
rence, instmt occ. Control and data dependences of \yould be{s1, s8} and{s2, s7, s12}. Recursive call for
s; are discovered through a backward search in ET. ¢ criterioZn({v}7 s12) Ie:\ds2toC2 = (531, 58} andD =
Hence if statements on whichis data or control de- 2 T o
pendent are located in the same loopsaghey too
must appear multiple times in ET. This effect is incor-
porated by part (c) of Definition 1. Part (d) is moti-
vated by the fact that if a CET contains a subsequenceS2: $3: 55: 6. 57}
Si...Sm...8...5...5m, data dependence gf, ons;

{s2, s1}. Recursive call for the criterior{}, s2) leads
to C = {s3,s8,53% and D = {}. At end stmt occ=
{sl,sg’,sé,sg,sg,s%l, s212, s§3, sés} and slice = {s1,

would be discovered 0n|y if; is a CS. 4.3. Instrumentation to build SET

Consider the criteriort{v}, s3°) in the program of
Fig. 2. NodeN; is a CN according to part (a) of We instrument the program to be sliced as follows:
Definition 1 because uses: and two definitions of As described in Section 3, a varialilmg is associ-
reach it. NodeVs is a CN becauss;, s, satisfy part (b) ated with every node/;. Whenever a critical nod¥;;
of Definition 1 due to pathWs—Ng. Nodes N3, N7 is executed, the instrumented code constructs a block

are CNs becauses, s5 and s7, ss satisfy part (c) of (N;, time) and enters it into CNET. At the end of ex-
Definition 1. These pairs of statements also satisfy ecution, time-stamps are used to build MET. This is

part (b) of Definition 1. done only for non-critical nodes.
Instrumentation analysis is performed by procedure
4.2. Design of SET Instrumentation(see Fig. 4) which constructs the set

of critical nodesSCN Parts (a), (b) of Definition 1
We construct the selective execution trajectory are implemented by this procedure. The basic ap-
(SET) for dynamic slicing as follows: Program instru- proach is as follows: Critical nodes are identified for
mentation is used to build two kinds of trajectories the criterion(V, s;). SetDC;, contains statements on
whichs; is control or data dependent. Analysis is now
e MET is built using time-stamping information as performed recursively for the criteridJée(sy), sk)
described in [7]. for eachs; € DC;,. Procedurdnclude_in_CNmple-



D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145-152

procedure Instrumentatiofcriterion, flag

Let criterion= (V, s;).

if flag="“any” then call Include in_CN(s;);

if somes; € DCy; ands; satisfy part (b) of Definition Ia
s is not i-markedthen call Include in_CN(sy);

if 5; satisfies part (a) of Definition then
SCN= SCNU {nodgs;)};

Vs, € DCy,
if s is not r-marked and not i-marketien
r-marksy;
call Instrumentatiof(Use(sy), sx), “last’);
call Prune_CN

end Instrumentation
ProcedureInclude in_CN(s;)
i-marks;;
SCN= SCNU {nod€(s;)};
V sx € DCy,; > s¢ is not i-markedrSameloop(sg, s;)
call Include_ in_CN(sg);
end Include in_CN;
Procedure Prune_CN
Vi, j € SCN> i is a unique predecessor pf
and; is a unique successor bdf
Delete node from SCN
end Prune_CN

Fig. 4. Instrumentation for dynamic slicing.

ments part (c) of Definition 1 by invoking itself re-
cursively for all statements iDC;,. Sinces; may be
included in seDC for many statements, we prevent
repeated recursive calls by r-markisygand i-marking
s; in proceduresnstrumentatiorandInclude_in_CN

respectively. An i-marked statement is not processed

by Instrumentation but an r-marked statement is
processed binclude_in_CNbecause processing per-
formed byInclude_in_CNsubsumes that performed
by Instrumentation

Definition 1 identifies critical nodes if slicing is
performed for the last execution af stmt If slic-
ing is desired for any execution of stmt all occur-
rences oft_stmf and all occurrences of statements in
DC ¢imt Which are in same loop should also appear
in ET. This requirement is incorporated by invoking
Include_in_CNor s; whenflag=“any”.

ProcedurePrune_CNimplements an obvious op-
timization by deleting a node fronsCN if it al-
ways precedes another nodeSEN Occurrences of
this node can be simply inserted after CNET is con-
structed. The only exception is if nodeinvolves a

149

function/procedure call, since statements of the func-
tion/procedure body may occur betweeand j (see
Section 4.5).

Two other simple optimizations are possible.
A statement; which satisfies part (a) of Definition 1
need not be a CS if it is data dependent on two def-
initions one of which is itself data dependent on the
other definition. For example, §f which useg is data
dependenton: =i +1 insameloopand: =. . . out-
side the loops; need not be a CS because if=i +1
is added to slicd, : =0 will also be added. Aor state-
ment causes both data and control dependence. Con-
trol dependence ensures that it is included in a slice
if some statement in its body is included. Hender
(i=0;i<...;i++) need notbe made a CS even if
use ofi in its body and ++ of thefor statement sat-
isfy part (b) of Definition 1.

For the program of Fig. 2 and slicing criterion
({v}, &%), call Instrumentatiot{v}, se, “last”) leads to
a recursive call for the criterioii{a}, s2). This call
identifies N, as a CN by part (a) of Definition 1, and
N5 as a CN by part (b) of Definition 1 because of path
Ns...Ng. It makes a callnclude in_CN(s5) which
marksN3 and N7 as CN. Other recursive calls do not
identify any CNs.

4.4. Proof of adequacy of SET

Let s; be a definition ofv. Let s/ < s; indicate
that occurrence/ precedes occurren@§ in SET, and
let 57 — s7 indicate thats] reaches} in SET (i.e.,
s) < s; and no other definition of occurs betweesy

andsf). s; may be added to a slice to satisfy control
or data dependences (see etand D in the slicing
algorithm). We show that all dynamic control and data
dependences of can be discovered using SET.

Lemma 1. Vs;? e stmt_occ,

(a) If s; is dynamically data dependent gn: v :=
...,s7 — s” for somer and somep < g.

(b) If s; is dynamically control dependent en s; <
s; for somer and somep < g.

Proof. Proof is by contradiction.
Part (a): Let CET contain a subsequente. .sj.’,

p < g but—(s/ — sj.’). Three possibilities exist.



150 D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145-152

m

...s?, wheres,, is a definition ofv ands; is nota  thereturn statement of. FE's operands are given by
CS. This implies thas; is executed both before and  GPN U ency,,, USEsi), where GP is the set of glob-

after s,,, Sameloop(s;, s,,), and two definitions of als and parameters g¢f. The modified call statement
v—s; ands,,—reachs;. Sinces? is added to a slice is followed by adeemed definitiofor each variable
J i)

s; € DC: gy (see Fig. 1). Hence; is a CS by part (a) !n GMOD of f. A deeme.d. Qeflnltloqk (v =@ .. )
of Definition 1. This is a contradiction. corresponds to’ all definitions of in the function
Case2: s; is executed again such that CET contains P0dY Which reachiits exiCO(sy) is the set of such de-
asubsequencé ...s?...s" buts; is nota CS. Subse- finitions. The rhs expression of a deemed definitipn
. g contains variables given &§PN(J, cpcx  Usel(s;).
quences; ...s; ...s; implies thatSameloop(s;, s;), | ) i €L~ corsy)
and a path exists frong to c_stmtwhich does not _ nstrumentation analysis of the calling program
contains;. Hences; is a critical node by part (b) of is perfo_rm_ed a_fter these r_nodlflcatlons. If more than
Definition 1. This is a contradiction. one definition in the function body corresponds to a
Case3: CET contains a subsequenq’e..sf... deemed definition, this fact is noted for use while
¢ W ; . ) . Tq applying part (a) of Definition 1. If a call statement
Sg--+Si - Sp - 8j. Wheres, isadefinition ofv, s is or a deemed definition is a CS, some statements in
eithers’ ors’, ands; is nota CS. Since; is executed  the function body also become CSs as follows: If a

Casel: CET contains the sequengg. . .sj. st whose values are used in computing the expression in

before and after botk; ands,,, Sameloop(s;, s;) A statement containing a call ofi is a CS, the return
Sameloop(s,, s;). Hences; is a CS by part (a) of  statement off becomes a CS. If a deemed definition
Definition 1. Sf is not the last occurrence 0';. in Sk isa CS, all definitions ifCO(Sk), and all statements

in Uy, ecos) PG5, become CSs. A recursive call site
is always considered to be a CS.

Special provisions are needed whenl call site
exists for a function. Consider a statementalready
included in a slice, which is data dependent on a
deemed definition;. In effect,s; is data dependent
on ans; € CO(s;). This data dependence can be dis-
covered during slice construction only if an occurrence
of s; precedes that of; in ET. However, the function
may have been called a few times after this data de-
pendence was created, hengamay occur aftes; in
) ) MET. Sinces; should preceds; in SET, s; should
4.5. Handling functions and arrays be included inSCNand must appear in CNET. This

effect is incorporated by considering a deemed defini-

Functions require special handling during critical- tion to be a critical statement if it is iIDC}; ¢, State-
ity analysis because of interprocedural data depen- ments executed during different invocations of a func-
dences. Instrumentation analysis is simple if each tion may be data dependent on one another. This ef-
function call is expanded in-line. However, such ex- fect is incorporated by assuming a loop to enclose the
pansion may be infeasible or impossible if calls are body of a function during instrumentation analysis of
deeply nested or recursive. In such cases we use sumihe function. Criticality analysis is now performed for
mary information GMOD and GREF which represent statements containing references/definitions of nonlo-
the effect of a function call in terms of modification cal variables and parameters which are identical for
and use of actual parameters and global variables, re-two or more call sites.
spectively [3,4], to prepare a program for instrumen- Instrumentation analysis of the body of functign
tation analysis. Every call on a functighis replaced is performed as followsASy is the set of statements
by afunction expressio(FE). FE consists of a single  for which the instrumentation analysis gfshould be
occurrence of a variable arity fictitious operator ‘@’, performed. We begin by putting the return statement
whose operands are the globals and parameteys of in IAS;. If a deemed definitiors; is in DC{ gy

SET. If sjf is added tostmt_occby the algorithm in
Fig. 1 because, € DC{ ¢;ands; is data dependent
ons;, s; is a CS also by part (b) of Definition 1. h;.

is added tostmt ocg, s; € DC{ ¢ hences; is a CS
from part (d) of Definition 1. In both cases we have a
contradiction.

Part (b): Let SET be..s{...s/. From the defini-
tion of dynamic control dependencg,must execute
befores;, hence CET mustbe.s7...s?...s!. Simi-
lar to Case 2 of part (a), this is a contradictiorm



D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145-152 151

then CO(s;) is added tolASy. Vs; € IAS; a call on Table 1
procedurdnstrumentatioris made with the criterion  Performance summary

(Use(s;), 5j). Program CET  # SET
During program execution, a function call state- Name Size #Proc  size  CN size
ment is entered in CNET when execution returns from  Towers 83 3 637E6 4 146
that call. Additionally, some annotations regarding ac- of Hanoi*
tual parameters are also entered in CNET at this time. gﬁapson igg lg i’gggg 2:1‘ 335352
Following changes are made in the dynamic slicing al- /> :
. . . - Matrix Mult 537 14 870E5 5 542
gorithm of Fig. 1 to handle function calls and function g, 1285 15 10566 85 10.4E6

bodies: When a definition of a variable in GP located - For 1m0 of ks from 15 10 25
in a function body is added tstmt_ocg the function @. array size 358 350. '
call statement is also addeddtmt_occWhen a state-  g37e6: 637« 106,

ment involving a function call is added &imt_oc¢
the return statement of the function in also added to
stmt_occWhen a recursive call dBet_dynamic_slice

is made for a return statemeft, UsgJ) contains all
variables occurring in FE.

is observed that SET is at least an order of magnitude
smaller than CET in most cases. For a Korel-Laski
style slicing approach, e.g., the algorithm of Fig. 1,
part (c) of Definition 1 can be omitted since the slicing
algorithm considers data and control dependences of
g all execution occurrences of a statemenDi@; e
This would reduce SET sizes further.
For some programs SET is several orders of mag-

4.5.1. Handling subscripted variables
The scheme for recovering values of subscripte
variables described in [7] can be extended for slicing

programs using subscripted variables. Consider an ) Lo
assignmenta[i] := ...x...b[j]... situated in node nitude smaller than CET. This behaviour is observed

N;. To identify statements on which this statement when none of the critical statements executes a large
i

is data dependent, we proceed as if the assignment"UMber of times. It provides an obvious hint to ef-
is of the forma = fui)Gy...x, ..., j.blj]). This fectiveness of SET in practice: SET will be much

approach ensures that assignments of j andb[ ;] smaller than CET if results of criticality analysis su-
will be included in the slice. Assignments of the P€rimposed on an execution profile of a program show
form b[k] := ... for somek which reach nodeV; that none of its hotspots (i.e., most frequently executed
should also be considered for inclusion unless it can Statements) are critical statements.

be inferred during instrumentation time (using static P rocedurénstrumentatiomequires data flow analy--
analysis) thatc cannot have the same value as the SIS to determine reaching definitions, and loop identi-
value of j when the assignment t@[i] is executed. ~ fication to implemenSame_loopboth of which re-
Criticality analysis should proceed along similar lines. 9uireé quadratic effort in terms of program size. Pro-

Thus apart from nodes containing assignments 9, cedurelnstrumentationis itself quadratic in program
nodes containing assignmentsita, j andb[k] may size, because it checks criticality of each node once, if
also become critical nodes. at all, and part (b) of Definition 1 involves path tracing

whose effortis linear in program size. Hence complex-
ity of program instrumentation is @QV|2).

5. Concluding remarks

Table 1 summarizes performance for some bench- References
mark programs using the criterio (s;) whereV is
the set of all variables used in the main programand ~ [1] H. Agrawal, J. Horgan, Dynamic program slicing, ACM
is a fictitious statement which immediately precedes _ S'GPLAN Notices 25 (6) (1990) 246-256. o
. . . [2] A.V. Aho, R. Sethi, J.D. Ullman, Compilers—Principles,
the end statement in it. ET size is in terms of num- Techniques and Tools, Addison-Wesley, Reading, MA, 1986.
ber of source statements executedpiastatement is [3] J.P. Banning, An efficient way to find the side effect of

counted as 1 even if its parts are executed separately. It procedure calls and aliases of variables, in: Conference Record



152 D.M. Dhamdhere et al. / Information Processing Letters 85 (2003) 145-152

of Sixth ACM Symposium on Principles of Programming [8] J. Ferrante, K. Ottenstein, J.D. Warren, The program depen-

Languages, 1979, pp. 29-41. dence graph and its use in optimization, ACM TOPLAS 9 (3)
[4] K.D. Cooper, K. Kennedy, Interprocedural side-effect analysis (1987) 319-349.
in linear time, ACM SIGPLAN Notices 23 (7) (1988) 57—66. [9] S. Horwitz, T. Reps, D. Binkley, Interprocedural slicing using
[5] M. Copperman, J. Thomas, Poor man’s watchpoints, ACM dependence graphs, ACM TOPLAS 12 (1) (1990) 26-60.
SIGPLAN Notices 30 (1) (1995) 37-44. [10] B. Korel, J. Laski, Dynamic program slicing, Inform. Process.
[6] D.M. Dhamdhere, Effective execution histories for debugging Lett. 29 (1988) 155-163.
and dynamic slicing, Technical Report, CSE Department, lIT [11] F. Tip, A survey of program slicing techniques, J. Programming
Bombay, 2000. Languages 3 (3) (1995) 121-189.
[7] D.M. Dhamdhere, K.V. Sankaranarayanan, Dynamic currency [12] M. Weiser, Program slicing, IEEE Transactions on Software
determination in optimized code, ACM TOPLAS 20 (6) (1998) Engineering 10 (4) (1984) 352-357.

1111-1130.



