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Abstract

Partial redundancy elimination (PRE) subsumes the classical optimizations of loop invariant movement and
common subexpression elimination. The original formulation of PRE involved complex bi-directional data flows
and had two major deficiencies—missed optimization opportunities and redundant code movement. To eliminate
redundant code movement, most current PRE approaches use a hoisting-followed-by-sinking approach. Unfortu-
nately, this approach has a high conceptual complexity and requires complicated correctness proofs.

We show that optimization by partial redundancy elimination is simpler than it has been made out to be. Its
essence is the concept of eliminatability of an expression. We show that E-path PRE, a formulation of PRE based
on the concept of eliminatability paths (E-paths), is easy to understand and simple to prove correct. It uses only
well-known data flow concepts of available expressions and anticipatable (i.e. very-busy) expressions to directly
identify code insertion points which avoid redundant code movement. These features reduce the conceptual
complexity of PRE considerably. Interestingly, performance studies show that E-path PRE is also less expensive
to perform than the closest equivalent approach to PRE. This is a sheer bonus.

Keywords Partial redundancy elimination, eliminatability of expressions, code optimization, data flow analysis,
redundant code movement.

1 Introduction

Partial redundancy elimination (PRE) is a powerful optimization technique which integrates classical optimizations
of loop invariant movement and common subexpression elimination. The original formulations of PRE by Morel and
Renvoise [25]—hereafter called MRA—and by Dhamdhere and Isaac [9] used a combination of movement of expression
evaluations existing in a program and insertions of new evaluations of an expression to suppress partial redundancies
in a program. MRA performed PRE using static analysis of programs, while the approach by Dhamdhere and
Isaac depended on execution frequency information obtained by profiling a program. Much of PRE work since these
original formulations has broadly followed the approach of MRA.

MRA involved complex bi-directional data flows which were hard to understand. It also suffered from two
deficiencies [4]. It missed some opportunities of optimization. It also performed redundant code movement—that
is, code movement which did not improve execution speed along any path in a program. This effect was manifest
in two forms, either code movement occurred even when redundancies were not eliminated, or code insertions were
performed farther away from a redundancy site than necessary. Redundant code movement unnecessarily extended
lifetimes of compiler generated temporary variables and registers.

Many researchers have tried to improve the formulation of PRE [4, 12, 13, 14, 15, 19, 20, 21, 32] or to enhance
its scope to elimination of all partial redundancies in a program using code expansion and restructuring [2, 31]. The
basic PRE framework has also been extended to include PRE of assignments [8, 23], code size efficient PRE [30],
strength reduction optimization [6, 13, 16, 18] and to use it for other applications like live range determination in
register assignment [5, 7, 24].

The approaches aimed at improving the formulation of PRE have focused on three aspects

1. Elimination of deficiencies of MRA

2. Simplification of PRE data flows

3. Reduction in solution complexity of PRE data flows.



MRA missed many optimization opportunities because it confined insertion of expressions to nodes in a program
flow graph. Dhamdhere [4] proposed a code placement model which permitted insertion of expressions in nodes as
well as along edges in a program flow graph. Use of this model was shown to capture the optimization possibilities
missed by MRA. It also permitted the bi-directional data flow problems involved in MRA to be decomposed into
two unidirectional data flow problems. This decomposition was believed to simplify the data flows involved in PRE,
and reduce their solution complexity.

To suppress redundant code movement, the approach in [4] advocated that PRE be viewed as a hoisting problem to
eliminate partial redundancies followed by a sinking problem to eliminate redundant code movement. This hoisting-
followed-by-sinking approach has been used in most subsequent PRE work. Its influence has been strengthened by
the lazy code motion (LCM) approach formulated by Knoop, Ruthing and Steffen [21] and modified by Drechsler and
Stadel [15] and Ruthing [29]. Even the work by Dhaneshwar and Dhamdhere [13], where some of the concepts used
in the current work originate, implemented their approach to PRE using a hoisting-followed-by-sinking approach.
The static single assignment (SSA) based implementation of PRE reported in [3] also uses this approach. Papers
which do not use the hoisting-followed-by-sinking approach are [2, 27, 32]. Of these, [32] does not address redundant
code movement, while [2, 27] suffer from a peculiar form of redundant code movement wherein an expression may
be hoisted from a node and inserted into all its in-edges.

Benefits concerning simplification of PRE data flows and reduction in their solution complexity have been illusory.
Khedker and Dhamdhere [10, 19] showed that solution of bi-directional data flows was no more complex than solution
of unidirectional data flows, hence solution complexity is not reduced by using unidirectional data flows instead of
bi-directional data flows. Also, conceptual complexity of the hoisting-followed-by-sinking approach is very high,
which makes PRE algorithms hard to understand and implement.

1.1 A Conceptual Basis for PRE

None of the papers in the PRE literature formulate a basis for PRE through code movement and code insertion, i.e.
none of them provide a simple answer to the question: Under what conditions can a partially redundant occurrence
of an expression be removed by a PRE approach based on insertion and movement of expressions? The absence
of a conceptual basis has made PRE very difficult to understand and practice. It has also led to some deficiencies
mentioned in Section 3.4.

In reality, PRE is simpler than it has been made out to be. Its essence is the concept of eliminatability of an
expression. We show that a formulation of PRE based on the concept of eliminatability paths (E-paths) leads to a
PRE approach which is easy to understand and simple to prove correct.

An overview of our approach using the terminology of Section 2.1 is as follows: An occurrence of expression e

in a program is eliminatable if an E-path ending at the expression exists in the program. Let [bi . . . bk] be an
E-path. This path contains occurrences of e in nodes bi and bk which are downwards and upwards exposed [1, 26],
respectively, and e is either available or anticipatable (i.e. very busy) at the exit of each node in the path [bi . . . bk).
We eliminate the occurrence of e in node bk using a temporary variable te. We save the value of e in te in node bi

and insert computations te ← e in each node bh or edge (bh, bj) such that bh is a predecessor of some node in the
path (bi . . . bk] and bh does not itself lie along an E-path for e. We name this PRE approach as E-path PRE.

The key advantage of E-path PRE is its simplicity. It uses only well-known data flow concepts of available
expressions and anticipatable (i.e. very-busy) expressions [1, 26] to identify eliminatable expressions in a program.
Unlike earlier approaches [4, 11, 12, 13, 15, 21], it does not use, even conceptually, the hoisting-followed-by-sinking
approach to avoid redundant code movement. These aspects considerably reduce the conceptual complexity of PRE.
Another advantage is its ability to handle basic blocks containing more than one statement. This fact extends its
applicability to a larger class of program graphs than the PRE approaches of [2, 21].

Although our main claim is simplicity of E-path PRE, it is interesting to note that E-path PRE also provides
better practical performance compared to an implementation of a variation of lazy code motion reported in [15]. The
key data flow which identifies an E-path suffix is almost five times less expensive in terms of bit-vector operations
in a worklist iterative solution technique than the Later data flow in [15], and about 1.75 times less expensive in
terms of number of iterations of a round-robin iterative solution technique. Overall, E-path PRE is 36.7 percent
less expensive, i.e. over 1.5 times less expensive, in terms of bit-vector operations in a worklist iterative solution
technique. These reductions are significant even though performance of an optimizer would depend on several other
factors like overhead of managing worklists or iterations.

We describe fundamentals of the eliminatability path approach to PRE in Section 2. Section 3 presents details
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of E-path PRE and design of its data flows. Section 3.4 compares our approach with the approaches in [13, 15, 21].
The Appendices contain proofs of E-path PRE’s properties and performance statistics.

2 PRE Using Eliminatability Paths

We assume that a program is represented in the form of a program flow graph G ≡ (N, E, n0), where N is the set
of basic blocks, E is the set of control flow edges and n0 is the entry node of the program [1, 26]. An occurrence
of e in a node bk is eliminatable if an eliminatability path (E-path) bi . . . bk exists in the program. An E-path is a
formalization of a similar but unnamed concept developed in Dhaneshwar and Dhamdhere [13].

2.1 Terminology

An expression e is locally available in node bi if bi contains a downwards exposed occurrence of e, i.e. an occurrence
of e which is not followed by a definition of any of its operands. An expression e is available (partially available) at a
program point if along all paths (along some path) from the entry node n0 to that point, there exists a computation
of e not followed by a definition of any of its operands. A computation of e at program point w is redundant if e is
available at w, and partially redundant if it is partially available at w.

An expression e is locally anticipatable in node bk if bk contains an upwards exposed occurrence of e, i.e. an
occurrence of e which is not preceded by a definition of any of its operands. e is anticipatable at a program point if
each path starting at that point contains a computation of e not preceded by a definition of any of its operands.

Optimization by code movement should not change the execution behavior of a program by raising exceptions
which would not have occurred in the original program. An expression e is safe at a point if it is either anticipatable
or available at that point [17]. An optimization algorithm involving code movement should place computations of e

only at points where e is safe.
A node bk is empty with respect to an expression e if bk does not contain an occurrence of e, or definition(s) of

any of its operands. empty(bi) indicates that node bi is empty with respect to e. [bi . . . bk] denotes a path from bi

to bk which includes both bi and bk, whereas [bi . . . bk) denotes a path which includes bi but does not include bk.
(bi . . . bk] and (bi . . . bk) are analogously defined. empty([bi . . . bk]) indicates empty(bj) for all bj in the path [bi . . . bk],
etc.

Definition 1 (E-path) An E-path for an expression e is a path bi . . . bk in G such that

a. e is locally available in bi, and locally anticipatable in bk.

b. empty((bi . . . bk)),

c. e is safe at the exit of each node on the path [bi . . . bk).

Predicate start(bj) (end(bj)) indicates if bj is a start node (end node) of an E-path. in e-path(bj) indicates if bj

exists in an E-path [bi . . . bk]. The first occurrence of e in the end node of an E-path is an eliminatable occurrence.
As mentioned in Section 1, we save the value of e in a temporary variable te in node bi and insert computations
te ← e in each node bh or edge (bh, bj) such that bh is a predecessor of some node in the path (bi . . . bk] and bh does
not itself lie along an E-path for e.

2.2 Optimization Using E-paths

To perform partial redundancy elimination of an expression e, the compiler introduces a variable te and performs
the following actions:

1. Save the value of e: A computation te ← e is inserted before an occurrence of e and the occurrence of e is
replaced by te.

2. Insert an evaluation of e: A computation te ← e is inserted.

3. Eliminate a redundant evaluation of e: An occurrence of e is replaced by te.

Algorithm 1 identifies points in G where e should be saved, inserted or eliminated.
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Algorithm 1 (PRE using E-paths)

For all nodes bj in G such that in e-path(bj)

1. Identify insertion points: If ¬start(bj), for every edge (bh, bj) such that ¬in e-path(bh)

(a) insert te ← e in node bh if in e-path(bs) for all successors bs of bh

(b) insert te ← e along edge (bh, bj) if the condition in Step 1a is not satisfied.

2. Identify save points: If start(bj) and ¬(end(bj) ∧ bj does not contain a definition of an operand of e), save the
value of last occurrence of e in node bj in variable te.

3. Identify redundant occurrences of an expression: If end(bj), the first occurrence of e in bj is replaced by te.

A save point is located in a start node. However, if start(bj) and end(bj) ∧ bj does not contain definitions of e’s
operands, te already contains the value of e. Hence Step 2 does not save the value of e in te in such nodes.

Code insertion performed in Step 1b is called edge placement. Edge placement was mentioned in [25] but was not
used in MRA. It was independently integrated into PRE algorithms by [4], [14], and [28]. Advantage of inserting
a computation in edge (bh, bj) is that it is removed from the E-path without being inserted into paths which pass
through bh but do not pass through bj . To perform edge placement along edge (bh, bj), a synthetic node bhj is
placed along the edge, and te ← e is placed in this node [4, 13]. (Placement of a synthetic node in an edge is called
edge-splitting.)

Correctness of the optimization performed by Algorithm 1 can be informally argued as follows: Consider an
E-path bi . . . bk. e is available at the exit of bi. For each edge (bh, bj) such that bj lies along the E-path, e is available
along edge (bh, bj) in the optimized program due to Step 1. Hence e is available at entry to bk in the optimized
program.

Absence of redundant code movement is easy to establish. Let e be inserted in a node bl (original or synthetic
node) which is a predecessor of node bj lying along an E-path bi . . . bk. Insertion in bl involves redundant code
movement if e could have been inserted in bj without loss of computational efficiency. However, if e were to be placed
in bj , bi . . . bj would be an E-path according to Def. 1, and e would be eliminatable in bj . Thus Algorithm 1 does
not perform redundant code movement.

2.3 An Example

Figure 1 contains an example of optimization using Algorithm 1. Three E-paths exist in the program for a ∗ b: b8-b9,
b9-b8 and b9-b10-b11. Path b2-b4-b8 is not an E-path since a ∗ b is neither available nor anticipatable in node b4.
E-path b8-b9 does not have any entry edges, hence no insertion is necessary to eliminate the occurrence of a ∗ b in
node b9. While optimizing the E-path b9-b8, t1 ← a ∗ b is inserted along edge (b4, b8). E-path b9-b10-b11 is optimized
by inserting t1 ← a ∗ b in node b7. Evaluations of a ∗ b in nodes b8, b9 and b11 are replaced by t1. Note that nodes b8

and b9 are both start and end nodes. Hence value of a ∗ b is not saved in these nodes. Two E-paths b2-b4-b8-b9-b10

and b3-b4-b8-b9-b10 exist for c∗d. No insertions are necessary. Value of c∗d is saved in t2 in b2, b3, and the evaluation
of c ∗ d in node b10 is replaced by t2.

MRA [25] would not eliminate a ∗ b from node b8 because it performs code insertions only in nodes and insertion
in node b4 is not safe. Thus, it would fail to optimize a∗ b of node b8. MRA would delete a∗ b from node b9. It would
also insert a ∗ b in node b5 and delete it from node b11. This is an instance of redundant code movement because
insertion in node b5 instead of node b7 does not provide any execution benefits. MRA would optimize c ∗ d as shown
in Fig. 1 (except that it does not contain any provision to identify save points of nodes b2, b3—they would have to
be identified by an additional data flow problem).

3 Identification of E-paths

We analyse features of an E-path and design simple unidirectional data flow problems to identify E-paths. Figure 3
defines the data flow properties used.
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Figure 1: Optimization using e-paths

3.1 Regions of Availability & Anticipatability

From Part (c) of Def. 1, e is either available or anticipatable at the exit of every node bj in [bi . . . bk). Hence the
E-path bi . . . bk can be divided into two parts—an availability part such that e is available at the exit of each node
in the part, and an anticipatability part such that e is anticipatable at the entry of each node in the part. Note that
these two parts can overlap, i.e. e may be both available at the exit and anticipatable at the entry of some nodes.

Let Rav and Rant be regions in G containing nodes with e available at exit and anticipatable at entry, respectively.
Figure 2 shows five paths in G. Each path n is of the form bn

i . . . bn
k . Nodes b2

k, b3

k and b5

k contain a locally anticipatable
occurrence of e, and nodes b1

i , b
2
i and b3

i contain a locally available occurrence of e. Paths 2, 3 and 4 contain both
availability and anticipatability parts. Rav

⋂
Rant = φ if such paths do not exist.'

&

$

%

G

Availability

Rav

Anticipatability

Rant

1

Q
Q

Q
Q

QQ

2

2′
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�
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�

�
��

4

4′

5

Figure 2: Availability and anticipatability regions

Path 1 is not an E-path. Path 4 cannot be an E-path since e is not locally available at the exit of b4
i , however its

segment b4
′

i . . . b4
′

k such that b4
′

i is its first node in Rav and b4
′

k is the last node in Rant is an E-path since e must be

locally available in b4
′

i and locally anticipated in b4
′

k . This path is designated as path 4′. It is analogous to path 3.
Path 5 cannot be an E-path. If b5

i contained a locally available occurrence of e, path 5 would be analogous to path
2.

Consider a node bj in the availability part of an E-path bi . . . bk such that bj 6= bi. Every predecessor bh of bj

must be in Rav (see path 2, 3 or 4′ in Fig. 2). Hence bh-bj . . . bk exists in some E-path [bl . . . bk], and bh does not
satisfy the conditions for insertion of e in Step 1 of Algorithm 1. Hence insertion of e may be performed only in
predecessors of nodes which are included in the anticipatability part but not included in the availability part of an
E-path. We introduce the concept of an E-path suffix to designate part of an E-path which contains such nodes.

Definition 2 (E-path suffix) An E-path suffix is the maximal suffix of an E-path such that Ant in · ¬Av in =
true for each node in it.

From Def. 1 it is seen that the first node of an E-path suffix has a predecessor with Av out = true, and the last
node is the end-node of the E-path, i.e. a node with Antloc = true. In Fig. 2, part 2′ is the suffix of E-path 2.
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Note that the suffix of an E-path may be null. In paths 3 and 4′, the E-path suffix is null. Hence the optimization
algorithm will not find nodes bh, bj such that te ← e needs to be inserted in bh or along (bh, bj).

3.2 Data Flows for E-path PRE

Figure 3 shows the data flows used in E-path PRE. Here we use the convention that the data flow value 1 implies
that a data flow property is true and 0 implies that it is false. Since the data flow value for each expression can be
represented in one bit, we use a bit vector to represent data flow values of all expressions at entry/exit of a node in
G. For a Π problem 1 implies TOP and 0 implies BOT, where TOP and BOT are the lattice > and ⊥ elements for a
single bit lattice. For a Σ problem 1 implies BOT and 0 implies TOP. A data flow problem is solved using conventional
initializations, i.e. entry of n0 (exit of an exit node) is initialized to 0. . .0, which is a bit vector containing all 0s, for
a forward (backward) data flow problem and all other values are initialized to > [1, 19]. This initialization ensures
a maximal fixed point of the data flows. If a program contains n nodes and r is the bit vector size, the complexity
of data flow analysis is O(n · r) for a worklist iterative technique and O(n2 · r) for a round-robin iterative technique.

Data flow equations (1)–(4) in Fig. 3 compute Av in/out and Ant in/out of expressions in the nodes of G. We
use the Av out and Ant in properties to identify an E-path suffix. As observed in Section 3.1, the first node of an
E-path suffix has a predecessor with Av out = true. Hence Eps in is set to true for a node in which e is anticipatable
but not available and the node is a successor of a node which has e available at its exit. The last node of an E-path
suffix is the end-node of an E-path. Hence Eps out i = Eps ini · ¬Antloci.

If an E-path contains an E-path suffix, Eps in i · Antloci = true identifies its end node, else Av in i · Antloci =
true identifies it. Hence Redund i is set to true in these two cases. Insertions are performed as follows: If node bj

with Eps inj = true has a predecessor bi with Eps out i = false and Av out i = false, Insert i = true if Eps in =true
for all successors of bi, else Insert ij = true. This action implements Step 1 of Algorithm 1.

To compute the property Save i, it is necessary to identify the start node of an E-path. This can be achieved by
starting with the end node, i.e. a node having Redund = true, and following the E-path backwards to its start node.
However, it is more efficient to start with a node which has e available at its exit and which is a predecessor of an
E-path suffix, and follow (a part of) availability part of an E-path. The SA in/out data flow is used for this purpose.
When e is totally redundant in some bi, Eps ini = false due to the ¬Av ini term. Only in such cases the E-path is
followed starting with the node having Redund = true. Note that excepting [13], no other PRE algorithm provides
data flow equations to identify save points. The approach in [21] identifies save and insertion points analogously,
however it requires isolation analysis to be performed by an additional data flow. The approach in [2] also identifies
save and insertion points analogously. It, too, would require an additional data flow problem to perform isolation
analysis, else it suffers from a peculiar form of redundant code movement.

Table 1 shows results of the E-path PRE data flows when applied to the program flow graph of Fig. 1.

Table 1: Solutions of E-path PRE data flows

Properties Nodes
Bit 1:a ∗ b, 2:c ∗ d b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

Av in 00 00 00 01 01 01 01 01 11 11 01
Av out 00 11 01 01 01 01 01 11 11 11 11
Ant in 01 11 01 00 00 10 10 11 11 11 10
Ant out 01 00 00 00 10 10 10 11 11 10 00
Eps in 00 00 00 00 00 00 00 10 00 00 10
Eps out 00 00 00 00 00 00 00 00 00 00 00
Redund 00 00 00 00 00 00 00 10 10 01 10
Insert 00 00 00 00 00 00 10 00 00 00 00
SA in 00 00 00 01 00 00 00 01 01 10 00
SA out 00 01 01 01 00 00 00 11 11 10 00
Save 00 01 01 00 00 00 00 00 00 00 00

Insert4,8 = 10
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Data flow properties

Compi : e is locally available in bi

Antloci : e is locally anticipatable in bi

Transpi : bi does not contain definitions of e’s operands
Av in/out i : e is available at entry/exit of bi

Ant in/out i : e is anticipatable at entry/exit of bi

Eps in/out i : entry/exit of bi is in an e-path suffix
Redund i : occurrence of e in bi is redundant
Insert i : insert te ← e in node bi

Insert ij : insert te ← e along edge (bi, bj)
SA in/out i : A Save must be inserted Above the entry/exit of bi

Savei : e should be saved in te in node bi

Data flow equations

Av ini = Πp(Av outp) (1)

Av out i = Av in i · Transpi + Compi (2)

Ant ini = Ant out i · Transpi + Antloci (3)

Ant out i = Πs(Ant ins) (4)

Eps ini = Σp(Av outp + Eps outp) ·Ant in i · ¬Av in i (5)

Eps out i = Eps ini · ¬Antloci (6)

Redund i = (Eps in i + Av in i) · Antloci (7)

Insert i = ¬Av out i · ¬Eps out i · Πs(Eps ins) (8)

Insert ij = ¬Av out i · ¬Eps out i · ¬Insert i · Eps inj (9)

SA out i = Σs(Eps ins + Redunds + SA ins) ·Av out i (10)

SA ini = SA out i · ¬Comp i (11)

Savei = SA out i · Compi · ¬(Redund i · Transpi) (12)

Figure 3: Data flows of E-path PRE

3.2.1 Efficiency of data flows

Let (bi, bj) be an edge in G. From the theory of bit-vector data flow analysis [19], information flows from exit of node
bi to entry of bj if a change in the data flow information at exit of bi causes the corresponding data flow information
at the entry of bj to change. An information flow path (ifp) is a sequence of edges along which information can flow
during data flow analysis. The bound on the amount of work performed during data flow analysis depends on the
length of an information flow path in an obvious way. The number of iterations in a round-robin data flow analysis
is bounded by the width of a program flow graph for a given data flow problem [10, 19], which is also related to the
length of ifp’s. For unidirectional data flows, the width is given by the number of back-edges along an information
flow path, and is the same as depth of a graph [1, 10, 19, 26]. The complexity of data flow analysis and the work done
during it is likely to be smaller for data flow problems with shorter ifp’s. The observed complexity and work done
depend on the paths traced during data flow analysis, i.e. it depends on the ifp’s along which information actually
flows. For Π and Σ problems, these are paths along which the data flow property is 0 and 1, respectively.

The data flow problems of Fig. 3 have been formulated such that ifp’s are short. For example, in Fig. 2 Eps in/out
would not be set for any nodes in paths 1, 3 and 4′. In path 2, Eps in/out would be set only for the nodes in path 2′.
One could have omitted the ¬Av in i term from the Eps in equation. However, it would make the ifp’s longer. For
example, without the ¬Av ini term, Eps in/out would be set to 1 for nodes along entire paths 3 and 4′. It would
also be set for the entire anticipatability part of path 2, rather than for 2′. Hence it would involve more work than
setting this property only for nodes in an E-path suffix. The SA in/out data flow similarly sets the property to 1 for
parts of an E-path other than the E-path suffix, rather than for the entire E-path.
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3.3 Properties of E-path PRE

Properties of E-path PRE are presented in Appendix A. Lemma 3 shows that optimization using E-path PRE is
correct, i.e. expression e is deleted in node bj iff e is available at entry to bj in the optimized program. Lemma 10
shows that E-path PRE is optimal, i.e. no other approach using safe insertion of computations leads to a program
which contains fewer computations in any path than a program optimized using E-path PRE. Lemma 11 shows that
E-path PRE does not perform redundant code movement.

3.4 Comparison With Other Approaches to PRE

The PRE approach described in [13], the LCM approach in [21] and its variation reported in [15] all follow the
hoisting-followed-by-sinking approach of [4]. Hence these approaches are conceptually more complex and their proofs
are more involved than those of E-path PRE. The approach in [13] identifies insertion, deletion and save points.
As mentioned in Section 3.2, [2] would require an additional data flow problem to identify save points. The LCM
variation in [15] identifies insertion and deletion points only. It, too, would require an additional data flow problem to
identify save points. Thus, E-path PRE and the approaches in [13], [21] and [15] each require 4 data flow problems.

Approaches in [21] and [2] can handle nodes containing single expressions only. E-path PRE and the PRE
approaches in [4, 13, 15] do not have this restriction. These four approaches perform edge placement of computa-
tions only when computations cannot be safely placed in nodes to eliminate all eliminatable partial redundancies.
Approaches in [12, 21] assume that each critical edge, i.e. an edge from a node with > 1 out-edges to a node with
> 1 in-edges, is split before performing PRE. [2] performs insertion only along edges. As mentioned earlier, it suffers
from a peculiar form of redundant hoisting wherein an expression may be hoisted from a node and inserted into all
its in-edges. Lazy code motion [21] performs insertion only at the start of a node. This model of code placement
would miss the optimization opportunity in the flow graph of Fig. 4. Hence LCM splits all in-edges of a node having
more than one predecessor. This fact leads to more edge-splits than in our approach. [22] uses LCM-like ideas to
optimize basic blocks containing more than one statement. In Fig. 4, it correctly moves a ∗ b of node b2 to node b1.
However, it permits insertion of code at both entry and exit of a basic block and also requires splitting of critical
edges. Hence [15] is the closest equivalent approach to E-path PRE.

a := ·· b1

?
a ∗ b b2

?
b3

?
⇒

a := ·· b1

?
a ∗ b b2

?
b3

6

b22

?

Figure 4: Optimization counter-example for lazy code motion

In this Section we compare E-path PRE with the approach in [15]. Figure 5 shows the data flow equations
reported in [15]. Property Earliest indicates the earliest placements of computations of e in (Rant − Rav ). In the
Later data flow, Later inj is true if a computation can be placed later along path(s) passing through bj without
sacrificing computational efficiency. Assuming that computation of save points can be performed as in E-path PRE,
[15] and E-path PRE differ only in the data flows Later and Eps.

Earliest i,j = Ant inj · ¬Av out i, if bi ≡ n0

= Ant inj · ¬Av out i · (¬Transpi + ¬Ant out i), otherwise
Later inj = false if bj ≡ n0

= Πp (Laterp,j), otherwise
Later i,j = Later ini · ¬Antloci + Earliest i,j

Insert i,j = Later i,j · ¬Later inj

Deletei = false if bi ≡ n0

= Antloci · ¬Later ini

Figure 5: Data flow problems in the variation of LCM reported in [15]
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[15] performs conceptual hoisting-followed-by-sinking along a path starting on an edge with Earliest = true and
ending on an edge with Insert = true. (If no insertions are performed the path ends on a node containing an
occurrence of e.) A path segment along which anticipatability is true but the segment does not belong to an E-path
is also a conceptual hoisting-followed-by-sinking path in [15]. In Fig. 1, b5-b6-b7 is such a path for a ∗ b.

The work done while solving Later data flow is higher than in the case of Eps in/out data flow because Later
traces all paths in G except the conceptual hoisting-followed-by-sinking paths, whereas Eps in/out traces only the
suffix of an E-path. This difference is evident from the solution for the sample program of Fig. 1, viz.

Nodes b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

Eps in 00 00 00 00 00 00 00 10 00 00 10
Eps out 00 00 00 00 00 00 00 00 00 00 00
Later in 00 11 01 00 00 10 10 00 00 00 00

Edges 1-2 1-3 2-4 3-4 4-5 5-6 6-7 7-11 4-8 8-9 9-10 9-8 10-11

Later 11 01 00 00 00 10 10 10 10 00 00 00 00

Since Eps in/out is a Σ problem, initialization at all nodes except n0 is 0, hence data flow analysis traces those paths
along which properties become 1. The data flow comprising Later and Later in is a Π problem. Hence initialization
at all nodes except n0 is 1, and paths along which properties become 0 are traced during data flow analysis. From the
above table, it is clear that more work has to be done when Later is used rather than when Eps in/out is used. For
the sample program, the Eps in/out data flow requires 2 iterations in a round-robin iterative solution and involves
2 meet operations in a worklist iterative solution. For the same program, the Later in/out data flow requires 3
iterations and 17 meet operations.

Appendix B reports performance of E-path PRE. It is found that the Eps data flow is 5 times less expensive than
Later in terms of number of bit vector operations, and 1.75 times less expensive than Later in terms of number of
iterations. The data flows of E-path PRE are cumulatively 1.5 times less expensive than the data flows of the LCM
variation reported in [15].

4 Concluding Remarks

The difficulties in making PRE easy to understand and practice have been due to the lack of a conceptual basis for
PRE. Use of E-path as the basis for PRE leads to an approach which is easy to understand and simple to prove
correct. The improvement in solution efficiency is a sheer bonus.

Acknowledgment The author wishes to thank Atul Jawale for the performance studies reported in Appendix B.
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A Properties of E-path PRE

Let bi . . . bx-by . . . bk be an E-path such that by . . . bk is an E-path suffix. Thus bi . . . bx belongs to the availability
part of the E-path. Properties of E-path PRE can be summarized in the form of following lemmas.

Lemma 1 Eps inj = true iff node bj lies along an e-path suffix.

Let Eps inj = true. From the Eps in equation, Ant inj · ¬Av inj = true. Let node bj not lie along an E-path
suffix. Therefore there is no path bi . . . bj in G such that Av out i = true, empty((bi . . . bj)) and e is either available
or anticipatable at the exit of each node in [bi . . . bj). Let Av outp = true for some predecessor bp of bj . This is a
contradiction. Hence let no predecessor of bj have Av out = true. From Eqs. (5), (6), Eps outp = Eps inp = true
for some predecessor bp of bj . Continuing in this manner n0, the initial node of G, must have Eps in = true. This is
a contradiction. Maximal fixed point of Eps in/out ensures the if part.

Lemma 2 In the optimized program, expression e is available at entry to every node bj such that Eps inj = true.

Let Eps inj = true. Consider a path n0 . . . bi-bj in G such that e is not available at the exit of bi in the optimized
program. Hence Insert i = Insert ij = false. From Eqs. (8), (9), Eps out i = true, and from Eq. (6) Eps in i = true.
Continuing in this manner Eps inn0

= true. This is a contradiction.

Lemma 3 An expression e in node bj is deleted if and only if e is available at entry to bj in the optimized program.

From Eq. (7), Redund j = true implies either Eps inj = true or Av inj = true. Hence proof follows from Lemma 2.

Lemma 4 Eps inj = true iff every path passing through node bj has a prefix bj . . . bk∗ such that Redundk∗ = true
and insertion is not performed in any node or edge along [bj . . . bk∗).

From Lemma 1, Eps inj = true iff bj is situated along the suffix of some E-path bi . . . bk. Eps inj = true implies
Ant inj = true. Hence every path passing through node bj has a prefix bj . . . bk∗ such that bk∗ contains an occurrence
of e and Ant out l ∧ empty(bl) for every node bl in [bj . . . bk∗). From Def. 1, path bi . . . bk∗ is also an E-path. Hence
Eps inj = true iff every path passing through bj has a prefix bj . . . bk∗ which is a part of an E-path suffix. Since
Eps in = true for all nodes in [bj . . . bk∗], insertion is not performed in any node or edge along [bj . . . bk∗) (see Eqs.
(8), (9)). From Lemma 3, computation of e in bk∗ will be eliminated.

Lemma 5 The value of the last occurrence of an expression e is saved in a node bi if and only if an E-path bi . . . bk

exists for some bk, and the last occurrence of e in bi is not redundant.

From Eq. (12), Savei = true implies ¬(Redund i ·Transpi). Hence the last occurrence of e in bi is not redundant.
Savei = true also implies Compi = Av out i = true and SA out i = true. From Eqs. (10), (11), either Eps ins = true
or Redund s = true for a successor node bs, in which case bi-bs is part of an E-path, or SA ins = SA outs = true.
Continuing in this manner, either an E-path bi . . . bk exists for some bk, or SA in = SA out = true for an exit node
of G, which is a contradiction.

Lemma 6 An expression e is inserted in a node bh (edge (bh, bs)) if and only if every path passing through node bh

(edge (bh, bs)) has a prefix (bh . . . bk∗] ([bs . . . bk∗]) such that Redundk∗ = true and insertion is not performed in any
node or edge along [bs . . . bk∗), where bs is a successor of bh.

Inserth = true or Inserths = true implies Eps ins = true (Eqs. (8), (9)). Hence proof follows from Lemma 4.

Lemma 7 An expression is safe and not redundant in the node or edge where it is inserted.

From Lemma 6, expression e is safe in node bh or edge (bh, bs) where it is inserted. From Eqs. (8), (9), ¬Av outh.

Lemma 8 In the optimized program, no path contains more computations than it did in the original program.

From Lemma 6, when a computation of e is inserted in a node bh or edge (bh, bs), each path passing through
node bs, which is a successor of node bh, has a prefix [bs . . . bk∗) in which no computation of e is inserted, and a
computation of e is deleted in bk∗. Hence E-path PRE does not increase the number of computations along any path.
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Lemma 9 A partially redundant computation of e which is not deleted by E-path PRE cannot be removed by any
safe insertion of computations in G.

Consider a locally anticipatable occurrence of e in some node bk and a path bi . . . bk such that e is locally available
at the exit of bi and empty((bi . . . bk)). Let Eps ink = false. From Lemma 1 and Def. 1, path bi . . . bk is not an E-path,
hence it must contain node(s) with Ant in = Av in = false. Let bl be the first such node. It must have a predecessor
bp which does not lie along bi . . . bk, hence e must be inserted in bp in order to eliminate it from bk. However e is not
safe in that node.

Lemma 10 No other safe insertion of computations in a program contains fewer computations along any path than
in the optimized program produced using E-path PRE.

From Lemmas 6 and 7, optimization is not possible with fewer insertions. From Lemma 9, it is not possible to
perform more deletions. Hence the lemma.

Lemma 11 If bj is a node in an E-path and bh is a predecessor of bj such that node bh (edge (bh, bj)) is selected for
insertion of e by E-path PRE, insertion in node bj would have been computationally less efficient.

From Eqs. (8), (9), Eps inj = true. Hence node bj exists in some E-path bi . . . bk. Insertion in bj would create an
E-path bi . . . bj , hence the inserted computation will be partially redundant in bj . Insertion in edge (bh, bj) removes
e from path bi . . . bk without inserting it in any path which does not pass through bj . Insertion of e in bj instead of
edge (bh, bj) is therefore computationally less efficient. When e is inserted in node bh, the same argument applies to
each successor node bs of bh and edge (bh, bs).

Lemma 11 implies that E-path PRE does not perform redundant code movement.

B Performance of E-path PRE

Performance studies were conducted on a test-bed using Gensat, a language-independent static analyser interfaced
to an LCC front-end, on an X86 architecture. Table 2 presents performance comparison of E-path PRE and the
variation of LCM reported in [15] for some functions in 176.GCC of the Spec CPU2000 Version 1.00 benchmark. We
used two standard data flow solvers—a worklist iterative solver and a round-robin (i.e. conventional) iterative solver.
Our worklist iterative solver initializes properties as mentioned in Section 3.2 and takes a pass over the program
applying data flow functions to nodes and edges to decide which properties should be entered in the initial worklist.
Properties are taken off the worklist one-by-one and their effects on predecessor or successor nodes are incorporated.
These nodes are put on the worklist if their properties change.

Performance of E-path PRE and the variation of LCM is summarized in Table 2. The second and third main
columns report performance obtained using a worklist iterative and a round-robin iterative solver, respectively. For
the worklist iterative solver we count the number of bit vector operations when meet operations are performed and
data flow functions are applied. In the Eps data flow, each meet operation can be performed in three operations
on bit vectors and each function application involves two bit vector operations. The Later data flow requires one
and three bit vector operations for the meet and the data flow function, respectively. In the second column, we
report the number of bit vector operations for individual data flows of E-path PRE and the LCM variation, and the
total number of bit vector operations performed when PRE is performed using E-path PRE and the LCM variation.
Improvements obtained using E-path PRE are reported. The third column reports the number of iterations required
for the Eps and Later data flows by the round-robin iterative solver.

The last line in Table 2 reports averages over all programs. The % Imp column reports percent improvement when
E-path PRE is used instead of LCM. The Ind column reports improvements in a one-to-one comparison between
Eps and Later. The average improvement is by 80.4 percent. Thus, Eps is 5 times less expensive than Later.
The Tot column reports comparison between the total number of bit vector operations in E-path PRE and LCM.
E-path PRE provides an improvement of 36.7 percent over LCM, thus it is 1.5 times less expensive. The average
number of iterations for Eps is 1.6 as against 2.8 for Later. The improvement is thus by a factor of 1.75.
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Table 2: Performance of E-path PRE & LCM for 176.GCC from Spec CPU2000

Number of bit vector operations No. of
Program Individual data flows Total % Imp iterations

Name n d x Av Ant SA Eps Lat E-p LC Ind Tot Eps Lat

File bc-emit

seg concat 25 30 12 359 232 237 120 684 948 1512 82.5 37.3 2 3
bc seg write 59 72 11 740 626 610 325 1616 2301 3592 79.9 35.9 2 3
bc end func 33 36 7 355 252 132 132 349 871 1088 62.2 19.9 1 3

File bc-optab

bc expand bin 38 42 29 383 356 303 159 900 1201 1942 82.3 38.2 2 3

File c-common

type for size 92 109 9 653 691 366 366 2055 2076 3765 82.2 44.9 1 2
type for mode 123 145 13 878 923 510 490 3631 2801 5942 86.5 52.9 1 2
comb strings 105 122 25 1707 1139 486 606 1760 3938 5092 65.6 22.7 2 3

File c-decl

finish decl 269 341 19 4943 4218 3431 1227 11491 13819 24083 89.3 42.6 2 2
comb par dec 100 118 16 1490 1209 485 420 1725 3604 4909 75.6 26.6 1 3

start decl 98 120 17 1321 910 779 547 2247 3557 5257 75.6 32.3 2 2

File c-iterate

collect iterator 132 155 9 1034 1079 709 530 1751 3352 4573 69.7 26.7 1 3

File c-lex

check newline 422 518 12 4353 3996 2505 1828 7000 12682 17854 73.9 29.0 1 3

File c-typeck

build arr ref 128 154 25 1659 1263 1206 542 3369 4670 7497 83.9 37.7 1 3
convert arg 230 286 21 3331 3225 2688 1126 8556 10370 17800 86.8 41.7 2 3

parse build bin 157 209 13 3093 1557 767 730 4506 6147 9923 83.8 38.1 1 2
common type 347 415 30 5880 3459 2406 1490 11630 13235 23375 87.2 43.4 2 3
build c cast 184 234 32 2469 1782 1465 819 5605 6535 11321 85.4 42.3 2 3
convert fo as 350 436 28 5407 3468 2732 1570 13258 13177 24865 88.2 47.0 2 3
digest init 251 315 29 3978 2846 1695 1098 6671 9617 15190 83.5 36.7 2 3

File caller-save

init callersave 121 143 17 2031 1448 921 533 4087 4933 8487 87.0 41.9 2 3
res ref regs 70 85 23 776 643 358 290 1262 2067 3039 77.0 32.0 1 3

Average 80.4 36.7 1.6 2.8

n : # nodes d : # edges x : # expressions
Av : Av in/out data flow problem
Ant : Ant in/out data flow problem
SA : SA in/out data flow problem
Eps : Eps in/out data flow problem
Lat : Later/Later in data flow problem
E-p : Total for all data flow problems of E-path PRE
LC : Total for all data flow problems of LCM
% Imp : % improvement when E-path PRE is used instead of LCM
Ind : % improvement of Eps data flow over Later data flow
Tot : % improvement of all data flows of E-path PRE over all data flows of LCM
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