A Generalized Theory of Bit Vector Data
Flow Analysis

UDAY P. KHEDKER and DHANANJAY M. DHAMDHERE
Indian Institute of Technology

The classical theory of data flow analysis, which has its roots in unidirectional flows, is
inadequate to characterize bidirectional data flow problems. We present a generalized
theory of bit vector data flow analysis which explains the known results in unidirectional
and bidirectional data flows and provides a deeper insight into the process of data flow
analysis. Based on the theory, we develop a worklist-based generic algorithm which is
uniformly applicable to unidirectional and bidirectional data flow problems. It is simple,
versatile and easy to adapt for a specific problem. We show that the theory and the
algorithm are applicable to all bounded monotone data flow problems which possess the
property of the separability of solution.

The theory yields valuable information about the complexity of data flow analysis. We
show that the complexity of worklist-based iterative analysis is same for unidirectional
and bidirectional problems. We also define a measure of the complexity of round-robin
iterative analysis. This measure, called width, is uniformly applicable to unidirectional
and bidirectional problems and provides a tighter bound for unidirectional problems than
the traditional measure of depth. Other applications include explanation of isolated results
in efficient solution techniques and motivation of new techniques for bidirectional flows.
In particular, we discuss edge-splitting, edge placement and develop a feasibility criterion
for decomposition of a bidirectional flow into a sequence of unidirectional flows.

Categories and Subject Descriptors: D.3.4 [Programming Languages|: Processors—
Compilers; Optimization; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—complexity of proof procedures

General terms: Algorithms, Theory

Additional Key Words and Phrases: Data flow frameworks, data flow analysis, bidirec-
tional data flows

1. INTRODUCTION

Data flow analysis is the process of collecting information about the uses
and definitions of data items in a program. This information is put to a
variety of uses, viz. program design, debugging, optimization, maintenance

Authors’ address: Department of Computer Science & Engineering, Indian Institute of
Technology, Bombay 400 076, India. Email: uday@cse.iitb.ac.in, dmd@cse.iitb.ac.in

A near look-alike copy of the paper published in ACM Transactions on Programming
Languages and Systems, Vol. 16, No. 5, September 1994, Pages 1472-1511.

Permission to copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercial advantage, the ACM copyright
notice and the title of the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

©1994 ACM 0164-0925/94/0900-1472$03.50

2 . U. P. Khedker and D. M. Dhamdhere

and documentation. Compilers typically use data flow analysis to collect
information for the purpose of code optimization.

Data flows used in code optimization mostly involve unidirectional de-
pendencies, i.e. the data flow information available at a node in the pro-
gram flow graph is influenced either by its predecessors or by its succes-
sors. Such data flows can be readily classified into forward and backward
data flows [Aho, Sethi, and Ullman 1986]. In bidirectional problems, the
information available at a node depends on its predecessors as well as its
successors. The Morel and Renvoise Algorithm for partial redundancy elim-
ination [Morel and Renvoise 1979] (also called MRA), is a representative
bidirectional problem. The advantage of bidirectional problems is that they
unify several optimizations reducing both the size and the running time of an
optimizer. For example, MRA unifies the traditional optimizations of code
movement, common subexpression elimination, and loop optimization. The
Composite Hoisting and Strength Reduction Algorithm [Joshi and Dhamd-
here 1982a; Joshi and Dhamdhere 1982b] unifies code movement, strength
reduction and loop optimization.

Though bidirectional data flow problems have been known for over a
decade, it has not been possible to explain the intricacies of bidirectional
flows using the traditional theory of data flow analysis. Although a fixed
point solution for a bidirectional problem exists, the flow of information
and the safety of an assignment can not be characterized formally. Be-
cause of this theoretical lacuna, efficient solutions to bidirectional problems
have not been found though some isolated and ad hoc results have been ob-
tained [Dhamdhere 1988a; Dhamdhere and Patil 1993; Dhamdhere, Rosen,
and Zadeck 1992].

In this paper we present a theory which handles unidirectional as well
as bidirectional data flow problems uniformly. Apart from explaining the
known results in unidirectional and bidirectional flows, it provides deeper
insights into the process of data flow analysis. Though the exposition of
the theory is based on the bit vector problems, the theory is applicable to
all bounded monotone data flow problems which possess the property of
separability of solution. Several proofs have been omitted from the paper
for brevity; they can be found in [Khedker and Dhamdhere 1992].

Section 2 introduces MRA which is used as a representative example
throughout the paper. Section 3 reviews the classical theory of data flow
analysis. Section 4 defines bit vector problems formally, generalizes the tra-
ditional concepts and provides generic data flow equations which facilitate
uniform specification of data flow problems. A worklist-based generic algo-
rithm is developed in section 5. Arising out of a generalized theory, it is
uniformly applicable to unidirectional and bidirectional data flow problems.
This section also analyses the performance of the generic algorithm and
shows that the complexity of the worklist-based iterative analysis is same
for unidirectional and bidirectional problems.

'Data flow analysis can be either inter-procedural or intra-procedural. We restrict ourselves
to the latter in this paper except that the inter-procedural information at the entry/exit
of a procedure is considered for analyzing data flows within the procedure.

Bit Vector Data Flow Analysis . 3

Section 6 discusses several applications of the generalized theory in the
complexity of data flow analysis. A new measure called the width (w) of a
graph for a data flow framework is defined which is shown to bound the num-
ber of iterations of round-robin analysis for unidirectional and bidirectional
problems. We show that the width provides a tighter bound for unidirec-
tional problems than the traditional measure of depth. This section also
explains several known results in the solution of bidirectional data flows,
viz. edge-splitting, edge placement and develops a feasibility criterion for
decomposition of bidirectional flows into a sequence of unidirectional flows.

Section 7 discusses the significance and applicability of the results pre-
sented in this paper.

2. BIDIRECTIONAL DATA FLOWS : AN EXAMPLE

This section introduces the Morel and Renvoise Algorithm (MRA) [Morel
and Renvoise 1979] for partial redundancy elimination which is used as a
representative bidirectional problem throughout the paper.

MRA unifies the traditional optimizations of code movement, common
subexpression elimination, and loop optimization. The importance of the
MRA framework lies in the fact that unification of many classical optimiza-
tions reduces the size as well as the running time of an optimizer; a 35%
reduction in the size and a 30% to 70% reduction in the execution cost has
been reported in the literature [Morel and Renvoise 1979]. It has been im-
plemented in at least two important production compilers (MIPS and PL.8)
and has inspired several other unifications [Chow 1988; Dhamdhere 1988a;
Joshi and Dhamdhere 1982a; Joshi and Dhamdhere 1982b).

The data flow properties and the data flow equations for MRA are given
in Figure 1. Note that PPIN; is the bit vector for node 7 which represents
the property PPIN for all expressions, whereas PPIN% is the bit representing
the expression ¢;.

Local property ANTLOC% represents local anticipability, i.e. existence
of an upwards exposed expression e; in node i, while TRANSP! reflects
transparency, i.e. the absence of definition(s) of any operand(s) of e; in
the node. The global property of anticipability (ANTIN:/ANTOUT!) in-
dicates whether expression e; is very busy at the entry/exit of node i —
a necessary and sufficient condition for the safety of placing an evalua-
tion of e; at the entry/exit of the node [Kennedy 1972]. Equations 1
and 2 do not use ANTINé /ANTOUTé properties explicitly; they are im-
plied by PPIN!/PPOUT! properties. The data flow property of availability
(AVIN!/AVOUT!) is computed using the classical forward data flow prob-
lem [Aho, Sethi, and Ullman 1986]. The partial redundancy of an expression
is represented by the partial availability of the expression (PAVIN!) at the
entry of node 4. PPIN! indicates the feasibility of placing an evaluation of ¢;
at the entry of 4 while PPOUT! indicates the feasibility of placing it at the
exit. Computations of an expression e; are inserted at the exit of node 4 if
INSERT: = T. REDUND! indicates that the upwards exposed occurrence
of e; in node 7 is redundant and may be deleted.

4 . U. P. Khedker and D. M. Dhamdhere

LOCAL DATA FLOW PROPERTIES :

ANTLOC! Node i contains a computation of e;, not preceded by a definition
of any of its operands.
COMP! Node i contains a computation of e;, not followed by a definition
of any of its operands.
TRANSP! Node i does not contain a definition of any operand of ;.
GLOBAL DATA FLOW PROPERTIES :
AVINL/AVOUT! ¢ is available at the entry/exit of node i.
PAVINL/PAVOUT! ¢ is partially available at the entry/exit of node i.
ANTIN!/ANTOUT! ¢ is anticipated at the entry/exit of node i.
PPIN!/PPOUT. Computation of ¢; may be placed at the entry/exit of node i.
INSERT. Computation of e; should be inserted at the exit of node i.
REDUND! First computation of e; existing in node i is redundant.

DATA FLOW EQUATIONS :

PPIN; = PAVIN; - (ANTLOC; + TRANSP; - PPOUT;) - (1)
II (Avout; + PPOUT;)
j € pred(i)
PPOUT; = [(PPIN) (2)
k € succ(i)

INSERT; = PPOUT, - ~AVOUT; - (-PPIN; + —~TRANSP;)
REDUND; = PPIN; - ANTLOC;

Fig. 1. The Morel-Renvoise Algorithm

The PPIN; equation is slightly different from the original equation in
MRA; the term ANTIN; - (PAVIN; + -=ANTLOC, - TRANSP;) in the origi-
nal MRA equations is replaced by the term PAVIN; to prohibit redundant
hoisting when the expression is not partially available. The PAVIN; term
represents the profitability of hoisting in that there exists at least one possi-
ble execution path along which the expression is computed more than once.
The other two terms in the PPIN; equation represent the feasibility of hoist-
ing.

Bidirectional dependencies of MRA arise as follows : Redundancy of an
expression is based on the notion of availability of the expression which
gives rise to forward data flow dependencies (reflected by the [] term in the
PPIN; equation). The safety of code movement is based on the notion of
anticipability of the expression which introduces backward dependencies in
the data flow problem (reflected by the [] term in the PPOUT; equation).

Ezample 1. Consider the program flow graph in Figure 2. The partial
redundancy elimination performed by MRA subsumes the following three
optimizations :

—Loop Invariant Movement : The computations of a * b in node 4 and node

Bit Vector Data Flow Analysis . 5

[Node || Transp | Antloc | Pavin [Avout [Ppin [Ppout || Insert | Redund |

1 T F F F F F F F
2 T F F F F T T F
3 T F T F T T F F
4 T T T T T F F T
5 T T T T T T F T
6 T T T T T F F T
7 F F T F F T T F
8 T F F F F F F F
9 F F F F F F F F
10 T T F T F F F F
11 T T T T F T F F
12 T T T T T F F T

Fig. 2. Program flow graph and properties for example 1

5 are hoisted out of the loops and are inserted in node 2 (REDUNDY,
REDUNDY, and INSERTY, are T).

—Code Hoisting : The partially redundant computation of a*b in node 12 is
hoisted to node 7. As a result of suppressing this partial redundancy, the
path 1-8-11-12 would have only one computation of a*b; the unoptimized
program has two.

—Common Subexpression Elimination : The totally redundant computation
of a x b in node 6 is deleted as an instance of common subexpression
elimination.

Note that the partially redundant computation a * b in node 11 is not
suppressed since hoisting it to node 8 would be unsafe — the path 1-8-9 had
no computation of a * b in the original program. O

6 . U. P. Khedker and D. M. Dhamdhere

e BASIC LOAD STORE INSERTION ALGORITHM (LSIA) [Dhamdhere 1988b)]

SPPIN; = J[(SPPOUTY)
J € pred(i)
SPPOUT; = DPANTOUT; - (DCOMP; + DTRANSP; - SPPIN;) -

[I (DANTIN: + SPPIN,)
k € succ(s)

e COMPOSITE HOISTING AND STRENGTH REDUCTION ALGORITHM (CHSA) [Joshi
and Dhamdhere 1982a; Joshi and Dhamdhere 1982b)]

NOCOMIN; = CONSTA; - NOCOMOUT; +
>~ CONSTB; - NOCOMOUT;
J € pred()
NOCOMOUT; = CONSTC; + CONSTD; - NOCOMIN; +

>~ CONSTE; - NOCOMIN;
k € succ(z)

Fig. 3. Data flow equations of some other bidirectional problems

Ezample 2. Bidirectional data flows have also been used in register assign-
ment and strength reduction optimizations. Figure 3 presents the data flow
equations of two such algorithms. The SPPIN/SPPOUT problem of LSIA
performs sinking of STORE instructions using partial redundancy elimina-
tion techniques [Dhamdhere 1988b]. The NOCOMIN/NOCOMOUT prob-
lem of CHSA is used to inhibit the placement of an update computation
following a high strength computation [Joshi and Dhamdhere 1982a; Joshi
and Dhamdhere 1982b]. O

3. NOTIONS FROM CLASSICAL DATA FLOW ANALYSIS

This section presents an overview of the classical theory of data flow anal-
ysis and compares various solution methods and their complexities. Our
description is based mostly on Graham and Wegman [1976]; Hecht [1977];
Marlowe and Ryder [1990]. A more detailed treatment can be found in Aho,
Sethi, and Ullman [1986]; Graham and Wegman [1976]; Hecht [1977]; Kam
and Ullman [1977]; Kildall [1973]; Marlowe and Ryder [1990]; and Rosen
[1980]. The concluding part of this section motivates the need for a more
general setting.

3.1 Preliminaries

A data flow framework is defined as a triple D = < £,11, F > (Figure 4).
Elements in £ represent the information associated with the entry/exit of a
basic block. M is the set union or intersection operation which determines
the way the global information is combined when it reaches a basic block. A
function f; € F represents the effect on the information as it flows through

Bit Vector Data Flow Analysis . 7

DATA FLOW FRAMEWORK : D

D =< £,N,F>, where

> < L£,M > is a semilattice such that :
e [is a partially ordered set (often finite).
e [1is a binary meet operation which is commutative, associative, and
idempotent.
e The partial order (denoted C) is reflexive, antisymmetric, and transitive.
Va,beL:aCbiff alNb=a
e There are two special elements top (denoted T) and bottom (denoted L).°

YVaeLlL:aNT=a
alll=_1
e [has finite height (i.e. length of every strictly descending chain

aC bC --- C z is finite).
If the length of every strictly descending chain is bounded by a constant,
say H, we say that £ has strictly finite height, or simply height H.

> F C{f:L— L}is aclass of functions such that :
e F contains an identity function 2.
VaeLl, (a)=a
e Fis closed under composition.
VYfi,fo€F: fiofa€F
o Vae/L, 3f € F such that a = f(L)

> D is monotone if and only if :
Vabe LV feF: f(anb)C f(a) N f(b). This is same as
aCb= f(a) T f(b)
> D is distributive if and only if :
Va,be LY feF: f(anb)= f(a)N f(b)

> D is k-bounded if and only if :
k—1

vieF, ki []f=f" where,
Ft = fofi, fO =14, and f* denotes fOr1firif2m. .-

INSTANCE OF A DATA FLOW FRAMEWORK : 1

I=<G,M>, where

> G =< N, E,ng > is a control flow graph where N is the set of nodes
representing basic blocks, E is the set of edges, and ng is a unique entry node
with in-degree zero.

> M : N — F maps the nodes in N to functions in F. It is extended to paths
as follows :
e If p=(no,n1, --,n;) is a path in G then
M(p) = M(ni—1)o---oM(ny) o M(no)
e If pis a null path then M (p) is an identity function.

%In some cases T may not exist. However, it can always be added artificially. Such a T
may not be a natural element of £ but it helps in performing data flow analysis.

Fig. 4. Data Flow Framework

8 . U. P. Khedker and D. M. Dhamdhere

basic block .2
A data flow framework is characterized by any or all of the following :

—Algebraic properties of functions in F (viz. monotonicity, distributivity,
continuity etc. [Hecht 1977]).

—Finiteness properties of functions in F (viz. boundedness [Marlowe and
Ryder 1990], fastness [Graham and Wegman 1976], rapidity [Kam and
Ullman 1977] etc.).

—Finiteness properties of £ (viz. height [Hecht 1977; Marlowe and Ryder
1990)).

—Partitionability properties of £ and F [Zadeck 1984].

There is an important subclass of k-bounded partitionable problems?
called the bit vector problems [Hecht 1977] which has been extensively dis-
cussed in the literature [Dhamdhere, Rosen, and Zadeck 1992; Hecht 1977;
Marlowe and Ryder 1990; Muchnick and Jones 1981], though it is defined
only informally (viz. in Hecht [1977] and Zadeck [1984]). We provide a
formal definition in section 4.1 and use it in the exposition of our theory.

3.2 Data Flow Equations

To formulate a data flow problem, the data flow properties associated with
each node of the flow graph are represented as variables which, as noted
earlier, are elements in £. Interdependencies of the values of these variables
give rise to simultaneous equations. Thus, solving a data flow problem
reduces to solving a system of simultaneous equations.

A data flow problem is posed as a pair <@, Xo>, where @ is a system of
equations parameterized by the nodes of the flow graph and whose terms
may include constants. These constants may represent information derived
from other data flow problems. Xy : N — L is a conservative initialization.
For the entry node it is usually, though not always, L. For the non-entry
nodes, such an estimate is almost always T and is needed in the case of
iterative methods only.

Let pred(i) and succ(i) denote the set of predecessors and successors of
node i. The equations X = Q(Y") have the following form* :

. Xo(no) if 4= no
IN(3) = {jede(i)M(j)(IN(j)) otherwise (3)

Note that the equations may well be written in terms of information at
the node exit [Ryder and Paull 1986). Alternatively, both IN and OUT may

2 Alternatively, the functions can be associated with in-edges(out-edges) of node 4 for
forward(backward) flow problems.

3We use the terms data flow problem and data flow framework interchangeably, though
the latter is more formal.

4Though we present the definitions for forward problems only, analogous definitions exist
for backward problems.

Bit Vector Data Flow Analysis . 9

be used. Further, the function M may be dropped and the node numbers
may be used as subscripts of f € F as shown below.

X() (n()) if 4= no
INi = [(OUT;) otherwise (4)
jEpred(i)
OUT; = fi(IN;) (5)

We use this form in the paper.

3.3 Solutions of a Data Flow Problem

The solution of a data flow problem is an assignment of values X : N — L
to the nodes of the flow graph.

An assignment SA is safe if the information at a node does not exceed the
information that can be gathered along any path from ng to that node [Gra-
ham and Wegman 1976], i.e.

Vi€ N : SA(i) C M(p)(Xo(no))

where p is a path from ng to 7. A safe assignment guarantees the correctness
of optimizations; an unsafe assignment may result in semantics changing
optimizations.

The Meet Over Paths solution of a data flow problem represents the infor-
mation reaching a basic block along all possible program paths [Aho, Sethi,
and Ullman 1986; Hecht 1977; Marlowe and Ryder 1990]. Let paths(i) de-
note the set of all paths from ng to 4. Then,

VieN : MOP() = [M(p)(Xo(no))
pEpaths(i)
Note that MOP is the maximum safe assignment.

An assignment FP is a fized point of an instance of a data flow frame-
work [Graham and Wegman 1976] if :

Vie N —{no}, Vj € pred(z) : FP(i) C M(j)(FP(j))

and FP(ng) = Xo(ng). It is easy to see that FP is a fixed point of equation 3.

A fixed point guarantees the consistency of information associated with
the nodes of the flow graph. A Mazimum Fized Point, MFP, contains all
other fixed points. It can be shown that MFP is contained in MOP. Thus,
every fixed point is a safe assignment, though not vice-versa.

An assignment X is acceptable® if and only if it is safe and contains all
fixed points of (). For the monotone data flow problems, MOP and MFP
typically exist. For the distributive problems, MFP is always equal to MOP.
Since MFP represents the maximum information that can be gathered in
practice, the goal of data flow analysis can also be defined as finding MFP.
Though this means that we may not be able to capture all information for the
non-distributive problems, it does not matter since no algorithm capable of

®Marlowe and Ryder [1990] use this term for a slightly different notion; we follow Graham
and Wegman [1976].

10 . U. P. Khedker and D. M. Dhamdhere

computing MOP for all instances of arbitrary monotone data flow problems
exists anyway [Kam and Ullman 1977].

3.4 Performing Data Flow Analysis

There are two broad categories of the approaches to data flow analysis :
iterative methods and elimination methods.

The iterative method of data flow analysis solves the system of equations
by initializing the node variables to some conservative values and succes-
sively recomputing them till a fixed point is reached. The round-robin ver-
sion recomputes the data flow properties of all the nodes repeatedly, till the
values stabilize. If the size of the bit vector is r, there are O(n-r) properties.
Thus, in the worst case O(n-r) iterations may be needed. Each iteration
involves computation of the properties for n nodes. If all the r bits can be
processed in one step, the complexity becomes O(n?r). In the unidirectional
problems the flow is in one direction only, hence the nodes can be visited in
the postorder or reverse postorder depending upon the direction. Thus d+2
iterations are sufficient, where d is the depth® of the flow graph [Aho, Sethi,
and Ullman 1986; Hecht 1977]. Hence the complexity is O((d+2)-n-r). The
worklist version visits the nodes selectively and involves O(n-r) work [Hecht
1977].

Elimination methods reduce the amount of effort required to solve a data
flow problem by utilizing the structural properties of a flow graph [Allen
and Cocke 1977; Graham and Wegman 1976; Hecht 1977; Muchnick and
Jones 1981; Tarjan 1981a]. The flow graph is reduced to one node by suc-
cessive applications of graph transformations which use graph parsing or
graph partitioning to identify regions to obtain a derived graph. The data
flow properties of a node in a region are determined from the data flow
properties of the region’s header node. This enables delayed substitution
of some values in the simultaneous equations. For unidirectional flow prob-
lems, these methods are typically O(N), where N is the total number of
nodes in the sequence of reduced graphs. A comparison of various elimina-
tion methods appears in Ryder and Paull [1986]. It has been shown that
the elimination methods cannot be extended to general bidirectional data
flow problems, though they have been used to solve a restricted class of
bidirectional problems [Dhamdhere and Patil 1993].

For programs with r = O(n), all the r bits can not be processed in one
step; processing the r bits of a bit vector would itself require O(n) steps.
Hence the bounds on the iterative methods are O(n?*), O(n?-(d+2)) and
O(n?), while the elimination methods are O(N- n).

3.5 Limitations of the Classical Theory

The limitations of the classical theory of data flow analysis are easy to trace.
It is based on strictly unidirectional low — information reaches one end of
a basic block, flows through it, and emanates from the other end. As a
consequence, the information flows from a node either to its predecessors or

5Not to be confused with the nesting depth.

Bit Vector Data Flow Analysis . 11

Sibling effect Spouse effect

Fig. 5. Sibling and spouse effects

its successors.
In bidirectional problems, apart from the above flows, the following kinds
of information flow may exist (refer to Figure 5) :

—information at one successor of a node may influence the information at
another successor of the same node, and

—information at one predecessor of a node may influence the information
at another predecessor of the same node.

We term these as the sibling effect and the spouse effect respectively.
(Two nodes are siblings if they have a common predecessor; we call them
spouses if they have a common successor.) The traditional theory fails to
characterize these flows.

Ezample 3. In example 1, ANTLOClg = TRANSPlg = F, consequently
PPIN} becomes F. This makes PPOUT, = F which sets PPIN}; = F. This
flow from the entry of 9 to the entry of 11 is an example of the sibling effect.
PPOUT, = F makes PPOUTY, = F via PPIN!;; this is an example of the
spouse effect. O

4. A GENERALIZED THEORY OF DATA FLOW ANALYSIS

We define the bit vector frameworks, generalize the notions of edge, node,
and path flow functions, characterize the safety of an assignment, and pro-
pose generic data flow equations.

4.1 Preliminary Concepts

4.1.1 Traversals. We define a flow graph by G =< N, E, entry (G), exit (G) >
where entry(G) and ezit(G) denote the (non-null) sets of entry and exit
nodes, i.e. nodes with zero in-degree and zero out-degree, respectively.

A program point refers to the entry/exit of a basic block. For a basic block
i, its entry and exit points are denoted by in(i) and out () respectively. Two
program points are neighbours if they are adjacent in G. Thus in(7) is a
neighbour of out(j) where j € pred(i). By definition, in(z) is a neighbour
of out (7). The neighbour relations are symmetric.

Given a depth first spanning tree of G, we differentiate between back edges
and non-back edges; we term the latter as forward edges.” Thus the term

"We use the terms forward edges and back edges as synonyms of advancing edges and

12 . U. P. Khedker and D. M. Dhamdhere

forward edges, as used in this paper, includes the conventional notions of
forward as well as cross edges [Aho, Sethi, and Ullman 1986]. A forward
traversal along an edge is a tail-to-head traversal of the edge, while a back-
ward traversal is a head-to-tail traversal. We use the following notations :

—TJ/T?: Forward/backward traversal along an edge.
—T]f / T]’Z : Forward/backward traversal along a forward edge.

—be /T?: Forward/backward traversal along a back edge.

A forward edge traversal indicates traversal along the direction of control
flow whereas a backward edge traversal indicates a traversal against the
direction of control flow.

4.1.2 Data Flow Information and Data Flow Properties. When the sets
of information are implemented as bit vectors, each bit represents a data
flow property. There is one bit vector for the entry and one for the exit of
each node. The lattice elements T and L are “all bits true” or “all bits false”
depending on M. We speak of TOP as the value of an individual property
in a T bit vector, and BOT as the value of a property in the L bit vector.

The data flow properties associated with program points in(i) and out (i)
are denoted by IN; and OUT; respectively.

Definition 1. (Inflow/outflow Properties). Data flow properties that rep-
resent the information reaching/emanating from a node are called inflow /outflow
properties.

The inflow /outflow properties are associated with the entry/exit of a node
depending upon the direction of the flow. From equations 4 and 5, it is
evident that for a forward problem IN; represents the inflow properties while
OUT; represents the outflow properties of node i. However, for a backward
problem, OUT; represents the inflow properties whereas IN; represents the
outflow properties.

Ezample 4. For the problem of Reaching Definitions, REACH_IN; rep-
resents the inflow properties while REACH_OUT; represents the outflow
properties. However, in the case of Live Variables, LIVE_OUT; represents
the inflow properties and LIVE_IN; represents the outflow properties. Note
that for bidirectional problems (viz. MRA), the same property may be an
inflow as well as an outflow property. For instance, PPINé may become F
due to PPOUT; where j € pred(i), thus PPIN! represents an inflow prop-
erty. On becoming F, PPIN! may cause PPOUTé-, to become F, for some

predecessor j'; here PPIN! represents an outflow property. O

The program point for a property p is denoted by program_point (p). Two
properties belonging to different program points are called corresponding
properties if they represent information about the same data item, viz. the

retreating edges respectively. We prefer the former because they express the intuitive
notion of direction more clearly. For non-reducible flow graphs, a back edge in this paper
means a retreating edge.

Bit Vector Data Flow Analysis . 13

same variable or the same expression. Two corresponding properties are
neighbours of each other if their program points are neighbours in G. If a
property p' influences the value of a neighbouring property p through a flow
function h, it is denoted by p < h(p’). If p and p’ belong to neighbouring
nodes ¢ and j, p is an inflow property of 7 while p’ is the corresponding
outflow property of j. If p and p’ belong to the same node, p is an outflow
property whereas p’ is the corresponding inflow property.

4.1.3 Bit Vector Frameworks.

Definition 2. (Separability of Solution8). A data flow framework
D = < L,N,F > possesses the property of the separability of solution if 3
semilattices L1, Lo, -+, L, such that an element X € £ can be represented
by a tuple < X', X2, ..., X" > where X' € £;, 1 <i<n and:

1) VX, YeL: Xny =< Xyt X2ny2,... . X"ny” >
(2) Vh € F, h(X) =<h!(X1),h%(X?),...,h"(X™) > where h*: L; — L;,1 <
1< n.

(3) Some L; has height H and all other L; have height at most H.

Elements in each £; represent different values of a single data flow prop-
erty. The first two conditions ensure the independence of data flow proper-
ties while the third condition ensures that a property may assume at most
H + 1 distinct values during data flow analysis. Note that the separability
of solution implies that a factorization exists for (£, F) [Rosen 1980], the
effective height of £ is H [Rosen 1980], and the functions in F are (H+1)-
bounded [Marlowe and Ryder 1990].

It is easy to see that the bit vector problems satisfy all the three condi-
tions : Data flow properties, represented by single bits, are independent of
each other and each property may have two distinct values. Define bit func-
tions start, stop, propagate, and negate such that for a bit b, start (b) = T,
stop(b) = F, propagate(b) = b, and negate(b) = -b [Dhamdhere, Rosen, and
Zadeck 1992]. Let X* be the i'® bit in a bit vector X. Let the size of the
bit vector be k.

Definition 3. (Bit vector function). A bit vector function h is a mapping
from { T, F }* to { T, F }* such that h can be written as a tuple of bit
functions h =< B}, B2,... ,Bfl > where B} is the bit function for the ith bit,
i.e. if Y = h(X), then

X =<X\,x?%... xk>
Y =<YLY% .)YP > where, YI=Bi(XY), 1<i<k.

LEMMA 1. A bit vector function h is monotonic if and only if it does not
negate any bit.

8This notion is analogous, though not identical, to Zadeck’s notion of cluster partition-
ability [Zadeck 1984].

14 . U. P. Khedker and D. M. Dhamdhere

Fig. 6. Flow functions

Definition 4. (Bit vector framework). A data flow framework is bit vector
framework if and only if all flow functions are monotonic bit vector func-
tions.

LEMMA 2. A bit vector function h is a monotonic bit vector function
if and only if it can be expressed in the form h(X) = Ci+ Co-X where
C,Cy, X E{T, F}k

LEMMA 3. A bit vector framework is fast (i.e. 2-bounded).

The influence of p’ on p through a function h is denoted by p « B, (p')
where the context demands a bit function and by p < h(p’) where the con-
text demands a bit vector function.

4.2 Characterizing the Flow of Information

4.2.1 The Notion of Information Flow. Since z M TOP = z and z M BOT = BOT,

a TOP value for a data flow property is an intermediate value until the data
flow analysis is completed whereas BOT is a final value even during analysis.
Thus, a BOT value implies a useful item of information from the viewpoint
of data flow analysis, whereas a TOP value implies that such information
can not be concluded during analysis. For iterative data flow analysis, the
data flow properties are initialized to TOP for all nodes (except for the graph
entry/exit nodes, which may have other values). Some properties change to
BOT due to the local effect of computations in a node/along an edge, viz.
when a definition is generated, or an expression is killed. These properties,
in turn, change the neighbouring properties to BOT.

Definition 5. (Information flow). Information flows from a program point
u to a program point v when a property at u, on becoming BOT, causes the
corresponding property at v to become BOT.

Note that the information flow is transitive. It is shown in [Khedker and
Dhamdhere 1992] that the incorporation of information flows due to all BOT
properties in the program flow graph leads to a fixed point of the data flow

Bit Vector Data Flow Analysis . 15

equations.
4.2.2 Flow Functions. There are two fundamental kinds of flows in a
data flow analysis problem :

(1) Information flows within a node, i.e. between the entry and exit of the
node :
Represented by node flow functions f € F. These are the traditional
transfer functions.

(2) Information flows along an edge :
Represented by edge flow functions g. We define a new set G to contain
g.

The mapping between nodes and node flow functions is defined by the
function Mx : N — F while the mapping between edges and edge flow func-
tions is defined by the function Mg : E — G. As is customary, we drop these
mappings and subscript the flow functions directly by nodes/edges as the
case may be. Thus, the node flow function for node i is denoted by f; while
the edge flow function for an edge e = (i,) is denoted by g. or g, j).

The flow functions are determined directly from the data flow equations
governing a problem. We refer to the functions by their type names f and g
respectively, with an appropriate superscript f or b to indicate whether the
flow is in the forward or the backward direction.

If a particular flow does not exist in a data flow problem, the correspond-
ing function is the constant function T. For example if forward flow of
information through a node does not exist, ff is T. Similarly, if forward
flow of information reaching a node entry (and hence the forward confluence

of information) does not exist, g/ is T. Analogous remarks hold for f* and
b

q°.

Ezample 5. Table I summarizes the flow functions for some data flow prob-
lems. Note that there is no backward flow in the case of reaching definitions
while there is no forward flow in the case of live variables. O

Definition 6. (Non-singular data flow problem). A data flow problem is
non-singular if it involves more than one distinct confluence operator.

Clearly, a non-singular data flow problem is not a data flow framework as
defined in Figure 4.

Ezample 6. All examples considered in this paper are singular except the
Modified MRA (MMRA, for short) data flow problem [Dhamdhere 1991]
which, apart from the II term of MRA, contains a ¥ term to inhibit redun-
dant code movement (Figure 7). O

4.2.3 Information Flow Paths. Let T,, denote a traversal along the graph

edge e;, i.e. T,, can be T /T?.

Definition 7. (Information flow path). An information flow path (ifp) is
a sequence of edge traversals T¢,,T,,,..., T, along which information can
flow during data flow analysis.

We use the notation < u,v,p > for an ifp p from program point u to a
program point v. Note that an ifp may not follow a graph theoretic path.

16 . U. P. Khedker and D. M. Dhamdhere

Table I.

e Reaching Definitions

Examples of Flow Functions

h(X) Y « h(X) X
f/(X) = REACH GEN; + = REACHKILL;- X | REACH.OUT; | REACH.IN;
x)=T REACH.IN; REACH_OUT;
9;5(X) = X (i.e. identity function 1) REACHIN; | REACH OUT,
9@ =T REACH_OUT; | REACH.IN,,
e Live Variables
h(X) Y « h(X) X
Fx)=T LIVE_OUT; LIVEN;

5(X) = LIVE.GEN; + -~ LIVE KILL;- X LIVE_IN; LIVE_ OUT;
g{jﬂ)(x) =T LIVEIN; LIVE_OUT;
9t (X) = X (ie. identity function 1) LIVE_OUT; LIVE_IN,

e Morel-Renvoise Algorithm (MRA)

h(X) Y + h(X) X

=1 PPOUT,; PPIN;

5(x) = ANTLOC; + TRANSP;- X PPIN; PPOUT;
gl 1(X) = AVOUT,; + x PPIN; PPOUT,
gé’i })(X) = X (ie. identity function 1) PPOUT; PPINy

e Basic Load Store Insertion Algorithm (LSIA)

h(X) Y « h(X) X

f7(X) = DCOMP; + DTRANSP;- X SPPOUT; SPPIN;

X)) = T SPPIN; SPPOUT;
gl;(X) = X (ie. identity function 1) SPPIN; SPPOUT;
9015y (X) = DANTIN, + X SPPOUT; SPPIN}

e Composite Hoisting and Strength Reduction Algorithm (CHSA)
h(X) Y + h(X) X
f/(X) = CONSTD; - X NOCOMOUT; | NOCOMIN;

5(X) = CONSTA, - X NOCOMIN; NOCOMOUT;
g, (X) = CONSTB; - X NOCOMIN; | NOCOMOUT;
9(;i)(X) = CONSTE; - X NOCOMOUT; | NOCOMIN

Bit Vector Data Flow Analysis . 17

PPIN; = PAVIN; - (ANTLOC; + TRANSP; - PPOUT;) -
II (avout; + PPOUT))-

j € pred(i)

> (PPIN;--ANTLOC; + AVOUT;)
j € pred(i)

PPOUT; = [[(PPINy)

k € succ(s)

Fig. 7. The MMRA Equations [Dhamdhere 1991]

Table II. Some examples of information flow paths

Problem | Function types | Information flow paths
Reaching Def. | ff,g (TH+

Live Variables | f°,g° (TH*

MRA 9" 9" (T |) (1)

LSIA .99 (THH (T2 |) * (T

CHSA .1 e" 9" | THT | T)

Where convenient, we will represent an ifp as a sequence of nodes, leaving
the traversal of the edges connecting these nodes implicit. Since ifp’s can be
statically determined from the flow functions, they follow a pattern which
can be described by a regular expression; Khedker and Dhamdhere [1992]
describe a procedure to construct the regular expression representing an ifp
pattern. These regular expressions should be contrasted with Tarjan’s path
expressions [Tarjan 1981b]; the latter are restricted to graph theoretic paths
and can not be used to characterize ifp’s arising out of sibling/spouse effects.

Ezxample 7. Table II contains examples of the ifp patterns. These patterns
provide valuable insights about how the information could flow in a given
data flow problem. O

Ezample 8. Consider the graph in Figure 2. Some sequences of edge
traversals which may form 4fp’s, and the data flow problems in which these
ifp’s are valid, are :

o (1,8,11,12) =T} Tf Tf T/ : Reaching Definitions
11,10,9,8) = T} T} T¢ T} : Live variables

(
(
(5,2,3,4,7) = T¢ T T} T} : MRA
(
(

7,4,3,2) = T¢ T/ T? : LSIA
2,5,6,7,4,3) = T T/ T/ T} T} : CHSA

ae

For bit vector frameworks, ifp’s are necessarily acyclic. Note, however,

18 . U. P. Khedker and D. M. Dhamdhere

that the underlying graph theoretic path may be cyclic since a node may
appear in the path once for its entry point and once for its exit point.
4.2.4 The Path Flow Function. Consider an ifp < u,v,P, > from a

graph entry/exit node to the entry/exit of a node r. For such an ifp,
u € {in(ng), out (ng)} where ng € entry (G), ny € ezit(G), and v € {in(r), out(r)}.
Let P, be the sequence g1, 2, - , gk, Qk+1 = Tey s Teyy - 7Tek' Then, ¢1 € {no,nz}
and g1 = r. Consider an ifp fragment < u,v’, p > of P,, terminating with
edge e; = (i, ¢i+1), such that v' = in(gy1) if T, = T and v' = out (gi11) if
T,, = T?.

Let flow; denote the path flow function of p (i.e. the ifp terminating with
ei). We define

flow, = gglo f7{0 if T,, =TS (ie. u=in(ng))
g o fh T, =T (ie. u=out(ng))

Since €;+1 = (¢i+1,9i+2), information flows from ¢;11 to gjyo. flow;i is
obtained by composing the functions f,,. , and g, , with flow;, as shown
in Table III. Note that if v = out(r) and T,, = T/ then there is a forward
flow through node r. Similarly, if v = in(r) and T., = T? then there is a
backward flow through node r. Thus, path function for the ifp P, is :

flo flow if Te, =T/ and v = out (r)
FLOWp, = ¢ fbo flowy, if T,, = T? and v = in(r)
flowy, otherwise

In a unidirectional problem, the typical sequence of edges in a path is ei-
ther (T)* or (T?)*. In either case, the information necessarily flows through
all intermediate nodes. It can be verified from Table III that in such a case,
the edge flow functions appear in composition with the node flow functions
and never in isolation from them. Thus there is no need to treat them sepa-
rately. Under such circumstances, the flow can be adequately characterized
by functions which could be associated with the nodes or edges interchange-
ably. F has been the set of such functions in the classical theory.

However, in bidirectional problems the sibling/spouse effects exist and
the information may flow from in(g;) to in(g;r2) via out(g+1) or out(g;)
to out(gi+2) via in(g;+1). Though the information flows along the edges
ei = (¢i,gi+1) and e; 11 = (¢i+1,¢i+2), it does not flow through node g¢;y;.
Thus, unlike the unidirectional problems, the edge and node flows must be
represented distinctly. It is easy to see that all the above flows are handled
uniformly by the generalized path flow function.

4.3 Specification of a Data Flow Problem

A data flow problem is completely specified by the pair S = < @, X >,
where (Q is the system of equations and X is the set of initial values for the
properties of the nodes.

4.3.1 Data Flow Equations. The entry/exit properties of node i can be
computed from various flows as follows :

IN; = IN/ [TIN? [CONSTIN;

Bit Vector Data Flow Analysis . 19

Table III. Computing the flow function

flowis
Teiyy =T/ | Teipy =10
Tei = Tef g£i+10 f(fi+1 OﬂO’UJi ggi-}-lo ﬂO’lUi
(Forward Flow) (Flow between spouses)
Te,' = T: gg'i+1o.ﬂowi ggi+1° f;i+1 o ﬂO'LUi
(Flow between siblings) (Backward Flow)

ouT; = oUuT/ [TouT? ['1 CONST_OUT;

CONSTIN/CONST_OUT are the constant properties which represent
the information already known concerning the entry/exit of a node. How-
ever, unlike the local properties of a node, the constant properties typically
represent lower order data flow properties, i.e. properties computed by an

earlier data flow analysis. If no such information is involved in the problem,
the CONST_IN/CONST_OUT properties are T.

Ezample 9. For all unidirectional problems referred in this paper, the
CONSTIN and CONST.OUT properties are T. However, for MRA,
CONSTIN is PAVIN while CONST_OUT is T. For CHSA, CONST_IN
is T while CONST_OUT is CONSTC. O

IN/ JOUT/ and IN?/OUT? represent the contributions from the forward
and backward flows respectively. Clearly, IN{ / OUT? represent the inflow

while the IN?/ OUTZf represent the outflow component of the entry/exit in-
formation of node i. They are computed as follows :

f = f ,
IN! jede(i)g(m)(OUTZ)
IN? = fP(OUTy)
b _ b
OUTi - kESQc(i)g(i’k) (INk)

ouT!/ = fI(N;)

Thus, the data flow equations become

N; = [(i)g{j’i)(OUTj) [1 ff(ouT,) ['1 CONSTIN; (6)

j€Epred

out; = [1 gb Ny [£/ (1N;) [T CONST OUT; (7)
kesucc(i) V7
Equations 6 - 7 are the generic data flow equations. Specific problems can
be treated as special cases of these equations.
4.3.2 Initialization. We define Xy to consist of two classes of values :
Boundaryinfo and Initinfo.
Boundaryinfo contains values specifying the interprocedural information
reaching the entry/exit of the graph. For an entry node i, Boundaryinfo,
specifies the value associated with in(7) while for an exit node, Boundaryinfo,

20 . U. P. Khedker and D. M. Dhamdhere

Table IV. Boundaryinfo values for local variables/expressions involving local variables.

Data Flow Problem Direction M T L Boundaryinfo;
i € entry(G) | i € exit(G)

Reaching Definitions Forward OR |F|T F F
Live Variables Backward OR |F|T F F
Available Expressions | Forward AND | T | F F T
Very Busy Expressions | Backward AND | T | F T F
Dead Variables Backward AND | T | F T T
MRA Bidirectional | AND | T | F F F

specifies the value associated with out (7). These values are important for
the correctness of any optimization based on the solution of the data flow
problem. A wrong specification may lead to an unsafe solution and may
thus lead to an incorrect optimization.

Boundaryinfo is determined as follows :

—Boundaryinfo; is T, if either i € entry(G) and the forward confluence
does not exist, or ¢ € exit(G) and the backward confluence does not exist.

—If i € entry(G) and the forward confluence exists, or i € ezit(G) and
the backward confluence exists, Boundaryinfo; is determined by interpro-
cedural information if available, else, by the semantics of the data flow
problem as explained in the following.

Let T and F denote “all bits T” and “all bits F” respectively. Table IV
provides Boundaryinfo for some representative data flow problems for local
data items (i.e. local variables/expressions involving local variables). Con-
sider the example of live variable analysis. For local variables, the values in
Boundaryinfo are determined as follows : The information being gathered
is a set of predicates, each of which represents that a variable is live. For
local variables, all these predicates are false at the exit of a program, hence
the values in Boundaryinfo are F for the exit nodes. Since there is no for-
ward flow, Boundaryinfo values for entry nodes are T which is F for a union
problem.

Initinfo specifies values for the internal nodes of the program flow graph.
These are required in the case of iterative methods only. Using the con-
fluence operator as a criterion, the Initinfo values are defined to be T;
anything else might lead to a fixed point lower than MFP. Given correct
Boundaryinfo, Initinfo influences the quality of information (vis-a-vis the
maximality of information), but not its safety.

The distinction between Boundaryinfo and Initinfo is usually not made in
the literature, leading to avoidable confusion. Although Boundaryinfo has
no connection with the confluence operator, the values in Boundaryinfo are
often recommended as 1.° To correctly determine the Boundaryinfo, we
only need to ask the following two questions : (i) What is the information

9Hecht [1977] specifies L, Marlowe and Ryder [1990] cautiously mention “often L”

Bit Vector Data Flow Analysis - 21

being gathered 7 and (74) What is the information available from the caller
procedure ?

Ezample 10. Consider the problem of dead variable analysis which is a
dual of the problem of live variable analysis. It is an intersection prob-
lem in which a predicate indicates that a variable is dead. For local vari-
ables, all predicates are true at the exit of a program. Hence the values in
Boundaryinfo are T for the exit nodes.

This should be contrasted with the problem of Very Busy Expressions
for which the Boundaryinfo values are F for the expressions involving local
variables. Both the problems are backward intersection problems with an
identical form of data flow equations, yet they have different Boundaryinfo
values. O

Clearly, it is incorrect to link the confluence operator with Boundaryinfo.

4.4 Solutions of Data Flow Problems

As noted in section 3, an acceptable solution is characterized by the safety
and maximality of fixed point.

4.4.1 MOP Solution. Let const(u) return the value of the constant
property associated with program point u. For all p,p’ and h € F U G such
that p < h(p'), we replace h in FLOW by hMconst (program_point (p)). Let
< u,v,P; > be denoted by P if v = in(r) and by P2 if v = out(r).
Further, let n denote Boundaryinfo at the program point u which belongs
to a graph entry/exit node.

A safe assignment SA : N— L is a function with two components, <
SIN, SOUT> such that, for a node r, and all Pi* /Pout .

SIN(r) C FLOWP}:n (n) (8)
SOUT(r) C FLOWPgut (n) 9)

Maximum SA represents the MOP solution. Any solution which is not
contained in MOP is unsafe.

The ifp’s reduce to graph theoretic paths for unidirectional problems. For
a forward unidirectional problem, P}" reduces to graph paths from in(ng)
to in(r) where ng is an entry node, and P°* does not exist. Thus, the
path flow function FLOW i, reduces to M (p) defined in Figure 4 and used
for characterizing MOP solution in section 3.3. Analogous remarks hold for
backward problems.

4.4.2 Fized Point Solution. A fixed point solution is the fixed point of
equations 6 - 7. Maximum fixed point is obtained by setting Initinfo values
to T.

For a forward unidirectional problem, the generic data flow equations
reduce to equations 4 and 5. Analogous remarks hold for backward problems.

while Aho, Sethi, and Ullman [1986] specify it as T with a remark that the values may be
1 in some cases.

22 . U. P. Khedker and D. M. Dhamdhere

4.5 Characteristics of Data Flow Frameworks

Let p < B, (p). If p’ is BOT, it may cause p to become BOT.
All bit vector problems have the following important characteristics :

—MBYVP : A property changes from TOP to BOT only.

—SBVP : YV p',V h such that p « h(p'), if p' causes p to become BOT,
it does so on its own and not in combination with other corresponding
properties.

These characteristics arise from monotonicity and singularity respectively.
This follows from the facts that :

(1) For convergence on MFP, Initinfo is T. Since the functions involved are
monotonic, if there is a change, it must be from TOP to BOT only.

(2) Data flow frameworks have been defined in terms of a semilattice which
implies a unique confluence operator.

Since unidirectional flow problems typically have only one confluence,
SBVP was never emphasized or mentioned explicitly in the literature. In
the case of bidirectional problems, if all confluences merge the global infor-
mation using the same boolean operator, as is the case in MRA, SBVP holds
automatically.

Ezample 11. As noted in example 6, MMRA uses two confluences. Conse-
quently, SBVP is violated : PPIN; = F can not set the PPIN; of a successor
1 to F on its own, but may do so in combination with PPIN of other prede-
cessors of 4. O

LEMMA 4. All bit vector data flow frameworks possess the SBVP prop-
erty.
There are two important implications of MBVP and SBVP :

(1) A considerable reduction in the work for performing data flow analysis
is possible because :

(a) MBVP guarantees that a property p which has become BOT need
not be recomputed as it has attained its final value.

(b) SBVP guarantees that all neighbouring properties can be refined,
rather than recomputed, to incorporate the effect of a property
changing to BOT.'0
Let X (u) and X'(u) represent the old and new values at program
point u, and let v’ be the program point at which values have
changed. Equation 10 defines recomputation, while equation 11
defines refinement :

X'(u) = Ueneighl;lm ” h(X'(v)) NCONST(u) (10)
X'(u) = X(u)Mh(X'(v)) (11)

10Refinement is not a new concept; it can be traced in the worklist-based iterative algo-
rithm in [Hecht 1977]. Here we just make it explicit.

Bit Vector Data Flow Analysis . 23

When contrasted with recomputation, which uses the values of all
neighbouring properties, refinement decreases the amount of work
by a factor that depends on the number of in-edges/out-edges of
a node. Lemma 5 shows the equivalence between refinement and
recomputation.

(2) MBYVP guarantees the termination of data flow analysis — the values of
properties change in one direction only.

LEMMA 5. Refinement and recomputation yield identical results for sin-
gular data flow problems.

5. PERFORMING DATA FLOW ANALYSIS
5.1 Wordwise Analysis

Since the size of a bit vector may vary with the size of the program, we
propose to process the bit vectors in parts. Further, we partition the problem
of data flow analysis so as to process a specific part of a bit vector, rather
than the entire bit vector, in each step. We select a part, process it all over
the graph and then select the next part which needs to be processed. At
one extreme, each part may consist of one bit as in [Dhamdhere, Rosen, and
Zadeck 1992]; at the other extreme, each part may be the largest chunk of a
bit vector which can be processed in one machine operation, which typically
is a machine word. We follow the latter approach, which we term wordwise
analysis.

Wordwise analysis results in considerable savings in the work to be per-
formed since all parts may not require processing for all nodes of the graph.
More formally, let N be the set of nodes, and M, the set of words. The set
N x M is partitioned into two subsets, the set NM, which requires process-
ing, and the set NM,,, which does not. Wordwise analysis implies selecting
all entries for a specific word from NM, and processing them. The tradi-
tional approach of processing all words of a bit vector partitions only N.
Let N, and N,, be the partitions. Since all words in M are processed for
each node in N, it results in more work.

Henceforth, the discussion will be in terms of properties belonging to
<u, m> where u is a program point and m is a word.

5.2 The Basic Algorithm

Figure 8 contains the basic algorithm which is a generalization of the worklist-
based iterative method. The work is divided in two phases : initialization
and propagation, performed by the procedures init and settle respectively.

5.2.1 Initialization. As noted in section 4.2, information flow is initi-
ated by the properties whose initial values are BOT due to local effects of
computations existing within a node/along an edge. The Initial Trigger Set,
denoted TRy, contains all such properties.

Bprops = {p| either program_point(p) = in(i),: € entry(G) or
program_point (p) = out (i),1 € exit(G)}

24

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

After incorporating the initialization in equations

e B e o e

U. P. Khedker and D. M. Dhamdhere

procedure dfa()
{ init()
settle()
}

procedure init()
{ for each word m
for each node i of the graph
Set all inflow properties in word m to TOP
Compute the outflow properties in word m

if any property is BOT then /it belongs to TRy */
Insert i in the worklist for word m
}
procedure settle()
{ for each word m
for each node i in the worklist of m
propagate(i,m)
}
procedure propagate(i,m) [* propagate effect of outflow properties of i «/
{ for each neighbouring node k of 4
Refine the inflow properties of k in word m /* using g */
Compute the outflow properties of k£ in word m /* using fr, */
if some property changes to BOT then
propagate(k,m)
}
Fig. 8. The Basic Algorithm
TRy = {p | p + B,,(p') such that B,(TOP) = BOT or (12)

p € Bprops and p = BOT}

computed from the following equations :

6 and 7, TRy can be

Boundaryinfo, ifi € entry (G)
i = [gl (T[] f2(T)[TCONST.IN; otherwise (13)
jé€pred(q))
Boundaryinfo, ifi € exit (G)
OUT; = oLty (M1 (T)TCONST-OUT, otherwise (14)

Procedure init constructs TRy by computing the outflow properties for
each node ¢. If any property p in word m is BOT, node 7 is inserted in the
worklist for word m.

5.2.2 Propagation. Propagation selects a node from the worklist of a

given word and propagates the transitive influence of its BOT properties.
Effectively, many bits in a word are processed simultaneously. The outflow
properties in the current word of a node’s bit vector may change the in-

Bit Vector Data Flow Analysis . 25

flow properties of neighbouring nodes, which are refined to incorporate their
influence. From these inflow properties, the corresponding outflow proper-
ties of the node are computed. If any outflow property changes to BOT, it
becomes a candidate for propagation whose influence is propagated to its
neighbours by the recursive call in procedure propagate.

5.3 A Generic Algorithm for Data Flow Analysis

The generic algorithm embodies two major deviations from the traditional
algorithms :

(1) Wordwise analysis : This reduces the amount of work required for data
flow analysis.

(2) Distinction between entry and exit points of a node : This is necessary
for the treatment of bidirectional flows.

Figure 9 provides the algorithm in terms of equations 6, 7 and 13, 14 for
the IN and OUT properties of a node. The specific points to be noted are :

—Some speedup can be achieved by accumulating many changes for a pair
<wu,m> before refining the properties of neighbouring program points.
Hence the pairs with fewer BOT properties are processed later by main-
taining the worklists in sorted order according to the number of BOT
properties.

—For refinement of properties during propagation, it is sufficient to apply
a function b’ instead of h(Z) = A+ B - Z where h' is
—For intersection problems : VZ € L, h'(Z) = A+ Z.

—For union problems : VZ € L, h/(Z) =B - Z.
Thus, only two operations are required per function application (this in-
cludes one operation for the meet) instead of three.

—The recursive calls during propagation have been eliminated by inserting
a node in the worklist during propagation also. Apart from eliminating
the overheads associated with recursion, this aids in delayed propagation.

The generic algorithm is uniformly applicable to unidirectional and bidi-
rectional flows. Further, a data flow analysis algorithm for a given problem
can be automatically constructed from the data flow equations without the
knowledge of the semantics of the underlying problem.

5.4 Performance Analysis of the Generic Algorithm

Since the size of a bit vector may vary with the size of the program (sec-
tion 5.1), the unit of work for performance analysis should be the work
required to process one word rather than the work required to process one
bit vector. Hence, in the following, an operation refers to one bit vector op-
eration on the properties located in one word of a node. The bounds derived
in this section assume that the number of edges, e, is O(n) where n denotes
the number of nodes. Figure 10 gives the notations used in this section.

To estimate the complexity, we develop a notion of orthogonality in bit
vector processing. Let m; and ny be some two nodes in the worklist for
the word being processed. The order in which the effect of n; and nso is

26

10.
11.

12.
13.
14.
15.
16.

17.

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.

© XN O WD

U. P. Khedker and D. M. Dhamdhere

procedure dfa()
{ init()
settle ()
}

procedure init()
{ for each word m
for each node i
if i € entry(G) then
IN; = Boundaryinfo,
else
IN;= N gl (T) M f(T) M CONSTIN;
jEpred(i) ’
if any property in IN; is BOT then /% it belongs to TRy «/
Insert < 4, in(i) > in LIST,,
if i € ezit(G) then
OUT; = Boundaryinfo;
else

OUT; = M1 gt (T) N f/(T) N CONST OUT;

k€succ(i
if any property in (()I)JTZ is BOT then /x it belongs to TRy */
Insert < i, out () > in LIST,,
}
procedure settle ()
{ for each word m
while 3 an entry <node, program_point> in LIST,,
Delete <node, program_point> from LIST,,
if program_point = in(node) then
propagate_in (node, m)
else propagate_out(node, m)

}
procedure propagate_in (i,m)
{ OUT;, =0UT; N f/(INy) /* refinement using f/ «/
if any property in OUT; becomes BOT then
Insert < i,0ut(i)> in LIST,, if not already present
for all j € pred (i)
OUT,; = OUTyT1 gé’j,i) (IN;) /* refinement using gé’j’i) */
if any property in OUT; becomes BOT then
Insert < j,out(j)> in LIST,, if not already present
}
procedure propagate_out (i, m)
{ IN; =IN; 0 f(OUT;) /* refinement using f? x/
if any property in IN; becomes BOT then
Insert < i,in(¢)> in LIST,, if not already present
for all k € succ ()
INg = INg [g(fi’k) (OUT,) /* refinement using g{i,k) */
if any property in IN; becomes BOT then
Insert < k,in(k)> in LIST,, if not already present
}

Fig. 9. A Generic Algorithm for Data Flow Analysis

Bit Vector Data Flow Analysis . 27

n number of nodes.
e number of edges.
no_w number of words.
d_in; the in-degree of node 1.
d_out; the out-degree of node 1.
B;j {k | kisabitin word j and figures in TR, for some node }.
b 15
n; number of nodes in the worklist for word j after TRy construction.
op_propfc number of operations performed while processing properties
corresponding to the bit k in B;.
Max_0p_prop max(op_propi) 0<k<b;, 1<j< now.
op_wordg number of operations performed while propagating the effect of word j
of node i.
maz_op_word max(op_wordz) 0<j<now 1<i<n
t_op; total number of operations required to refine the properties of word j.
t_work total work performed during propagation.

Fig. 10. Notations used for performance analysis

propagated does not matter; final result is a superposition of the effects of
various nodes regardless of the order in which they are processed. Similarly,
since the bits are independent, the words may also be processed in any order.
Thus, while propagating the effect of a node on some worklist, we may safely
ignore the presence of other nodes in the same worklist, and all nodes in all
other worklists. If we can estimate the amount of work done for one node
in one worklist, it is easy to estimate the total work done — it is the sum
of the work done for all nodes in all worklists.

Note that due to the orthogonality among words and among the nodes
in one worklist, all changes that have to take place in a given word due to
a given node in the worklist, will take place simultaneously. If some bit
changes later, it must be due to the effect of some other node in the same
worklist. This argument forms the basis of the following lemma.

LEMMA 6. After constructing TRy, the effect of the BOT properties of a
given node in the worklist for a given word can be completely propagated in
O(n) operations.

PROOF. Let node ¢ be reached while propagating the effect of properties
in word m of some node r. Without loss of generality, assume that the effect
of IN; properties is propagated first. Since two operations are required for
refinement (section 5.3), the effect of changes in IN; can be propagated in
2-d_in;+2 operations — 2-d_in; operations for refining the OUT properties
of predecessors and two operations for refining OUT;. The effect of the
BOT properties in OUT);, if any, can be propagated in 2-d_out; operations.
Thus, the maximum number of operations performed on visiting node 4 is
2-d_in; + 2-d_out; + 2. In the worst case all the nodes may have to be visited.

28 . U. P. Khedker and D. M. Dhamdhere

Hence,
n
maz_op_word = Z(Q-d_ini +2-doout; +2) =4-e+2n
i=1
which is O(n). O

LEMMA 7. The effect of a given property in TRy can be completely prop-
agated in O(n) operations.

PROOF. Asinlemma 6, it can be shown that maz_op_prop = 4-e+2-n. O

LEMMA 8. O(n?) operations are needed to propagate the influence of all
properties in TRy.

PROOF. Propagating the influence of the properties of a node may sub-
sume the influence of the properties of some other node. Thus,

top; < nj- maz_op_word
no_w

twork = Z t_op;
j=1

no_w
< Z nj - mar-op-word
j=1
no_w
< maz_op_word - Z nj (15)
7j=1
Further, since all properties in a word are processed simultaneously,

t.opj < bj - maz_op_prop

no_w
t_work = Z t_op;
j=1
no_w
< Z b; - maz_op_prop
7j=1
no_w
< maz_op_prop - 2 b; (16)
j=1

Both maz_op_word and maz_op_prop are 4-e + 2-n). Hence, it follows from 15
and 16 that,

now now
t-work < 4-e+ 2-n - min(Z n;, Z b;) (17)
7j=1 Jj=1

The worklist length for a word is O(n) hence Y n; could be O(n?). Since
no_w is O(n), > b; is O(n) and hence, min(} n;,> b;) is O(n). Since
e = O(n), t.work is O(n?). O

Bit Vector Data Flow Analysis . 29

LEMMA 9. TRy can be constructed in O(n?) operations.

PROOF. It is evident from equations 13 and 14 that 3-d_in; + 3 operations
are required to compute the values of IN; — two operations for computing
each g(fj, Z.)(T), two operations for computing f?(T) and d_in; + 1 operations
for meet. Similarly, 3-d_out; + 3 operations are required to compute the
values of OUT;. Hence the total number of operations for one word is

n
Z(3-d_mi + 3-d_out; + 6) = 6-(e+n)
i=1

which is O(n). Since there are O(n) words, the complexity is O(n?). O

THEOREM 1. Total work done by the proposed algorithm is O(n?).

A closer look at the proofs of lemmas 8 and 9 reveals that refinement does
not seem to play any role in the complexity. Since e is O(n), it is perfectly
valid to assume that the degree of a node is bounded by a constant. In such
a case even if the properties are recomputed, the order of the work involved
remains the same. However, refinement has a practical significance as it
reduces the number of operations by a constant factor.

5.5 Performance in Practical Situations

Though the theoretical complexity of the algorithm is O(n?), there are sev-
eral reasons to believe that the performance would be better in practice.
5.5.1 Initialization. The edge flow functions for almost all known data
flow frameworks are either identity functions or functions of the form h(X) =
for the intersection problems (viz. MRA and LSIA) and h(X) = A- X for
union problems (viz. CHSA). Thus h(T), required for the TRy construc-
tion (equations 13, 14), is almost always T and the number of operations
per word reduces from 3-d_in; + 3-d_out; + 6 to 3 — two operations for the
node flow function and one for the meet with constant properties. For the
unidirectional problems, since CONST_IN/CONST_OUT are typically T,
the number of operations further reduces to 2. These operations incorpo-
rate the local effect of a node and represent the minimum amount of work
that must be done for any data flow problem. Note that though the bound
on initialization is O(n?), it requires only one traversal over the graph.
5.5.2 Propagation. Let K be defined as follows :

no_-w no-w

K = min(Z nj, Z b;) (18)
j=1

i=1

Then the bound on the propagation becomes O((e+n) - K).

After the initialization is performed, we can evaluate K and determine
a more realistic bound on the work required by propagation. In the best
case, both no_w and K might be 1, in which case the work is O(n). The
actual work performed by the propagation is likely to be even better than
the estimate in terms of K :

—We do not process the individual bits but words of bits.

A+X

30 . U. P. Khedker and D. M. Dhamdhere

07 : Traversal along a forward edge in direction
& : Traversal along a back edge in direction §

6y : Traversal along a forward edge in direction §~
0, : 'Traversal along a back edge in direction §~
dc : Traversal over the graph in direction §

d0; : Traversal over the graph in direction §~

Fig. 11. Generic notation for various traversals.

—In practice, the effect of the BOT properties of a node in the worklist may
not propagate over the entire graph.

—Since propagation is delayed as far as possible, the effect of some nodes
may be subsumed by propagation for other nodes. Hence the effect of all
nodes in the worklist may not have to be propagated separately.

—Some other heuristics can be employed for the worklist organization to
select appropriate nodes for propagation. In the case of MRA, forward
node flow does not exist (i.e. f,{ is T) hence the information flow is
predominantly backwards. Thus, it may be beneficial to process the nodes
in the postorder as it may propagate the effect of some changes more
rapidly.

6. APPLICATIONS OF THE GENERALIZED THEORY

This section discusses several interesting applications of the generalized the-
ory [Dhamdhere and Khedker 1993]. Some general concepts which form the
basis of these applications are presented in section 6.1. Section 6.2 defines
the width of a graph which is shown to bound the number of iterations of
round-robin analysis. Section 6.3 discusses the efficiency of data flow anal-
ysis and explains several known results using the theory.

6.1 Concepts and Definitions
For simplicity, we represent the forward and backward traversals generically
by 6. For example, if § is the forward direction, then a T is replaced by
§ while a T? is replaced by 6. Figure 11 summarizes the generic notation.
We extend the notation of edge traversals to the traversals over the graphs.
Thus ch; indicates a graph traversal in reverse postorder while 72 indicates
graph traversal in postorder.!! One traversal over the graph implies one
iteration of the round-robin analysis.

A graph traversal cannot realize the effect of all kinds of edge traversals.
The following definition captures the relationship between edge and graph
traversals.

Definition 8. (Conforming and non-conforming edge traversals). For a d¢g
traversal, d; and J, edge traversals are conforming edge traversals while 6)7
and §p are non-conforming edge traversals.

"For a node i, Té visits in(4) followed by out (i) while T visits out (3) followed by in(i).

Bit Vector Data Flow Analysis . 31

dg= ch: dg= Tgr

Reaching Definitions Analysis Live Variables Analysis

Fig. 12. Conforming and non-conforming edge traversals

A graph traversal realizes the effect of conforming edge-traversals, but fails
to realize the effect of non-conforming edge traversals. This is illustrated in
the following example.

Ezample 12. Consider program flow graphs in Figure 12. For the reaching
definitions analysis, the graph is traversed in a reverse postorder. The fact
that the definition of ¢ in node 1 reaches all other nodes (via TJ{ edge
traversals) is known in the first iteration over the graph. Similarly, the
definition of b in node 3 is known to reach node 5 (TJ{c traversal) in the same
iteration. However, the fact that this definition also reaches node 2 along
the back edge (be traversal) is known only in the next iteration. Thus an
be edge traversal is non-conforming whereas an TJ{ traversal is conforming.

Analogous comments hold for the graph for live variable analysis with 7%
replacing 77. In this case, the fact that b is live at out (1) is known in the
first iteration but its liveness at out(5) is known in the next iteration only.
O

An ifp consists of conforming and non-conforming edge-traversals.

Definition 9. (Span). A span is a maximal sequence of conforming edge
traversals in an ifp.

Spans are separated by a non-conforming edge traversal and vice-versa.
Thus, two successive non-conforming edge traversals have a null span be-
tween them. Further, an information flow path may begin and/or end with
a null span.

The information along a span can be propagated in one d¢g traversal; the
same graph traversal also realizes the information flow along the preceding
non-conforming edge traversal.

32 . U. P. Khedker and D. M. Dhamdhere

Definition 10. (Segment). A segment is a maximal sequence of edge traver-
sals in the same direction.

Successive T/’s constitute a forward segment while successive T%’s consti-
tute a backward segment. A segment may be bounded or unbounded.

Ezample 13. Consider a ch; graph traversal and an ifp

f o pf pf b pf b b
?f Ty Tf) Ty ¥Tb Tf,ﬂﬂ
The underbraces denote the (non-null) spans; overbraces, segments; and
underscores denote the non-conforming edge traversals. Note that there is
a null span between two successive T}”s. O

Ezample 14. From Table I1, it is clear that the ifp’s of unidirectional data
flow problems consist of a single unbounded segment. MRA and CHSA have
unbounded backward segments. CHSA has unbounded forward segments
too, while MRA has a bounded forward segment consisting of a single edge
traversal. O

6.2 Complexity of Round Robin Iterative Data Flow Analysis

Definition 11. (Information preserving path). An ifp is an information
preserving path (ipp) if all flow functions in the ifp are identity functions.

The edge flow functions of the type g/ (¢°) are said to be clustered if the
information flow is identical for all out-edges (in-edges) of a node. For an
ifp < u,v,p >, let length(p) and width(p) denote the total number of edge
flow functions and the number of edge flow functions along non-conforming
edge traversals, respectively.

Definition 12. (Bypassed information flow path). An ifp < u,v,p1 > is
said to be bypassed by < u, v, po > if the edge flow functions are clustered,
and

(1) either po is an ipp or length(ps) = 1, and
(2) width(p2) < width(p)-

Intuitively, < u,v, p1 > is bypassed by < u, v, p2 > if the same information
is guaranteed to flow along pa and length(p2) < length(pi)-

In practical data flow problems, bypassing usually occurs due to length(p2) =
1.

Definition 13. (Width). The width w of a graph G for a data flow frame-
work with respect to a traversal d is the maximum number of non-conforming
edge traversals along an ifp, no part of which is bypassed.

If we represent the number of spans by s then s = w + 1 for the width
determining path.

THEOREM 2. w+ 1 iterations are sufficient for the round-robin algorithm
to converge on a fized point.

The information flow can be initiated only after the IN and OUT prop-
erties of all nodes are computed to determine the information originating

Bit Vector Data Flow Analysis . 33

within each node (i.e. the information represented by TRy). This is achieved
in the first iteration. The same iteration also realizes the propagation of in-
formation along a non-null span (if any) at the beginning of an ifp. However,
every non-conforming edge traversal, and the span that follows it, requires
a separate iteration. Thus, w + 1 iterations are sufficient for information
propagation along the width determining path.

Now consider an ifp < u, v, p1 > such that width(p;1) > w. This is possible
only if a section p’ of p; is bypassed by another ifp p”. Let width(p') be w’,
width(p") be w"” and width(p1) be wi. Then (w1 —w') +w” < w. Again
w + 1 iterations suffice for information to propagate from u to v.

Note that the width w of a graph G is defined for a data flow framework
D and not for an instance of D. For a particular instance I = < G, M >,
the number of may well be less.

Ezample 15. Consider the graph in Figure 2. For MRA, we choose dg =

Tg. Tg’ and TJ{ are the non-conforming edge traversals. The width for MRA
is 3 along the width determining path (5,2,3,4,7,6) = T}’ij TP TJ[T}’. O
6.2.1 The Width and the Depth. Depth (d) is defined as the maximum
number of back edges along any acyclic path [Aho, Sethi, and Ullman 1986].
To use the notion of width for unidirectional flows, choose § as the natural
direction of the flow in the problem. There are no flows along 5; and
edge traversals, and the only non-conforming edge traversal is J;. Since the
width considers only those paths which do not have bypassed fragments,
w < d. Thus, width provides a tighter bound on the number of iterations.

Ezample 16. Consider a spiral graph [Biswas, Bhattacharjee, and Dhar
1980] whose depth increases linearly with the nesting depth.'? Here d = 3,
while w = 1 for a unidirectional problem with clustered edge flow functions
since every part of an ifp beginning on a back edge is bypassed, viz. path
(5,2,6) is bypassed by the path (5,6). This explains the observation that
the number of iterations remains constant even as the size of the spiral graph
grows. O

Further, the notion of depth assumes a fixed pattern for information flow
governed by the directed paths in the flow graph, hence it is only applicable
to unidirectional data flow problems.

6.3 Efficiency of Data Flow Analysis
When applied to the efficiency of data flow analysis, the generalized theory :

—motivates efficient solution techniques viz. interval analysis technique for
MRA [Dhamdhere and Khedker 1993], and the method of alternating
iterations,

—explains several known results in bidirectional flows.

In this section, we motivate the method of alternating iterations and explain
some known results.

128piral structures result from repeat ...until loops with premature exits.

34 . U. P. Khedker and D. M. Dhamdhere

Fig. 13. A Spiral Graph

6.3.1 Choice of Direction in Graph Traversal. Consider a data flow
problem whose ifp’s have unbounded segments in one direction and bounded
segments in the other direction. Recall that w = #d, + #5;, i.e. width has
contributions from the back edges in the § segments and forward edges in
the 6~ segments. #(517 is likely to be smaller when the segments in the

6~ direction are bounded rather than unbounded. Hence the appropriate
direction for graph traversal is the one that makes the bounded segments lie
in the 0~ direction, and unbounded segments, in the § direction.

Ezample 17. MRA has unbounded backward segments but bounded for-
ward segments, hence backward graph traversal would require fewer itera-
tions than forward traversal (the experimental results are reported in [Dhamd-
here and Khedker 1993]). For unidirectional problems, the favoured direc-
tion of traversal is trivially the direction of the data flow. O

6.3.2 * Alternating iterations For problems with unbounded segments
in both directions, alternating the direction of graph traversal between suc-
cessive iterations can effectively reduce the solution complexity. This can be
explained as follows : A segment in the § direction may consist of a number
of spans separated by non-conforming edges, which may themselves form
sizable spans in the ¢ direction. Since the effect of a span in the § direc-
tion is incorporated by a single iteration in the ¢ direction, alternating the
direction of graph traversal between successive iterations would yield better
results. Thus, the alternating iterations approach is clearly warranted in the
case of CHSA.

Bit Vector Data Flow Analysis . 35

Fig. 14. Edge splitting

Let s, be the number of non-null spans along an ifp p. The width of p
for alternating iterations is defined as follows : width,(p) = 2s, + ¢, where
¢ = 1 if p ends with a non-null span, else ¢ = 0. The number of iterations
for the method of alternating iterations is then w, + 1 where w, is defined
analogous to w, viz. w, = max(width,(p)) Vp, where p is an ifp, no part of
which is bypassed.

6.3.3 Reducing the Complezity by Reducing Width. When a data flow
problem has bounded segments in one direction, and unbounded segments
in the other direction, complexity of the data flow analysis can be reduced
by attempting to truncate the information flow paths. Consider an ifp
p=1(-,€,€i11,€i+2), where edge e;11 constitutes a bounded segment of
length 1, i.e. e; and e;y2 belong to the segments in the opposite direc-
tion. Truncation can be effected by transforming the program flow graph
or the data flow equations so as to terminate each ifp analogous to p be-
fore it reaches the edge e;o. Effectively, p is split into two ifp’s p1 and ps.
Since width(p1), width(ps) < width(p), this could reduce the width. In this
section, we present two transformations based on this approach.

6.3.4 *Edge splitting
An edge which runs from a branch node (i.e. a node with more than one
successor) to a join node (i.e. a node with more than one predecessor) is
called a critical edge. It has been reported [Dhamdhere, Rosen, and Zadeck
1992] that when such an edge is split by inserting a new node, the solution
complexity of MRA is reduced. The following lemma, captures the influence
of edge splitting on the solution complexity of MRA.

LEMMA 10. Following edge splitting, MRA can be solved with the com-
plexity of a unidirectional problem.

As a result of edge splitting the MRA ifp’s become (T?)T (T | €) for the
transformed graph, instead of the original ((T?)* (T | €))*(T?)*.

6.3.5 *.Edge placement The technique of edge placement eliminates a
partial redundancy of an expression e in node #, which cannot be safely
hoisted into a predecessor j, by creating a synthetic node along the edge (7, %)
and hoisting e into it [Dhamdhere 1988a]. Unlike edge splitting, however, a
synthetic node is conceptual; it does not participate in data flow analysis. It
becomes real only when a computation is inserted in it during optimization
phase following the data flow analysis.

36 . U. P. Khedker and D. M. Dhamdhere

Use of edge placement in MRA results in elimination of the II term from
the PPIN; equation. It thus transforms the data flow, rather than the
flow graph, to achieve the same effect as edge splitting, viz. restricting the
number of 517 traversals along any ifp to zero. Solution efficiency vis-a-
vis MRA is guaranteed by the fact that the resulting data flow is simply
(backwards) unidirectional in nature.

6.3.6 Decomposing Bidirectional Flows into Unidirectional Flows. De-
composition of a bidirectional data flow problem into a sequence of unidi-
rectional problems (i.e. solving a bidirectional problem as a sequence of
cascaded unidirectional problems) is motivated by the desire to reduce the
amount of work or to improve the understandability of the data flow in-
volved. Prior work on decomposition has been ad hoc and/or directed at
specific bidirectional data flow problems [Dhamdhere 1988a; Dhamdhere,
Rosen, and Zadeck 1992; Knoop, Ruthing, and Steffen 1992]. In this section
we provide a condition for the decomposability of a bidirectional data flow
problem.

Observation 1. For a program graph G, w* < w® where w* and w® are
the widths of G for arbitrary unidirectional and bidirectional data flows with
respect to dg such that dg is along the natural direction of data flow for the
unidirectional problem. O

LEMMA 11. It is feasible to decompose a bidirectional data flow problem
into a sequence of unidirectional data flow problems if and only if the number
of segments in every information flow path for the data flow problem is
bounded by a constant.

PROOF. Let § be the direction of the first segment in an information
flow path. Information propagation along the segment can be realized by
a unidirectional data flow problem which has § as its natural direction of
flow. Information flow along the following segment would require a uni-
directional problem in the opposite direction, etc. Thus, the number of
unidirectional problems required will equal the number of segments, which
should be bounded by a constant for the decomposition to be feasible. Fur-
ther, the order of solving the unidirectional problems will have to be the
same as the order of segments in the information flow paths. O

COROLLARY 1. MRA cannot be solved by cascaded unidirectional problems.

The ifp’s of MRA have the form ((T?)* (TS | €))*(T?)*, thus they may
consist of an unbounded number of forward and backward segments. Similar
statements hold for the LSTA and CHSA problems.O

COROLLARY 2. It is possible to decompose MRA if edge splitting is per-
formed.

Following section 6.3, the information flow paths in the resulting program
flow graph can be characterized by the regular expression (T°)* (T | ¢).
Since the number of segments can at most be 2, it is possible to solve MRA

Bunless edge splitting is performed.

13

Bit Vector Data Flow Analysis . 37

by cascaded unidirectional problems. Further, since the second (i.e. the
forward) segment has a length < 1, it is possible to solve MRA on a graph
in which critical edges have been split as a backward problem followed by a
forward correction [Dhamdhere, Rosen, and Zadeck 1992].0

COROLLARY 3. It is not possible to decompose CHSA even if edge splitting
s performed.

Since both forward and backward segments are unbounded for CHSA, edge
splitting does not truncate any 4fp and the ifp pattern remains T (T? | T/)*.
Hence the number of segments remains unbounded.O

7. DISCUSSION

Classical data flow analysis uses two key features : properties of graph struc-
tures and patterns of information flow. Different methods blend and use
these features in different ways. Elimination methods use graph regions to
divide the data flow problems into smaller subproblems, while round-robin
methods follow postorder or reverse postorder for graph traversal. Worklist
versions do not use properties of the graphs but follow the data flow pattern
dynamically.

One common thread in these techniques is a strictly unidirectional flow of
information, which is a most fundamental assumption in the classical theory
of data flow analysis. This assumption results in a theory which makes
no distinction between the edge and node flows. Hence it cannot handle
the spouse and sibling effects which arise when information flows in both
the directions. We eliminate this restriction by proposing a more general
concept of information flow. Simple as it may seem, this generalization has
far reaching consequences, both on the theory and practice of data flow
analysis.

On the theoretical side, the contributions of this research include a gen-
eralized characterization of information flow and safety of an assignment.
These results are based on sound theoretical foundations and are applicable
to unidirectional as well as bidirectional data flow problems. This unifica-
tion shows that the bidirectional problems are inherently no more complex
than the unidirectional problems. Such a result — though quite significant —
should not come as a surprise. Both the unidirectional and the bidirectional
problems need to compute the same number of properties and a property
changes only once regardless of the direction of information flow.

On the practical side, we propose a worklist-based generic algorithm,
which has a unique advantage in that after TRy computation, it is pos-
sible to estimate a more realistic bound on the work that might be needed
for a particular instance of the problem. If K (defined in section 5.5) is
small, which is quite likely in practice, we can proceed without any fear of
the quadratic behaviour of the algorithm. Though the theoretical complex-
ity of propagation is O(n?), refinement reduces the number of operations
further by a constant factor.

The algorithm computes maximally consistent (i.e. MFP) and comprehen-
sive (i.e. MOP) information for all singular bit vector data flow frameworks.

Apart from the generic algorithm, the theory has several interesting ap-

38 . U. P. Khedker and D. M. Dhamdhere

plications. We explore the complexity of data flow analysis using the gener-
alized theory. The most important outcome of this application is the notion
of the width of a graph which is shown to bound the number of iterations re-
quired for round-robin iterative data flow analysis. This notion is uniformly
applicable to unidirectional and bidirectional flows and provides a more
accurate bound than the traditional notion of the depth of a graph. More
importantly, width provides the first (strict) bound on the round-robin anal-
ysis of bidirectional flows. Other applications include explanation of isolated
results in efficient solution techniques and motivation of new techniques for
bidirectional flows. In particular, we discuss edge-splitting, edge placement
and develop a feasibility criterion for decomposition of a bidirectional flow
into a sequence of unidirectional flows.

7.0.7 * Applicability of the generalized theory Though the exposition
of the theory in this paper is restricted to bit vector problems only, it is
applicable to all bounded monotone data flow frameworks which possess
the property of separability of solution. Let the effective height of £ be
H. Thus, a property may assume at most H + 1 values during data flow
analysis. This has the following consequences :

—MBYVP now implies : A node variable changes from X; to X5 where
X1 O Xo.

—The notion of information flow now becomes : Information flows from a
program point u to a program point v when a change in a property at u
causes the corresponding property at v to change.

—A property may change H times rather than only once, hence a program
point may appear H times in an ifp.

These changes do not constrain any proposition in the theory except that a
property may have to be processed H times rather than once. The generic
algorithm is also applicable to such problems by

—replacing the single bit representation of a data flow property by a suitable
data structure.

—replacing the words “is BOT” and “becomes BOT” by “is not TOP” and
“changes” respectively.'

If H is independent of n (i.e. the number of nodes), the complexity of the
algorithm remains same.

ACKNOWLEDGMENTS
The authors wish to thank the referees for many helpful suggestions.

REFERENCES

AmnoO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers — Principles, Techniques,
and Tools. Addison-Wesley.

TOP and BOT retain their usual meanings i.e. TOP refers to the value of a property
in a variable represented by the T element of the lattice while BOT refers to the value of
a property in a variable represented by the L element of the lattice.

Bit Vector Data Flow Analysis . 39

ALLEN, F. E. AND COCKE, J. 1977. A program data flow analysis procedure. Commu-
nications of ACM 19, 3, 137-147.

Biswas, S., BHATTACHARJEE, G. P., AND DHAR, P. 1980. A comparison of some algo-
rithms for live variable analysis. International Journal of Computer Mathematics 8,
121-134.

CHow, F. C. 1988. Minimizing register usage penalty at procedure calls. In Proceedings
of SIGPLAN’88 Symposium. on Compiler Construction, pp. 85-94. Also Published
as SIGPLAN Notices, 23(7).

DHAMDHERE, D. M. 1988a. A fast algorithm for code movement optimization. ACM
SIGPLAN Notices 23, 10, 172-180.

DHAMDHERE, D. M. 1988b. Register assignment using code placement techniques. Com-
puter Languages 13, 2, 75-93.

DHAMDHERE, D. M. 1991. Comments on practical adaptation of the global optimization
algorithm by Morel & Renvoise. ACM Transactions on Programming Languages and
Systems 13, 2, 291-294.

DHAMDHERE, D. M. AND KHEDKER, U. P. 1993. Complexity of bidirectional data
flow analysis. In Proceedings of the 20" Annual ACM Symposium on Principles of
Programming Languages, pp. 397-408.

DHAMDHERE, D. M. AND PATIL, H. 1993. An elimination algorithm for bidirectional
data flow analysis using edge placement technique. ACM Transactions on Program-
ming Languages and Systems 15, 2, 312-336.

DuAMDHERE, D. M., ROSEN, B. K., AND ZADECK, F. K. 1992. How to analyze large
programs efficiently and informatively. In ACM SIGPLAN ’92 Conference on Pro-
gramming Language Design and Implementation.

GRAHAM, S. AND WEGMAN, M. 1976. A fast and usually linear algorithm for global
data flow analysis. Journal of ACM 23, 1, 172-202.

HEecHT, M. S. 1977. Flow Analysis of Computer Programs. Elsevier North-Holland Inc.

JosHi, S. M. AND DHAMDHERE, D. M. 1982a. A composite algorithm for strength
reduction and code movement : part I. International Journal of Computer Mathe-
matics 11,1, 21-44.

JosHI, S. M. AND DHAMDHERE, D. M. 1982b. A composite algorithm for strength
reduction and code movement : part II. International Journal of Computer Math-
ematics 11, 2, 111-126.

Kawm, J. B. AND ULLMAN, J. D. 1977. Monotone data flow analysis frameworks. Acta
Informatica 7, 3, 305-318.

KENNEDY, K. 1972. Safety of code movement. International Journal of Computer Math-
ematics 3, 112-130.

KHEDKER, U. P. AND DHAMDHERE, D. M. 1992. A generalized theory of data flow
analysis. Technical report TR-070-92, Department of Computer Science and Engi-
neering, Indian Institute of Technology, Bombay.

KiLpaLL, G. 1973. A unified approach to global program optimization. In Proceedings
of the 1°% Annual ACM Symposium on Principles of Programming Languages, pp.
194-206.

KnNoop, J., RUTHING, O., AND STEFFEN, B. 1992. Lazy code motion. In ACM SIG-
PLAN ’92 Conference on Programming Language Design and Implementation. Also
Published as SIGPLAN Notices, 27(7).

MARLOWE, T. J. AND RYDER, B. G. 1990. Properties of data flow frameworks. Acta
Informatica 28, 121-163.

40 . U. P. Khedker and D. M. Dhamdhere

MoRreL, E. AND RENVOISE, C. 1979. Global optimization by suppression of partial
redundancies. Communications of ACM 22, 2, 96-103.

MUCHNICK, S. S. AND JONEs, N. D. 1981. Program Flow Analysis : Theory and Ap-
plications. Prentice-Hall, Inc.

RoseN, B. K. 1980. Monoids for rapid data flow analysis. STAM Journal of Comput-
ing 9, 1, 159-196.

RYDER, B. G. AND PauLL, M. C. 1986. Elimination algorithms for data flow analysis.
ACM Computing Surveys 18, 277-316.

TARJAN, R. E. 1981a. Fast algorithms for solving path problems. Journal of ACM 28, 3,
594-614.

TARJAN, R. E. 1981b. A unified approach to path problems. Journal of ACM 28, 3,
577-593.

ZADECK, F. K. 1984. Incremental data flow analysis in a structured program editor. In
Proceedings of SIGPLAN’84 Symposium. on Compiler Construction, pp. 132-143.
Also Published as SIGPLAN Notices, 19(6).

