
Comput. Lang. Vot. 8, No. 2, pp. 69-76, 1983 0096-055[83 53.00+0.00
Printed in Great Britain. All rights reser',ed Copyright ~ 1983 Pergamon Press Ltd

C H A R A C T E R I Z A T I O N O F P R O G R A M L O O P S

I N C O D E O P T I M I Z A T I O N

D. M. DHAMDHERE and J. S. KEITH
Computer Centre, I.I.T. Bombay, India

(Receired 20 Januao, 1982: rerision receired 5 April 1983)

Abstract--Recent work in code optimization has led to development of new unified optimizing
transformations[6,7]. Application of these transformations requires solution of bi-directional data flow
problems over program flow graphs using iterative solution techniques. Appropriate characterization of
program loops in the flow graph is necessary so as (i) not to hinder code movement, etc., and (ii) restrict
optimization overheads to low levels. This paper reviews alternate loop characterizations and proposes
a characterization which leads to minimum overheads and has certain nice properties from a practical
viewpoint.

I . I N T R O D U C T I O N

Program loops are a fertile source of optimization possibilities. Program optimizers therefore spend
a considerable amount of time and effort on the optimization of program loops. Common program
transformations applied for loop optimization are:

(i) movement of loop invariant computations to places outside the loops;
(ii) strength reduction, i.e. replacement of operations consuming large amounts of processor time

by operations which are performed faster;
(iii) assignment of registers to hold values frequently accessed within a loop.

Conventional approach to loop optimization entails applying individual optimizing trans-
f6rmations to program loops one after another. Thus, after identifying a program loop, the
transformation of moving loop invariant computations out of a loop could be applied followed
by the strength reduction optimization for computations remaining within the 1oop[1,2,3]. This
approach requires identification of program loops through analysis of the control flow within the
program (the so called proper loops [4]). Since this involves considerable effort on the part of the
optimizer, it results in high optimization costs. Certain optimizers like the BLISS optimizing
compiler[5] attempted to reduce optimization cost by restricting optimization to program loops
implemented through iteration control constructs like while.. , do, repeat.. , until, etc. of the source
language. This eliminates the need to identify program loops though at the cost of failure to
optimize loops implemented through i f . . . then goto . . , constructs.

Recent research in code optimization has attempted to reduce optimization costs through
unification of certain conventional transformations. One such unification which might be termed
generali:ed code movement unifies common subexpression elimination, code hoisting and loop
invariant movement within one framework[6,7]. This unified framework can apply code movement
to arbitrary program topologies without the need to identify program regions or program
loops, thus bringing about a significant reduction in the optimization costs. Another important
unification is achieved by integrating the optimization of strength reduction with generalized code
movement[8,9], which on one hand enhances profitability of program optimization and on the
other hand leads to significant savings in the optimization effort. Both the Morel-Renvoise[7] and
Joshi-Dhamdhere[9] algorithms use program data flow analysis techniques to collect information
regarding the definition and use of program variables preparatory to the optimization. A program
is represented in the form ofa program flow graph in order to apply the data flow analysis equations.
Program loops implemented through repeat.. , until . . , or similar HLL constructs are easily
represented in the flow graph, however representation of while.. , do loops in the program flow
graph poses certain interesting problems. Variant loop characterizations are possible, each with
different attendant optimization costs. This paper presents a characterization for while.. , do loops

69

70 D . M . DHAMDHERE and J. S. KErr8

which leads to minimum optimization cost, and also enjoys certain other advantages from a
practical viewpoint.

This paper is organized into 4 sections. Section 2 introduces the notation and certain concepts
regarding program flow analysis. The Morel-Renvoise and Joshi-Dhamdhere unifications are then
reviewed. Section 3 develops a practical characterization for while.., do loops and illustrates its
properties and advantages. For reasons of simplicity and brevity, illustrative examples used
throughout this discussion are based on the Morel-Renvoise algorithm; however the issues being
discussed are equally applicable to the Morel-Renvoise and Joshi-Dhamdhere algorithms. The last
section summarizes the utility of our characterization from a practical viewpoint.

2. THE UNIFIED O P T I M I Z I N G T R A N S F O R M A T I O N S

2.1 Notation and definitions

Definition 2.1. A basic block of a program is a sequence of instructions £ = (it, i2 i m) such
that only it can be the destination of a branch instruction and only im can be a branch instruction.

Definition 2.2. A program flow graph for a program P is a triple (N, E, no) where N is the set
of nodes of the flow graph such that each node ni e N is a basic block of program P. E is the set
of edges (n~, nj), ni, nj ~ N, such that control can pass from the basic block n~ to the basic block
nj in P. n o corresponds to the unique entry node of program P.

Definition 2.3. In a program flow graph (N, E, no), a node n~ is a predecessor of nj iff there exists
an edge (ni, nj) in E. A node nk is an ancestor of n i iff there exists a path from nk to nj in the program
flow graph. The terms successor and descendant are analogously defined.

Pred (n~), ancestor (n~) represent the set of all predecessors and ancestors of node n~ in the
program flow graph respectively. Similarly succ (n~) and descendant (n~) represent the set of all
successors and descendants of n~.

Definition 2.4. An expression e~ is said to be available at a program point in a flow graph if every
path from the initial node to that program point contains an evaluation of e~ not followed by a
definition of any operands of e~.

2.2 The Morel-Renvoise and Joshi-Dhamdhere algorithms

The Morel-Renvoise algorithm[7] performs program optimization by suppressing partial
redundancies in the program. The occurrence of an expression ei in block b is partially redundant
if (i) the expression is locally anticipable, i.e. evaluation of the expression is not preceded in the
block by a definition of any of its operands, and (ii) the expression is partially available at b, i.e.
there exists a block b* ~ pred (b) such that e~ is available at the exit of b*. A partially redundant
computation in block b can be made totally redundant by inserting computations of e~ in some
blocks {b'} c ancestor (b) such that ei becomes available at entry of block b. The set {b'} should
be so selected that:

(i) there does not exist a definition of any operand ofe~ along the path from a block {b'} to block
b;

(ii) on every path from the initial node n o to block b which does not pass through a b', there exists
a node bk such that e~ is evaluated in bk and there does not exist a definition of any operand
of e i along the path from bk to block b;

(iii) selection of the set {b'} is optimally profitable from the viewpoint of execution time of the
optimized program.

The concept of partial redundancy subsumes total redundancy, hence common subexpressions
become a special case of partially redundant expressions with {b'} = ~b. Partial redundancy also
extends to loop invariant expressions within a loop, since an invariant expression is available along
the back edge implementing the loop.

The Morel-Renvoise algorithm performs code movement using the data flow equations shown
in Table 1. AVINb/AVOUT b are properties associated with a block reflecting the availability of
an expression at its entry/exit. This is a standard forward-flow problem in flow analysis.
Anticipability of an expression at entry/exit (ANTINb/ANTOUTb) is computed using the property
of local anticipability and the absence of a definition of an operand of e~. PAVINb/PAVOUTb

C o d e o p t i m i z a t i o n

Table 1. The MoreI -Renvoise a lgori thm

71

A V O U T b = COMPs, + AVIN~, . T R A N S P b

AVINb = 17 AVOUT~
p~ predlb~

A N T I N b = A N T L O C b + T R A N S P b. A N T O U T b

A N T O U T b = I"[ANTIN~
l e s u c ~ b l

P A V O U T b = C O M P b + T R A N S P b . P A V I N b

P A V I N b = ~ PAVOUTp
pcpRdtb)

P P I N b = CONST~. (A N T L O C b + T R A N S P b . P P O U T b).[I-I (PPOUTp + AVOUTp)]

PPOUT b= ~ PPIN,
Sesucclb~

INSERTb = PPOUTb.-7 AVOUTb.(7 PPINt, + ~ TRANSPb)

(2.l)

(2.2)

(2.3)

Where:

COMPn =

T R A N S P b =
C O N S T b =

true iff block b contains a computa t ion of the expression not followed by a definition of arty of its
operands;
true iff block does not contain a definition of any operand of the expression;
A N T I N b . (P A V I N b + "a A N T L O C b . TRANSPb) . (2.4)

reflect partial availability of an expression at block entry and exit. This is used as a criterion to
block mere proliferation of code without any attendant gain. PPINb/PPOUTb indicate whether it
is possible to place e~ at entry/exit of a block according to the criteria of feasibility and safety of
code placement. From the blocks for which PPINb/PPOUTb are true, equation (2.3) selects the
blocks which should constitute the set {b'} where computations of e~ are to be inserted.

We will not elaborate on the basis of the equations here. Interested readers are referred to the
original paper[7] for relevant details or to[9] for a slight improvement of the original algorithm.
Here we will only introduce the concept of safety of code movement and see how it is incorporated
in the Morel-Renvoise algorithm. Use of the anticipability term in equations (2.2) implies that a
computation is inserted in a block only if the computation occurred along all paths through that
block in the original program. In other words, no new computations would be inserted along any
path. Thus, no exceptional situations like arithmetic overflows/underflows would occur in the
optimized program which would not have occurred in the original program. This is the criterion
of safety of code movement[10]. Figure 1 illustrates the results of applying the Morel-Renvoise
algorithm to a program. Evaluation of a*b in block 2 is totally redundant, hence it is eliminated.
a*b of block 4 is partially redundant because of its loop invariance. It is therefore hoisted out of
the loop and inserted in block 3.

Data flow equations for the basic Joshi-Dhamdhere algorithm are shown in Table 2. This
algorithm replaces a high strength expression v~*constant by a reference to temporary location tt.
A Q-unit definition of t~ is placed (QINSERT b = true) in a path following a Q-unit definition

I

Fig . I

2

,[I

,,]

,=C>

F i g . 2

,V q

I

+ J

z.

72 D. M. DHAMDHERE a n d J. S. KEITH

Table 2. The Josh i -Dhamdhere algorithm

XPPIN~ = (ANTLOC~ + XTRANSP~. X P P O U T b) . [[-1 (XPPOUTp + AVOUTp)]
p_=prmJqb~

XPPOUT~ = 1 7 XXPIN~
~E SU~.'Ci b ~

Q I N S E R T b = X P P O U T b . ~ A V O U T b . (-~ XPPIN, + -'7 X T R A N S P ,)
O I N S E R T b = X P P O U T b . O U N I T b. ~ Q I N S E R T b

Where:

O U N I T b = true iff block b: (i) does not contain a Q-unit definition of variable v L , (ii) contains a 0-unit definition
of v~ not followed by an expression involving vt;

X T R A N S P b = T R A N S P b + OUNIT~;
A N T L O C b . A V O U T b, T R A N S P , as in MoreI-Renvoise algorithm.

v~ = (expression), while a 0-unit definition of h is placed (OINSERTb = true) in a path following
a 0-unit definition vj = v~ + constant. An illustration of strength reduction is contained in Fig. 2.
QINSERT = true for blocks 1 and 4, while OINSERT = true for blocks 3. Space restrictions
preclude any detailed discussion of this algorithm. Interested readers are referred to Re{'. [9] for
relevant details and certain refinements of this algorithm.

In both the algorithms, information flows from a block to its predecessors as also to its
successors. This bi-directional data flow precludes the possibility of using faster techniques of
solving data flow equations. The solutions are therefore obtained by iterating over the equations
until the properties settle to their final values. It is reported that 4 to 6 iterations are required for
the solution of the data flow problems[7,9]. Joshi[l i] proves that the upper limit on the number
of iterations required using depth-first numbering of blocks is d' + 2 where d' is the depth of an
augmented program flow graph P*.

3. CHARACTERIZATION OF LOOPS

Figure 3 illustrates the representation of a loop as envisaged by conventional loop optimization
techniques. A synthetic block SYNTH is placed along all entry-edges of the loop. Loop invariant
computations are moved from the loop body to SYNTH so that they are evaluated only once prior
to loop entry instead of being evaluated for every iteration of the loop. Safety considerations
restrict the scope of code movement to loop invariant expressions occurring in blocks which lie
along all paths from loop entry to loop exits (the articulation blocks of the loop[4]). This
characterization is primarily applicable to repeat.. , until kind of loops implemented either through
HLL constructs or through ~f... t hen . . . go to . . , conditionals. An important property of these
loops which facilitates their optimization is that the loop body is traversed at least once whenever
control reaches the ENTRY blocks during program execution. Thus, moving a*b into SYNTH
does not constitute insertion of a new computation along a program path if care is taken to see
that a*b occurred in an articulation block of the loop.

This characterization cannot be extended naturally to while.. , do loops--whether indexed or
non-indexed. Consider the illustration of Fig. 4 where a*b occurring within an articulation block
of the loop is moved into SYNTH. Since the loop test is carried out at the start of loop, it is possible
that during execution a loop may not be executed even once. Placement of a*b into SYNTH is

' S Y N T H

TEST

z e r o - i f e r o t ~ n
p o f h

AL/

Fig. 3 Fig. 4

Code optimization 73

thus unsafe unless the loop exit block or its successors also contained evaluations of a*b. Since
the Morel-Renvoise algorithm incorporates the safety criteria, such code would not move out of
the loop at all. Considering the preponderance of simple while.. , do and indexed while.., do
constructs in contemporary higher level programming languages (e.g. for statements of PL I.Algol,
Pascal, the new DO of Fortran-77 etc.), this limitation is very severe and needs to be eliminated
for worthwhile program optimization.

Figure 5 shows a possible characterization of the while.. , do loop (hereafter referred to as model
A characterization) which eliminates above drawbacks. The synthetic block SYNTH is placed
under the loop control condition housed in TESTI. TEST2 houses an identical condition and is
part of the loop. If the loop concerned is an indexed while.. , do, then control variable initialization
would be housed in TESTI or in SYNTH according to language semantics, while incrementation
etc. could be housed in TEST2. Duplication of the loop test permits loop invariant computations
to move out of the loop. In case of nested loops, movement of the invariant computations through
successive levels of nesting would be governed by safety vis-a-vis the zero iteration path. If the
computations are anticipated at entry to the DO-SUCC block, then they are automatically
candidates for movement across the TESTI block.

The cost of using the model A characterization in an optimizing compiler is quite considerable.
Two synthetic blocks TESTI and SYNTH have to be introduced in the program flow graph to
facilitate movement of loop invariant code. Those blocks have to take part in the data flow analysis
of Morel-Renvoise or Joshi-Dhamdhere algorithms. If we consider a program wherein 10% of the
basic blocks are the TEST blocks due to while.. , do constructs, this loop characterization would
lead to insertion of 20~o new blocks, hence 20~ overheads. In the following we develop an
alternative characterization aimed at reducing these optimization overheads.

An alternatit'e characterization

Figure 6 illustrates an alternative characterization and an exploded view of the same which
resembles the characterization model A. In this characterization no new blocks need to be
introduced in the program graph to represent a while.. , do loop. Under the assumption made
above (i.e. assuming 10~ of program blocks are while.. , do blocks), there is no change in the
number of program blocks as against a 20~ increase in the same when model A was used. Figure
7 illustrates a modified view of this alternative characterization (we will call this the model B
characterization) which we propose as the model for use in program optimization. We will first
prove the equivalence of this model to the original model of Fig. 5 from the viewpoint of
optimization, and then consider the practical aspects of its use.

Definition 3.1. An empty block is one which does not contain any computations whatsoever, i.e.
does not contain any expression evaluations or any variable definitions.

Definitions 3.2. An #left block is one which, when inserted (or existing) along one or more edges

Z e r o
i te ra tion

path

- __~__ TEST 1

I , 'I I SYNTH
'-- -I - J\

I-2
1

I
I
I I

I * ,oo l I ENTRY
l

I

~ - '] DO -

~ TEST I

, SYNTH
L

" ~ DoTEST2

ENTRY
T

I loo-
t END

SUCC DO-SUCC

Fig. 5. Characterization model 'A'. Fig. 6

74 D. M, DHAMDHERE and J. S, KEtTH

I-

ZER 0 - rrERATI ON
PATH

TEST 1
CHAIN
TEST 7'

0 0 - ENTRY

O0 - PREO

I I , . [
I] D'~

, J I

DO - END
AVOUT~., b '

TR.t~S P,,=ANTLOCb,

I 0 0 - SUCC = true

Fig. 7. Characterization model 'B'. Fig. 8

J o

incident on a program block or emanating from it, does not alter the data flow properties of the
program in a way which would affect the movement of code over the program. A block b is inert
if it satisfies one of the following conditions:

(i) block b is (a) empty, or (b) devoid of any definitions;
(ii) if there exists in b a definition of one of the operands of an expression e~, then the following

conditions are satisfied:

(a) V b* ~ pred(b), AVOUTb. = false,

o r

V b* ~ succ(b), b** ~ pred(b*) ~ AVOUTb.. = true,

TRANSPb.. ANTLOCb. = true also,

(b) V b* e succ(b), ANTINb. = false,

o r

V b* ~ pred(b), b** E succ(b*) ~ ANTINb.. = true,

TRANSPb.. COMP b. = true also.

The first alternatives of (ii) a,b imply that there is no forward or backward flow property which
is altered by insertion of block b, while the second alternatives imply that even if certain properties
are altered, their alteration does not affect code movement in the program. For example, consider
the flow graph of Fig. 8. AVOUTb.. = true raises the possibility that some evaluation of e~ in some
descendant(s) of block b** might have become redundant if block b had not been inserted.
However, TRANSPb.. ANTLOCb. = true implies that e i is not anticipated at entry of b*, i.e. there
is no evaluation of e~ in any descendant of b* which was rendered partially redundant because of
AVOUTb.. = true. Thus, no code movement has been affected by inserting b.

Equivalence of the characterization models A,B for the purpose of code optimization can be
established as follows: The TESTI, SYNTH and TEST2 blocks of model A are equivalent to the
TESTI, CHAIN and TEST2 blocks of model B. If language semantics require control variable
initialization of an indexed do to be placed in SYNTH block of model A, then the same would
have to be placed in the CHAIN sub-block of model B. Model B is obtained from the
characterization of Fig. 6(a) by the following transformations:

(i) the edge(TESTl, DO-SUCC) has been replaced by the edge(DO-PRED, DO-SUCC). We can
consider this to be movement of the head of this edge across the TEST1 sub-block to the exit
of its predecessor block DO-PRED;

(ii) the edges (DO-END,TEST2) and (TEST2, DO-SUCC) have been replaced by the edge(DO-
END,DO-SUCC);

(iii) the edge (DO-END,TEST2) has been replaced by the edge(DO-END,DO-ENTRY)

Code optimization 75

That these transformations do not alter the effective data flow properties in a manner which
affect code movement in the program can be seen from the following lemmas.

Lemma 3.1. In a program flow graph, an edge (b.b ') can be replaced by the edges
{(b*, b')} V b* ~ pred (b) without affecting code movement optimization provided block b is inert.

Lemma 3.2. In a program flow graph, an edge (b*, b') can be replaced by an edge (b*. b) without
affecting code movement optimization provided (i) b e ancestor (b'), (ii) b' lies along all paths
starting on block b, and (iii) all blocks on the path from b to b' (including b but excluding b')
are inert.

Proofs of lemmas 3.1, 3.2 are obvious from the definition of an inert block.
Transformations (i), (ii) to obtain model B fall under purview of lemma 3.1. Transformation (iii)

is based on lemma 3.2. Equivalence of models A and B is thus proved. Hence the code movement
resulting from the use of model B would be the same as that resulting from the use of model A.
However, there is one difference in the optimization steps. Using model A, invariant code moved
from the loop would be placed in SYNTH by considering the property INSERTsywrH of the
Morel-Renvoise algorithm (equations 2.3). Using model B, only the code which can be placed into
DO-PRED or any of its predecessors would move out of the loop. Loop invariant code not
satisfying the zero-iteration safety constraint would not move out of the loop since SYNTH has
no independent existence. Such code needs to be identified separately after application of the
Morel-Renvoise algorithm. This code in its intermediate form of triples/quadruples would have
to be chained to the CHAIN sub-block of the DO block, so that the code generation pass can
properly explode the DO block into the blocks TESTI , SYNTH and TEST2. This code will be
the set of those expressions which satisfy the boolean conditional

AVOUTDo.E,~D • ANTINDo • PPINDo = true (3. I)

This requires only two boolean operations over bit vectors.
Theorem 3.1. It is feasible, safe and sufficient to introduce expressions identified by

AVOUTDo.END. ANTINDo. PPINDo = true into the SYNTH block of a DO loop.
Proof. (i) Let A N T I N ~ = false for an expression e~. Then the primary condition for hoisting

e~ out of the loop is violated. Any evaluations ofe~ existing in the loop are non invariant and hence
cannot be moved out.
(ii) let PPINDo = true, then either PPOUT b = true or AVOUT b = true V b E pred(DO) (equation
2.2). V b ~ pred(DO)~ PPOUTb = true, ei would be hoisted into block b or into a b* ~ ancestor (b).
If Yd'bEpred(DO)~PPOUTb = true, then AVOUT b, = true ¥ b '~ pred(DO), e~ is then simply
redundant in the loop and can be eliminated. In either case, e~ need not be inserted into SYNTH.
(iii) AVOUTDo.EN D = true implies P A V I N ~ = true, which in turn implies CONSTDo = true (equa-
tion 2.4). PPINoo = false implies 3 b ~ pred(DO)~ PPOUT b = false (equation 2.2). This must be
due to PPINDo-succ = false, i.e. it must be due to the safety of loop invariant movement vis-a-vis
the zero-iteration path. Hence e~ cannot be placed in b~pred(DO). At the same time
AVOUTDo.EN o = true implies that it can be hoisted out of the loop. Hence e~ can be placed in block
SYNTH.

4. C O N C L U D I N G R E M A R K S

Model B characterization for the while . . , do constructs requires introduction of a single DO
block per do construct. In this respect the optimization-time overheads are the same as for the
representation of repeat . . , until constructs (Fig. 3), except for the application of equation 3.1
after the data flow properties settle to their final values. Compared to model A, two less program
blocks are required to represent a loop, which can lead to savings of the order of 20~o as seen in
section 3.

Model B is also particularly convenient from another practical viewpoint--namely, the
profitability of optimizing a program. A major hindrance to high gains of optimizing while . . , do
loops is the safety constraint imposed by the presence of the zero-iteration path. This restricts the
movement of loop invariant code only to the SYNTH blocks of model A. In case of nested loops,
code would move out of at most one loop even if it is invariant of the entire nested loop structure.
Considering that traversal of zero-iteration paths occurs rarely in practice, and in any case a
programmer can be expected to have sufficient knowledge of the possibility of such traversal, it

76 D.M. DI-IAmIgHER£ and J. S. Ke~tu

is justifiable to relax safety constraints vis-a-vis the zero-i terat ion path under an explicit user option.
Other safety constraints would remain in force thus providing a good compromise between higher
gains o f opt imizat ion and complete safety. Even though provision of such an opt ion is likely to
be a controvers ia l issue, its practical gains cannot be ignored easily. Model B facilitates the
implementa t ion of this opt ion very easily. A loop would be characterized as in model B when
complete safety is required. When zero-i terat ion safety constra int is to be suppressed, the edge
connect ing the D O - P R E D and D O - S U C C blocks could be ignored while solving the data flow
equations.

S U M M A R Y

Recent research in code opt imizat ion has led to the development o f unified optimizing
t rans format ions like the generalized code m o v e m e n t t r ans format ion of Dhamdhere - I saac [6] and
Morel -Renvoise[10] , and the composi te hois t ing-and-s t rength reduction t ransformat ion of
Dhamdhere - I s aac [8] and Josh i -Dhamdhere [9] , These t ransformat ions involve bi-directional data
flow prob lems over the p rog ram flow graph. Solution of these data flow problems require use of
i terative solut ion methods. Opt imizers using these t rans format ions incur high Optimization costs
due to the high time complexi ty o f these iterative solution methods.

Appropr i a t e character izat ion of p rogram loops is very critical in this context so as (i) not to
hinder code movemen t , and (ii) to restrict op t imiza t ion overheads to low levels. For example, it
is found that convent ional character izat ion o f loops can block movemen t of loop invariant code
out o f W h i l e . . . do loops due to the constraints o f safety of code movemen t optimization. Simple
expedients o f overcoming this d rawback require in t roduct ion o f new blocks in the p rog ram flow
graph. It is found that opt imizat ion- t ime overheads o f this approach can be as high as 20~.

This paper proposes an alternative character izat ion of p rog ram loops which satisfies both the
criteria ment ioned above. Correctness of code opt imiza t ion using this character izat ion is formally
proved. This character izat ion guarantees safety o f code m o v e m e n t and incurs no extra opt imizat ion
time overheads. It also has the nice p roper ty that it enables profitabil i ty of opt imizat ion to be
enhanced by suppressing the safety o f opt imizat ion vis-a-vis the zero-i terat ion path of a w h i l e . . , do

loop under a user option. This character izat ion has been successfully used in an opt imizing
extended For t ran-77 compiler.

R E F E R E N C E S

1. Aho A. V. and Ullman J. D., Principles of Compiler Design. Addison-Wesley, Reading, Massachusetts (1977).
2. Cocke J. and Kennedy K., An algorithm for reduction of operator strength. Commun. Ass. Comput. Mach. ! 1, 850--856

(1977).
3. Dhamdhere D. M., Compiler Construction--Principles and Practice. Macmillan, India (1983).
4. Schaefer M., A Mathematical Theory of Global Program Optimization. Prentice-Hall, Englewood Cliffs, New Jersey

(1973).
5. Wulf W., The Design of an Optimicing Compiler. Elsevier, New York (1975).
6. Dhamdhere D. M. and Isaac J. R., Profitability of code movement optimization. Computer Centre Report, I.I.T.

Bombay (1978).
7. Morel E. and Renvoise C., Global optimization by suppression of partial redundancies. Commun. Ass. Comput. Mach.

22, 96--103 (1979).
8. Dhamdhere D. M. and Isaac J. R., A composite algorithm for strength reduction and code movement optimization.

Int. J. Comput. Information. Sci. 9, 243-273 (1980).
9. Joshi S. M. and Dhamdhere D. M., A composite hoisting-strength reduction transformation for global program

optimization--Parts I & II. Int. J. Comput. Math. 11, 21-41 and 111-126 (1983).
10. Kennedy K., Safety of code movement. Int. J. Comput. Math. 3, 112-130 (1972).
II. Joshi S. M., Complexity of some unusual data flow problems. Computer Science Report, T.I.F.R. Bombay (1981).

About the Author--DHANANJAY MADHAV DHAMDHERE received his B. Tech. and M. Tech. degrees in
Electrical Engineering from Indian Institute of Technology, Bombay in 1970 and 1972, and Ph.D. in
Computer Science also from Indian Institute of Technology, Bombay in 1979.

Dr Dhamdhere joined the staff of Indian Institute of Technology, Bombay in 1972 as a Research
Associate. In 1974 he became an Assistant Professor of Computer Science, a post which he continues to
hold today. He held the additional charge of System Software group during 1974--81 for the Institute's
EC-1030 computer system. His teaching and research interests are in the area of programming languages,
compilers and operating systems. He is the author of many research papers and two books entitled
Compiler Construction and Introduction to Syrtem Software.

About the Author--JATINDER SINGH KEI'rH received his M. Tech. degree in Computer Science from the
Indian Institute of Technology, Bombay in 1981. His interests are in the area of programming languages.

