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Abstract--Recent work in code optimization has led to development of  new unified optimizing 
transformations[6,7]. Application of  these transformations requires solution of bi-directional data flow 
problems over program flow graphs using iterative solution techniques. Appropriate characterization of 
program loops in the flow graph is necessary so as (i) not to hinder code movement, etc., and (ii) restrict 
optimization overheads to low levels. This paper reviews alternate loop characterizations and proposes 
a characterization which leads to minimum overheads and has certain nice properties from a practical 
viewpoint. 

I .  I N T R O D U C T I O N  

Program loops are a fertile source of optimization possibilities. Program optimizers therefore spend 
a considerable amount of time and effort on the optimization of program loops. Common program 
transformations applied for loop optimization are: 

(i) movement of loop invariant computations to places outside the loops; 
(ii) strength reduction, i.e. replacement of operations consuming large amounts of processor time 

by operations which are performed faster; 
(iii) assignment of registers to hold values frequently accessed within a loop. 

Conventional approach to loop optimization entails applying individual optimizing trans- 
f6rmations to program loops one after another. Thus, after identifying a program loop, the 
transformation of moving loop invariant computations out of a loop could be applied followed 
by the strength reduction optimization for computations remaining within the 1oop[1,2,3]. This 
approach requires identification of program loops through analysis of the control flow within the 
program (the so called proper loops [4]). Since this involves considerable effort on the part of the 
optimizer, it results in high optimization costs. Certain optimizers like the BLISS optimizing 
compiler[5] attempted to reduce optimization cost by restricting optimization to program loops 
implemented through iteration control constructs like while.. ,  do, repeat.. ,  until, etc. of the source 
language. This eliminates the need to identify program loops though at the cost of failure to 
optimize loops implemented through i f . . .  then goto . . ,  constructs. 

Recent research in code optimization has attempted to reduce optimization costs through 
unification of certain conventional transformations. One such unification which might be termed 
generali:ed code movement unifies common subexpression elimination, code hoisting and loop 
invariant movement within one framework[6,7]. This unified framework can apply code movement 
to arbitrary program topologies without the need to identify program regions or program 
loops, thus bringing about a significant reduction in the optimization costs. Another important 
unification is achieved by integrating the optimization of strength reduction with generalized code 
movement[8,9], which on one hand enhances profitability of program optimization and on the 
other hand leads to significant savings in the optimization effort. Both the Morel-Renvoise[7] and 
Joshi-Dhamdhere[9] algorithms use program data flow analysis techniques to collect information 
regarding the definition and use of program variables preparatory to the optimization. A program 
is represented in the form ofa  program flow graph in order to apply the data flow analysis equations. 
Program loops implemented through repeat.. ,  until . . ,  or similar HLL constructs are easily 
represented in the flow graph, however representation of while.. ,  do loops in the program flow 
graph poses certain interesting problems. Variant loop characterizations are possible, each with 
different attendant optimization costs. This paper presents a characterization for while.. ,  do loops 
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which leads to minimum optimization cost, and also enjoys certain other advantages from a 
practical viewpoint. 

This paper is organized into 4 sections. Section 2 introduces the notation and certain concepts 
regarding program flow analysis. The Morel-Renvoise and Joshi-Dhamdhere unifications are then 
reviewed. Section 3 develops a practical characterization for while.., do loops and illustrates its 
properties and advantages. For reasons of simplicity and brevity, illustrative examples used 
throughout this discussion are based on the Morel-Renvoise algorithm; however the issues being 
discussed are equally applicable to the Morel-Renvoise and Joshi-Dhamdhere algorithms. The last 
section summarizes the utility of our characterization from a practical viewpoint. 

2. THE UNIFIED O P T I M I Z I N G  T R A N S F O R M A T I O N S  

2.1 Notation and definitions 

Definition 2.1. A basic block of a program is a sequence of instructions £ = (it, i2 . . . . .  i m) such 
that only it can be the destination of a branch instruction and only im can be a branch instruction. 

Definition 2.2. A program flow graph for a program P is a triple (N, E, no) where N is the set 
of nodes of the flow graph such that each node ni e N is a basic block of program P. E is the set 
of edges (n~, nj), ni, nj ~ N, such that control can pass from the basic block n~ to the basic block 
nj in P. n o corresponds to the unique entry node of program P. 

Definition 2.3. In a program flow graph (N, E, no), a node n~ is a predecessor of nj iff there exists 
an edge (ni, nj) in E. A node nk is an ancestor of n i iff there exists a path from nk to nj in the program 
flow graph. The terms successor and descendant are analogously defined. 

Pred (n~), ancestor (n~) represent the set of all predecessors and ancestors of node n~ in the 
program flow graph respectively. Similarly succ (n~) and descendant (n~) represent the set of all 
successors and descendants of n~. 

Definition 2.4. An expression e~ is said to be available at a program point in a flow graph if every 
path from the initial node to that program point contains an evaluation of e~ not followed by a 
definition of any operands of e~. 

2.2 The Morel-Renvoise and Joshi-Dhamdhere algorithms 

The Morel-Renvoise algorithm[7] performs program optimization by suppressing partial 
redundancies in the program. The occurrence of an expression ei in block b is partially redundant 
if (i) the expression is locally anticipable, i.e. evaluation of the expression is not preceded in the 
block by a definition of any of its operands, and (ii) the expression is partially available at b, i.e. 
there exists a block b* ~ pred (b) such that e~ is available at the exit of b*. A partially redundant 
computation in block b can be made totally redundant by inserting computations of e~ in some 
blocks {b'} c ancestor (b) such that ei becomes available at entry of block b. The set {b'} should 
be so selected that: 

(i) there does not exist a definition of any operand ofe~ along the path from a block {b'} to block 
b; 

(ii) on every path from the initial node n o to block b which does not pass through a b', there exists 
a node bk such that e~ is evaluated in bk and there does not exist a definition of any operand 
of e i along the path from bk to block b; 

(iii) selection of the set {b'} is optimally profitable from the viewpoint of execution time of the 
optimized program. 

The concept of partial redundancy subsumes total redundancy, hence common subexpressions 
become a special case of partially redundant expressions with {b'} = ~b. Partial redundancy also 
extends to loop invariant expressions within a loop, since an invariant expression is available along 
the back edge implementing the loop. 

The Morel-Renvoise algorithm performs code movement using the data flow equations shown 
in Table 1. AVINb/AVOUT b are properties associated with a block reflecting the availability of 
an expression at its entry/exit. This is a standard forward-flow problem in flow analysis. 
Anticipability of an expression at entry/exit (ANTINb/ANTOUTb) is computed using the property 
of local anticipability and the absence of a definition of an operand of e~. PAVINb/PAVOUTb 
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A V O U T  b = COMPs, + AVIN~, . T R A N S P  b 

AVINb = 17 AVOUT~ 
p~ predlb~ 

A N T I N  b = A N T L O C  b + T R A N S P  b. A N T O U T  b 

A N T O U T b  = I"[ ANTIN~ 
l e s u c ~ b l  

P A V O U T  b = C O M P  b + T R A N S P  b . P A V I N  b 

P A V I N  b = ~ PAVOUTp  
pcpRdtb) 

P P I N  b = CONST~.  ( A N T L O C  b + T R A N S P  b . P P O U T  b).[  I-I (PPOUTp + AVOUTp)]  

PPOUT b= ~ PPIN, 
Sesucclb~ 

INSERTb = PPOUTb.-7 AVOUTb.(7 PPINt, + ~ TRANSPb) 

(2.l)  

(2.2) 

(2.3) 

Where: 

COMPn = 

T R A N S P  b = 
C O N S T  b = 

true iff  block b contains  a computa t ion  of  the expression not followed by a definition of  arty of  its 
operands;  
true iff  block does not contain a definition of  any operand of  the expression; 
A N T I N  b . ( P A V I N  b + "a A N T L O C  b . TRANSPb) .  (2.4) 

reflect partial availability of an expression at block entry and exit. This is used as a criterion to 
block mere proliferation of code without any attendant gain. PPINb/PPOUTb indicate whether it 
is possible to place e~ at entry/exit of a block according to the criteria of feasibility and safety of 
code placement. From the blocks for which PPINb/PPOUTb are true, equation (2.3) selects the 
blocks which should constitute the set {b'} where computations of e~ are to be inserted. 

We will not elaborate on the basis of the equations here. Interested readers are referred to the 
original paper[7] for relevant details or to[9] for a slight improvement of the original algorithm. 
Here we will only introduce the concept of safety of code movement and see how it is incorporated 
in the Morel-Renvoise algorithm. Use of the anticipability term in equations (2.2) implies that a 
computation is inserted in a block only if the computation occurred along all paths through that 
block in the original program. In other words, no new computations would be inserted along any 
path. Thus, no exceptional situations like arithmetic overflows/underflows would occur in the 
optimized program which would not have occurred in the original program. This is the criterion 
of safety of code movement[10]. Figure 1 illustrates the results of applying the Morel-Renvoise 
algorithm to a program. Evaluation of a*b in block 2 is totally redundant, hence it is eliminated. 
a*b of block 4 is partially redundant because of its loop invariance. It is therefore hoisted out of 
the loop and inserted in block 3. 

Data flow equations for the basic Joshi-Dhamdhere algorithm are shown in Table 2. This 
algorithm replaces a high strength expression v~*constant by a reference to temporary location tt. 
A Q-unit definition of t~ is placed (QINSERT b = true) in a path following a Q-unit definition 
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Table 2. The Josh i -Dhamdhere  algorithm 

XPPIN~ = (ANTLOC~ + XTRANSP~.  X P P O U T b ) . [  [-1 (XPPOUTp + AVOUTp)]  
p_=prmJqb~ 

XPPOUT~ = 1 7  XXPIN~ 
~E SU~.'Ci b ~ 

Q I N S E R T  b = X P P O U T  b . ~ A V O U T  b . (-~ XPPIN,  + -'7 X T R A N S P , )  
O I N S E R T  b = X P P O U T  b . O U N I T  b. ~ Q I N S E R T  b 

Where: 

O U N I T  b = true iff block b: (i) does not contain a Q-unit definition of  variable v L , (ii) contains a 0-unit definition 
of  v~ not followed by an expression involving vt; 

X T R A N S P  b = T R A N S P  b + OUNIT~;  
A N T L O C b . A V O U T  b, T R A N S P ,  as in MoreI-Renvoise algorithm. 

v~ = (expression), while a 0-unit definition of h is placed (OINSERTb = true) in a path following 
a 0-unit definition vj = v~ + constant. An illustration of strength reduction is contained in Fig. 2. 
QINSERT = true for blocks 1 and 4, while OINSERT = true for blocks 3. Space restrictions 
preclude any detailed discussion of this algorithm. Interested readers are referred to Re{'. [9] for 
relevant details and certain refinements of this algorithm. 

In both the algorithms, information flows from a block to its predecessors as also to its 
successors. This bi-directional data flow precludes the possibility of using faster techniques of 
solving data flow equations. The solutions are therefore obtained by iterating over the equations 
until the properties settle to their final values. It is reported that 4 to 6 iterations are required for 
the solution of the data flow problems[7,9]. Joshi[l i] proves that the upper limit on the number 
of iterations required using depth-first numbering of blocks is d' + 2 where d' is the depth of an 
augmented program flow graph P*. 

3. CHARACTERIZATION OF LOOPS 

Figure 3 illustrates the representation of a loop as envisaged by conventional loop optimization 
techniques. A synthetic block SYNTH is placed along all entry-edges of the loop. Loop invariant 
computations are moved from the loop body to SYNTH so that they are evaluated only once prior 
to loop entry instead of being evaluated for every iteration of the loop. Safety considerations 
restrict the scope of code movement to loop invariant expressions occurring in blocks which lie 
along all paths from loop entry to loop exits (the articulation blocks of the loop[4]). This 
characterization is primarily applicable to repeat.. ,  until kind of loops implemented either through 
HLL constructs or through ~f... t hen . . . go to . . ,  conditionals. An important property of these 
loops which facilitates their optimization is that the loop body is traversed at least once whenever 
control reaches the ENTRY blocks during program execution. Thus, moving a*b into SYNTH 
does not constitute insertion of a new computation along a program path if care is taken to see 
that a*b occurred in an articulation block of the loop. 

This characterization cannot be extended naturally to while.. ,  do loops--whether indexed or 
non-indexed. Consider the illustration of Fig. 4 where a*b occurring within an articulation block 
of the loop is moved into SYNTH. Since the loop test is carried out at the start of loop, it is possible 
that during execution a loop may not be executed even once. Placement of a*b into SYNTH is 
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TEST 

z e r o - i f e r o t ~ n  
p o f h  

AL/  

Fig.  3 Fig.  4 
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thus unsafe unless the loop exit block or its successors also contained evaluations of a*b. Since 
the Morel-Renvoise algorithm incorporates the safety criteria, such code would not move out of 
the loop at all. Considering the preponderance of simple while.. ,  do and indexed while.., do 
constructs in contemporary higher level programming languages (e.g. for statements of PL I.Algol, 
Pascal, the new DO of Fortran-77 etc.), this limitation is very severe and needs to be eliminated 
for worthwhile program optimization. 

Figure 5 shows a possible characterization of the while.. ,  do loop (hereafter referred to as model 
A characterization) which eliminates above drawbacks. The synthetic block SYNTH is placed 
under the loop control condition housed in TESTI. TEST2 houses an identical condition and is 
part of the loop. If the loop concerned is an indexed while.. ,  do, then control variable initialization 
would be housed in TESTI or in SYNTH according to language semantics, while incrementation 
etc. could be housed in TEST2. Duplication of the loop test permits loop invariant computations 
to move out of the loop. In case of nested loops, movement of the invariant computations through 
successive levels of nesting would be governed by safety vis-a-vis the zero iteration path. If the 
computations are anticipated at entry to the DO-SUCC block, then they are automatically 
candidates for movement across the TESTI block. 

The cost of using the model A characterization in an optimizing compiler is quite considerable. 
Two synthetic blocks TESTI and SYNTH have to be introduced in the program flow graph to 
facilitate movement of loop invariant code. Those blocks have to take part in the data flow analysis 
of Morel-Renvoise or Joshi-Dhamdhere algorithms. If we consider a program wherein 10% of the 
basic blocks are the TEST blocks due to while.. ,  do constructs, this loop characterization would 
lead to insertion of 20~o new blocks, hence 20~ overheads. In the following we develop an 
alternative characterization aimed at reducing these optimization overheads. 

An alternatit'e characterization 

Figure 6 illustrates an alternative characterization and an exploded view of the same which 
resembles the characterization model A. In this characterization no new blocks need to be 
introduced in the program graph to represent a while.. ,  do loop. Under the assumption made 
above (i.e. assuming 10~ of program blocks are while.. ,  do blocks), there is no change in the 
number of program blocks as against a 20~ increase in the same when model A was used. Figure 
7 illustrates a modified view of this alternative characterization (we will call this the model B 
characterization) which we propose as the model for use in program optimization. We will first 
prove the equivalence of this model to the original model of Fig. 5 from the viewpoint of 
optimization, and then consider the practical aspects of its use. 

Definition 3.1. An empty block is one which does not contain any computations whatsoever, i.e. 
does not contain any expression evaluations or any variable definitions. 

Definitions 3.2. An #left block is one which, when inserted (or existing) along one or more edges 
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incident on a program block or emanating from it, does not alter the data flow properties of the 
program in a way which would affect the movement of code over the program. A block b is inert 
if it satisfies one of the following conditions: 

(i) block b is (a) empty, or (b) devoid of any definitions; 
(ii) if there exists in b a definition of one of the operands of an expression e~, then the following 

conditions are satisfied: 

(a) V b* ~ pred(b), AVOUTb. = false, 

o r  

V b* ~ succ(b), b** ~ pred(b*) ~ AVOUTb.. = true, 

TRANSPb.. ANTLOCb. = true also, 

(b) V b* e succ(b), ANTINb. = false, 

o r  

V b* ~ pred(b), b** E succ(b*) ~ ANTINb.. = true, 

TRANSPb.. COMP b. = true also. 

The first alternatives of (ii) a,b imply that there is no forward or backward flow property which 
is altered by insertion of block b, while the second alternatives imply that even if certain properties 
are altered, their alteration does not affect code movement in the program. For example, consider 
the flow graph of Fig. 8. AVOUTb.. = true raises the possibility that some evaluation of e~ in some 
descendant(s) of block b** might have become redundant if block b had not been inserted. 
However, TRANSPb.. ANTLOCb. = true implies that e i is not anticipated at entry of b*, i.e. there 
is no evaluation of e~ in any descendant of b* which was rendered partially redundant because of 
AVOUTb.. = true. Thus, no code movement has been affected by inserting b. 

Equivalence of the characterization models A,B for the purpose of code optimization can be 
established as follows: The TESTI, SYNTH and TEST2 blocks of model A are equivalent to the 
TESTI, CHAIN and TEST2 blocks of model B. If language semantics require control variable 
initialization of an indexed do to be placed in SYNTH block of model A, then the same would 
have to be placed in the CHAIN sub-block of model B. Model B is obtained from the 
characterization of Fig. 6(a) by the following transformations: 

(i) the edge(TESTl, DO-SUCC) has been replaced by the edge(DO-PRED, DO-SUCC). We can 
consider this to be movement of the head of this edge across the TEST1 sub-block to the exit 
of its predecessor block DO-PRED; 

(ii) the edges (DO-END,TEST2) and (TEST2, DO-SUCC) have been replaced by the edge(DO- 
END,DO-SUCC); 

(iii) the edge (DO-END,TEST2) has been replaced by the edge(DO-END,DO-ENTRY) 
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That these transformations do not alter the effective data flow properties in a manner which 
affect code movement in the program can be seen from the following lemmas. 

Lemma 3.1. In a program flow graph, an edge (b.b ' )  can be replaced by the edges 
{(b*, b')} V b* ~ pred (b) without affecting code movement optimization provided block b is inert. 

Lemma 3.2. In a program flow graph, an edge (b*, b') can be replaced by an edge (b*. b) without 
affecting code movement optimization provided (i) b e ancestor (b'), (ii) b' lies along all paths 
starting on block b, and (iii) all blocks on the path from b to b' (including b but excluding b') 
are inert. 

Proofs of lemmas 3.1, 3.2 are obvious from the definition of an inert block. 
Transformations (i), (ii) to obtain model B fall under purview of  lemma 3.1. Transformation (iii) 

is based on lemma 3.2. Equivalence of  models A and B is thus proved. Hence the code movement 
resulting from the use of  model B would be the same as that resulting from the use of model A. 
However, there is one difference in the optimization steps. Using model A, invariant code moved 
from the loop would be placed in SYNTH by considering the property INSERTsywrH of the 
Morel-Renvoise algorithm (equations 2.3). Using model B, only the code which can be placed into 
DO-PRED or any of  its predecessors would move out of the loop. Loop invariant code not 
satisfying the zero-iteration safety constraint would not move out of the loop since SYNTH has 
no independent existence. Such code needs to be identified separately after application of the 
Morel-Renvoise algorithm. This code in its intermediate form of triples/quadruples would have 
to be chained to the CHAIN sub-block of  the DO block, so that the code generation pass can 
properly explode the DO block into the blocks TESTI ,  SYNTH and TEST2. This code will be 
the set of those expressions which satisfy the boolean conditional 

AVOUTDo.E,~D • ANTINDo • PPINDo = true (3. I ) 

This requires only two boolean operations over bit vectors. 
Theorem 3.1. It is feasible, safe and sufficient to introduce expressions identified by 

AVOUTDo.END. ANTINDo. PPINDo = true into the SYNTH block of a DO loop. 
Proof. (i) Let A N T I N ~  = false for an expression e~. Then the primary condition for hoisting 

e~ out of the loop is violated. Any evaluations ofe~ existing in the loop are non invariant and hence 
cannot be moved out. 
(ii) let PPINDo = true, then either PPOUT b = true or AVOUT b = true V b E pred(DO) (equation 
2.2). V b ~ pred(DO)~ PPOUTb = true, ei would be hoisted into block b or into a b* ~ ancestor (b). 
If Yd'bEpred(DO)~PPOUTb = true, then AVOUT b, = true ¥ b '~  pred(DO), e~ is then simply 
redundant in the loop and can be eliminated. In either case, e~ need not be inserted into SYNTH. 
(iii) AVOUTDo.EN D = true implies P A V I N ~  = true, which in turn implies CONSTDo = true (equa- 
tion 2.4). PPINoo = false implies 3 b ~ pred(DO)~ PPOUT b = false (equation 2.2). This must be 
due to PPINDo-succ = false, i.e. it must be due to the safety of loop invariant movement vis-a-vis 
the zero-iteration path. Hence e~ cannot be placed in b~pred(DO).  At the same time 
AVOUTDo.EN o = true implies that it can be hoisted out of the loop. Hence e~ can be placed in block 
SYNTH. 

4. C O N C L U D I N G  R E M A R K S  

Model B characterization for the while . . ,  do constructs requires introduction of a single DO 
block per do construct. In this respect the optimization-time overheads are the same as for the 
representation of repeat . . ,  until constructs (Fig. 3), except for the application of equation 3.1 
after the data flow properties settle to their final values. Compared to model A, two less program 
blocks are required to represent a loop, which can lead to savings of  the order of 20~o as seen in 
section 3. 

Model B is also particularly convenient from another practical viewpoint--namely, the 
profitability of optimizing a program. A major hindrance to high gains of optimizing while . . ,  do 
loops is the safety constraint imposed by the presence of the zero-iteration path. This restricts the 
movement of loop invariant code only to the SYNTH blocks of model A. In case of nested loops, 
code would move out of at most one loop even if it is invariant of the entire nested loop structure. 
Considering that traversal of zero-iteration paths occurs rarely in practice, and in any case a 
programmer can be expected to have sufficient knowledge of  the possibility of such traversal, it 
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is justifiable to relax safety constraints  vis-a-vis the zero-i terat ion path under an explicit user option. 
Other  safety constraints  would remain in force thus providing a good compromise  between higher 
gains o f  opt imizat ion  and complete  safety. Even though provision of  such an opt ion is likely to 
be a controvers ia l  issue, its practical gains cannot  be ignored easily. Model  B facilitates the 
implementa t ion  of  this opt ion very easily. A loop would be characterized as in model  B when 
complete  safety is required. When zero-i terat ion safety constra int  is to be suppressed, the edge 
connect ing the D O - P R E D  and D O - S U C C  blocks could be ignored while solving the data  flow 
equations.  

S U M M A R Y  

Recent  research in code opt imizat ion  has led to the development  o f  unified optimizing 
t rans format ions  like the generalized code m o v e m e n t  t r ans format ion  of  Dhamdhere - I saac [6 ]  and 
Morel -Renvoise[10] ,  and the composi te  hois t ing-and-s t rength reduction t ransformat ion  of  
Dhamdhere - I s aac [8 ]  and Josh i -Dhamdhere [9 ] ,  These t ransformat ions  involve bi-directional data  
flow prob lems  over  the p rog ram flow graph.  Solution of  these data  flow problems require use of  
i terative solut ion methods.  Opt imizers  using these t rans format ions  incur high Optimization costs 
due to the high time complexi ty  o f  these iterative solution methods.  

Appropr i a t e  character izat ion of  p rogram loops is very critical in this context  so as (i) not to 
hinder code movemen t ,  and (ii) to restrict op t imiza t ion  overheads  to low levels. For  example,  it 
is found that  convent ional  character izat ion o f  loops can block movemen t  of  loop invariant  code 
out  o f  W h i l e . . .  do loops due to the constraints  o f  safety of  code movemen t  optimization.  Simple 
expedients o f  overcoming  this d rawback  require in t roduct ion o f  new blocks in the p rog ram flow 
graph.  It is found that  opt imizat ion- t ime overheads  o f  this approach  can be as high as 20~.  

This paper  proposes  an alternative character izat ion of  p rog ram loops which satisfies both the 
criteria ment ioned above.  Correctness  of  code opt imiza t ion  using this character izat ion is formally 
proved.  This character izat ion guarantees  safety o f  code m o v e m e n t  and incurs no extra opt imizat ion 
time overheads.  It also has the nice p roper ty  that  it enables profitabil i ty of  opt imizat ion to be 
enhanced by suppressing the safety o f  opt imizat ion  vis-a-vis the zero-i terat ion path  of  a w h i l e . . ,  do 

loop under  a user option.  This character izat ion has been successfully used in an opt imizing 
extended For t ran-77  compiler.  
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