
CODE OPTIMISATION
MOTIVATION :To produ
e target programs with high exe
utioneÆ
ien
y.Constraints :(a) Maintain semanti
 equivalen
e with sour
e program.(b) Improve a program without
hanging the algorithm.
Need :(a) `Permissive' programming languages provide many
ex-ibilities, often leading to ineÆ
ient
oding. For example,a := a+ 1; where a is `real' requires a type
onversion of`1' to `1.0'. An optimising
ompiler
an avoid type
on-version during the exe
ution of the program by usingthe
onstant `1.0' instead of `1'.(b) Due to the in
reasing
ost of programmer time, pro-grammers do not pay suÆ
ient attention to exe
utioneÆ
ien
y of programs. Hen
e the need for optimisationduring
ompilation.

Code Optimisation : 1

CODE OPTIMISATION
EFFECTIVENESS :A very old resultWhen optimised by the IBM/360 Fortran H
ompiler(of mid-sixties vintage),� a program exe
utes 3 times faster� a program o

upies 25% less storage
Contemporary s
enarioImprovements due to optimistion may be more dra-mati
 in
ontemporary
ompilers be
ause� More e�e
tive optimisation te
hniques are available.� Today, less emphasis is put on exe
ution eÆ
ien
y than onother attributes of a program like stru
ture, maintainabil-ity, reusability of a program, et
. Code sharing and re-useleads to a `bla
k box' view of programs, whi
h further de-emphasises exe
ution eÆ
ien
y.� Exploitation of advan
ed ar
hite
tural features like instru
-tion pipelining requires `smart'
ode generation, whi
h isonly possible in an optimising
ompiler.

Code Optimisation : 2

CODE OPTIMISATION
Q : Can a programmer out-perform an optimiser ?YES ! This is possible by(i)
hoosing a better algorithm.(ii)knowing more about the de�nitions and uses of dataitems in the program e.g. a programmer may knowrelative probabilities of bran
hes being taken. Also,(a) An optimiser has to ensure
orre
tness of theoptimised program under all
onditions, hen
eit has to be
onservative(b) An optimiser may miss optimisation opportu-nities be
ause of this.Also, NO ! Be
ause(i) It takes too mu
h time to perform some optimisationsby hand, viz. strength redu
tion,
opy propagation,dead
ode elimination.(ii)Certain ma
hine level details are beyond the
ontrolof a programmer, viz. instru
tions and addressingmodes supported by the target ma
hine.

Code Optimisation : 3

CODE OPTIMISATION
LEVELS OF OPTIMISATION(a) Ma
hine dependent optimisations, e.g.1. better
hoi
e of instru
tions,e.g. INC instead of a load-add-store sequen
e2. better use of addressing modes,e.g. base-displa
ement-o�set addressing, et
.3. better use of ma
hine registers.(b) Ma
hine independent optimisations :Based on semanti
s preserving transformations appliedindependent of the target ma
hine, e.g.
ommon sub-expression elimination, loop optimisation, et
.

Code Optimisation : 4

CODE OPTIMISATIONMACHINE INDEPENDENT OPTIMISATIONCost-e�e
tiveness of ma
hine independent transfor-mations depends on their s
ope.(a) Lo
al OptimisationS
ope is restri
ted to essentially sequential se
tions of pro-gram
ode (
alled basi
 blo
ks { de�ned later). This re-stri
ts the amount of analysis ne
essary.It also restri
ts� the kinds of optimisation feasible, and� the gains of optimisation.e.g. loop optimisation
an not be performed lo
ally.(b) Global OptimisationGlobal optimisation is applied to a larger se
tion of aprogram than a basi
 blo
k, typi
ally a loop or a pro
e-dure/fun
tion.Knuth (1971) reports speed-up fa
tors of� � 1.4 due to lo
al optimisation� � 2.7 due to global optimisation
Code Optimisation : 5

CODE OPTIMISATION
Why separate Lo
al and Global optimisation ?

(a) Lo
al optimisation simpli�es global optimisation :Consider elimination of redundant
omputations withina basi
 blo
k of
odea � b� � �a � b (assumed eliminatedby lo
al optimisation
Thus, global optimisation only needs to
onsider the �rsto

urren
e of a � b within a basi
 blo
k.(b) Lo
al optimisation
an be merged with the preparatoryphase of global optimisationCommon sub-expressions,
onstant propagation, et
.
anbe performed while
onverting a program to triples orquadruples.

Code Optimisation : 6

OPTIMISING TRANSFORMATIONS
1. COMPILE-TIME EVALUATIONShifting exe
ution time a
tions to
ompilation time,su
h that they are not performed (repeatedly) during the exe-
ution of the program.(a) Folding Evaluation of an expression with
onstant operandsat
ompilation time. In e�e
t, an expression is repla
ed by asingle value (hen
e the term `folding').Example : area = (22:0=7:0)*r**222.0/7.0
an be performed during
ompilation itself.Note : Typi
al appli
ations of folding are in address
al
ula-tion for array referen
es, where produ
ts of many
onstants are`folded' into single
onstant values.

Code Optimisation : 7

OPTIMISING TRANSFORMATIONS
1. COMPILE-TIME EVALUATION (Contd.)(b) Constant PropagationPropagation implies repla
ement of a variable v by anentity appearing on the rhs of an assignment to v. Constantpropagation is applied when v is assigned the value of a
onstant.This enhan
es the s
ope of optimisation by folding.Example : a := 3:1;� � �x := a � 2:5;a � 2:5
an be evaluated as 3:1� 2:5 during
ompilation.Q : Under what
onditions is it
orre
t to perform
onstantpropagation ?

Code Optimisation : 8

OPTIMISING TRANSFORMATIONS1(b). CONSTANT PROPAGATION (Contd.)

a+ 7 10
a := b 43

2
a := 5:2 1

5x := 5 6 x := 5 78x+ 17 9

����	 ����R? ���	 ���R?��� ���R ���	?����	

?
����������R

?

Conditions for
onstant propagation :A variable should be assigned the same
onstant valuealong all paths rea
hing its use.In the above
ontrol
ow graph (formal de�nition later)
onstant propagation and folding is possible for x + 17 of blo
k9, however it is not possible for a + 7 of blo
k 10. (Q: Why ?)Code Optimisation : 9

OPTIMISING TRANSFORMATIONS
2. COMMON SUB-EXPRESSION ELIMINATION (CSE)An expression need not be evaluated if an equivalentvalue is available and
an be used. temp := b �
;a := b �
; a := temp;� � �) � � �x := b �
+ 5; x := temp+ 5;Typi
ally, the s
ope is restri
ted to lexi
ally equivalentexpressions whi
h evaluate to identi
al values during the exe
u-tion of the program.Q : Under what
onditions is CSE optimisation feasible ?(Hint : We must preserve semanti
 equivalen
e !)A : Values of the operands must not
hange along any pathbetween the two o

urren
es (i.e. the expression mustbe available).

Code Optimisation : 10

OPTIMISING TRANSFORMATIONS2. COMMON SUB-EXPRESSION ELIMINATION (Contd.)

a � b 10

 � b 43

 := a 2 a � b 1

x+ y 5x := z 6 7x+ y 89

����	 ����R? ���	 ���R?��� ���R ���	?����	
?

���������R
1. a � b of blo
k 10 is a
ommon subexpression. (Note thatmany o

urren
es of a � b may exist in blo
k 10 of theprogram, some of whi
h may be eliminated by lo
al op-timisation. Global optimisation is only
on
erned withelimination of the �rst o

urren
e in the blo
k.)2. x+ y of blo
k 8 is not a
ommon subexpression,3.
� b of blo
k is 4 is also a
ommon subexpression, howeverit is harder to dete
t (non-lexi
al equivalen
e !).Code Optimisation : 11

OPTIMISING TRANSFORMATIONS
3. VARIABLE PROPAGATIONUse of a variable v1 in pla
e of variable v2.Example :stmt no. statement1.
 := d;2. � � �3. � � �10. z :=
+ e;11. x := d+ e� 79:8;

Use of d in pla
e of
 in statement no. 10 opens up thepossibility of identifying d+ e of statement no. 11 as a
ommonsub-expression.Q : Under what
onditions
an variable propagationbe performed ?

Code Optimisation : 12

OPTIMISING TRANSFORMATIONS3. VARIABLE PROPAGATION (Contd.)

a � b 10

 := 10 43

2
a :=
 1

x := z 56 7x+ y 89

����	 ����R? ���	 ���R?��� ���R ���	?����	

?
����������R

?

Conditions for variable propagation :Along all paths rea
hing its use, a variable should beassigned the value of the same rhs variable, and neither variableshould be modi�ed following su
h assignment.a
an not be repla
ed by
 in blo
k 10 due to
 := 10of blo
k 4. However, x
an be repla
ed by z in blo
k 8.
Code Optimisation : 13

OPTIMISING TRANSFORMATIONS
4. CODE MOVEMENT OPTIMISATIONMove the
ode in a program so as to� Redu
e the size of the program,| Code spa
e redu
tion� Redu
e the exe
ution frequen
y of the
ode subje
ted tomovement.| Exe
ution frequen
y redu
tionExample : Code spa
e redu
tion by hoistingtemp := x " 2;if a < b then if a < b thenz := x " 2; z := temp;� � �) � � �else elsey := x " 2 + 19; y := temp+ 19;Code for x " 2 is generated only on
e in the optimised program,as against twi
e in the original program.

Code Optimisation : 14

OPTIMISING TRANSFORMATIONS
4. CODE MOVEMENT OPTIMISATION (Contd.)Examples of Exe
ution Frequen
y Redu
tion(a) Hoisting of
odeif a < b then if a < b thenz := x " 2; temp := x " 2;� � �) z := temp;else elsey := 19; y := 19;temp := x " 2;g := x " 2; g := temp;During exe
ution, x " 2 was evaluated twi
e in theoriginal program under the
ondition a < b. In the optimisedprogram, it will be evaluated only on
e.Q : Under what
onditions
an
ode movement result infrequen
y redu
tion ?A : The expression must be partially available, i.e. availablealong at least one path rea
hing the evaluation of theexpression.

Code Optimisation : 15

OPTIMISING TRANSFORMATIONS
4. CODE MOVEMENT OPTIMISATION (Contd.)Safety of
ode movementMovement of an expression e from some blo
k bi toblo
k bj is safe only if it does not introdu
e a new o

urren
e ofe along any path in the program.Note that unsafe
ode pla
ement may lead to surpris-ing ex
eption
onditions, e.g. over
ow, during the exe
ution ofthe program. This is di�erent from in
orre
t results when onlyexpressions (rather than assignments) are being moved !Example of unsafe hoisting� � � temp := x " 2;if a < b then if a < b thenz := x " 2;) z := temp;else elsey := 19; y := 19;

Here, x " 2 is newly inserted in the else bran
h of theif statement. This is unsafe.Unsafe movements of
ode should be avoided.
Code Optimisation : 16

OPTIMISING TRANSFORMATIONS
4. CODE MOVEMENT OPTIMISATION (Contd.)Examples of Exe
ution Frequen
y Redu
tion(b) Loop Optimisation : temp := x � y;for i := 1 to 10; for i := 1 to 10;� � � � � �z := x � y;) z := temp;end; end;
Conditions for loop optimisation :� The rhs expression must be loop invariant.� The rhs expression must dominate all loop exits, i.e. the node
ontaining the expression must lie along all paths rea
hinga loop exit.Q : Why ? (Hint : See the previous transparen
y.)

Code Optimisation : 17

OPTIMISING TRANSFORMATIONS4(b). Loop optimisation (Contd.)

10
a � b 43

2
1

56 x+ y 789

����	 ����R? ���	 ���R?��� ���R ���	?����	

?
����������R

?

1. a � b of blo
k 4 does not dominate all exits of the loopf3,4g, hen
e its movement out of the loop is unsafe! (Note: loop optimisation of while loops is unsafe unless somespe
ial te
hniques are used !)2. x + y of blo
k 7
an be safely moved out of loop f7g.However, it is unsafe to insert it into blo
k 5 !
Code Optimisation : 18

OPTIMISING TRANSFORMATIONS5. STRENGTH REDUCTION OPTIMISATIONRepla
ement of a high strength operator by a (possiblyrepeated) appli
ation of a low strength operator.Example : Repla
ement of `*' by repeated `+'.temp := 5;for i := 1 to 10; for i := 1 to 10;� � � � � �x := i � 5;) x := temp;� � � � � �end; temp := temp+ 5;end;Pra
ti
al s
ope of strength redu
tion :Address
al
ulation in array referen
es typi
allyinvolves `*', whi
h
an be redu
ed to `+'. Considerfor i := 1 to 50;a[i℄ := :::; f Ea
h element = 4 bytes gend;
Address of a[i℄ = address of a[0℄ + i � 4, assuming ea
h element ofarray a to be 4 bytes in length.Code Optimisation : 19

OPTIMISING TRANSFORMATIONS
5. STRENGTH REDUCTION OPTIMISATION (Contd.)Strength redu
tion is typi
ally applied to integer ex-pressions involving an indu
tion variable and a high strength op-erator.Indu
tion variablesAn indu
tion variable v is an integer s
alar variablewhi
h is only subje
ted to the following kinds of assignments ina loop : v := v �
onstant;Controlled variable of a for loop is an indu
tion variable.Note : Strength redu
tion is not performed for
oating pointexpressions be
ause a strength redu
ed program may produ
edi�erent results than the original program.Q : Why ?A : Consider �nite pre
ision of
omputer arithmeti
.

Code Optimisation : 20

OPTIMISING TRANSFORMATIONS
6. LOOP TEST REPLACEMENTRepla
e a loop termination test phrased in terms ofone variable, by a test phrased in terms of another variable.This may open up the possibilities of dead
ode elimination.Typi
ally useful following strength redu
tion.Example : A strength redu
ed program:temp := 5; temp := 5;i := 1; i := 1;loop : x := temp; loop : x := temp;i := i+ 1;) i := i+ 1;temp := temp + 5; temp := temp + 5;if i � 10 then if temp � 50 thengoto loop; goto loop;

The loop indu
tion variable i is no longer meaning-fully used in the program. Hen
e it
an be eliminated.

Code Optimisation : 21

OPTIMISING TRANSFORMATIONS
7. DEAD CODE ELIMINATIONPreliminaries1. A variable is said to be dead at a pla
e in a program if thevalue
ontained in the variable at that pla
e is not usedanywhere in the program.2. If an assignment is made to a variable v at a pla
e wherev is dead, then the assignment is a dead assignment.3. Removing a dead assignment makes no di�eren
e to themeaning/results of the program.

Code Optimisation : 22

OPTIMISING TRANSFORMATIONS7. DEAD CODE ELIMINATION (Contd.)

10
a � b 43

2 a :=
 1
x := y � 5 56 789

����	 ����R? ���	 ���R?��� ���R ���	?����	
?

���������R
?

1. The assignment a :=
 of blo
k 1 is not dead (a is used inblo
k 4).2. The assignment x := y � 5 of blo
k 5 is dead. Theexpression y�5
an also be eliminated, sin
e it is no longermeaningful. However an expression
apable of produ
ingside e�e
ts
an not be so eliminated.Q : Why ? (Hint : Think of fun
tion
alls.)
Code Optimisation : 23

LOCAL OPTIMISATION
� Restri
ted to essentially sequential
ode� Limited s
ope for optimisation, viz. loop optimisation, strengthredu
tion, et
. not possible� Low
ost of optimisation :
an be performed while
onverting a program to triples/quadruplesBasi
 Blo
kA basi
 blo
k b of a program P is a sequen
e ofprogram statements (instru
tions) � = (i1; i2; : : : im) su
h that(i) only i1 in b
an be the destination of a transfer of
ontrol instru
tion,(ii)only im in b
an be a transfer instru
tion itself.Example : a := x � y;� � �z := x;� � �b := z � y;Note the ease of variable propagation and CSE in theabove example. Code Optimisation : 24

LOCAL OPTIMISATION1. DAG BASED OPTIMISATIONBuild a DAG for the basi
 blo
k under
onsideration� Initially ea
h variable is represented by a node. The SymbolTable entry identi�es the node.� Ea
h node is labelled with the name(s) of the variable(s)whose value it represents.� For ea
h operation in an expression, a new node is
reatedwith pointers to the nodes of its operands. A new node isnot
reated if a mat
hing node exists.� At an assignment, the root of the rhs expression is labelledwith the name of the lhs variable. (SYMTAB entry of thelhs variable is
hanged appropriately.)� Copy propagation and CSE are now easyExample :stmt no. statement1. a := x � y;2. z := x;3. b := z � y;4. x := b;5. g := x � y;
Code Optimisation : 25

LOCAL OPTIMISATION
1. DAG BASED OPTIMISATION (Contd.)Example :stmt no. statement1. a := x � y;2. z := x;3. b := z � y;4. x := b;5. g := x � y;After pro
essing statement 1 :

"!# "!# "!#
"!# *����� HHHHHHHHHHHHx0 y0 z0

a
Note : x0; y0 and z0 represent the initial values of variables x; yand z respe
tively.

Code Optimisation : 26

LOCAL OPTIMISATION
1. DAG BASED OPTIMISATION (Contd.)Example :stmt no. statement1. a := x � y;2. z := x;3. b := z � y;4. x := b;5. g := x � y;After pro
essing statements 1-3 :

"!# "!#
"!# *����� HHHHHHHHHHHHx0; z y0

a; b

Note : Variable propagation has o

urred for variable z, while
ommon sub-expression elimination has been e�e
ted for a � b.
Code Optimisation : 27

LOCAL OPTIMISATION
1. DAG BASED OPTIMISATION (Contd.)Example :stmt no. statement1. a := x � y;2. z := x;3. b := z � y;4. x := b;5. g := x � y;After pro
essing the entire basi
 blo
k :

"!# "!#
"!# * "!# *

����� HHHHHHHHHHHH
�����

AAAAAAA
AAAAA

z y0
a; b; x

g

Code Optimisation : 28

LOCAL OPTIMISATION
2. QUADRUPLE BASED OPTIMISATION USING VALUENUMBERSA note on unique result names for quadruples :To simplify the elimination of
ommon sub-expressions,it is ne
essary that two quadruples having the same operator andidenti
al operands must have unique result names.Example a � b: : :a � b+

If the quadruple generated for the �rst o

urren
e ofa � b uses the result name temp1, then the result name for these
ond o

urren
e of a � b should be identi
al.

Code Optimisation : 29

LOCAL OPTIMISATION
2. QUADRUPLE BASED OPTIMISATION USING VALUENUMBERS
Notes :1. The result name in a quadruple is not ne
essarily a `tem-porary lo
ation'. It simply provides a
onvenient means torefer to the partial result represented by the quadruple.2. The
ompiler
an maintain a hash table of the �rst three�elds of quadruples to ensure uniqueness of the result name.3. The simpli�
ation resulting from unique result names is asfollows : In the above example, if the se
ond o

urren
e ofa � b is redundant, it
an simply be repla
ed by the resultname in the quadruple, viz. temp1. This
an be done bysimply examining the result name of the quadruple, andwithout having to know the other o

urren
es of a � b.4. The result name be
omes a temporary lo
ation only whensome o

urren
es of the expression
an be eliminated.

Code Optimisation : 30

LOCAL OPTIMISATION
2. QUADRUPLE BASED OPTIMISATION USING VALUENUMBERS (Contd.)The value number asso
iated with a variable uniquelyidenti�es the pla
e in the basi
 blo
k where the variable was lastassigned a value.� At the start of a basi
 blo
k, the value numbers of all vari-ables are initialised� At an assignment, the value number of the LHS variable is
hanged to a new value� In the quadruples table, the pair (symbol, value no.) isstored in the operand �eld. (Note that the table of quadru-ples is the intermediate representation of the program. Thisis distin
t from the hash table maintained to ensure unique-ness of the result names.)� For CSE, a new quadruple is
ompared with all existingquadruples (note : the value numbers also parti
ipate in a
omparison.)� On pro
essing the statementv := 25:3;the value number of v is set to �m where 25.3 o

upies themth entry in CONSTAB. This feature is used for ConstantPropagation.

Code Optimisation : 31

LOCAL OPTIMISATION
2. QUADRUPLE BASED OPTIMISATION USING VALUENUMBERS (Contd.)Pro
edure for optimization :1. For every evaluation, a quadruple is generated in a bu�er.2. Current value numbers of the operands are
opied fromthe symbol table.3. If ea
h operand is either
onstant or has a negative valuenumber, perform
onstant folding and skip step 4.4. The quadruple in the bu�er is
ompared with all existingquadruples in the table.(a) Enter the new quadruple in the table (with
ag= 0) if no mat
hing quadruple is found.(b) If a mat
hing quadruple is found in the table, its
ag is
hanged to 1.� The newly generated quadruple is not enteredin the table. (This is an instan
e of
ommonsubexpression elimination.)� Flag = 1 indi
ates that the value of the quadru-ple should be saved for later use.

Code Optimisation : 32

LOCAL OPTIMISATION
2. QUADRUPLE BASED OPTIMISATION USING VALUENUMBERS (Contd.)Example :stmt no. statement5. a := 29:3 � d;17. b := 24:5;31.
 := a � b+ w;49. x := a � b+ y;
After pro
essing statements 1{31 :
Symbol table Quadruples tableSymbol Val # Opr Operand 1 Operand 2 Result FlagSym Val # Sym Val # namea 5b -75 * a 5 b -75 T35 0
 31 + T35 { w 0 T56 0x 0w 0Note : Value number of `-75' for b implies that b has beenassigned the
onstant o

upying 75th entry in theConstants' table (i.e., 24.5).Code Optimisation : 33

LOCAL OPTIMISATION
2. QUADRUPLE BASED OPTIMISATION USING VALUENUMBERS (Contd.)Example :stmt no. statement5. a := 29:3 � d;17. b := 24:5;31.
 := a � b+ w;49. x := a � b+ y;
After pro
essing statements 1{49 :
Symbol table Quadruples tableSymbol Val # Opr Operand 1 Operand 2 Result FlagSym Val # Sym Val # namea 5b -75 * a 5 b -75 T35 0/ 1
 31 + T35 { w 0 T56 0x 49w 0 + T35 { y 0 T92 0

Code Optimisation : 34

GLOBAL OPTIMISATIONS
ope The s
ope of global optimisation is generally aprogram unit, viz. a pro
edure or fun
tion body.Program RepresentationThe program is represented in the form of a ControlFlow Graph (CFG). The nodes of the graph represent the ba-si
 blo
ks in the program, and the edges represent the
ow of
ontrol during the exe
ution of the program.Control Flow AnalysisDetermines information
on
erning the arrangementof the graph nodes, i.e. the stru
ture of the program, viz. thepresen
e of loops, nesting of loops, nodes visited before the
on-trol of exe
ution rea
hes a spe
i�
 node, et
.Data Flow AnalysisDetermines useful information for the purpose ofoptimisation, viz. how data items are assigned and referen
edin a program, values available when program exe
ution rea
hesa spe
i�
 statement of the program, et
.
Code Optimisation : 35

GLOBAL OPTIMISATIONCONTROL FLOW ANALYSISCon
epts and De�nitionsProgram PointA program point wj is the instant between the end ofexe
ution of instru
tion ij, and the beginning of the exe
utionof the instru
tion ij+1. The e�e
t of exe
ution of instru
tion ijis said to be
ompletely realised at program point wj.Control Flow Graph (CFG)A
ontrol
ow graph is a dire
ted graphG = (N;E; n0)where N is the set of nodes (i.e. basi
 blo
ks),E is the set of
ontrol
ow edges (bi, bj),n0 is the entry node of the program.Paths A sequen
e of edges (e1, e2; : : : el), su
h that theterminal node of ei is the initial node of ei+1, is known as apath in G.Prede
essors, Su

essors, An
estors and Des
endantsbi is a prede
essor (an
estor) of bj if there exists anedge (a path) from bi to bj. A su

essor / des
endant is analo-gously de�ned. Code Optimisation : 36

GLOBAL OPTIMISATIONCONTROL FLOW ANALYSISCon
epts and De�nitions (Contd.)DominatorsA blo
k bi is said to be a dominator of blo
k bj if everypath from n0 to bj in G passes through bi.bi is a post-dominator of bj if every path starting on bjpasses through bi before rea
hing an exit node of G.Regions A region R = (V;E 0; V 0) is a
onne
ted subgraph of G,where V � N , E 0 � E and V 0 � N represent the set of nodes,edges and entry nodes respe
tively. We will have o

assion touse many kinds of regions, viz.� loops� single entry regions� strongly
onne
ted regions� intervalsArti
ulation Blo
kb is an arti
ulation blo
k for R if every path from anentry node to an exit node of R ne
essarily passes through b.
Code Optimisation : 37

GLOBAL OPTIMISATIONCONTROL FLOW ANALYSISCon
epts and De�nitions (Contd.)Q : Where do we use these
on
epts ?A : Consider the following situations {(a) It is
orre
t to move some
ode out of a node i if� it is inserted into a dominator node j of i,� no assignment(s) to any operands of the
ode o

uralong any path j : : : i.Hint : Is it always safe to do this ?(b) Meaning of a program may
hange unless some
ode
,whi
h is moved out of a loop, o

urs in an arti
ulationblo
k of the loop.(
) It is in
orre
t to move any
ode out of a loop unless itso

urren
e(s) dominate all exit nodes of the loop.(d) An expression e
an be eliminated from a program pointw if and only if,� there exists at least one evaluation of e along everypath rea
hing point w,� no operand of e is assigned a value after last su
hevaluation.Code Optimisation : 38

DATA FLOW ANALYSISDetermines useful information for the purpose ofoptimisation.Data Flow PropertyA data
ow property represents an item of data
owinformation (or a set of items of data
ow information), e.g. setof expressions whose values are available.� Data
ow properties are typi
ally asso
iated with entities inthe
ontrol
ow graph, viz. nodes in the
ontrol
ow graph.� Data
ow analysis is the pro
ess of
omputing the values ofdata
ow properties.� Data
ow properties are de�ned by the
ompiler writer foruse in a spe
i�
 optimisation.A few fundamental data
ow properties are de�nedin the following transparen
ies.

Code Optimisation : 39

DATA FLOW ANALYSIS
PRELIMINARIESDe�nition / Referen
e pointA program point
ontaining a de�nition (i.e. assign-ment) / referen
e of a data item.Evaluation point for an expressionA program point
ontaining an evaluation of the ex-pression.Example :

4 w5 : x := y3 ?
2 ??

w1 : a � b1 ?

� w5 is a referen
e point for y. It is also a de�nition point forx. (Stri
tly speaking, w05 is the referen
e point for y, w005 isthe de�nition point for x, where w05 pre
edes w005.)� w1 is an evaluation point for expression a � b.
Code Optimisation : 40

DATA FLOW ANALYSISFUNDAMENTAL DATA FLOW PROPERTIES1. Available ExpressionsExpression e is available at program point w, i� alongall paths rea
hing w(i) there exists an evaluation point for e,(ii)no de�nition of any operand of e follows its lastevaluation along the path.Expression e is said to be killed by a de�nition of any ofits operands. Hen
e it is not available following the de�nition(s)of any of its operand(s).Note that an expression is said to be killed, irrespe
-tive of whether or not its value is available at the point of thede�nition. This
onvention simpli�es data
ow analysis, as wewill see later.Usage : Common sub-expression elimination

Code Optimisation : 41

DATA FLOW ANALYSIS1. Available Expressions (Contd.)

10
a := 4
+ d 32

a � b 1

+ d 56 789

�����	 �����R? ���	 ���R?��� ���R ���	?�����	

?
�����������R

?

Expressions available at entry of node 10 ?| f
+ dg
Code Optimisation : 42

DATA FLOW ANALYSISFUNDAMENTAL DATA FLOW PROPERTIES (Contd.)2. Rea
hing De�nitionsA de�nition d of a variable v situated at a programpoint wi is said to rea
h a program point wj i� along some pathwi : : : wj variable v is not re-de�ned.In other words, de�nition d of variable v is said torea
h wj only when variable v, if used at wj, is likely to have thevalue assigned to it by de�nition d.
Q : Where is this data
ow
on
ept useful ?Let a de�nition x := 5 rea
h a program point atwhi
h the expression x� 3 is lo
ated. Can
onstant propagationbe performed for the variable x su
h that x�3
an be repla
edby 5 � 3, and
an be folded ?| Only if x := 5 is the only de�nition of x rea
hingx � 3 !

Code Optimisation : 43

DATA FLOW ANALYSIS2. Rea
hing De�nitions (Contd.)

10
a := b 43

2
a := 7 1

x := y 56 7
x := 3 89

�����	 �����R? ���	 ���R?��� ���R ���	?�����	

?
�����������R

?

De�nitions rea
hing the entry of node 10 ?| fa := b; a := 7; x := 3g
Code Optimisation : 44

DATA FLOW ANALYSISFUNDAMENTAL DATA FLOW PROPERTIES (Contd.)3. Live VariablesA variable v is live at a program point wi i�(i) v is referen
ed along some path wi : : : wj starting on pro-gram point wi, and(ii)no assignment to v o

urs before its referen
e alongthe path.In other words, variable v is live at wi only if the valueexisting in v at point wi is likely to be used in some
omputation.If this is not the
ase, then v is dead.Usage :1. We
an eliminate an assignment to a dead variable, viz.x := e; where x is dead.Hint : Expression e should have no side e�e
ts !2. We
an release / reuse storage allo
ated to a dead variable,sin
e its value need not be maintained any longer.
Code Optimisation : 45

DATA FLOW ANALYSIS3. Live Variables (Contd.)

b :=
 10
43

b := 5 2
a := g 1

5
a+ w 6 7

x := 3 8
x� y 9

�����	 �����R? ���	 ���R?��� ���R ���	?�����	

?
�����������R

?

Variable a is live in nodes : 1, 5, 6.Variable x is live in nodes : 8, 9.Variable b is not live in any node.
Code Optimisation : 46

DATA FLOW ANALYSISFUNDAMENTAL DATA FLOW PROPERTIES (Contd.)4. Busy ExpressionsAn expression e is busy at a program point wi i�(i) an evaluation of e exists along some path wi : : : wj startingon program point wi, and(ii)no de�nition of any operand of e exists before its eval-uation along the pathIn other words, if the expression were to be evaluatedat program point wi, it would be useful along some path.Very Busy ExpressionIf the expression is busy along all paths starting at aprogram point wi.Q : Is it safe to insert an evaluation of expression e at aprogram point at whi
h it is not very busy ?

Code Optimisation : 47

DATA FLOW ANALYSIS4. Busy Expressions (Contd.)

10
4x+ y 32

1
56 a � b 789

�����	 �����R? ���	 ���R?��� ���R ���	?�����	

?
�����������R

?

a � b is busy in node 5, but not very busy.| Hen
e its movement from node 7 to 5 is unsafe !x+ y is busy and very busy in node 2.| Hen
e its movement from node 3 to 2 is safe.
Code Optimisation : 48

DATA FLOW ANALYSISREPRESENTING DATA FLOW INFORMATIONData
ow information
an be represented by a set ofproperties, or by a bit ve
tor with ea
h bit representing a property.The former is more general, while the latter is more
onvenientin pra
ti
e. Unless otherwise stated, these representations
anbe used inter
hangeably in our dis
ussions.Example : Available expressions(a) Set Representationf a � b,
+ d, x� y, � � � g(b) Bit Ve
tor Representation
?a � b ?a+ b ?
+ d ?x� y
1 0 1 1 � � � 0

Q : What is the size of the bit ve
tor ?A : Size equals the number of distin
t expressions in a program.The bit number for an expression
an be determined the sameway as the temporary name for it (i.e. by building a table ofunique expressions in the program).
Code Optimisation : 49

DATA FLOW ANALYSISOBTAINING DATA FLOW INFORMATIONData
ow information of a node has the following
om-ponents :(a) Data
ow information generated in a node, viz. anexpression be
omes available following its
omputationin the node.(b) Data
ow information killed in a node, viz. a de�nitionof variable v kills all expressions involving v.(
) Data
ow information obtained from neighbouring nodes,viz. a de�nition rea
hing the exit of a prede
essor alsorea
hes the entry of a node.Information in items (a) and (b) above is lo
al in na-ture, i.e. the data
ow information generated and killed in anode of the
ontrol
ow graph depends on the nature of the
omputations in the
orresponding basi
 blo
k of the program.Information in item (
) is non-lo
al in nature.Hen
e� data
ow information at a node depends on the data
owinformation at other nodes in the
ontrol
ow graph.� data
ow information at the entry and exit of a node islikely to be di�erent.
Code Optimisation : 50

DATA FLOW ANALYSISLOCAL DATA FLOW INFORMATION

a � b 10
a := b 4a+ b 3
+ d 2 1 x� y 5a+ b 6 7x := 3 8a+ b 9

���	 ���R? ��	 ��R?�� ��R ��	?���	
?

�������R
?

node kill gen1 �, i.e. 0000 �, i.e. 00002 �, i.e. 0000 f
+ dg, i.e. 00103 �, i.e. 0000 fa+ bg, i.e. 01004 fa � b, a+ bg, i.e. 1100 �, i.e. 00005 �, i.e. 0000 fx� yg, 00016 �, i.e. 0000 fa+ bg, i.e. 01008 fx� yg, i.e. 0001 �, i.e. 00009 �, i.e. 0000 fa+ bg, i.e. 010010 �, i.e. 0000 fa � bg, i.e. 1000
Code Optimisation : 51

DATA FLOW ANALYSIS
COMPUTING GLOBAL DATA FLOW INFORMATION1. Meet over paths solution (MOP)(a) Consider all paths rea
hing (starting on) a node.(b) Determine information
ow along ea
h path.(
) Take the meet over all the paths, i.e. merge the infor-mation about the paths in an appropriate manner todetermine the data
ow information obtained from theneighbours of the node.
Example : Available expressions for node i1. Consider all paths rea
hing node i (and starting on the pro-gram entry node n0).2. Compute the set of available expressions along ea
h pathfrom n0 to a prede
essor of node i. (Assume that the set ofavailable expressions at the entry of n0 is �.)3. Sin
e available expressions is an all paths problem, take theinterse
tion of available expressions along ea
h path. Thisgives the set of available expressions at the entry of node i.Thus the meet operator here is interse
tion.

Code Optimisation : 52

DATA FLOW ANALYSISCOMPUTING GLOBAL DATA FLOW INFORMATION1. Meet over paths solution (MOP) (Contd.)Example : Available expressions

a � b 10
a := b 4a+ b 3
+ d 2 1 x� y 5a+ b 6 7x := 3 8a+ b 9

���	 ���R? ��	 ��R?�� ��R ��	?���	
?

�������R
?

node available expressions available expressionsat entry at exit2 �, i.e. 0000 f
+ dg, i.e. 00103 f
+ dg, i.e. 0010 fa+ b,
+ dg, i.e. 01104 fa+ b,
+ dg, i.e. 0110 f
+ dg, i.e. 00108 fx� yg, i.e. 0001 �, i.e. 00009 �, i.e. 0000 fa+ bg, i.e. 010010 fa+ bg, i.e. 0100 fa � b; a+ bg, i.e. 1100
Code Optimisation : 53

DATA FLOW ANALYSIS
COMPUTING GLOBAL DATA FLOW INFORMATIONWe
an make the following observations
on
erningthe problem of available expressions :(a) Generated information : An expression is generated in anode if the
orresponding basi
 blo
k
ontains a down-wards exposed o

urren
e of the expression, i.e. an expres-sion evaluation whi
h is not followed by a de�nition ofany of its operands till the end of the blo
k.Example : a � b
+ da := : : : 4Here Gen4 = f
+ d g. Note that the o

urren
e of a � bis not downwards exposed.(b) Killed information : A de�nition of a variable (i.e. anassignment to it) kills all expressions involving the vari-able.(
) Merging of information : Merging is done using the setinterse
tion operation \ or the bitwise `and' operation Qsin
e this is an all paths problem.

Code Optimisation : 54

DATA FLOW ANALYSIS
FORWARD DATA FLOW PROBLEMSIn the available expressions problem1. The data
ow information generated in a node
ows to theexit of the node,2. The data
ow information rea
hes a node i along all pathsfrom n0 to i.3. Thus, the data
ow information always
ows in the dire
tionof the
ow of
ontrol in the program.Su
h a data
ow problem is
alled a forward data
owproblem. The problem of rea
hing de�nitions is also a forwarddata
ow problem.

Code Optimisation : 55

DATA FLOW ANALYSIS
RECOGNIZING FORWARD/BACKWARD DATA FLOWPROBLEMS(a) Forward Data
ow problemsWe
an re
ognise a data
ow problem to be forwardwhen the data
ow information for a program point wi dependson the
omputations pla
ed along one or more paths rea
hing wi.In this
ase, the information must
ow along the dire
tion of
ow of
ontrol in the program.(b) Ba
kward Data
ow problemsA data
ow problem is ba
kward if the data
ow in-formation for a program point wi depends on the
omputationspla
ed along one or more paths starting on wi. In this
ase, theinformation
ows opposite to the dire
tion of
ow of
ontrol inthe program sin
e
omputations o

urring along the path a�e
tthe data
ow property of wi.Live variables and Busy expressions are ba
kward data
ow problems.

Code Optimisation : 56

DATA FLOW ANALYSISLive Variables : A ba
kward data
ow problemA variable v is live at a program point wi i� v is ref-eren
ed along some path wi : : : wj starting on wi, and : : :(a) Generated information : A variable v be
omes live whenit is referen
ed (i.e. used) in an expression. Sin
e thedata
ow is ba
kwards, the liveness due to a use in anexpression extends ba
kwards within the basi
 blo
k, tilla de�nition of v. Hen
e a live variable is generated ina basi
 blo
k due to an upwards exposed referen
e of avariable v, i.e. a use of v not pre
eded by a de�nitionwithin the basi
 blo
k.Example : a := : : :: : : := a � b: : : := v � 3 5Here Gen5 = f v, b g. Note that the referen
e of a is notupwards exposed.(b) Killed information : A de�nition of a variable (i.e. anassignment to it) kills its liveness.(
) Merging of information : Merging is done using the set unionoperation [or the bitwise `or' operation P sin
e this isan any path problem.The problem of busy expressions is also a ba
kwarddata
ow problem. Code Optimisation : 57

DATA FLOW ANALYSIS
SUMMARY OF DATA FLOW PROBLEMSData
ow Generated Killed Con
uen
eProblem Information Information i.e., mergeAvailable Downwards exposed Defn. a := : : : kills \ or QExpressions o

. of an exp. all exps using aRea
hing Downwards exposed Defn. dk : v := : : : [or PDe�nitions Defn. di : v := : : : kills all d0is : v := : : :Live Upwards exposed Defn. x := : : : kills [or PVariables referen
e of x variable xVery Busy Upwards exposed Defn. a := : : : kills \ or QExpressions o

. of an exp. all exps using aNotes :(a) A upwards / downwards exposed o

urren
e of an expressionimplies an expression evaluation not pre
eded / followedby any operand de�nition in the basi
 blo
k.(b) Upwards exposed referen
e of a variable is analogouslyde�ned.

Code Optimisation : 58

DATA FLOW ANALYSISCOMPUTING GLOBAL DATA FLOW INFORMATION2. Data Flow Equations :In this approa
h, we use the following pro
edure toobtain global data
ow information :(a) Take the meet of the information available at the entry(exit) of ea
h node.(b) Consider the information being generated or killed withinthe node.(
) Obtain the information available at the exit (entry) ofthe node.To realise this, we set up a data
ow equation for ea
hnode of the graph.Example : available expressionsAVINi = \8p AVOUTpAVOUTi = AVINi �AVKILLi [AVGENiwhere,AVINi/AVOUTi is availability at entry/exit of i,AVKILLi represents information killed in node i,AVGENi represents information generated in node i.\8p represents \ over all prede
essors.Code Optimisation : 59

DATA FLOW ANALYSIS
COMPUTING GLOBAL DATA FLOW INFORMATION2. Data Flow Equations (Contd.) :Note the following points
on
erning the use of theapproa
h based on data
ow equations.1. The data
ow equation for ea
h node of the
ontrol
owgraph is di�erent� the lo
al information gen and kill is di�erent for ea
hnode.� prede
essors/su

essors are di�erent for ea
h node.2. The data
ow equations have to be solved simultaneously forall nodes in the
ontrol
ow graph. The solution of theseequations has to satisfy the properties of self-
onsisten
y,
onservativeness and meaningfulness. (More about this as-pe
t later.)3. Solution of data
ow equations is more eÆ
ient than use ofthe MOP approa
h.4. The MOP solution is of theoreti
al interest as it indi
atesthe maximum data
ow information for a
ontrol
ow graph.5. MOP approa
h is impra
ti
al due to various reasons (eÆ-
ien
y is only one of them !).

Code Optimisation : 60

SETTING UP DATA FLOW EQUATIONS
AVINi = \8p AVOUTpAVOUTi = AVINi �AVKILLi [AVGENiwhere,AVIN/AVOUT represent availability at entry/exit,AVKILL represents information killed in node,AVGEN represents information generated in node.

 := a+ b����
����������� AVINi

���� HHHHHHHHHHY AVOUTi
AVGENi = fa+ b; : : :gAVKILLi = f
 � d;
� e; : : :g?���	 ���R

?���	���R

� 8i AVKILLi and AVGENi are
onstants whi
h
an bedetermined during the preparatory phase.� Using these
onstants, we de�ne a transfer fun
tion fi(S) forea
h basi
 blo
k, as fi(S) = (S� AVKILLi) [AVGENi.
Code Optimisation : 61

DATA FLOW ANALYSIS
COMPUTING GLOBAL DATA FLOW INFORMATIONQ : Is the information obtained through data
ow equationsequivalent to the MOP solution ?A: Depends on distributivity of the data
ow.
The Distributivity Conditionf(� u v) = f(�) u f(�) 8 �; � and f

w : x := exp ;���� AVINi = \8p AVOUTp?���	���R
� For the MOP solution, we use f(�) u f(�) at the point w(here � and � represent the data
ow information along thepaths rea
hing w, and f is the transfer fun
tion).� For solving the data
ow equations we use �u� at the entryof ea
h basi
 blo
k (here � and � represent AVOUTp).� The data
ow equations
an not yield the MOP solutionunless the data
ow is distributive.

Code Optimisation : 62

GENERAL FORM OF DATA FLOW EQUATIONS
1. Forward Data Flow ProblemsINi = �8p OUTpOUTi = INi �KILLi [GENiwhere,� is the
on
uen
e operator [or \,IN/OUT indi
ate information at entry/exit,KILL indi
ates information killed in node,GEN indi
ates information generated in node.
2. Ba
kward Data Flow ProblemsOUTi = �8s INsINi = OUTi �KILLi [GENiwhere,� is the
on
uen
e operator [or \,IN/OUT indi
ate information at entry/exit,KILL indi
ates information killed in node,GEN indi
ates information generated in node.

Code Optimisation : 63

COMMON DATA FLOW PROBLEMS
1. FORWARD DATA FLOW PROBLEMS(a) Available ExpressionsAVINi = \8p AVOUTpAVOUTi = AVINi �AVKILLi [AVGENiwhere,AVIN/AVOUT indi
ate availability at entry/exit,AVKILL indi
ates presen
e of operand de�nition(s),AVGEN indi
ates expressions generated in node.(b) Rea
hing De�nitionsDEFINi = [8p DEFOUTpDEFOUTi = DEFINi �DEFKILLi [DEFGENiwhere,DEFIN/DEFOUT indi
ate rea
hing defs. at entry/exit,DEFKILL indi
ates presen
e of another de�nition(s),DEFGEN indi
ates de�nitions generated in node.

Code Optimisation : 64

COMMON DATA FLOW PROBLEMS
2. BACKWARD DATA FLOW PROBLEMS(a) Busy ExpressionsBUSYOUTi = [8s BUSYINsBUSYINi = BUSYOUTi �BUSYKILLi [BUSYGENiwhere,BUSYIN/BUSYOUT indi
ate busy exps. at entry/exit,BUSYKILL indi
ates presen
e of operand de�nition(s),BUSYGEN indi
ates busy expressions generated in node.(b) Live VariablesLIVEOUTi = [8s LIVEINsLIVEINi = LIVEOUTi � LIVEKILLi [LIVEGENiwhere,LIVEIN/LIVEOUT indi
ate variables live at entry/exit,LIVEKILL indi
ates presen
e of another de�nition(s),LIVEGEN indi
ates live variables generated in node.

Code Optimisation : 65

DATA FLOW ANALYSISSETTING UP DATA FLOW EQUATIONSWe will
onsider the pro
ess of setting up data
owequations to
olle
t the information required for an optimisa-tion. Consider the following spe
i�
ation of an optimisation.Copy PropagationWe
an repla
e a by b in the following statement if ais a
opy of b at program point w (i.e. if a has the same value asb at w).
w : z := a + y ;

Approa
h :1. De
ide on what information is adequate to perform thedesired substitution. (Note : You may de�ne your own
on
epts and notations for this purpose.)2. Analyse the nature of the information to de
ide how itmay be
olle
ted.3. Design a data
ow problem to
olle
t the information.Develop data
ow equations for the same.
Code Optimisation : 66

SETTING UP DATA FLOW EQUATIONSExample (Contd.) :1. What information is adequate to perform the desired sub-stitution ?
w : z := a + y ;� COPIESw = f� � �g

Let COPIES be a set of pairsf(x; y) j assignment x := y; exists along some path g| COPIES
an be
omputed for every program pointby using C IN and C OUT to be the set of
opiesasso
iated with the entry/exit of nodes.2. Analyse the nature of the information to de
ide how itmay be
olle
ted.| Q : When should we add (delete) a pair (x; y)to (from) C IN or C OUT ?3. Design a data
ow to
olle
t the information. Developdata
ow equations for the same.| This should be easy on
e step 2 is performed.
Code Optimisation : 67

SETTING UP DATA FLOW EQUATIONS
Example (Contd.) :2. The nature of the data
ow information

w : z := a + y ;� COPIESw = f� � �g
Q : What is the nature of the information in COPIES ?This is a matter of de�nition, hen
e there is no uniqueanswer. For example,(a) Let the set COPIESw bef(a; b), (a;
) � � �gThis situation
ould arise be
ause the statements a := b;and a :=
; may rea
h the node along di�erent paths, andthe
on
uen
e operator � = [. In this
ase, a
an not besubstituted by either b or
.(b) Alternatively, we
ould de�ne the
on
uen
e operator� = \. Now, at most one pair (a; v) may exist in COPIESwfor any a, and existen
e of su
h a pair indi
ates
orre
t-ness of substituting a by v.

Code Optimisation : 68

SETTING UP DATA FLOW EQUATIONS
Example (Contd.) :3. The data
ow equationsThe information
ow is forwards. Hen
e we
an usethe generi
 form of data
ow equations :C INi = �8p C OUTpC OUTi = C INi �C KILLi [C GENiwhere,� is the
on
uen
e operator [or \,C IN/C OUT indi
ate information at entry/exit,C KILL indi
ates information killed in node,C GEN indi
ates information generated in node.
Questions :1. If � is
hosen to be [, then is the C IN / C OUT data
ow the same as the rea
hing de�nitions data
ow ?2. De�ne the terms C GEN and C KILL for the above data
ow problem.

Code Optimisation : 69

SETTING UP DATA FLOW EQUATIONS
Example (Contd.) :3. The data
ow equations (Contd.)For the assignment statement :

w : x := y ;
C GEN = f(x; y)g, andC KILL = f(x; h), (h; x) 8hg.Q : Explain the pairs in
luded in C KILL above.

Code Optimisation : 70

DATA FLOW ANALYSIS
A solution of the data
ow equations
onsists of anassignment of values to the IN and OUT sets of ea
h node inthe
ontrol
ow graph.To be useful for optimisation, the information
on-tained in a solution must satisfy the following
onditions :(a) Self-
onsisten
y : The values assigned to the di�erentnodes must be mutually
onsistent (else the solution isin
orre
t !). Su
h a
onsistent solution is known as a�xed point of the data
ow equations.(b) Conservative information : The data
ow informationmust be
onservative in that optimisation using thisinformation should not
hange the meaning of a programunder any
ir
umstan
es.(
) Meaningfulness : The
omputed values of the propertiesshould provide meaningful (in fa
t, maximum) oppor-tunities for optimisation. This is important, sin
e notperforming any optimisation is
onservative but hardlymeaningful in an optimising
ompiler !

Code Optimisation : 71

DATA FLOW ANALYSISCONSERVATIVE SOLUTION OF DATA FLOW EQUATIONSDuring data
ow analysis, we
onsider all paths inthe
ontrol
ow graph (i.e. all graph theoreti
 paths). However,during exe
ution, some paths may never be visited, i.e. the setof exe
ution paths may be di�erent from the set of graph theoreti
paths. Hen
e the
omputed data
ow information may be dif-ferent from the a
tual data
ow information.Q : Would optimisation based on the
omputed data
owinformation be
orre
t ?A: The optimisation would be
orre
t if the di�eren
esbetween the
omputed and a
tual values lie on the safer side,i.e. the di�eren
es tend to disallow
ertain feasible optimisa-tions, but never enable erroneous optimisations.Consider available expressions at the statement fol-lowing an if statement. Let a � b be available prior to the ifstatement, and let the then bran
h kill the expression a�b. Thenit is
onservative to assume that a � b is not available at the fol-lowing statement, even if the then bra
h is never visited duringthe program's exe
ution. Use of \ as the
on
uen
e operatorensures a
onservative solution. Optimisation based on this so-lution will never be wrong.Code Optimisation : 72

DATA FLOW ANALYSISCONSERVATIVE ESTIMATES OF DF PROPERTIESMaking Conservative AssumptionsIt is ne
essary to make
onservative assumptions when
omplete and pre
ise data
ow information is not available.We should use
onservative assumptions in(a) array assignments, viz.a[i℄ :=< exp >;Values of a[i℄ 8 i are assumed killed.(b) pointer based assignments, viz.� � � := a � b;�p := � � �;� � � := a � b;Conservative : a � b is not a CSE !These assumptions
an be relaxed if pre
ise informa-tion
on
erning assignments to i and p is available.

Code Optimisation : 73

DATA FLOW ANALYSISCONSERVATIVE ESTIMATES OF DF PROPERTIESWe should also make
onservative assumptions in(a) pro
edure
alls, viz.� � � := a � b;p(a; x);� � � := a � b;Conservative : a � b is not a CSE !(b) pro
edure bodies, viz.pro
edure q(a; b; x);� � � := a � b;x :=< exp >;� � � := a � b;Conservative : a � b is not a CSE !
Conservative estimates make the
omputed values ofdata
ow properties less pre
ise. This
an only be
orre
tedthrough more analysis, viz. interpro
edural analysis, alias anal-ysis, et
.

Code Optimisation : 74

DATA FLOW ANALYSISALIASINGIdenti�er v1 is said to be an alias of identi�er v2, if v1; v2refer to the same variable/share the same storage lo
ation.Example :
p := &x;�p is now an alias of variable x.The
onservativeness asso
iated with an assignmentthrough a pointer variable �p
an be relaxed if we determinethe set of variables fvg su
h that ea
h v is an alias of �p.Question : Set up a data
ow problem to
olle
t the set of vari-ables whose values
an
hange as a result of the pointer basedassignment�p := : : : ;

Code Optimisation : 75

SOLVING DATA FLOW EQUATIONSITERATIVE DATA FLOW ANALYSIS
1. Set the IN and OUT properties of all nodes in the
ontrol
ow graph (ex
ept the program entry / exit nodes) tosome initial values.2. Visit all nodes in the
ontrol
ow graph and re
omputetheir IN and OUT properties.3. If any
hanges o

ur in any IN or OUT properties, thenrepeat steps 2 and 3.

Note : Boundary
onditions hold for the program entry / exitnodes (for forward and ba
kward data
ow problems, respe
-tively). Unless interpro
edural analysis is performed, no data
ow information
an be assumed to be available at the bound-aries.
Q : The solution is a �xed point. Is it unique ?

Code Optimisation : 76

SOLVING DATA FLOW EQUATIONSITERATIVE DATA FLOW ANALYSISThe solution of iterative data
ow analysis is not unique.Example :

43 ?
2 ??

e11 ?

Let IN1 = fg.(i) Let IN = OUT = fe1g elsewhere.Then solution
ontains IN2 = IN3 = IN4 = fe1g.(ii)Let IN = OUT = fg elsewhere.Then solution
ontains IN2 = IN3 = IN4 = fg.

Code Optimisation : 77

SOLVING DATA FLOW EQUATIONS
(ROUND ROBIN) ITERATIVE DATA FLOW ANALYSISAVAILABLE EXPRESSIONS/* Initialisations */AVINn0 := fg; AVOUTn0 := AVGENn0;8 i 2 N � fn0g AVOUTi := U � AVKILLi[AVGENi;/* U is the universal set of expressions *//* Iteration */
hange := true;while
hange do begin
hange := false;8 i 2 N � n0 do beginAVINi := \8p AVOUTp;oldouti := AVOUTiAVOUTi := (AVINi � AVKILLi) [AVGENi;if AVOUTi 6= oldout then
hange := true;end;end;Q : What is the
omplexity of iterative df analysis ?A: O(n) iterations, where n is the number of nodes.

Code Optimisation : 78

SOLVING DATA FLOW EQUATIONSMEANINGFUL SOLUTION OF DATA FLOW EQUATIONSFor the problem of available expressions, initialisingIN and OUT properties of all nodes to fg leads to a trivial solu-tion of the data
ow equations. We must avoid trivial solutionsand try to obtain the most meaningful solution, i.e. the largestpossible solution to the equations (also
alled the maximum �xedpoint(MFP)).Initialisation for the Maximum Fixed Point
(a) For \ problems initialise all nodes to the universal set.(b) For [problems initialise all nodes to fg.

Code Optimisation : 79

DATA FLOW ANALYSIS
CONVERGENCE OF ITERATIVE DATA FLOW ANALYSISQ : Is the pro
ess of iterative data
ow analysis guaranteedto
onverge ?A: Depends on monotoni
ity of the data
ow.
The Monotoni
ity Condition� � � implies f(�) � f(�) 8 �; � and f

w : x := exp ;���� AVINi = \8p AVOUTpAVOUTi =AVGENi [(AVINi�AVKILLi)?���R
� Let � be the initial value of AVINi, and let � be the valueof AVINi after the �rst iteration. Hen
e � � �.� Sin
e � � �, from monotoni
ity AVOUTi after the �rst iter-ation � the initial value of AVOUTi.� Hen
e the values assumed by AVINi (AVOUTi) form a non-in
reasing sequen
e. This guarantees
onvergen
e.Note : Most pra
ti
al data
ow problems are monotone !Code Optimisation : 80

SOLVING DATA FLOW EQUATIONS
COMPLEXITY OF ITERATIVE DATA FLOW ANALYSISDepth �rst numberingA depth �rst numbering (dfn) of the nodes of a graphis the reverse of the order in whi
h we last visit ea
h node in apre-order traversal of the graph.Depth �rst numbering has the following properties :� 8i 2 dominators(j); dfn(i) < dfn(j),� 8 forward edges (i; j), dfn(i) < dfn(j),

In a redu
ible
ow graph (Refer to A-S-U for de�nition),an edge (i; j) is a loop forming edge (also
alled a ba
k edge) ifdfn(j) < dfn(i).Iterative analysis in depth �rst order :Fewer iterations are required if we visit the nodes ofthe graph in depth �rst order (or reverse depth �rst order) dur-ing ea
h iteration, rather than in some random order (exampleon next transparen
y).
Code Optimisation : 81

SOLVING DATA FLOW EQUATIONS
COMPLEXITY OF ITERATIVE DATA FLOW ANALYSISDepth of a Control Flow Graph (d)Depth (d) is the maximum number of ba
k edges in anya
y
li
 path in the
ontrol
ow graph (Note that this is not thesame as the nesting depth !).Complexity of iterative analysisWhen the nodes of a graph are visited in a depth �rstorder (reverse depth �rst order) for a forward data
ow problem(ba
kward data
ow problem), d + 1 iterations are suÆ
ient torea
h a �xed point.Example :

6 ?54 ?a := : : :3 ???
2 depth = 1nesting depth = 2?a � b1 ?

Code Optimisation : 82

SOLVING DATA FLOW EQUATIONS
COMPLEXITY OF ITERATIVE DATA FLOW ANALYSISd+ 1 iterations are adequate for data
ow analysis� For a forward data
ow problem, we visit the nodes in thein
reasing order by depth �rst numbers. If there are noloops in the program (i.e. d = 0), the data
ow information
omputed in the �rst iteration would be a �xed point of thedata
ow equations.� If a single loop exists in the program, d = 1. Now, the newvalue of the loop exit node
omputed in the �rst iteration
an in
uen
e the property of the loop entry node. This
anonly be a
hieved in the next iteration. Hen
e 2 iterationsare ne
essary.� If another ba
k-edge starts on some node of the loop, su
hthat the loop formed by it is not
ontained in the outerloop, then yet another iteration is required (see the nexttransparen
y for an example).

Code Optimisation : 83

SOLVING DATA FLOW EQUATIONS
COMPLEXITY OF ITERATIVE DATA FLOW ANALYSISd+ 1 iterations are adequate for data
ow analysisExample

6 ?a := : : :54 ?
3 ???
2 depth = 2?a � b1 ?

The e�e
t of the assignment a := : : : is felt on theavailability of a � b at the entry of blo
k 2 only in the thirditeration.

Code Optimisation : 84

SOLVING DATA FLOW EQUATIONS
WORKLIST ITERATIVE DF ANALYSIS (adapted: Mu
hni
k)AVAILABLE EXPRESSIONS/* Initialisations */AVINn0 := fg; AVOUTn0 := AVGENn0;8 i 2 N � fn0g AVINi := AVOUTi := U;/* U is the universal set of expressions */Worklist := N �fn0g;/* Iteration */while worklist not empty do beginRemove �rst node from worklist, let it be niAVINi := \8p AVOUTp;oldout := AVOUTiAVOUTi := (AVINi � AVKILLi) [AVGENi;if AVOUTi 6= oldout thenAdd all su

essors of ni to worklist;end;end;

Code Optimisation : 85

REGISTER ASSIGNMENT & ALLOCATION
A note on terminologyRegister assignment and allo
ation are two distin
tphases in the work aimed at making e�e
tive utilisation ofregisters of the target ma
hine (by redu
ing the number ofLoad/Store instru
tions). The distin
tion between the twoterms has not always been maintained in the literature.We will, however, make a distin
tion between the twoterms and use them with the meanings des
ribed in the followingtwo transparen
ies.

Code Optimisation : 86

REGISTER ASSIGNMENT & ALLOCATION
Register assignment� Managing the use of hypotheti
al registers.{ A hypotheti
al register is assumed to be available for ev-ery data item / expression. During register assignment,we de
ide where to pla
e Load / Store instru
tions sothat the value of the data item / expression is availablein a register at every usage point, and is available in thememory
ell allo
ated for that data item / expression atall other points.{ An unbounded number of hepotheti
al registers is as-sumed to be available for the purpose of assignment.

Code Optimisation : 87

REGISTER ASSIGNMENT & ALLOCATION
Register allo
ation� Managing the use of real registers in a target ma
hine.{ The use of hypotheti
al registers is mapped into the useof real registers existing in the target ma
hine.{ The motivation is to hold frequently used data values inregisters instead of memory lo
ations in the interests ofexe
ution eÆ
ien
y of the target program.
S
ope :(i) Lo
al Register Allo
ation : Allo
ation of registers to dataitems / expressions within a basi
 blo
k.(ii)Global Register Allo
ation : Allo
ation of registers todata items / expressions over regions of a program.

Code Optimisation : 88

LOCAL REGISTER ALLOCATION
... allo
ation of registers to date items / expressionswithin a basi
 blo
k (i.e. in straight line
ode).

Note the following points in this
ontext� Code generation pre
edes register allo
ation.� Register assignment may have been performed during
odegeneration, e.g. the
ode generation algorithm may assumethe presen
e of a large number of registers, possibly one forevery data item / expression.� Some register allo
ation may have been performed during
ode generation, e.g. the
ode generation algorithm maysave / restore partial results from registers when it runsout of registers to use for expression evaluation. (The Aho-Johnson and Sethi-Ullman algorithms even try to do this`optimally'.)� Register assignment / allo
ation performed for a sour
estatement may have to be modi�ed to improve register us-age within a basi
 blo
k, e.g. if a variable var is used in two
onse
utive statements, holding var in a register a

ross thestatements would save a Load instru
tion !
Code Optimisation : 89

LOCAL REGISTER ALLOCATION
Register Referen
e String: : : represents the sequen
e in whi
h hypotheti
al reg-isters are used in a basi
 blo
k. This provides the basis forallo
ation de
isions. (Note : We use r1, r2, et
. to representhypotheti
al registers, and R1, R2, et
. to represent ma
hine,i.e. real, registers.)Example r1; r�2; r3; r1; r2

Here, r�2 indi
ates that the hypotheti
al register isreferen
ed-and-modi�ed in this step.

Code Optimisation : 90

LOCAL REGISTER ALLOCATION
Managing the registers over a basi
 blo
kWhen all ma
hine registers hold useful values and anew register is required for
al
ulations, we free one of the ma-
hine registers (say, Ri). This is
alled pre-emption of a register.Let Ri
ontain the value represented by a hypotheti
alregister rj.� If rj (i.e. the data item represented by it) has been modi�edsin
e it was last loaded from the memory
ell, then we needto store its value in the memory
ell while freeing it foranother purpose.(a) Belady proposed that the value whose next use liesfarthest in the register referen
e string should bepre-empted from the ma
hine register.(b) Kennedy, Horowitz, Fis
her di�erentiate between{ a referen
e of a hypotheti
al register, and{ a referen
e-and-modi�
ation of a hypotheti
al reg-isterduring pre-emption, sin
e the latter requires a Storewhile the former does not. They
onsider alterna-tive pre-emption de
isions and
ompute the total
ost of the register allo
ation for the basi
 blo
k.The lowest
ost alternative is sele
ted.

Code Optimisation : 91

LOCAL REGISTER ALLOCATIONExample : Consider lo
al register allo
ation in a 2-registerma
hine for the referen
e string :
r1; r�2; r3; r1; r2

Belady's Algorithm : `Maximum distan
e' pre-emption.Register Ma
hine Costreferen
e RegisterR1 R2r1 r1 | 1r�2 r1 r�2 1r3 r1 r3 2r1 r1 r3 0r2 r1 r2 1|||total
ost = 5
Note : Load and Store instru
tions are introdu
ed atappropriate points, i.e. whenever the
ontents of a ma
hineregister are
hanged. Both are assumed to
ost 1 unit ea
h.Code Optimisation : 92

LOCAL REGISTER ALLOCATIONExample : Consider lo
al register allo
ation in a 2-registerma
hine for the referen
e string :
r1; r�2; r3; r1; r2

Kennedy et al Algorithm :Register Ma
hine Costreferen
e RegisterR1 R2r1 r1 | 1r�2 r1 r�2 1r3 r3 r2 1r1 r1 r2 1r2 r1 r2 0|||total
ost = 4
Note : Load and Store instru
tions are introdu
ed atappropriate points, i.e. whenever the
ontents of a ma
hineregister are
hanged. Both are assumed to
ost 1 unit ea
h.Code Optimisation : 93

LOCAL REGISTER ALLOCATION
Comparison of algorithmsThe algorithm by Kennedy et al is an optimal algo-rithm, in that it always �nds the least
ost allo
ation. However,this algorithm is
omputationally expensive sin
e it
onsidersthe alternative pre-emption de
isions and sele
ts the best one.Belady's algorithm is not an optimal algorithm in thatit does not guarantee least
ost allo
ation. However, it it
om-putationally eÆ
ient.The manner of variation of the register allo
ation ex-penses with the size of the register referen
e string is very im-portant from the viewpoint of
ompilation eÆ
ien
y. As pro-grams are
ontinually in
reasing in size, it is useful that analgorithm used in the
ompiler should be linear in nature. Ifthis is not possible, it should at least not be exponential in itsbehaviour. Belady's algorithm is more pra
ti
al from this view-point.

Code Optimisation : 94

GLOBAL REGISTER ALLOCATION
Notation : R : Set of ma
hine registersD : Set of data itemsRk : Set of registers allo
ated todk 2 DDl : Set of data items to whi
hrl 2 R is allo
atedj : : : j : Cardinality of a setFor high pro�ts, register utilisation should be max-imised. Any allo
ation of registers in R to data items in D mustsatisfy the following
onditions :(i) Non-interferen
e : Data items to whi
h the same regis-ter has been allo
ated should not be simultaneouslylive at any point.(ii)Consisten
y : At most one register should be allo
atedto a data item at any program point.

Code Optimisation : 95

GLOBAL REGISTER ALLOCATION
Nature of global allo
ation(a) one-one allo
ation : Ea
h ma
hine register is allo
atedex
lusively to one data value and a value is allo
ated toat most one register.(b) many-one allo
ation : At least one ma
hine register isshared between more than one data values.(
) many-few allo
ation : At least one register is shared be-tween more than one data values, and at least one datavalue is resident in di�erent registers in diferent regionsof the program.Q : Chara
terise many-few allo
ation formally.

Code Optimisation : 96

GLOBAL REGISTER ALLOCATION
Allo
ation of registers a
ross basi
 blo
k boundaries.PreliminariesWhen a value is allo
ated to a ma
hine register, it isne
essary that :(i) The value is available in a register at all points inthe program where it is used (i.e. at all its refer-en
e/de�nition points), and(ii)The value is available in a memory lo
ation at allpoints in the program where it is not
ontained ina register.Load and Store instru
tions have to be inserted atstrategi
 points in the program to ensure this.Live range of a valueThe program region over whi
h a value x needs toreside in a register is
alled the live range of the value x (i.e. lrx).A live range is often represented as a set of basi
 blo
ks fbg ofa program.Identi�
ation of the live range of a value
onstitutesregister assignment for the value.

Code Optimisation : 97

GLOBAL REGISTER ASSIGNMENT
The pro�t of a live rangeThe pro�t of a live range lrx is the number ofexe
utions of Load/Store instru
tions of x eliminated by holdingits value in a register.Example : Stati
 estimation of pro�tsConsider a live range lr
onsisting of a set of basi
blo
ks fbg. We haveMPlr = Pb2lr #o

b � wnbPlr = MPlr �
ost of inserted Loads/Stores.where MPlr is the maximum pro�t for live range lr ,Plr is the realisable pro�t for live range lr ,#o

b is the number of Loads/Stores in b,nb is the stati
 nesting level of b, andw is the nesting weightage (usually 5 or 10). (wnb indi-
ates how many times b may exe
ute in a run)Pro�t of a register allo
ationThe pro�t of a register allo
ation is the sum of the pro�tsof all live ranges to whi
h registers have been allo
ated.

Code Optimisation : 98

GLOBAL REGISTER ASSIGNMENT
Live Range Examples

5 � � � := b4 ?
� � � := a3 ??

2 ?
a := � � �1 ?

Live range of a : f1; 2; 3; 4g| Store in blo
k 1.| MPa = 11, Pa = 10 for w = 10.Live range of b : f2; 3; 4g| Load at exit of blo
k 2.| MPb = 10, Pb = 9 for w = 10.Many methods for identifying the live range of a dataitem have been designed. We see one su
h method in the fol-lowing.
Code Optimisation : 99

GLOBAL REGISTER ASSIGNMENT
METHODS OF LIVE RANGE IDENTIFICATIONChow-Hennessy Approa
hA basi
 blo
k of the program belongs to the live rangeof a value if the value is live within that basi
 blo
k and a refer-en
e or a de�nition of the value rea
hes it. The live range is theset of su
h basi
 blo
ks.1. Value is live : This implies that the value is used alongsome path through this blo
k, hen
e it is meaningful tohold it in a register.2. A referen
e is rea
hing and the value is live : This implies thatthe value is
urrently in a register (it would have beenloaded at the referen
e that is rea
hing), and is requiredalong some path through this blo
k.3. A de�ntion is rea
hing and the value is live : The value is
ur-rently in a register (it would have been put there by thede�nition that is rea
hing), and is required along somepath through this blo
k.

Code Optimisation : 100

GLOBAL REGISTER ASSIGNMENT
METHODS OF LIVE RANGE IDENTIFICATIONChow-Hennessy Approa
h (Contd.)Example :

5 � � � := b4 ?
� � � := a3 ??

2 ?
a := � � �1 ?

Live range of a : f1; 2; 3; 4gLive range of b : f3; 4gLoad instru
tions are inserted (if ne
essary) in all en-try blo
ks of the live range. Store instru
tions are inserted(where ne
essary) in all exit blo
ks of the live range.Note that blo
k 2 is not
ontained in the live range ofb. Code Optimisation : 101

THE BASIS FOR REGISTER ALLOCATION
INTERFERENCE OF LIVE RANGESIf some basi
 blo
k b of the program belongs to liveranges lr1 and lr2, then live ranges lr1, lr2 are said to interfere(in that blo
k).The same ma
hine register
an not be allo
ated tointerfering live ranges.Example

5 � � � := b4 ?
� � � := a3 ??

2 ?
a := � � �1 ?

Live range of a : f1; 2; 3; 4gLive range of b : f3; 4gLive ranges lra, lrb interfere in blo
ks 3 and 4, hen
ethe same register
an not be allo
ated to variables a and b.
Code Optimisation : 102

GLOBAL REGISTER ALLOCATION
REGISTER INTERFERENCE GRAPHRegister Interferen
e graph is an undire
ted graphIG = (L; IE)where (i) L is the set of live ranges for the values whi
h are
andidates for register allo
ation(ii) IE is the set of edges (lri, lrj) su
h that live ranges lriand lrj interfere, i.e. lri \ lrj 6= �.Example &%'$1

&%'$2 &%'$3
&%'$4

������������ ������

Code Optimisation : 103

GLOBAL REGISTER ALLOCATION
THE GRAPH COLOURING APPROACHGraph ColouringThe problem of graph
olouring is de�ned as :(a) give di�erent
olours to nodes lri, lrj if the edge(lri, lrj) exists in IG,(b) use minimum number of
olours
Register allo
ation: : :
an be looked upon as a
olouring of IG !?Example &%'$1

&%'$2 &%'$3
&%'$4

������������ ������
������

Code Optimisation : 104

GLOBAL REGISTER ALLOCATION
ONE-ONE & MANY-ONE ALLOCATION: : : is feasible when #
olours required to
olour theinterferen
e graph is � # registers.Example &%'$1

&%'$2 &%'$3
&%'$4

������������ ������
Allo
ation for a 3 register ma
hine :register 1 : live ranges 1, 4register 2 : live range 2register 3 : live range 3

Code Optimisation : 105

GLOBAL REGISTER ALLOCATION
MANY-FEW ALLOCATIONQ : What if #
olours required is > # registers ?
Constrained live rangesA
onstrained live range is a live range whose degreein IG � r, the number of registers.(a) An un
onstrained live range
an always be
oloured. Itmay or may not be possible to
olour a
onstrained one.(Refer to interferen
e graph on previous transparen
y.)(b) For
onstrained live ranges, one-one or many-one allo-
ation may not be feasible. In that
ase, live range splittingmay be used to perform many-few allo
ation.

Code Optimisation : 106

GLOBAL REGISTER ALLOCATION
LIVE RANGE SPLITTINGExample ����1
����2 ����3)
����4

���������� �����
����1l22 l21 ����3
����4

���������� �����
Allo
ation for a 2 register ma
hine :Live ranges 1,2 and 4 are
onstrained. Live range 2
an be splitto fa
ilitate allo
ation. Hen
e :register 1 : live ranges 1, 3, 21register 2 : live range 4, 22where 21 and 22 are parts of live range 2, whi
h do not interferewith nodes 1 and 4 respe
tively.

Code Optimisation : 107

GLOBAL REGISTER ALLOCATION
PRACTICAL LIVE RANGE SPLITTINGIn pra
ti
e, it is not always possible to �nd live rangepartitions as shown in previous transparen
y. Hen
e, live rangesplitting is performed as follows :(a) A
olourable live range partition is found. This partitionof the live range has a degree � n, where n is the numberof ma
hine registers.(b) The remainder of the live range is represented by an-other node in the interferen
e graph. This node mayhave a degree as mu
h as the original live range. (Hen
e,it may be ne
essary to split this partition of the liverange further.)In the previous transparen
y, live range 22 may beidenti�ed so that it only interferes with live range 1. Live range21 may interfere with nodes 1 and 4. Hen
e, it
an not beallo
ated a
olour without further splitting.

Code Optimisation : 108

GLOBAL REGISTER ALLOCATIONCHOW-HENNESSY'S PRIORITY BASED COLOURING� Priority Plr = (pro�ts / # blo
ks in live range)� Forbidden set for ea
h node is the set of
olours whi
h havebeen given to neighbouring nodes.Algorithm outline1. Separate
onstrained and un
onstrained live ranges.2. While a
onstrained live range and an allo
atable registerexists(a) Compute the priorities Plr for all live ranges, ifnot already done.(b) Find the lr with highest Plr� Colour this lr with a
olour not present in itsforbidden set.� Update the forbidden set for the neighbours ofthis live range in IG.� Split the neighbours of this lr, if ne
essary.(This is done when the forbidden set of a neigh-bour is `full', i.e. it
ontains all possible
olours.)3. Colour the un
onstrained live ranges.Q : Should we identify
onstrained live ranges again instep 2? Explain why.Code Optimisation : 109

GRADED EXERCISES
1. Study the program
ow graph given below and indi
atewhether any of the following optimising transformations
anbe applied to it(a)
ommon subexpression elimination(b) elimination of dead
ode(
)
onstant propagation, and(d) frequen
y redu
tionClearly justify your answers.

6
5

3 4
2
1

: : : := a � bd :=
 � 2?
x := y + b?

: : : := a � b
 := 3:5QQQQQQs : : : := a � b������+
?x := 5:2y := 9:4������+ QQQQQQs

a := : : :b := : : :?

Code Optimisation : 110

GRADED EXERCISES
2. Spe
ify the ne
essary and suÆ
ient
onditions for perform-ing(a) Constant propagation(b) dead
ode elimination, and(
) loop optimisation3. Develop
omplete algorithms for the following optimisations(a)
ommon subexpression elimination(b) elimination of dead
ode(
)
onstant propagation, and(d) frequen
y redu
tionApply these algorithms to the program
ow graph of ques-tion 1, and
ompare the answers with your own answers inquestion 1.4. Write a note justifying the need for d+1 iterations, where dis the depth of a graph, for the iterative solution of a data
ow problem.

Code Optimisation : 111

GRADED EXERCISES
5. Given an assignment statement of the forma := b;
opy propagation implies substituting b for a at every usagepoint of a rea
hed by the de�nition a := b;.(a) Develop a
omplete algorithm for
opy propagation.(Hint : Refer to the dis
ussion of
opy propagation inthis module.)(b) Can
opy propagation be performed transitively ? Forexample, ina := b;
 := a;Can
 be repla
ed by b ? If so, explain how you willmodify your algorithm to perform this enhan
ed
opypropagation.

Code Optimisation : 112

