CODE OPTIMISATION

MOTIVATION :

To produce target programs with high execution

efficiency.

Constraints :

(a)
(b)

Need :

(a)

(b)

Maintain semantic equivalence with source program.

Improve a program without changing the algorithm.

‘Permissive’ programming languages provide many flex-
ibilities, often leading to inefficient coding. For example,
a := a+ 1; where a is ‘real’ requires a type conversion of
‘1> to ‘1.0’. An optimising compiler can avoid type con-
version during the execution of the program by using

the constant ‘1.0’ instead of ‘1’.

Due to the increasing cost of programmer time, pro-
grammers do not pay sufficient attention to execution
efficiency of programs. Hence the need for optimisation

during compilation.

Code Optimisation : 1

CODE OPTIMISATION

EFFECTIVENESS :

A very old result

When optimised by the IBM /360 Fortran H compiler

(of mid-sixties vintage),
° a program executes 3 times faster

° a program occupies 25% less storage

Contemporary scenario

Improvements due to optimistion may be more dra-

matic in contemporary compilers because

e More effective optimisation techniques are available.

e Today, less emphasis is put on execution efficiency than on
other attributes of a program like structure, maintainabil-
ity, reusability of a program, etc. Code sharing and re-use
leads to a ‘black box’ view of programs, which further de-

emphasises execution efficiency.

e Exploitation of advanced architectural features like instruc-
tion pipelining requires ‘smart’ code generation, which is

only possible in an optimising compiler.

Code Optimisation : 2

CODE OPTIMISATION

Q : Can a programmer out-perform an optimiser 7

YES ! This is possible by
(i) choosing a better algorithm.

(ii) knowing more about the definitions and uses of data
items in the program e.g. a programmer may know

relative probabilities of branches being taken. Also,

(a) An optimiser has to ensure correctness of the
optimised program under all conditions, hence

it has to be conservative

(b) An optimiser may miss optimisation opportu-

nities because of this.

Also, NO ! Because

(i) It takes too much time to perform some optimisations
by hand, viz. strength reduction, copy propagation,

dead code elimination.

(ii) Certain machine level details are beyond the control
of a programmer, viz. instructions and addressing

modes supported by the target machine.

Code Optimisation : 3

CODE OPTIMISATION

LEVELS OF OPTIMISATION

(a) Machine dependent optimisations, e.g.
1. better choice of instructions,
e.g. INC instead of a load-add-store sequence

2. better use of addressing modes,

e.g. base-displacement-offset addressing, etc.

3. better use of machine registers.

(b) Machine independent optimisations :

Based on semantics preserving transformations applied
independent of the target machine, e.g. common sub-

expression elimination, loop optimisation, etc.

Code Optimisation : 4

CODE OPTIMISATION

MACHINE INDEPENDENT OPTIMISATION

Cost-effectiveness of machine independent transfor-

mations depends on their scope.

(a) Local Optimisation

Scope is restricted to essentially sequential sections of pro-
gram code (called basic blocks — defined later). This re-

stricts the amount of analysis necessary.

It also restricts

e the kinds of optimisation feasible, and

e the gains of optimisation.

e.g. loop optimisation can not be performed locally.

(b) Global Optimisation

Global optimisation is applied to a larger section of a
program than a basic block, typically a loop or a proce-

dure/function.

Knuth (1971) reports speed-up factors of

° > 1.4 due to local optimisation

° > 2.7 due to global optimisation

Code Optimisation : 5

CODE OPTIMISATION

Why separate Local and Global optimisation ?

(a) Local optimisation simplifies global optimisation :

Consider elimination of redundant computations within

a basic block of code

axb

axb “= assumed eliminated

by local optimisation

Thus, global optimisation only needs to consider the first

occurrence of a x b within a basic block.

(b) Local optimisation can be merged with the preparatory

phase of global optimisation

Common sub-expressions, constant propagation, etc. can
be performed while converting a program to triples or

quadruples.

Code Optimisation : 6

OPTIMISING TRANSFORMATIONS

1. COMPILE-TIME EVALUATION

Shifting execution time actions to compilation time,
such that they are not performed (repeatedly) during the exe-

cution of the program.

(a) Folding

Evaluation of an expression with constant operands
at compilation time. In effect, an expression is replaced by a

single value (hence the term ‘folding’).

Ezample :
area = (22.0/7.0)*r**2

22.0/7.0 can be performed during compilation itself.

Note :
Typical applications of folding are in address calcula-
tion for array references, where products of many constants are

‘folded’ into single constant values.

Code Optimisation : 7

OPTIMISING TRANSFORMATIONS

1. COMPILE-TIME EVALUATION (Contd.)

(b) Constant Propagation

Propagation implies replacement of a variable v by an
entity appearing on the rhs of an assignment to v. Constant
propagation is applied when v is assigned the value of a constant.

This enhances the scope of optimisation by folding.

Example :
a:=3.1;
xr:=ax*2.5;
ax 2.5 can be evaluated as 3.1x 2.5 during compilation.
Q : Under what conditions is it correct to perform constant

propagation 7

Code Optimisation : 8

OPTIMISING TRANSFORMATIONS

1(b). CONSTANT PROPAGATION (Contd.)

a:=>5.2

/\

e/ \ﬁ

3 33—5633—5

e

z4+1719
a+7 10

Conditions for constant propagation :

A variable should be assigned the same constant value

along all paths reaching its use.

In the above control flow graph (formal definition later)
constant propagation and folding is possible for = 4+ 17 of block
9, however it is not possible for a + 7 of block 10. (Q: Why ?)

Code Optimisation : 9

OPTIMISING TRANSFORMATIONS

2. COMMON SUB-EXPRESSION ELIMINATION (CSE)

An expression need not be evaluated if an equivalent

value is available and can be used.

temp := b x c;

a:=bxc a 1= temp;

xr:=bxc—+b; xr = temp + 5;

Typically, the scope is restricted to lexically equivalent
expressions which evaluate to identical values during the execu-

tion of the program.

Q : Under what conditions is CSE optimisation feasible ?

(Hint : We must preserve semantic equivalence !)

A : Values of the operands must not change along any path

between the two occurrences (i.e. the expression must
be available).

Code Optimisation : 10

OPTIMISING TRANSFORMATIONS

2. COMMON SUB-EXPRESSION ELIMINATION (Contd.)

ax*xb

/\

c:=a r+uy
b/ \
3 r:— 2|6 7
,, \ /
cxb |4 r+y
L |
" 9

.

axb 10

1. axb of block 10 is a common subexpression. (Note that
many occurrences of a x b may exist in block 10 of the
program, some of which may be eliminated by local op-
timisation. Global optimisation is only concerned with

elimination of the first occurrence in the block.)
2. x +y of block 8 is not a common subexpression,

3. cx*b of block is 4 is also a common subexpression, however

it is harder to detect (non-lezical equivalence !).

Code Optimisation : 11

OPTIMISING TRANSFORMATIONS

3. VARIABLE PROPAGATION

Use of a variable v; in place of variable .

Ezample :
stmt no. statement
c:=d;
10. z:=c+e;
11. xr:=d+e—"79.8;

Use of d in place of ¢ in statement no. 10 opens up the
possibility of identifying d + ¢ of statement no. 11 as a common

sub-expression.

Q : Under what conditions can variable propagation

be performed ?

Code Optimisation : 12

OPTIMISING TRANSFORMATIONS

3. VARIABLE PROPAGATION (Contd.)

/\

x =z
‘73 /G\Jri
N
r+y
" 9
<

axb

Conditions for variable propagation :

Along all paths reaching its use, a variable should be
assigned the value of the same rhs variable, and neither variable

should be modified following such assignment.

a can not be replaced by ¢ in block 10 due to ¢ := 10
of block 4. However, = can be replaced by z in block 8.

Code Optimisation : 13

OPTIMISING TRANSFORMATIONS

4. CODE MOVEMENT OPTIMISATION

Move the code in a program so as to

® Reduce the size of the program,

— Code space reduction

e Reduce the execution frequency of the code subjected to
movement.

— FEzecution frequency reduction

Ezample : Code space reduction by hoisting

temp :=x 1 2;
if a <b then if a <b then
z:=z 12 z 1= temp;
=
else else
y:=z1T2+4+ 19, y :=temp + 19;

Code for z 1 2 is generated only once in the optimised program,

as against twice in the original program.

Code Optimisation : 14

OPTIMISING TRANSFORMATIONS

4. CODE MOVEMENT OPTIMISATION (Contd.)

Examples of Execution Frequency Reduction

(a) Hoisting of code

if a <b then if a <b then
z:=x 12 temp =z 1 2;
= z = temp;
else else
y :=19; y :=19;
temp :=x 1 2;
g:=x12; g := temp;

During execution, x T 2 was evaluated twice in the
original program under the condition a < b. In the optimised

program, it will be evaluated only once.

Q : Under what conditions can code movement result in

frequency reduction ?

A : The expression must be partially available, i.e. available
along at least one path reaching the evaluation of the

expression.

Code Optimisation : 15

OPTIMISING TRANSFORMATIONS

4. CODE MOVEMENT OPTIMISATION (Contd.)

Safety of code movement

Movement of an expression e¢ from some block b; to
block b; is safe only if it does not introduce a new occurrence of

e along any path in the program.

Note that unsafe code placement may lead to surpris-
ing exception conditions, e.g. overflow, during the execution of
the program. This is different from incorrect results when only

expressions (rather than assignments) are being moved !

Ezample of unsafe hoisting

temp :=x 1 2;
if a <b then if a <b then
z:=x 12 = z = temp;
else else
y:=19; y:=19;

Here, = 17 2 is newly inserted in the else branch of the

1f statement. This is unsafe.

Unsafe movements of code should be avoided.

Code Optimisation : 16

OPTIMISING TRANSFORMATIONS

4. CODE MOVEMENT OPTIMISATION (Contd.)

Examples of Execution Frequency Reduction

(b) Loop Optimisation :
temp == x * y;

for 1:=1 to 10; for 1:=1 to 10;

ZI=1T *Y; = z = temp;

end, end,

Conditions for loop optimisation :

e The rhs expression must be loop invariant.

e The rhs expression must dominate all loop exits, i.e. the node
containing the expression must lie along all paths reaching
a loop exit.

@ : Why ? (Hint : See the previous transparency.)

Code Optimisation : 17

OPTIMISING TRANSFORMATIONS

4(b). Loop optimisation (Contd.)

N

P BN

C |~ —

axb

.

10

1. a xb of block 4 does not dominate all exits of the loop
{3,4}, hence its movement out of the loop is unsafe! (Note
: loop optimisation of while loops is unsafe unless some

special techniques are used !)

2. x + y of block 7 can be safely moved out of loop {7}.

However, it is unsafe to insert it into block 5 !

Code Optimisation : 18

OPTIMISING TRANSFORMATIONS

5. STRENGTH REDUCTION OPTIMISATION

Replacement of a high strength operator by a (possibly

repeated) application of a low strength operator.

Ezample : Replacement of ‘*’ by repeated ‘+°.

temp = b;
for i:=1 to 10; for i:=1 to 10;
T i=1%Dd; = xr = temp;
end, temp = temp + 5;
end;

Practical scope of strength reduction :

Address calculation in array references typically

¢k

involves ‘*’, which can be reduced to ‘4’. Consider

for 1:=1 to 50;
ali] :==..; { Each element = 4 bytes }

end;

Address of ali] = address of a[0] + ¢ x4, assuming each element of

array a to be 4 bytes in length.

Code Optimisation : 19

OPTIMISING TRANSFORMATIONS

5. STRENGTH REDUCTION OPTIMISATION (Contd.)

Strength reduction is typically applied to integer ex-
pressions involving an induction variable and a high strength op-

erator.

Induction variables

An induction variable v is an integer scalar variable
which is only subjected to the following kinds of assignments in
a loop :

v := v &£ constant;

Controlled variable of a for loop is an induction variable.

Note :
Strength reduction is not performed for floating point
expressions because a strength reduced program may produce

different results than the original program.

Q : Why ?

A : Consider finite precision of computer arithmetic.

Code Optimisation : 20

OPTIMISING TRANSFORMATIONS

6. LOOP TEST REPLACEMENT

Replace a loop termination test phrased in terms of
one variable, by a test phrased in terms of another variable.
This may open up the possibilities of dead code elimination.

Typically useful following strength reduction.

Ezample : A strength reduced program:

temp = b; temp = 5;
1:=1; 1:=1;
loop : x := temp; loop : x := temp;
1:=14 1; = 1:=14 1;
temp = temp + 5; temp = temp + 5;
if 1 <10 then if temp < 50 then
goto loop; goto loop;

The loop induction variable i is no longer meaning-

fully used in the program. Hence it can be eliminated.

Code Optimisation : 21

OPTIMISING TRANSFORMATIONS

7. DEAD CODE ELIMINATION

Preliminaries

1. A variable is said to be dead at a place in a program if the
value contained in the variable at that place is not used

anywhere in the program.

2. If an assignment is made to a variable v at a place where

v is dead, then the assignment is a dead assignment.

3. Removing a dead assignment makes no difference to the

meaning/results of the program.

Code Optimisation : 22

OPTIMISING TRANSFORMATIONS

7. DEAD CODE ELIMINATION (Contd.)

a:=c|l
2 r:=y—>5|9
b L N
3 6 7
| N
axb |4 8
L

10

1. The assignment a := c of block 1 is not dead (a is used in
block 4).

2. The assignment z := y — 5 of block 5 is dead. The
expression y—5 can also be eliminated, since it is no longer
meaningful. However an expression capable of producing

side effects can not be so eliminated.
@ : Why ? (Hint : Think of function calls.)

Code Optimisation : 23

LOCAL OPTIMISATION

e Restricted to essentially sequential code

e Limited scope for optimisation, viz. loop optimisation, strength

reduction, etc. not possible

e Low cost of optimisation : can be performed while

converting a program to triples/quadruples

Basic Block
A basic block b of a program P is a sequence of

program statements (instructions) ¢ = (i, 19, ...4,) such that

(i) only ¢; in b can be the destination of a transfer of

control instruction,

(ii) only 7, in b can be a transfer instruction itself.

Example :

b:=zxuy;

Note the ease of variable propagation and CSE in the

above example.

Code Optimisation : 24

LOCAL OPTIMISATION

1. DAG BASED OPTIMISATION

Build a DAG for the basic block under consideration

e Initially each variable is represented by a node. The Symbol

Table entry identifies the node.

e Each node is labelled with the name(s) of the variable(s)

whose value it represents.

e For each operation in an expression, a new node is created
with pointers to the nodes of its operands. A new node is

not created if a matching node exists.

e At an assignment, the root of the rhs expression is labelled
with the name of the [hs variable. (SYMTAB entry of the
lhs variable is changed appropriately.)

e Copy propagation and CSE are now easy

Example :
stmt no. statement
1. a:=Tx*xy;
2. Z = T;
3. b:=zxuy;
4. x = b
5. g i=Tx*xy;

Code Optimisation : 25

LOCAL OPTIMISATION

1. DAG BASED OPTIMISATION (Contd.)

Example :
stmt no. statement
1. a: =T x*xy;
2. Z = T;
3. b= zx*xy;
4. x = b;
5. g =1 *y;

After processing statement 1 :

Zo Yo 20 Q

Note : xg,yp and z; represent the initial values of variables z,y

and z respectively.

Code Optimisation : 26

LOCAL OPTIMISATION

1. DAG BASED OPTIMISATION (Contd.)

Example :
stmt no. statement
1. a:=Tx*xy;
2. z=ux;
3. b:=zxuy;
4. x = b
5. g :=Tx*xy;

After processing statements 1-3 :

a,b

Zo, 2 Yo

Note : Variable propagation has occurred for variable z, while

common sub-expression elimination has been effected for a x b.

Code Optimisation : 27

LOCAL OPTIMISATION

1. DAG BASED OPTIMISATION (Contd.)

Example :
stmt no. statement
1. a:=Tx*xy;
2. z=ux;
3. b:=zxuy;
4. x = b
5. g :=Tx*xy;

After processing the entire basic block :

a,b,x

Code Optimisation : 28

LOCAL OPTIMISATION

2. QUADRUPLE BASED OPTIMISATION USING VALUE
NUMBERS
A note on unique result names for quadruples :

To simplify the elimination of common sub-expressions,
it is necessary that two quadruples having the same operator and

identical operands must have unique result names.
Example

axb
axb+c
If the quadruple generated for the first occurrence of

a * b uses the result name temp;, then the result name for the

second occurrence of a x b should be identical.

Code Optimisation : 29

LOCAL OPTIMISATION

2. QUADRUPLE BASED OPTIMISATION USING VALUE
NUMBERS

Notes :

1. The result name in a quadruple is not necessarily a ‘tem-
porary location’. It simply provides a convenient means to

refer to the partial result represented by the quadruple.

2. The compiler can maintain a hash table of the first three

fields of quadruples to ensure uniqueness of the result name.

3. The simplification resulting from unique result names is as
follows : In the above example, if the second occurrence of
a x b is redundant, it can simply be replaced by the result
name in the quadruple, viz. temp;. This can be done by
simply examining the result name of the quadruple, and

without having to know the other occurrences of a * b.

4. The result name becomes a temporary location only when

some occurrences of the expression can be eliminated.

Code Optimisation : 30

2.

LOCAL OPTIMISATION

QUADRUPLE BASED OPTIMISATION USING VALUE

NUMBERS (Contd.)

The value number associated with a variable uniquely

identifies the place in the basic block where the variable was last

assigned a value.

At the start of a basic block, the value numbers of all vari-

ables are initialised

At an assignment, the value number of the LHS variable is

changed to a new value

In the quadruples table, the pair (symbol, value no.) is
stored in the operand field. (Note that the table of quadru-
ples is the intermediate representation of the program. This
is distinct from the hash table maintained to ensure unique-

ness of the result names.)

For CSE, a new quadruple is compared with all existing
quadruples (note : the value numbers also participate in a

comparison.)

On processing the statement

v = 25.3;
the value number of v is set to —m where 25.3 occupies the
m!" entry in CONSTAB. This feature is used for Constant

Propagation.

Code Optimisation : 31

LOCAL OPTIMISATION

2. QUADRUPLE BASED OPTIMISATION USING VALUE
NUMBERS (Contd.)

Procedure for optimization :

1. For every evaluation, a quadruple is generated in a buffer.

2. Current value numbers of the operands are copied from
the symbol table.

3. If each operand is either constant or has a negative value

number, perform constant folding and skip step 4.

4. The quadruple in the buffer is compared with all existing
quadruples in the table.

(a) Enter the new quadruple in the table (with flag

= 0) if no matching quadruple is found.

(b) If a matching quadruple is found in the table, its
flag is changed to 1.

e The newly generated quadruple is not entered
in the table. (This is an instance of common
subexpression elimination.)

e Flag — 1 indicates that the value of the quadru-

ple should be saved for later use.

Code Optimisation : 32

LOCAL OPTIMISATION

2. QUADRUPLE BASED OPTIMISATION USING VALUE
NUMBERS (Contd.)

Ezample :
stmt no. statement
5. a:=29.3 x d;
17. b := 24.5;
31. c:=axb+ w;
49. r:=ax*xb+y;

After processing statements 1-31 :

Symbol table Quadruples table
Symbol | Val # Opr | Operand 1 | Operand 2 | Result | Flag
Sym | Val # | Sym | Val # | name

a 5!
b -75 * a 5 b -75 T35 0
C 31 + | T35 — W 0 T56 0
X 0
W 0

Note : Value number of ‘-75’ for b implies that b has been
assigned the constant occupying 75" entry in the
Constants’ table (i.e., 24.5).

Code Optimisation : 33

LOCAL OPTIMISATION

2. QUADRUPLE BASED OPTIMISATION USING VALUE
NUMBERS (Contd.)

Ezample :
stmt no.
5.
17.
31.
49.

statement
a:=29.3 x d;
b := 24.5;

c:=axb+ w;

r:=ax*xb+y;

After processing statements 1-49 :

Symbol table

Quadruples table

Symbol | Val # Opr | Operand 1 | Operand 2 | Result | Flag
Sym | Val # | Sym | Val # | name
a 5!
b -75 * a 5 b -75 T35 01
C 31 + | T35 — 0 T56 0
X 49
W 0
+ | T35 — y 0 T92 0

Code Optimisation :

34

GLOBAL OPTIMISATION

Scope

The scope of global optimisation is generally a

program unit, viz. a procedure or function body.

Program Representation

The program is represented in the form of a Control
Flow Graph (CFG). The nodes of the graph represent the ba-
sic blocks in the program, and the edges represent the flow of

control during the execution of the program.

Control Flow Analysis

Determines information concerning the arrangement
of the graph nodes, i.e. the structure of the program, viz. the
presence of loops, nesting of loops, nodes visited before the con-

trol of execution reaches a specific node, etc.

Data Flow Analysis

Determines useful information for the purpose of
optimisation, viz. how data items are assigned and referenced
in a program, values available when program execution reaches

a specific statement of the program, etc.

Code Optimisation : 35

GLOBAL OPTIMISATION

CONTROL FLOW ANALYSIS

Concepts and Definitions

Program Point

A program point w; is the instant between the end of
execution of instruction i;, and the beginning of the execution
of the instruction i;,;. The effect of execution of instruction i;

is said to be completely realised at program point w;.

Control Flow Graph (CFG)
A control flow graph is a directed graph

G: (N,E,'I”L())

where N is the set of nodes (i.e. basic blocks),
E is the set of control flow edges (b;, b;),

ng is the entry node of the program.

Paths
A sequence of edges (e1, eg,...¢), such that the
terminal node of ¢; is the initial node of ¢;.;, is known as a

path in G.

Predecessors, Successors, Ancestors and Descendants
b; is a predecessor (ancestor) of b; if there exists an
edge (a path) from b; to b;. A successor / descendant is analo-

gously defined.

Code Optimisation : 36

GLOBAL OPTIMISATION

CONTROL FLOW ANALYSIS

Concepts and Definitions (Contd.)

Dominators

A block b; is said to be a dominator of block b; if every
path from n(to b; in G passes through b;.

b; is a post-dominator of b; if every path starting on b;

passes through b; before reaching an exit node of G.

Regions

A region R = (V,E',V') is a connected subgraph of G,
where V C N, EE C E and V' C N represent the set of nodes,
edges and entry nodes respectively. We will have occassion to

use many kinds of regions, viz.

° loops

° single entry regions

° strongly connected regions
° intervals

Articulation Block
b is an articulation block for R if every path from an

entry node to an exit node of R necessarily passes through b.

Code Optimisation : 37

GLOBAL OPTIMISATION

CONTROL FLOW ANALYSIS

Concepts and Definitions (Contd.)

Q -

A

(a)

(b)

(c)

(d)

Where do we use these concepts 7

Consider the following situations —
It is correct to move some code out of a node 7 if

e it is inserted into a dominator node j of 1,

e no assignment(s) to any operands of the code occur

along any path j...:.

Hint : Is it always safe to do this ?

Meaning of a program may change unless some code c,
which is moved out of a loop, occurs in an articulation
block of the loop.

It is incorrect to move any code out of a loop unless its

occurrence(s) dominate all exit nodes of the loop.

An expression e can be eliminated from a program point

w if and only if,
e there exists at least one evaluation of ¢ along every
path reaching point w,

e no operand of e is assigned a value after last such

evaluation.

Code Optimisation : 38

DATA FLOW ANALYSIS

Determines useful information for the purpose of

optimisation.

Data Flow Property

A data flow property represents an item of data flow
information (or a set of items of data flow information), e.g. set

of expressions whose values are available.

e Data flow properties are typically associated with entities in

the control flow graph, viz. nodes in the control flow graph.

e Data flow analysis is the process of computing the values of

data flow properties.

e Data flow properties are defined by the compiler writer for

use in a specific optimisation.

A few fundamental data flow properties are defined

in the following transparencies.

Code Optimisation : 39

DATA FLOW ANALYSIS

PRELIMINARIES

Definition / Reference point

A program point containing a definition (i.e. assign-

ment) / reference of a data item.
FEvaluation point for an expression

A program point containing an evaluation of the ex-

pression.

Example :

1 wi:axb

® wj; is a reference point for y. It is also a definition point for
z. (Strictly speaking, w;) is the reference point for v, wg is

the definition point for x, where w; precedes ws.)

e w; is an evaluation point for expression a * b.

Code Optimisation : 40

DATA FLOW ANALYSIS

FUNDAMENTAL DATA FLOW PROPERTIES

1. Available Expressions

Expression e is available at program point w, iff along

all paths reaching w

(i) there exists an evaluation point for e,

(i) no definition of any operand of e follows its last

evaluation along the path.

Expression e is said to be killed by a definition of any of
its operands. Hence it is not available following the definition(s)

of any of its operand(s).

Note that an expression is said to be killed, irrespec-
tive of whether or not its value is available at the point of the
definition. This convention simplifies data flow analysis, as we

will see later.

Usage : Common sub-expression elimination

Code Optimisation : 41

DATA FLOW ANALYSIS

1. Available Expressions (Contd.)

JON
.
NI

I

-

10

Expressions available at entry of node 10 ?

— {c+d}

Code Optimisation : 42

DATA FLOW ANALYSIS

FUNDAMENTAL DATA FLOW PROPERTIES (Contd.)

2. Reaching Definitions

A definition d of a variable v situated at a program
point w; is said to reach a program point w; iff along some path

w; ... w; variable v is not re-defined.

In other words, definition d of variable v is said to
reach w; only when variable v, if used at w;, is likely to have the

value assigned to it by definition d.

Q : Where is this data flow concept useful ?

Let a definition z := 5 reach a program point at
which the expression z x3 is located. Can constant propagation
be performed for the variable z such that zx3 can be replaced
by 5x*3, and can be folded ?

— Only if z:=5 is the only definition of x reaching

zx3!

Code Optimisation : 43

DATA FLOW ANALYSIS

2. Reaching Definitions (Contd.)

/\

T =y
l— \ﬁ
3 6
\ /|_
] 9
.

Definitions reaching the entry of node 10 ?

—{a:=b,a:=7z:=3}

Code Optimisation : 44

DATA FLOW ANALYSIS
FUNDAMENTAL DATA FLOW PROPERTIES (Contd.)

3. Live Variables
A variable v is [ive at a program point w; iff

(i) v is referenced along some path w; ... w; starting on pro-

gram point w;, and

(ii) no assignment to v occurs before its reference along

the path.

In other words, variable v is live at w; only if the value
existing in v at point w; is likely to be used in some computation.

If this is not the case, then v is dead.

Usage :

1. We can eliminate an assignment to a dead variable, viz.

x := e; where z is dead.
Hint : Expression ¢ should have no side effects !

2. We can release / reuse storage allocated to a dead variable,

since its value need not be maintained any longer.

Code Optimisation : 45

DATA FLOW ANALYSIS

3. Live Variables (Contd.)

/\

b:=5

l— \ii
3 atw |6

| \ /;
4 x =

L

1,
-

Variable a is live in nodes : 1, 5, 6.
Variable z is live in nodes : 8, 9.

Variable b is not live in any node.

Code Optimisation : 46

DATA FLOW ANALYSIS

FUNDAMENTAL DATA FLOW PROPERTIES (Contd.)

4. Busy Expressions
An expression e is busy at a program point w; iff

(i) an evaluation of e exists along some path w; . .. w; starting

on program point w;, and

(ii) no definition of any operand of e exists before its eval-

uation along the path

In other words, if the expression were to be evaluated

at program point w;, it would be useful along some path.

Very Busy Ezxpression
If the expression is busy along all paths starting at a

program point w;.

Q : Is it safe to insert an evaluation of expression ¢ at a

program point at which it is not very busy ?

Code Optimisation : 47

DATA FLOW ANALYSIS

4. Busy Expressions (Contd.)

N

e N

r+y 3 6 a*xb 7

C |

-

10

a *x b is busy in node 5, but not very busy.

— Hence its movement from node 7 to 5 is unsafe !

x 4+ y is busy and very busy in node 2.

— Hence its movement from node 3 to 2 is safe.

Code Optimisation : 48

DATA FLOW ANALYSIS

REPRESENTING DATA FLOW INFORMATION

Data flow information can be represented by a set of
properties, or by a bit vector with each bit representing a property.
The former is more general, while the latter is more convenient
in practice. Unless otherwise stated, these representations can

be used interchangeably in our discussions.
Example : Available expressions
(a) Set Representation

{a*b,c—l—d,a:—y, }

(b) Bit Vector Representation

a+b r—y
ax*b c+d
| |
11]0]1]1 0

() : What is the size of the bit vector ?

A : Size equals the number of distinct expressions in a program.
The bit number for an expression can be determined the same
way as the temporary name for it (i.e. by building a table of

unique expressions in the program).

Code Optimisation : 49

DATA FLOW ANALYSIS

OBTAINING DATA FLOW INFORMATION

Data flow information of a node has the following com-

ponents :

(a) Data flow information generated in a node, viz. an
expression becomes available following its computation

in the node.

(b) Data flow information killed in a node, viz. a definition

of variable v kills all expressions involving v.

(c) Data flow information obtained from neighbouring nodes,
viz. a definition reaching the exit of a predecessor also

reaches the entry of a node.

Information in items (a) and (b) above is local in na-
ture, i.e. the data flow information generated and killed in a
node of the control flow graph depends on the nature of the
computations in the corresponding basic block of the program.

Information in item (c) is non-local in nature.
Hence

e data flow information at a node depends on the data flow

information at other nodes in the control flow graph.

e data flow information at the entry and exit of a node is
likely to be different.

Code Optimisation : 50

DATA FLOW ANALYSIS

LOCAL DATA FLOW INFORMATION

node

© 00 O O = W N -

Y
o

YN

c+d 2 r—y 5
e L N
a+b|3||a+tb]|6 7

z:=3|8

kill

6, i.e. 0000

6, i.e. 0000

6, i.e. 0000

{a*xb, a+b}, i.e. 1100
6, i.e. 0000

6, i.e. 0000

{z —y}, i.e. 0001

6, i.e. 0000

6, i.e. 0000

N

gen

6, i.e. 0000
{c+d}, i.e. 0010
{a+b}, i.e. 0100
6, i.e. 0000

{z —y}, 0001
{a+b}, i.e. 0100
6, i.e. 0000
{a+b}, i.e. 0100
{a * b}, i.e. 1000

Code Optimisation : 51

DATA FLOW ANALYSIS

COMPUTING GLOBAL DATA FLOW INFORMATION

1. Meet over paths solution (MOP)

(a) Consider all paths reaching (starting on) a node.
(b) Determine information flow along each path.

(c) Take the meet over all the paths, i.e. merge the infor-
mation about the paths in an appropriate manner to
determine the data flow information obtained from the

neighbours of the node.

Ezample : Available expressions for node i

1. Consider all paths reaching node i (and starting on the pro-

gram entry node nyg).

2. Compute the set of available expressions along each path
from ny to a predecessor of node i. (Assume that the set of

available expressions at the entry of n(is ¢.)

3. Since available expressions is an all paths problem, take the
intersection of available expressions along each path. This

gives the set of available expressions at the entry of node :.

Thus the meet operator here is intersection.

Code Optimisation : 52

DATA FLOW ANALYSIS

COMPUTING GLOBAL DATA FLOW INFORMATION

1. Meet over paths solution (MOP) (Contd.)

Example : Available expressions

a

c+d |2

node available expressions available expressions
at entry at exit
2 ¢, i.e. 0000 {c+ d}, i.e. 0010
3 {c+ d}, i.e. 0010 {a+0b, c+d}, i.e. 0110
4 {a+b, c+d}, i.e. 0110 {c+ d}, i.e. 0010
8 {z —y}, i.e. 0001 ¢, i.e. 0000
9 ¢, i.e. 0000 {a + b}, i.e. 0100
10 {a + b}, i.e. 0100 {axb,a+ b}, ie. 1100

Code Optimisation : 53

DATA FLOW ANALYSIS

COMPUTING GLOBAL DATA FLOW INFORMATION

We can make the following observations concerning

the problem of available expressions :

(a)

(b)

(c)

Generated information : An expression is generated in a
node if the corresponding basic block contains a down-
wards exposed occurrence of the expression, i.e. an expres-
sion evaluation which is not followed by a definition of

any of its operands till the end of the block.

Ezample :

Here Geny = { ¢+ d }. Note that the occurrence of a x b

is not downwards exposed.

Killed information : A definition of a variable (i.e. an
assignment to it) kills all expressions involving the vari-
able.

Merging of information : Merging is done using the set
intersection operation N or the bitwise ‘and’ operation []

since this is an all paths problem.

Code Optimisation : 54

DATA FLOW ANALYSIS

FORWARD DATA FLOW PROBLEMS

In the available expressions problem

1. The data flow information generated in a node flows to the

exit of the node,

2. The data flow information reaches a node ¢ along all paths

from ny to :.

3. Thus, the data flow information always flows in the direction

of the flow of control in the program.

Such a data flow problem is called a forward data flow

problem.

The problem of reaching definitions is also a forward

data flow problem.

Code Optimisation : 55

DATA FLOW ANALYSIS

RECOGNIZING FORWARD/BACKWARD DATA FLOW
PROBLEMS

(a) Forward Data flow problems

We can recognise a data flow problem to be forward
when the data flow information for a program point w; depends
on the computations placed along one or more paths reaching w;.
In this case, the information must flow along the direction of

flow of control in the program.

(b) Backward Data flow problems

A data flow problem is backward if the data flow in-
formation for a program point w; depends on the computations
placed along one or more paths starting on w;. In this case, the
information flows opposite to the direction of flow of control in
the program since computations occurring along the path affect

the data flow property of w;.

Live variables and Busy expressions are backward data

flow problems.

Code Optimisation : 56

DATA FLOW ANALYSIS

Live Variables : A backward data flow problem

A variable v is live at a program point w; iff v is ref-

erenced along some path w; ... w; starting on w;, and ...

(a)

(b)

(c)

Generated information : A variable v becomes live when
it is referenced (i.e. used) in an expression. Since the
data flow is backwards, the liveness due to a use in an
expression extends backwards within the basic block, till
a definition of v. Hence a live variable is generated in
a basic block due to an upwards exposed reference of a
variable v, i.e. a use of v not preceded by a definition
within the basic block.

Ezample :

I
S Q
* % .
(SR,]

Here Gen; = { v, b }. Note that the reference of a is not

upwards exposed.

Killed information : A definition of a variable (i.e. an

assignment to it) kills its liveness.

Merging of information : Merging is done using the set union
operation U or the bitwise ‘or’ operation Y since this is

an any path problem.

The problem of busy expressions is also a backward

data flow problem.

Code Optimisation : 57

DATA FLOW ANALYSIS

SUMMARY OF DATA FLOW PROBLEMS

Data flow Generated Killed Confluence
Problem Information Information i.e., merge
Available Downwards exposed | Defn. a := ... kills N or [I
Expressions | occ. of an exp. all exps using a
Reaching Downwards exposed | Defn. dj : v := ... U or X
Definitions | Defn. d;:v:=... |killsall d/s:v:=...
Live Upwards exposed Defn. z := ... kills U or X
Variables reference of = variable z
Very Busy | Upwards exposed Defn. a:= ... kills N or [I
Expressions | occ. of an exp. all exps using a
Notes :

(a) A upwards / downwards exposed occurrence of an expression

implies an expression evaluation not preceded / followed

by any operand definition in the basic block.

(b) Upwards exposed reference of a variable is analogously
defined.

Code Optimisation : 58

DATA FLOW ANALYSIS

COMPUTING GLOBAL DATA FLOW INFORMATION

2. Data Flow Equations :

In this approach, we use the following procedure to
obtain global data flow information :
(a) Take the meet of the information available at the entry
(exit) of each node.
(b) Consider the information being generated or killed within
the node.
(c) Obtain the information available at the exit (entry) of
the node.
To realise this, we set up a data flow equation for each

node of the graph.

Example : available expressions

AVIN; = Ny, AVOUT,
AVOUT; = AVIN, — AVKILL; U AVGEN,

where,
AVIN,;/AVOUT, is availability at entry/exit of i,

AVKILL; represents information killed in node 1,

AVGEN; represents information generated in node ;.

Ny, represents N over all predecessors.

Code Optimisation : 59

DATA FLOW ANALYSIS

COMPUTING GLOBAL DATA FLOW INFORMATION

2. Data Flow Equations (Contd.) :

Note the following points concerning the use of the

approach based on data flow equations.

1. The data flow equation for each node of the control flow

graph is different

e the local information gen and kill is different for each

node.

e predecessors/successors are different for each node.

2. The data flow equations have to be solved simultaneously for
all nodes in the control flow graph. The solution of these
equations has to satisfy the properties of self-consistency,
conservativeness and meaningfulness. (More about this as-

pect later.)

3. Solution of data flow equations is more efficient than use of
the MOP approach.

4. The MOP solution is of theoretical interest as it indicates

the maximum data flow information for a control flow graph.

5. MOP approach is impractical due to various reasons (effi-

ciency is only one of them !).

Code Optimisation : 60

SETTING UP DATA FLOW EQUATIONS

AVIN; = Ny, AVOUT,
AVOUT,; = AVIN, - AVKILL, U AVGEN,;

where,
AVIN/AVOUT represent availability at entry/exit,
AVKILL represents information killed in node,

AVGEN represents information generated in node.

/ A
_/
AVGEN; = {a+0b, ...}
c:=a+b

C
/?\
AVOUT;

e Vi AVKILL; and AVGEN,; are constants which can be

determined during the preparatory phase.

e Using these constants, we define a transfer function f;(S) for
each basic block, as f;(S) = (S— AVKILL;) U AVGEN,.

Code Optimisation : 61

AVKILL; = {cxd, c—e, ...

DATA FLOW ANALYSIS

COMPUTING GLOBAL DATA FLOW INFORMATION

Q : Is the information obtained through data flow equations

equivalent to the MOP solution ?

A: Depends on distributivity of the data flow.

The Distributivity Condition

furio) = f(w)nfv) Yu, vand f

e AVIN; = Ny, AVOUT,

e For the MOP solution, we use f(u) 1 f(v) at the point w
(here 1 and v represent the data flow information along the

paths reaching w, and f is the transfer function).

e For solving the data flow equations we use ulv at the entry
of each basic block (here p and v represent AVOUT),).

e The data flow equations can not yield the MOP solution

unless the data flow is distributive.

Code Optimisation : 62

GENERAL FORM OF DATA FLOW EQUATIONS

1. Forward Data Flow Problems

IN; = 6y, OUT,
OUT, = IN; - KILL; U GEN,

where,
f is the confluence operator U or N,
IN/OUT indicate information at entry/exit,
KILL indicates information killed in node,

GEN indicates information generated in node.

2. Backward Data Flow Problems

OUT; = 6y, IN,
IN;, = OUT, - KILL; U GEN;

where,
f is the confluence operator U or N,
IN/OUT indicate information at entry/exit,
KILL indicates information killed in node,

GEN indicates information generated in node.

Code Optimisation : 63

COMMON DATA FLOW PROBLEMS

1. FORWARD DATA FLOW PROBLEMS

(a) Available Ezpressions

AVIN; = ny, AVOUT,
AVOUT; = AVIN, — AVKILL; U AVGEN,

where,
AVIN/AVOUT indicate availability at entry/exit,
AVKILL indicates presence of operand definition(s),

AVGEN indicates expressions generated in node.

(b) Reaching Definitions

DEFIN; = Uy, DEFOUT,
DEFOUT; = DEFIN,; - DEFKILL, U DEFGEN;

where,
DEFIN/DEFOUT indicate reaching defs. at entry/exit,
DEFKILL indicates presence of another definition(s),
DEFGEN indicates definitions generated in node.

Code Optimisation : 64

COMMON DATA FLOW PROBLEMS

2. BACKWARD DATA FLOW PROBLEMS

(a) Busy Ezxpressions

BUSYOUT,; = Uys BUSYIN;,
BUSYIN; = BUSYOUT,; - BUSYKILL; U BUSYGEN;

where,

BUSYIN/BUSYOUT indicate busy exps. at entry/exit,
BUSYKILL indicates presence of operand definition(s),
BUSYGEN indicates busy expressions generated in node.

(b) Live Variables

LIVEOUT; = Uy, LIVEIN,
LIVEIN; = LIVEOUT, - LIVEKILL; U LIVEGEN;

where,
LIVEIN/LIVEOUT indicate variables live at entry/exit,
LIVEKILL indicates presence of another definition(s),
LIVEGEN indicates live variables generated in node.

Code Optimisation : 65

DATA FLOW ANALYSIS

SETTING UP DATA FLOW EQUATIONS

We will consider the process of setting up data flow
equations to collect the information required for an optimisa-

tion. Consider the following specification of an optimisation.
Copy Propagation

We can replace a by b in the following statement if a
is a copy of b at program point w (i.e. if a has the same value as
b at w).

Approach :

1. Decide on what information is adequate to perform the
desired substitution. (Note : You may define your own

concepts and notations for this purpose.)

2. Analyse the nature of the information to decide how it

may be collected.

3. Design a data flow problem to collect the information.

Develop data flow equations for the same.

Code Optimisation : 66

SETTING UP DATA FLOW EQUATIONS

Ezample (Contd.) :

1. What information is adequate to perform the desired sub-

stitution ?

~+— COPIES, = {---}

Let COPIES be a set of pairs
{(z,y) | assignment z := y; exists along some path }

— COPIES can be computed for every program point
by using C_IN and C_OUT to be the set of copies

associated with the entry/exit of nodes.

2. Analyse the nature of the information to decide how it

may be collected.

— () : When should we add (delete) a pair (z,y)
to (from) C_IN or C_OUT ?

3. Design a data flow to collect the information. Develop

data flow equations for the same.

— This should be easy once step 2 is performed.

Code Optimisation : 67

SETTING UP DATA FLOW EQUATIONS

Ezample (Contd.) :

2. The nature of the data flow information

Q-

~— COPIES, = {--}

What is the nature of the information in COPIES ?

This is a matter of definition, hence there is no unique

answer. For example,

(a)

(b)

Let the set COPIES, be

{(a,0), (a;¢) -~}

This situation could arise because the statements a := b;
and a := ¢; may reach the node along different paths, and
the confluence operator § = U. In this case, a can not be

substituted by either b or c.

Alternatively, we could define the confluence operator
6 = N. Now, at most one pair (a,v) may exist in COPIES,,
for any a, and existence of such a pair indicates correct-

ness of substituting a by v.

Code Optimisation : 68

SETTING UP DATA FLOW EQUATIONS

Ezample (Contd.) :

3. The data flow equations

The information flow is forwards. Hence we can use

the generic form of data flow equations :

CIN; = 6y, C.OUT,
C_OUT; = C.N; - CKILL, U C_GEN,

where,
f is the confluence operator U or N,
C_IN/C_OUT indicate information at entry/exit,
C_KILL indicates information killed in node,

C_GEN indicates information generated in node.

Questions :

1. If # is chosen to be U, then is the C_.IN / C_OUT data

flow the same as the reaching definitions data flow 7

2. Define the terms C_GEN and C_KILL for the above data

flow problem.

Code Optimisation : 69

SETTING UP DATA FLOW EQUATIONS

Ezample (Contd.) :

3. The data flow equations (Contd.)

For the assignment statement :

C_GEN = {(z,v)}, and
C_KILL = {(z,h), (h,z) Vh}.

Q : Explain the pairs included in C_KILL above.

Code Optimisation : 70

DATA FLOW ANALYSIS

A solution of the data flow equations consists of an

assignment of values to the IN and OUT sets of each node in

the control flow graph.

To be useful for optimisation, the information con-

tained in a solution must satisfy the following conditions :

(a)

(b)

(c)

Self-consistency : The values assigned to the different
nodes must be mutually consistent (else the solution is
incorrect !). Such a consistent solution is known as a

fized point of the data flow equations.

Conservative information : The data flow information
must be conservative in that optimisation using this
information should not change the meaning of a program

under any circumstances.

Meaningfulness : The computed values of the properties
should provide meaningful (in fact, maximum) oppor-
tunities for optimisation. This is important, since not
performing any optimisation is conservative but hardly

meaningful in an optimising compiler !

Code Optimisation : 71

DATA FLOW ANALYSIS

CONSERVATIVE SOLUTION OF DATA FLOW EQUATIONS

During data flow analysis, we consider all paths in
the control flow graph (i.e. all graph theoretic paths). However,
during execution, some paths may never be visited, i.e. the set
of execution paths may be different from the set of graph theoretic

paths.

Hence the computed data flow information may be dif-

ferent from the actual data low information.

Q : Would optimisation based on the computed data flow

information be correct ?

A: The optimisation would be correct if the differences
between the computed and actual values lie on the safer side,
i.e. the differences tend to disallow certain feasible optimisa-

tions, but never enable erroneous optimisations.

Consider available expressions at the statement fol-
lowing an if statement. Let a x b be available prior to the if
statement, and let the then branch kill the expression a*xb. Then
it is conservative to assume that a x b is not available at the fol-
lowing statement, even if the then brach is never visited during
the program’s execution. Use of N as the confluence operator
ensures a conservative solution. Optimisation based on this so-

lution will never be wrong.

Code Optimisation : 72

DATA FLOW ANALYSIS

CONSERVATIVE ESTIMATES OF DF PROPERTIES

Making Conservative Assumptions
It is necessary to make conservative assumptions when
complete and precise data flow information is not available.

We should use conservative assumptions in
(a) array assignments, viz.

ali] =< exp >;

Values of a[i] V ¢ are assumed killed.

(b) pointer based assignments, viz.
1= a *b;

1= a * b;

Conservative : a * b is not a CSE !

These assumptions can be relaxed if precise informa-

tion concerning assignments to ¢ and p is available.

Code Optimisation : 73

DATA FLOW ANALYSIS

CONSERVATIVE ESTIMATES OF DF PROPERTIES

We should also make conservative assumptions in

(a) procedure calls, viz.
= axb;

p(a, z);
= a*b;

Conservative : a * b is not a CSE !

(b) procedure bodies, viz.
procedure q(a, b, x);
1= a * b;
T =< exrp >;

1= a * b;

Conservative : a * b is not a CSE !

Conservative estimates make the computed values of
data flow properties less precise. This can only be corrected
through more analysis, viz. interprocedural analysis, alias anal-

ysis, etc.

Code Optimisation : 74

DATA FLOW ANALYSIS

ALIASING

Identifier v, is said to be an alias of identifier vy, if v{, vy

refer to the same variable/share the same storage location.

Ezxample :

p = &u;

xp is now an alias of variable z.

The conservativeness associated with an assignment
through a pointer variable *p can be relaxed if we determine

the set of variables {v} such that each v is an alias of *p.

Question :
Set up a data flow problem to collect the set of vari-
ables whose values can change as a result of the pointer based

assignment

Xp = ...;

Code Optimisation : 75

SOLVING DATA FLOW EQUATIONS

ITERATIVE DATA FLOW ANALYSIS

1. Set the IN and OUT properties of all nodes in the control
flow graph (except the program entry / exit nodes) to

some initial values.

2. Visit all nodes in the control flow graph and recompute
their IN and OUT properties.

3. If any changes occur in any IN or OUT properties, then
repeat steps 2 and 3.

Note :

Boundary conditions hold for the program entry / exit
nodes (for forward and backward data flow problems, respec-
tively). Unless interprocedural analysis is performed, no data
flow information can be assumed to be available at the bound-

aries.

() : The solution is a fixed point. Is it unique ?

Code Optimisation : 76

SOLVING DATA FLOW EQUATIONS

ITERATIVE DATA FLOW ANALYSIS

The solution of iterative data flow analysis is not unique.

Ezample :
1 el
Y {
2
3
L
4
Let IN1 = {}

(i) Let IN = OUT = {e;} elsewhere.
Then solution contains IN; = IN3; = INy = {e;}.

(ii) Let IN = OUT = {} elsewhere.
Then solution contains IN;, = IN3 = INy = {}.

Code Optimisation : 77

SOLVING DATA FLOW EQUATIONS

(ROUND ROBIN) ITERATIVE DATA FLOW ANALYSIS

AVAILABLE EXPRESSIONS

/* Initialisations */
AVIN,, := {}; AVOUT,, := AVGEN,,;
Vie N —{ny} AVOUT, := U — AVKILL;U AVGEN;;

/* U is the universal set of expressions */

/* Tteration */
change := true;
while change do begin
change := false;
Vi€ N —ng do begin
AVIN; := Ny, AVOUT;
oldout; := AVOUT,
AVOUT,; := (AVIN,; — AVKILL;) U AVGEN;;
if AVOUT); # oldout then change := true;

end;
end;
Q : What is the complexity of iterative df analysis 7
A: O(n) iterations, where n is the number of nodes.

Code Optimisation : 78

SOLVING DATA FLOW EQUATIONS

MEANINGFUL SOLUTION OF DATA FLOW EQUATIONS

For the problem of available expressions, initialising
IN and OUT properties of all nodes to {} leads to a trivial solu-
tion of the data flow equations. We must avoid trivial solutions
and try to obtain the most meaningful solution, i.e. the largest
possible solution to the equations (also called the mazimum fized
point(MFP)).

Initialisation for the Maximum Fixed Point

(a) For N problems initialise all nodes to the universal set.

(b) For U problems initialise all nodes to {}.

Code Optimisation : 79

DATA FLOW ANALYSIS

CONVERGENCE OF ITERATIVE DATA FLOW ANALYSIS

Q : Is the process of iterative data flow analysis guaranteed

to converge 7

A: Depends on monotonicity of the data flow.

The Monotonicity Condition

p < v implies f(u) < f(v) Vu, vand f

" AVIN; = Ny, AVOUT,

-/

w: T i=exrp ;

AVOUT, =AVGEN; U (AVIN,—-AVKILL))

e Let v be the initial value of AVIN;, and let i be the value
of AVIN; after the first iteration. Hence u < v.

e Since u < v, from monotonicity AVOUT); after the first iter-
ation < the initial value of AVOUT,.

e Hence the values assumed by AVIN; (AVOUT)) form a non-

increasing sequence. This guarantees convergence.

Note : Most practical data flow problems are monotone !

Code Optimisation : 80

SOLVING DATA FLOW EQUATIONS

COMPLEXITY OF ITERATIVE DATA FLOW ANALYSIS

Depth first numbering

A depth first numbering (dfn) of the nodes of a graph
is the reverse of the order in which we last visit each node in a

pre-order traversal of the graph.
Depth first numbering has the following properties :
e Vi € dominators(j),dfn(i) < dfn(j),

e YV forward edges (i,7), dfn(i) < dfn(j),

In a reducible flow graph (Refer to A-S-U for definition),
an edge (i,7) is a loop forming edge (also called a back edge) if

dfn(j) < dfn(i).

Iterative analysis in depth first order :

Fewer iterations are required if we visit the nodes of
the graph in depth first order (or reverse depth first order) dur-
ing each iteration, rather than in some random order (example

on next transparency).

Code Optimisation : 81

SOLVING DATA FLOW EQUATIONS

COMPLEXITY OF ITERATIVE DATA FLOW ANALYSIS

Depth of a Control Flow Graph (d)

Depth (d) is the maximum number of back edges in any
acyclic path in the control flow graph (Note that this is not the

same as the nesting depth !).

Complexity of iterative analysis

When the nodes of a graph are visited in a depth first
order (reverse depth first order) for a forward data flow problem
(backward data flow problem), d + 1 iterations are sufficient to

reach a fixed point.

Ezample :

Il le— l— *

e

depth = 1
nesting depth = 2

le— [¢—

Code Optimisation : 82

SOLVING DATA FLOW EQUATIONS

COMPLEXITY OF ITERATIVE DATA FLOW ANALYSIS

d + 1 iterations are adequate for data flow analysis

e For a forward data flow problem, we visit the nodes in the
increasing order by depth first numbers. If there are no
loops in the program (i.e. d =0), the data flow information
computed in the first iteration would be a fixed point of the

data flow equations.

e If a single loop exists in the program, d = 1. Now, the new
value of the loop exit node computed in the first iteration
can influence the property of the loop entry node. This can
only be achieved in the next iteration. Hence 2 iterations

are necessary.

e If another back-edge starts on some node of the loop, such
that the loop formed by it is not contained in the outer
loop, then yet another iteration is required (see the next

transparency for an example).

Code Optimisation : 83

SOLVING DATA FLOW EQUATIONS

COMPLEXITY OF ITERATIVE DATA FLOW ANALYSIS

d + 1 iterations are adequate for data flow analysis

Ezample
1 axb
U P
R T
l depth = 2
4
l [
5 |a=...
e
6
The effect of the assignment a := ... is felt on the

availability of a x b at the entry of block 2 only in the third

iteration.

Code Optimisation : 84

SOLVING DATA FLOW EQUATIONS

WORKLIST ITERATIVE DF ANALYSIS (adapted: Muchnick)

AVAILABLE EXPRESSIONS

/* Initialisations */
AVIN,, := {}; AVOUT,, := AVGEN,,;
Vie N — {ng} AVIN; := AVOUT, := U;
/* U is the universal set of expressions */
Worklist := N —{ng};

/* Iteration */
while worklist not empty do begin
Remove first node from worklist, let it be n;
AVIN; := Ny, AVOUT),;
oldout := AVOUT,;
AVOUT, := (AVIN; — AVKILL;) U AVGEN;;
if AVOUT); # oldout then
Add all successors of n; to worklist;
end;

end;

Code Optimisation : 85

REGISTER ASSIGNMENT & ALLOCATION

A note on terminology

Register assignment and allocation are two distinct
phases in the work aimed at making effective utilisation of
registers of the target machine (by reducing the number of
Load/Store instructions). The distinction between the two

terms has not always been maintained in the literature.

We will, however, make a distinction between the two
terms and use them with the meanings described in the following

two transparencies.

Code Optimisation : 86

REGISTER ASSIGNMENT & ALLOCATION

Register assignment

e Managing the use of hypothetical registers.

— A hypothetical register is assumed to be available for ev-
ery data item / expression. During register assignment,
we decide where to place Load / Store instructions so
that the value of the data item / expression is available
in a register at every usage point, and is available in the
memory cell allocated for that data item / expression at

all other points.

— An unbounded number of hepothetical registers is as-

sumed to be available for the purpose of assignment.

Code Optimisation : 87

REGISTER ASSIGNMENT & ALLOCATION

Register allocation

e Managing the use of real registers in a target machine.

— The use of hypothetical registers is mapped into the use

of real registers existing in the target machine.

— The motivation is to hold frequently used data values in
registers instead of memory locations in the interests of

execution efficiency of the target program.

Scope :

(i) Local Register Allocation : Allocation of registers to data

items / expressions within a basic block.

(ii) Global Register Allocation : Allocation of registers to

data items / expressions over regions of a program.

Code Optimisation : 88

LOCAL REGISTER ALLOCATION

. allocation of registers to date items / expressions

within a basic block (i.e. in straight line code).

Note the following points in this context

e Code generation precedes register allocation.

e Register assignment may have been performed during code
generation, e.g. the code generation algorithm may assume
the presence of a large number of registers, possibly one for

every data item / expression.

e Some register allocation may have been performed during
code generation, e.g. the code generation algorithm may
save / restore partial results from registers when it runs
out of registers to use for expression evaluation. (The Aho-
Johnson and Sethi-Ullman algorithms even try to do this

‘optimally’.)

e Register assignment / allocation performed for a source
statement may have to be modified to improve register us-
age within a basic block, e.g. if a variable var is used in two
consecutive statements, holding var in a register accross the

statements would save a Load instruction !

Code Optimisation : 89

LOCAL REGISTER ALLOCATION

Register Reference String

... represents the sequence in which hypothetical reg-
isters are used in a basic block. This provides the basis for
allocation decisions. (Note : We use rj, 1y, etc. to represent
hypothetical registers, and R;, Ry, etc. to represent machine,

i.e. real, registers.)

Example

*
ry, Ty, T3, r1,72

Here, r; indicates that the hypothetical register is

referenced-and-modified in this step.

Code Optimisation : 90

LOCAL REGISTER ALLOCATION

Managing the registers over a basic block

When all machine registers hold useful values and a
new register is required for calculations, we free one of the ma-

chine registers (say, R;). This is called pre-emption of a register.

Let R; contain the value represented by a hypothetical

register r;.

e If r; (i.e. the data item represented by it) has been modified
since it was last loaded from the memory cell, then we need
to store its value in the memory cell while freeing it for

another purpose.

(a) Belady proposed that the value whose next use lies
farthest in the register reference string should be

pre-empted from the machine register.
(b) Kennedy, Horowitz, Fischer differentiate between

— a reference of a hypothetical register, and

— areference-and-modification of a hypothetical reg-

ister

during pre-emption, since the latter requires a Store
while the former does not. They consider alterna-
tive pre-emption decisions and compute the total
cost of the register allocation for the basic block.

The lowest cost alternative is selected.

Code Optimisation : 91

LOCAL REGISTER ALLOCATION

Ezample :
Consider local register allocation in a 2-register

machine for the reference string :

*
r1,Ty, T3, r1, 72

Belady’s Algorithm : ‘Maximum distance’ pre-emption.

Register Machine Cost
reference Register
Ry Ry

1 T — 1

T3 T 5 1

T3 ™ T3 2

1 T T3 0

T9 T 9 1

total cost = 5

Note :
Load and Store instructions are introduced at
appropriate points, i.e. whenever the contents of a machine

register are changed. Both are assumed to cost 1 unit each.

Code Optimisation : 92

LOCAL REGISTER ALLOCATION

Ezample :
Consider local register allocation in a 2-register

machine for the reference string :

*
r1,Ty, T3, r1, 72

Kennedy et al Algorithm :

Register Machine Cost
reference Register
Ry Ry

1 T — 1

5 T 5 1

T3 Trs T9 1

1 T 9 1

T9 T T9 0

total cost = 4

Note :
Load and Store instructions are introduced at
appropriate points, i.e. whenever the contents of a machine

register are changed. Both are assumed to cost 1 unit each.

Code Optimisation : 93

LOCAL REGISTER ALLOCATION

Comparison of algorithms

The algorithm by Kennedy et al is an optimal algo-
rithm, in that it always finds the least cost allocation. However,
this algorithm is computationally expensive since it considers

the alternative pre-emption decisions and selects the best one.

Belady’s algorithm is not an optimal algorithm in that
it does not guarantee least cost allocation. However, it it com-

putationally efficient.

The manner of variation of the register allocation ex-
penses with the size of the register reference string is very im-
portant from the viewpoint of compilation efficiency. As pro-
grams are continually increasing in size, it is useful that an
algorithm used in the compiler should be linear in nature. If
this is not possible, it should at least not be exponential in its
behaviour. Belady’s algorithm is more practical from this view-

point.

Code Optimisation : 94

GLOBAL REGISTER ALLOCATION

Notation :
R : Set of machine registers
D : Set of data items
RF : Set of registers allocated to
dp € D
D, : Set of data items to which

r' € R is allocated
| : Cardinality of a set

For high profits, register utilisation should be max-
imised. Any allocation of registers in R to data items in D must

satisfy the following conditions :

(i) Non-interference : Data items to which the same regis-
ter has been allocated should not be simultaneously

live at any point.

(ii) Consistency : At most one register should be allocated

to a data item at any program point.

Code Optimisation : 95

GLOBAL REGISTER ALLOCATION

Nature of global allocation

(a) one-one allocation : Each machine register is allocated
exclusively to one data value and a value is allocated to

at most one register.

(b) many-one allocation : At least one machine register is

shared between more than one data values.

(c) many-few allocation : At least one register is shared be-
tween more than one data values, and at least one data
value is resident in different registers in diferent regions

of the program.

Q : Characterise many-few allocation formally.

Code Optimisation : 96

GLOBAL REGISTER ALLOCATION

Allocation of registers across basic block boundaries.

Preliminaries

When a value is allocated to a machine register, it is

necessary that :

(i) The value is available in a register at all points in
the program where it is used (i.e. at all its refer-

ence/definition points), and

(ii) The value is available in a memory location at all
points in the program where it is not contained in

a register.

Load and Store instructions have to be inserted at

strategic points in the program to ensure this.

Live range of a value

The program region over which a value z needs to
reside in a register is called the live range of the value z (i.e. Ir;).
A live range is often represented as a set of basic blocks {b} of

a program.

Identification of the live range of a value constitutes

register assignment for the value.

Code Optimisation : 97

GLOBAL REGISTER ASSIGNMENT

The profit of a liwe range

The profit of a live range I[r, is the number of
executions of Load /Store instructions of z eliminated by holding

its value in a register.

Ezample : Static estimation of profits

Consider a live range [r consisting of a set of basic

blocks {b}. We have

MPlr — Zbelr #OCCb : wnb
P, = MP, — cost of inserted Loads/Stores.

where
M Py, is the maximum profit for live range Ir,
Py, is the realisable profit for live range Ir,
#occy, is the number of Loads/Stores in b,
nb is the static nesting level of b, and
w is the nesting weightage (usually 5 or 10). (w™ indi-

cates how many times b may execute in a run)

Profit of a register allocation

The profit of a register allocation is the sum of the profits

of all live ranges to which registers have been allocated.

Code Optimisation : 98

GLOBAL REGISTER ASSIGNMENT

Liwve Range Examples

]_ a =
2
"‘
3 = a
4 =10
I
5!

Live range of a : {1,2,3,4}
— Store in block 1.
— MP, =11, P, = 10 for w = 10.

Live range of b : {2,3,4}
— Load at exit of block 2.
—MP;;:lO, PbZQfOI"w:lO.

Many methods for identifying the live range of a data
item have been designed. We see one such method in the fol-

lowing.

Code Optimisation : 99

GLOBAL REGISTER ASSIGNMENT

METHODS OF LIVE RANGE IDENTIFICATION

Chow-Hennessy Approach

A basic block of the program belongs to the live range
of a value if the value is live within that basic block and a refer-
ence or a definition of the value reaches it. The live range is the

set of such basic blocks.

1. Value 1s live : This implies that the value is used along
some path through this block, hence it is meaningful to

hold it in a register.

2. A reference 1s reaching and the value is live : This implies that
the value is currently in a register (it would have been
loaded at the reference that is reaching), and is required

along some path through this block.

3. A defintion 1s reaching and the value 1s live : The value is cur-
rently in a register (it would have been put there by the
definition that is reaching), and is required along some
path through this block.

Code Optimisation : 100

GLOBAL REGISTER ASSIGNMENT

METHODS OF LIVE RANGE IDENTIFICATION

Chow-Hennessy Approach (Contd.)

Ezample :
]_ a p—
2
Y {
3 = qa
4 =b
L |

5

Live range of a : {1,2,3,4}

Live range of b : {3,4}

Load instructions are inserted (if necessary) in all en-
try blocks of the live range. Store instructions are inserted

(where necessary) in all exit blocks of the live range.

Note that block 2 is not contained in the live range of

Code Optimisation : 101

THE BASIS FOR REGISTER ALLOCATION

INTERFERENCE OF LIVE RANGES

If some basic block b of the program belongs to live

ranges [r; and [ry, then live ranges [r{, Iro are said to interfere
(in that block).

The same machine register can not be allocated to

interfering live ranges.

Example

]_ a =
2
VV{
3 —a
4 =10
L |
5}

Live range of a : {1,2,3,4}
Live range of b : {3,4}

Live ranges Ir,, [r, interfere in blocks 3 and 4, hence

the same register can not be allocated to variables a and b.

Code Optimisation : 102

GLOBAL REGISTER ALLOCATION

REGISTER INTERFERENCE GRAPH

Register Interference graph is an undirected graph
IG = (L, IE)
where

(i) L is the set of live ranges for the values which are

candidates for register allocation

(ii) /E is the set of edges (Iri, Ir;) such that live ranges Ir;

and [r; interfere, i.e. Ir; N Ir; # ¢.

Ezample

Code Optimisation : 103

GLOBAL REGISTER ALLOCATION

THE GRAPH COLOURING APPROACH

Graph Colouring
The problem of graph colouring is defined as :

(a) give different colours to nodes Ir;, Ir; if the edge

(Ir;, lrj) exists in IG,

(b) use minimum number of colours

Register allocation

can be looked upon as a colouring of IG !?

Example

Code Optimisation : 104

GLOBAL REGISTER ALLOCATION

ONE-ONE & MANY-ONE ALLOCATION

is feasible when # colours required to colour the
interference graph is < # registers.

Example

Allocation for a 3 register machine :

register 1 : live ranges 1, 4
register 2 : live range 2

register 3 : live range 3

Code Optimisation : 105

GLOBAL REGISTER ALLOCATION

MANY-FEW ALLOCATION

Q : What if # colours required is > # registers 7

Constrained live ranges

A constrained live range is a live range whose degree

in IG > r, the number of registers.

(a) An unconstrained live range can always be coloured. It
may or may not be possible to colour a constrained one.

(Refer to interference graph on previous transparency.)

(b) For constrained live ranges, one-one or many-one allo-
cation may not be feasible. In that case, live range splitting

may be used to perform many-few allocation.

Code Optimisation : 106

GLOBAL REGISTER ALLOCATION

LIVE RANGE SPLITTING

Ezxample

21

Allocation for a 2 register machine :

Live ranges 1,2 and 4 are constrained. Live range 2 can be split

to facilitate allocation. Hence :

register 1 : live ranges 1, 3, 2!

register 2 : live range 4, 2°

where 2! and 2? are parts of live range 2, which do not interfere

with nodes 1 and 4 respectively.

Code Optimisation : 107

GLOBAL REGISTER ALLOCATION

PRACTICAL LIVE RANGE SPLITTING

In practice, it is not always possible to find live range
partitions as shown in previous transparency. Hence, live range

splitting is performed as follows :

(a) A colourable live range partition is found. This partition
of the live range has a degree < n, where n is the number

of machine registers.

(b) The remainder of the live range is represented by an-
other node in the interference graph. This node may
have a degree as much as the original live range. (Hence,
it may be necessary to split this partition of the live

range further.)

In the previous transparency, live range 22 may be
identified so that it only interferes with live range 1. Live range
2! may interfere with nodes 1 and 4. Hence, it can not be

allocated a colour without further splitting.

Code Optimisation : 108

GLOBAL REGISTER ALLOCATION

CHOW-HENNESSY’S PRIORITY BASED COLOURING

e Priority P, = (profits / # blocks in live range)

e Forbidden set for each node is the set of colours which have

been given to neighbouring nodes.

Algorithm outline
1. Separate constrained and unconstrained live ranges.

2. While a constrained live range and an allocatable register

exists

(a) Compute the priorities F), for all live ranges, if

not already done.
(b) Find the Ir with highest P,
e Colour this Ir with a colour not present in its
forbidden set.
e Update the forbidden set for the neighbours of

this live range in IG.

e Split the neighbours of this [r, if necessary.
(This is done when the forbidden set of a neigh-

bour is ‘full’, i.e. it contains all possible colours.)

3. Colour the unconstrained live ranges.

Q : Should we identify constrained live ranges again in

step 27 Explain why.

Code Optimisation : 109

GRADED EXERCISES

1. Study the program flow graph given below and indicate
whether any of the following optimising transformations can
be applied to it
(a) common subexpression elimination
(b) elimination of dead code
(c) constant propagation, and

(d) frequency reduction

Clearly justify your answers.

a 1=
1 b :
+v
T 1= 5.2
2 y = 94
.= axb

3 “c .— 35 o= axb 4

5 T:=y+b

.= ax*xb

Code Optimisation : 110

GRADED EXERCISES

2. Specify the necessary and sufficient conditions for perform-
ing
(a) Constant propagation
(b) dead code elimination, and

(c) loop optimisation
3. Develop complete algorithms for the following optimisations

(a) common subexpression elimination
(b) elimination of dead code
(c) constant propagation, and

(d) frequency reduction

Apply these algorithms to the program flow graph of ques-
tion 1, and compare the answers with your own answers in

question 1.

4. Write a note justifying the need for d+41 iterations, where d
is the depth of a graph, for the iterative solution of a data

flow problem.

Code Optimisation : 111

GRADED EXERCISES

5. Given an assignment statement of the form
a = b;

copy propagation implies substituting b for a at every usage

point of a reached by the definition a := b;.

(a) Develop a complete algorithm for copy propagation.
(Hint : Refer to the discussion of copy propagation in
this module.)

(b) Can copy propagation be performed transitively ? For

example, in

Can c¢ be replaced by b 7 If so, explain how you will
modify your algorithm to perform this enhanced copy

propagation.

Code Optimisation : 112

