
CODE OPTIMISATION
MOTIVATION :To produe target programs with high exeutioneÆieny.Constraints :(a) Maintain semanti equivalene with soure program.(b) Improve a program without hanging the algorithm.
Need :(a) `Permissive' programming languages provide many ex-ibilities, often leading to ineÆient oding. For example,a := a+ 1; where a is `real' requires a type onversion of`1' to `1.0'. An optimising ompiler an avoid type on-version during the exeution of the program by usingthe onstant `1.0' instead of `1'.(b) Due to the inreasing ost of programmer time, pro-grammers do not pay suÆient attention to exeutioneÆieny of programs. Hene the need for optimisationduring ompilation.

Code Optimisation : 1



CODE OPTIMISATION
EFFECTIVENESS :A very old resultWhen optimised by the IBM/360 Fortran H ompiler(of mid-sixties vintage),� a program exeutes 3 times faster� a program oupies 25% less storage
Contemporary senarioImprovements due to optimistion may be more dra-mati in ontemporary ompilers beause� More e�etive optimisation tehniques are available.� Today, less emphasis is put on exeution eÆieny than onother attributes of a program like struture, maintainabil-ity, reusability of a program, et. Code sharing and re-useleads to a `blak box' view of programs, whih further de-emphasises exeution eÆieny.� Exploitation of advaned arhitetural features like instru-tion pipelining requires `smart' ode generation, whih isonly possible in an optimising ompiler.

Code Optimisation : 2



CODE OPTIMISATION
Q : Can a programmer out-perform an optimiser ?YES ! This is possible by(i) hoosing a better algorithm.(ii)knowing more about the de�nitions and uses of dataitems in the program e.g. a programmer may knowrelative probabilities of branhes being taken. Also,(a) An optimiser has to ensure orretness of theoptimised program under all onditions, heneit has to be onservative(b) An optimiser may miss optimisation opportu-nities beause of this.Also, NO ! Beause(i) It takes too muh time to perform some optimisationsby hand, viz. strength redution, opy propagation,dead ode elimination.(ii)Certain mahine level details are beyond the ontrolof a programmer, viz. instrutions and addressingmodes supported by the target mahine.

Code Optimisation : 3



CODE OPTIMISATION
LEVELS OF OPTIMISATION(a) Mahine dependent optimisations, e.g.1. better hoie of instrutions,e.g. INC instead of a load-add-store sequene2. better use of addressing modes,e.g. base-displaement-o�set addressing, et.3. better use of mahine registers.(b) Mahine independent optimisations :Based on semantis preserving transformations appliedindependent of the target mahine, e.g. ommon sub-expression elimination, loop optimisation, et.

Code Optimisation : 4



CODE OPTIMISATIONMACHINE INDEPENDENT OPTIMISATIONCost-e�etiveness of mahine independent transfor-mations depends on their sope.(a) Loal OptimisationSope is restrited to essentially sequential setions of pro-gram ode (alled basi bloks { de�ned later). This re-strits the amount of analysis neessary.It also restrits� the kinds of optimisation feasible, and� the gains of optimisation.e.g. loop optimisation an not be performed loally.(b) Global OptimisationGlobal optimisation is applied to a larger setion of aprogram than a basi blok, typially a loop or a proe-dure/funtion.Knuth (1971) reports speed-up fators of� � 1.4 due to loal optimisation� � 2.7 due to global optimisation
Code Optimisation : 5



CODE OPTIMISATION
Why separate Loal and Global optimisation ?

(a) Loal optimisation simpli�es global optimisation :Consider elimination of redundant omputations withina basi blok of odea � b� � �a � b ( assumed eliminatedby loal optimisation
Thus, global optimisation only needs to onsider the �rstourrene of a � b within a basi blok.(b) Loal optimisation an be merged with the preparatoryphase of global optimisationCommon sub-expressions, onstant propagation, et. anbe performed while onverting a program to triples orquadruples.

Code Optimisation : 6



OPTIMISING TRANSFORMATIONS
1. COMPILE-TIME EVALUATIONShifting exeution time ations to ompilation time,suh that they are not performed (repeatedly) during the exe-ution of the program.(a) Folding Evaluation of an expression with onstant operandsat ompilation time. In e�et, an expression is replaed by asingle value (hene the term `folding').Example : area = (22:0=7:0)*r**222.0/7.0 an be performed during ompilation itself.Note : Typial appliations of folding are in address alula-tion for array referenes, where produts of many onstants are`folded' into single onstant values.

Code Optimisation : 7



OPTIMISING TRANSFORMATIONS
1. COMPILE-TIME EVALUATION (Contd.)(b) Constant PropagationPropagation implies replaement of a variable v by anentity appearing on the rhs of an assignment to v. Constantpropagation is applied when v is assigned the value of a onstant.This enhanes the sope of optimisation by folding.Example : a := 3:1;� � �x := a � 2:5;a � 2:5 an be evaluated as 3:1� 2:5 during ompilation.Q : Under what onditions is it orret to perform onstantpropagation ?

Code Optimisation : 8



OPTIMISING TRANSFORMATIONS1(b). CONSTANT PROPAGATION (Contd.)

a+ 7 10
a := b 43

2
a := 5:2 1

5x := 5 6 x := 5 78x+ 17 9

����	 ����R? ���	 ���R?��� ���R ���	?����	

?
����������R

?

Conditions for onstant propagation :A variable should be assigned the same onstant valuealong all paths reahing its use.In the above ontrol ow graph (formal de�nition later)onstant propagation and folding is possible for x + 17 of blok9, however it is not possible for a + 7 of blok 10. (Q: Why ?)Code Optimisation : 9



OPTIMISING TRANSFORMATIONS
2. COMMON SUB-EXPRESSION ELIMINATION (CSE)An expression need not be evaluated if an equivalentvalue is available and an be used. temp := b � ;a := b � ; a := temp;� � � ) � � �x := b � + 5; x := temp+ 5;Typially, the sope is restrited to lexially equivalentexpressions whih evaluate to idential values during the exeu-tion of the program.Q : Under what onditions is CSE optimisation feasible ?(Hint : We must preserve semanti equivalene !)A : Values of the operands must not hange along any pathbetween the two ourrenes (i.e. the expression mustbe available).

Code Optimisation : 10



OPTIMISING TRANSFORMATIONS2. COMMON SUB-EXPRESSION ELIMINATION (Contd.)

a � b 10
 � b 43
 := a 2 a � b 1

x+ y 5x := z 6 7x+ y 89

����	 ����R? ���	 ���R?��� ���R ���	?����	
?

���������R
1. a � b of blok 10 is a ommon subexpression. (Note thatmany ourrenes of a � b may exist in blok 10 of theprogram, some of whih may be eliminated by loal op-timisation. Global optimisation is only onerned withelimination of the �rst ourrene in the blok.)2. x+ y of blok 8 is not a ommon subexpression,3. � b of blok is 4 is also a ommon subexpression, howeverit is harder to detet (non-lexial equivalene !).Code Optimisation : 11



OPTIMISING TRANSFORMATIONS
3. VARIABLE PROPAGATIONUse of a variable v1 in plae of variable v2.Example :stmt no. statement1.  := d;2. � � �3. � � �10. z := + e;11. x := d+ e� 79:8;

Use of d in plae of  in statement no. 10 opens up thepossibility of identifying d+ e of statement no. 11 as a ommonsub-expression.Q : Under what onditions an variable propagationbe performed ?

Code Optimisation : 12



OPTIMISING TRANSFORMATIONS3. VARIABLE PROPAGATION (Contd.)

a � b 10
 := 10 43

2
a :=  1

x := z 56 7x+ y 89

����	 ����R? ���	 ���R?��� ���R ���	?����	

?
����������R

?

Conditions for variable propagation :Along all paths reahing its use, a variable should beassigned the value of the same rhs variable, and neither variableshould be modi�ed following suh assignment.a an not be replaed by  in blok 10 due to  := 10of blok 4. However, x an be replaed by z in blok 8.
Code Optimisation : 13



OPTIMISING TRANSFORMATIONS
4. CODE MOVEMENT OPTIMISATIONMove the ode in a program so as to� Redue the size of the program,| Code spae redution� Redue the exeution frequeny of the ode subjeted tomovement.| Exeution frequeny redutionExample : Code spae redution by hoistingtemp := x " 2;if a < b then if a < b thenz := x " 2; z := temp;� � � ) � � �else elsey := x " 2 + 19; y := temp+ 19;Code for x " 2 is generated only one in the optimised program,as against twie in the original program.

Code Optimisation : 14



OPTIMISING TRANSFORMATIONS
4. CODE MOVEMENT OPTIMISATION (Contd.)Examples of Exeution Frequeny Redution(a) Hoisting of odeif a < b then if a < b thenz := x " 2; temp := x " 2;� � � ) z := temp;else elsey := 19; y := 19;temp := x " 2;g := x " 2; g := temp;During exeution, x " 2 was evaluated twie in theoriginal program under the ondition a < b. In the optimisedprogram, it will be evaluated only one.Q : Under what onditions an ode movement result infrequeny redution ?A : The expression must be partially available, i.e. availablealong at least one path reahing the evaluation of theexpression.

Code Optimisation : 15



OPTIMISING TRANSFORMATIONS
4. CODE MOVEMENT OPTIMISATION (Contd.)Safety of ode movementMovement of an expression e from some blok bi toblok bj is safe only if it does not introdue a new ourrene ofe along any path in the program.Note that unsafe ode plaement may lead to surpris-ing exeption onditions, e.g. overow, during the exeution ofthe program. This is di�erent from inorret results when onlyexpressions (rather than assignments) are being moved !Example of unsafe hoisting� � � temp := x " 2;if a < b then if a < b thenz := x " 2; ) z := temp;else elsey := 19; y := 19;

Here, x " 2 is newly inserted in the else branh of theif statement. This is unsafe.Unsafe movements of ode should be avoided.
Code Optimisation : 16



OPTIMISING TRANSFORMATIONS
4. CODE MOVEMENT OPTIMISATION (Contd.)Examples of Exeution Frequeny Redution(b) Loop Optimisation : temp := x � y;for i := 1 to 10; for i := 1 to 10;� � � � � �z := x � y; ) z := temp;end; end;
Conditions for loop optimisation :� The rhs expression must be loop invariant.� The rhs expression must dominate all loop exits, i.e. the nodeontaining the expression must lie along all paths reahinga loop exit.Q : Why ? ( Hint : See the previous transpareny.)

Code Optimisation : 17



OPTIMISING TRANSFORMATIONS4(b). Loop optimisation (Contd.)

10
a � b 43

2
1

56 x+ y 789

����	 ����R? ���	 ���R?��� ���R ���	?����	

?
����������R

?

1. a � b of blok 4 does not dominate all exits of the loopf3,4g, hene its movement out of the loop is unsafe! (Note: loop optimisation of while loops is unsafe unless somespeial tehniques are used !)2. x + y of blok 7 an be safely moved out of loop f7g.However, it is unsafe to insert it into blok 5 !
Code Optimisation : 18



OPTIMISING TRANSFORMATIONS5. STRENGTH REDUCTION OPTIMISATIONReplaement of a high strength operator by a (possiblyrepeated) appliation of a low strength operator.Example : Replaement of `*' by repeated `+'.temp := 5;for i := 1 to 10; for i := 1 to 10;� � � � � �x := i � 5; ) x := temp;� � � � � �end; temp := temp+ 5;end;Pratial sope of strength redution :Address alulation in array referenes typiallyinvolves `*', whih an be redued to `+'. Considerfor i := 1 to 50;a[i℄ := :::; f Eah element = 4 bytes gend;
Address of a[i℄ = address of a[0℄ + i � 4, assuming eah element ofarray a to be 4 bytes in length.Code Optimisation : 19



OPTIMISING TRANSFORMATIONS
5. STRENGTH REDUCTION OPTIMISATION (Contd.)Strength redution is typially applied to integer ex-pressions involving an indution variable and a high strength op-erator.Indution variablesAn indution variable v is an integer salar variablewhih is only subjeted to the following kinds of assignments ina loop : v := v � onstant;Controlled variable of a for loop is an indution variable.Note : Strength redution is not performed for oating pointexpressions beause a strength redued program may produedi�erent results than the original program.Q : Why ?A : Consider �nite preision of omputer arithmeti.

Code Optimisation : 20



OPTIMISING TRANSFORMATIONS
6. LOOP TEST REPLACEMENTReplae a loop termination test phrased in terms ofone variable, by a test phrased in terms of another variable.This may open up the possibilities of dead ode elimination.Typially useful following strength redution.Example : A strength redued program:temp := 5; temp := 5;i := 1; i := 1;loop : x := temp; loop : x := temp;i := i+ 1; ) i := i+ 1;temp := temp + 5; temp := temp + 5;if i � 10 then if temp � 50 thengoto loop; goto loop;

The loop indution variable i is no longer meaning-fully used in the program. Hene it an be eliminated.

Code Optimisation : 21



OPTIMISING TRANSFORMATIONS
7. DEAD CODE ELIMINATIONPreliminaries1. A variable is said to be dead at a plae in a program if thevalue ontained in the variable at that plae is not usedanywhere in the program.2. If an assignment is made to a variable v at a plae wherev is dead, then the assignment is a dead assignment.3. Removing a dead assignment makes no di�erene to themeaning/results of the program.

Code Optimisation : 22



OPTIMISING TRANSFORMATIONS7. DEAD CODE ELIMINATION (Contd.)

10
a � b 43

2 a :=  1
x := y � 5 56 789

����	 ����R? ���	 ���R?��� ���R ���	?����	
?

���������R
?

1. The assignment a :=  of blok 1 is not dead (a is used inblok 4).2. The assignment x := y � 5 of blok 5 is dead. Theexpression y�5 an also be eliminated, sine it is no longermeaningful. However an expression apable of produingside e�ets an not be so eliminated.Q : Why ? (Hint : Think of funtion alls.)
Code Optimisation : 23



LOCAL OPTIMISATION
� Restrited to essentially sequential ode� Limited sope for optimisation, viz. loop optimisation, strengthredution, et. not possible� Low ost of optimisation : an be performed whileonverting a program to triples/quadruplesBasi BlokA basi blok b of a program P is a sequene ofprogram statements (instrutions) � = (i1; i2; : : : im) suh that(i) only i1 in b an be the destination of a transfer ofontrol instrution,(ii)only im in b an be a transfer instrution itself.Example : a := x � y;� � �z := x;� � �b := z � y;Note the ease of variable propagation and CSE in theabove example. Code Optimisation : 24



LOCAL OPTIMISATION1. DAG BASED OPTIMISATIONBuild a DAG for the basi blok under onsideration� Initially eah variable is represented by a node. The SymbolTable entry identi�es the node.� Eah node is labelled with the name(s) of the variable(s)whose value it represents.� For eah operation in an expression, a new node is reatedwith pointers to the nodes of its operands. A new node isnot reated if a mathing node exists.� At an assignment, the root of the rhs expression is labelledwith the name of the lhs variable. (SYMTAB entry of thelhs variable is hanged appropriately.)� Copy propagation and CSE are now easyExample :stmt no. statement1. a := x � y;2. z := x;3. b := z � y;4. x := b;5. g := x � y;
Code Optimisation : 25



LOCAL OPTIMISATION
1. DAG BASED OPTIMISATION (Contd.)Example :stmt no. statement1. a := x � y;2. z := x;3. b := z � y;4. x := b;5. g := x � y;After proessing statement 1 :

"!# "!# "!# 
"!# *����� HHHHHHHHHHHHx0 y0 z0

a
Note : x0; y0 and z0 represent the initial values of variables x; yand z respetively.

Code Optimisation : 26



LOCAL OPTIMISATION
1. DAG BASED OPTIMISATION (Contd.)Example :stmt no. statement1. a := x � y;2. z := x;3. b := z � y;4. x := b;5. g := x � y;After proessing statements 1-3 :

"!# "!# 
"!# *����� HHHHHHHHHHHHx0; z y0

a; b

Note : Variable propagation has ourred for variable z, whileommon sub-expression elimination has been e�eted for a � b.
Code Optimisation : 27



LOCAL OPTIMISATION
1. DAG BASED OPTIMISATION (Contd.)Example :stmt no. statement1. a := x � y;2. z := x;3. b := z � y;4. x := b;5. g := x � y;After proessing the entire basi blok :

"!# "!# 
"!# * "!# *

����� HHHHHHHHHHHH
�����

AAAAAAA
AAAAA

z y0
a; b; x

g

Code Optimisation : 28



LOCAL OPTIMISATION
2. QUADRUPLE BASED OPTIMISATION USING VALUENUMBERSA note on unique result names for quadruples :To simplify the elimination of ommon sub-expressions,it is neessary that two quadruples having the same operator andidential operands must have unique result names.Example a � b: : :a � b+ 

If the quadruple generated for the �rst ourrene ofa � b uses the result name temp1, then the result name for theseond ourrene of a � b should be idential.

Code Optimisation : 29



LOCAL OPTIMISATION
2. QUADRUPLE BASED OPTIMISATION USING VALUENUMBERS
Notes :1. The result name in a quadruple is not neessarily a `tem-porary loation'. It simply provides a onvenient means torefer to the partial result represented by the quadruple.2. The ompiler an maintain a hash table of the �rst three�elds of quadruples to ensure uniqueness of the result name.3. The simpli�ation resulting from unique result names is asfollows : In the above example, if the seond ourrene ofa � b is redundant, it an simply be replaed by the resultname in the quadruple, viz. temp1. This an be done bysimply examining the result name of the quadruple, andwithout having to know the other ourrenes of a � b.4. The result name beomes a temporary loation only whensome ourrenes of the expression an be eliminated.

Code Optimisation : 30



LOCAL OPTIMISATION
2. QUADRUPLE BASED OPTIMISATION USING VALUENUMBERS (Contd.)The value number assoiated with a variable uniquelyidenti�es the plae in the basi blok where the variable was lastassigned a value.� At the start of a basi blok, the value numbers of all vari-ables are initialised� At an assignment, the value number of the LHS variable ishanged to a new value� In the quadruples table, the pair (symbol, value no.) isstored in the operand �eld. (Note that the table of quadru-ples is the intermediate representation of the program. Thisis distint from the hash table maintained to ensure unique-ness of the result names.)� For CSE, a new quadruple is ompared with all existingquadruples (note : the value numbers also partiipate in aomparison.)� On proessing the statementv := 25:3;the value number of v is set to �m where 25.3 oupies themth entry in CONSTAB. This feature is used for ConstantPropagation.

Code Optimisation : 31



LOCAL OPTIMISATION
2. QUADRUPLE BASED OPTIMISATION USING VALUENUMBERS (Contd.)Proedure for optimization :1. For every evaluation, a quadruple is generated in a bu�er.2. Current value numbers of the operands are opied fromthe symbol table.3. If eah operand is either onstant or has a negative valuenumber, perform onstant folding and skip step 4.4. The quadruple in the bu�er is ompared with all existingquadruples in the table.(a) Enter the new quadruple in the table (with ag= 0) if no mathing quadruple is found.(b) If a mathing quadruple is found in the table, itsag is hanged to 1.� The newly generated quadruple is not enteredin the table. (This is an instane of ommonsubexpression elimination.)� Flag = 1 indiates that the value of the quadru-ple should be saved for later use.

Code Optimisation : 32



LOCAL OPTIMISATION
2. QUADRUPLE BASED OPTIMISATION USING VALUENUMBERS (Contd.)Example :stmt no. statement5. a := 29:3 � d;17. b := 24:5;31.  := a � b+ w;49. x := a � b+ y;
After proessing statements 1{31 :
Symbol table Quadruples tableSymbol Val # Opr Operand 1 Operand 2 Result FlagSym Val # Sym Val # namea 5b -75 * a 5 b -75 T35 0 31 + T35 { w 0 T56 0x 0w 0Note : Value number of `-75' for b implies that b has beenassigned the onstant oupying 75th entry in theConstants' table (i.e., 24.5).Code Optimisation : 33



LOCAL OPTIMISATION
2. QUADRUPLE BASED OPTIMISATION USING VALUENUMBERS (Contd.)Example :stmt no. statement5. a := 29:3 � d;17. b := 24:5;31.  := a � b+ w;49. x := a � b+ y;
After proessing statements 1{49 :
Symbol table Quadruples tableSymbol Val # Opr Operand 1 Operand 2 Result FlagSym Val # Sym Val # namea 5b -75 * a 5 b -75 T35 0/ 1 31 + T35 { w 0 T56 0x 49w 0 + T35 { y 0 T92 0

Code Optimisation : 34



GLOBAL OPTIMISATIONSope The sope of global optimisation is generally aprogram unit, viz. a proedure or funtion body.Program RepresentationThe program is represented in the form of a ControlFlow Graph (CFG). The nodes of the graph represent the ba-si bloks in the program, and the edges represent the ow ofontrol during the exeution of the program.Control Flow AnalysisDetermines information onerning the arrangementof the graph nodes, i.e. the struture of the program, viz. thepresene of loops, nesting of loops, nodes visited before the on-trol of exeution reahes a spei� node, et.Data Flow AnalysisDetermines useful information for the purpose ofoptimisation, viz. how data items are assigned and referenedin a program, values available when program exeution reahesa spei� statement of the program, et.
Code Optimisation : 35



GLOBAL OPTIMISATIONCONTROL FLOW ANALYSISConepts and De�nitionsProgram PointA program point wj is the instant between the end ofexeution of instrution ij, and the beginning of the exeutionof the instrution ij+1. The e�et of exeution of instrution ijis said to be ompletely realised at program point wj.Control Flow Graph (CFG)A ontrol ow graph is a direted graphG = (N;E; n0)where N is the set of nodes (i.e. basi bloks),E is the set of ontrol ow edges (bi, bj),n0 is the entry node of the program.Paths A sequene of edges (e1, e2; : : : el), suh that theterminal node of ei is the initial node of ei+1, is known as apath in G.Predeessors, Suessors, Anestors and Desendantsbi is a predeessor (anestor) of bj if there exists anedge (a path) from bi to bj. A suessor / desendant is analo-gously de�ned. Code Optimisation : 36



GLOBAL OPTIMISATIONCONTROL FLOW ANALYSISConepts and De�nitions (Contd.)DominatorsA blok bi is said to be a dominator of blok bj if everypath from n0 to bj in G passes through bi.bi is a post-dominator of bj if every path starting on bjpasses through bi before reahing an exit node of G.Regions A region R = (V;E 0; V 0) is a onneted subgraph of G,where V � N , E 0 � E and V 0 � N represent the set of nodes,edges and entry nodes respetively. We will have oassion touse many kinds of regions, viz.� loops� single entry regions� strongly onneted regions� intervalsArtiulation Blokb is an artiulation blok for R if every path from anentry node to an exit node of R neessarily passes through b.
Code Optimisation : 37



GLOBAL OPTIMISATIONCONTROL FLOW ANALYSISConepts and De�nitions (Contd.)Q : Where do we use these onepts ?A : Consider the following situations {(a) It is orret to move some ode out of a node i if� it is inserted into a dominator node j of i,� no assignment(s) to any operands of the ode ouralong any path j : : : i.Hint : Is it always safe to do this ?(b) Meaning of a program may hange unless some ode ,whih is moved out of a loop, ours in an artiulationblok of the loop.() It is inorret to move any ode out of a loop unless itsourrene(s) dominate all exit nodes of the loop.(d) An expression e an be eliminated from a program pointw if and only if,� there exists at least one evaluation of e along everypath reahing point w,� no operand of e is assigned a value after last suhevaluation.Code Optimisation : 38



DATA FLOW ANALYSISDetermines useful information for the purpose ofoptimisation.Data Flow PropertyA data ow property represents an item of data owinformation (or a set of items of data ow information), e.g. setof expressions whose values are available.� Data ow properties are typially assoiated with entities inthe ontrol ow graph, viz. nodes in the ontrol ow graph.� Data ow analysis is the proess of omputing the values ofdata ow properties.� Data ow properties are de�ned by the ompiler writer foruse in a spei� optimisation.A few fundamental data ow properties are de�nedin the following transparenies.

Code Optimisation : 39



DATA FLOW ANALYSIS
PRELIMINARIESDe�nition / Referene pointA program point ontaining a de�nition (i.e. assign-ment) / referene of a data item.Evaluation point for an expressionA program point ontaining an evaluation of the ex-pression.Example :

4 w5 : x := y3 ?
2 ??

w1 : a � b1 ?

� w5 is a referene point for y. It is also a de�nition point forx. (Stritly speaking, w05 is the referene point for y, w005 isthe de�nition point for x, where w05 preedes w005.)� w1 is an evaluation point for expression a � b.
Code Optimisation : 40



DATA FLOW ANALYSISFUNDAMENTAL DATA FLOW PROPERTIES1. Available ExpressionsExpression e is available at program point w, i� alongall paths reahing w(i) there exists an evaluation point for e,(ii)no de�nition of any operand of e follows its lastevaluation along the path.Expression e is said to be killed by a de�nition of any ofits operands. Hene it is not available following the de�nition(s)of any of its operand(s).Note that an expression is said to be killed, irrespe-tive of whether or not its value is available at the point of thede�nition. This onvention simpli�es data ow analysis, as wewill see later.Usage : Common sub-expression elimination

Code Optimisation : 41



DATA FLOW ANALYSIS1. Available Expressions (Contd.)

10
a := 4+ d 32

a � b 1
+ d 56 789

�����	 �����R? ���	 ���R?��� ���R ���	?�����	

?
�����������R

?

Expressions available at entry of node 10 ?| f+ dg
Code Optimisation : 42



DATA FLOW ANALYSISFUNDAMENTAL DATA FLOW PROPERTIES (Contd.)2. Reahing De�nitionsA de�nition d of a variable v situated at a programpoint wi is said to reah a program point wj i� along some pathwi : : : wj variable v is not re-de�ned.In other words, de�nition d of variable v is said toreah wj only when variable v, if used at wj, is likely to have thevalue assigned to it by de�nition d.
Q : Where is this data ow onept useful ?Let a de�nition x := 5 reah a program point atwhih the expression x� 3 is loated. Can onstant propagationbe performed for the variable x suh that x�3 an be replaedby 5 � 3, and an be folded ?| Only if x := 5 is the only de�nition of x reahingx � 3 !

Code Optimisation : 43



DATA FLOW ANALYSIS2. Reahing De�nitions (Contd.)

10
a := b 43

2
a := 7 1

x := y 56 7
x := 3 89

�����	 �����R? ���	 ���R?��� ���R ���	?�����	

?
�����������R

?

De�nitions reahing the entry of node 10 ?| fa := b; a := 7; x := 3g
Code Optimisation : 44



DATA FLOW ANALYSISFUNDAMENTAL DATA FLOW PROPERTIES (Contd.)3. Live VariablesA variable v is live at a program point wi i�(i) v is referened along some path wi : : : wj starting on pro-gram point wi, and(ii)no assignment to v ours before its referene alongthe path.In other words, variable v is live at wi only if the valueexisting in v at point wi is likely to be used in some omputation.If this is not the ase, then v is dead.Usage :1. We an eliminate an assignment to a dead variable, viz.x := e; where x is dead.Hint : Expression e should have no side e�ets !2. We an release / reuse storage alloated to a dead variable,sine its value need not be maintained any longer.
Code Optimisation : 45



DATA FLOW ANALYSIS3. Live Variables (Contd.)

b :=  10
43

b := 5 2
a := g 1

5
a+ w 6 7

x := 3 8
x� y 9

�����	 �����R? ���	 ���R?��� ���R ���	?�����	

?
�����������R

?

Variable a is live in nodes : 1, 5, 6.Variable x is live in nodes : 8, 9.Variable b is not live in any node.
Code Optimisation : 46



DATA FLOW ANALYSISFUNDAMENTAL DATA FLOW PROPERTIES (Contd.)4. Busy ExpressionsAn expression e is busy at a program point wi i�(i) an evaluation of e exists along some path wi : : : wj startingon program point wi, and(ii)no de�nition of any operand of e exists before its eval-uation along the pathIn other words, if the expression were to be evaluatedat program point wi, it would be useful along some path.Very Busy ExpressionIf the expression is busy along all paths starting at aprogram point wi.Q : Is it safe to insert an evaluation of expression e at aprogram point at whih it is not very busy ?

Code Optimisation : 47



DATA FLOW ANALYSIS4. Busy Expressions (Contd.)

10
4x+ y 32

1
56 a � b 789

�����	 �����R? ���	 ���R?��� ���R ���	?�����	

?
�����������R

?

a � b is busy in node 5, but not very busy.| Hene its movement from node 7 to 5 is unsafe !x+ y is busy and very busy in node 2.| Hene its movement from node 3 to 2 is safe.
Code Optimisation : 48



DATA FLOW ANALYSISREPRESENTING DATA FLOW INFORMATIONData ow information an be represented by a set ofproperties, or by a bit vetor with eah bit representing a property.The former is more general, while the latter is more onvenientin pratie. Unless otherwise stated, these representations anbe used interhangeably in our disussions.Example : Available expressions(a) Set Representationf a � b, + d, x� y, � � � g(b) Bit Vetor Representation
?a � b ?a+ b ?+ d ?x� y
1 0 1 1 � � � 0

Q : What is the size of the bit vetor ?A : Size equals the number of distint expressions in a program.The bit number for an expression an be determined the sameway as the temporary name for it (i.e. by building a table ofunique expressions in the program).
Code Optimisation : 49



DATA FLOW ANALYSISOBTAINING DATA FLOW INFORMATIONData ow information of a node has the following om-ponents :(a) Data ow information generated in a node, viz. anexpression beomes available following its omputationin the node.(b) Data ow information killed in a node, viz. a de�nitionof variable v kills all expressions involving v.() Data ow information obtained from neighbouring nodes,viz. a de�nition reahing the exit of a predeessor alsoreahes the entry of a node.Information in items (a) and (b) above is loal in na-ture, i.e. the data ow information generated and killed in anode of the ontrol ow graph depends on the nature of theomputations in the orresponding basi blok of the program.Information in item () is non-loal in nature.Hene� data ow information at a node depends on the data owinformation at other nodes in the ontrol ow graph.� data ow information at the entry and exit of a node islikely to be di�erent.
Code Optimisation : 50



DATA FLOW ANALYSISLOCAL DATA FLOW INFORMATION

a � b 10
a := b 4a+ b 3+ d 2 1 x� y 5a+ b 6 7x := 3 8a+ b 9

���	 ���R? ��	 ��R?�� ��R ��	?���	
?

�������R
?

node kill gen1 �, i.e. 0000 �, i.e. 00002 �, i.e. 0000 f+ dg, i.e. 00103 �, i.e. 0000 fa+ bg, i.e. 01004 fa � b, a+ bg, i.e. 1100 �, i.e. 00005 �, i.e. 0000 fx� yg, 00016 �, i.e. 0000 fa+ bg, i.e. 01008 fx� yg, i.e. 0001 �, i.e. 00009 �, i.e. 0000 fa+ bg, i.e. 010010 �, i.e. 0000 fa � bg, i.e. 1000
Code Optimisation : 51



DATA FLOW ANALYSIS
COMPUTING GLOBAL DATA FLOW INFORMATION1. Meet over paths solution (MOP)(a) Consider all paths reahing (starting on) a node.(b) Determine information ow along eah path.() Take the meet over all the paths, i.e. merge the infor-mation about the paths in an appropriate manner todetermine the data ow information obtained from theneighbours of the node.
Example : Available expressions for node i1. Consider all paths reahing node i (and starting on the pro-gram entry node n0).2. Compute the set of available expressions along eah pathfrom n0 to a predeessor of node i. (Assume that the set ofavailable expressions at the entry of n0 is �.)3. Sine available expressions is an all paths problem, take theintersetion of available expressions along eah path. Thisgives the set of available expressions at the entry of node i.Thus the meet operator here is intersetion.

Code Optimisation : 52



DATA FLOW ANALYSISCOMPUTING GLOBAL DATA FLOW INFORMATION1. Meet over paths solution (MOP) (Contd.)Example : Available expressions

a � b 10
a := b 4a+ b 3+ d 2 1 x� y 5a+ b 6 7x := 3 8a+ b 9

���	 ���R? ��	 ��R?�� ��R ��	?���	
?

�������R
?

node available expressions available expressionsat entry at exit2 �, i.e. 0000 f+ dg, i.e. 00103 f+ dg, i.e. 0010 fa+ b, + dg, i.e. 01104 fa+ b, + dg, i.e. 0110 f+ dg, i.e. 00108 fx� yg, i.e. 0001 �, i.e. 00009 �, i.e. 0000 fa+ bg, i.e. 010010 fa+ bg, i.e. 0100 fa � b; a+ bg, i.e. 1100
Code Optimisation : 53



DATA FLOW ANALYSIS
COMPUTING GLOBAL DATA FLOW INFORMATIONWe an make the following observations onerningthe problem of available expressions :(a) Generated information : An expression is generated in anode if the orresponding basi blok ontains a down-wards exposed ourrene of the expression, i.e. an expres-sion evaluation whih is not followed by a de�nition ofany of its operands till the end of the blok.Example : a � b+ da := : : : 4Here Gen4 = f + d g. Note that the ourrene of a � bis not downwards exposed.(b) Killed information : A de�nition of a variable (i.e. anassignment to it) kills all expressions involving the vari-able.() Merging of information : Merging is done using the setintersetion operation \ or the bitwise `and' operation Qsine this is an all paths problem.

Code Optimisation : 54



DATA FLOW ANALYSIS
FORWARD DATA FLOW PROBLEMSIn the available expressions problem1. The data ow information generated in a node ows to theexit of the node,2. The data ow information reahes a node i along all pathsfrom n0 to i.3. Thus, the data ow information always ows in the diretionof the ow of ontrol in the program.Suh a data ow problem is alled a forward data owproblem. The problem of reahing de�nitions is also a forwarddata ow problem.

Code Optimisation : 55



DATA FLOW ANALYSIS
RECOGNIZING FORWARD/BACKWARD DATA FLOWPROBLEMS(a) Forward Data ow problemsWe an reognise a data ow problem to be forwardwhen the data ow information for a program point wi dependson the omputations plaed along one or more paths reahing wi.In this ase, the information must ow along the diretion ofow of ontrol in the program.(b) Bakward Data ow problemsA data ow problem is bakward if the data ow in-formation for a program point wi depends on the omputationsplaed along one or more paths starting on wi. In this ase, theinformation ows opposite to the diretion of ow of ontrol inthe program sine omputations ourring along the path a�etthe data ow property of wi.Live variables and Busy expressions are bakward dataow problems.

Code Optimisation : 56



DATA FLOW ANALYSISLive Variables : A bakward data ow problemA variable v is live at a program point wi i� v is ref-erened along some path wi : : : wj starting on wi, and : : :(a) Generated information : A variable v beomes live whenit is referened (i.e. used) in an expression. Sine thedata ow is bakwards, the liveness due to a use in anexpression extends bakwards within the basi blok, tilla de�nition of v. Hene a live variable is generated ina basi blok due to an upwards exposed referene of avariable v, i.e. a use of v not preeded by a de�nitionwithin the basi blok.Example : a := : : :: : : := a � b: : : := v � 3 5Here Gen5 = f v, b g. Note that the referene of a is notupwards exposed.(b) Killed information : A de�nition of a variable (i.e. anassignment to it) kills its liveness.() Merging of information : Merging is done using the set unionoperation [ or the bitwise `or' operation P sine this isan any path problem.The problem of busy expressions is also a bakwarddata ow problem. Code Optimisation : 57



DATA FLOW ANALYSIS
SUMMARY OF DATA FLOW PROBLEMSData ow Generated Killed ConueneProblem Information Information i.e., mergeAvailable Downwards exposed Defn. a := : : : kills \ or QExpressions o. of an exp. all exps using aReahing Downwards exposed Defn. dk : v := : : : [ or PDe�nitions Defn. di : v := : : : kills all d0is : v := : : :Live Upwards exposed Defn. x := : : : kills [ or PVariables referene of x variable xVery Busy Upwards exposed Defn. a := : : : kills \ or QExpressions o. of an exp. all exps using aNotes :(a) A upwards / downwards exposed ourrene of an expressionimplies an expression evaluation not preeded / followedby any operand de�nition in the basi blok.(b) Upwards exposed referene of a variable is analogouslyde�ned.

Code Optimisation : 58



DATA FLOW ANALYSISCOMPUTING GLOBAL DATA FLOW INFORMATION2. Data Flow Equations :In this approah, we use the following proedure toobtain global data ow information :(a) Take the meet of the information available at the entry(exit) of eah node.(b) Consider the information being generated or killed withinthe node.() Obtain the information available at the exit (entry) ofthe node.To realise this, we set up a data ow equation for eahnode of the graph.Example : available expressionsAVINi = \8p AVOUTpAVOUTi = AVINi �AVKILLi [ AVGENiwhere,AVINi/AVOUTi is availability at entry/exit of i,AVKILLi represents information killed in node i,AVGENi represents information generated in node i.\8p represents \ over all predeessors.Code Optimisation : 59



DATA FLOW ANALYSIS
COMPUTING GLOBAL DATA FLOW INFORMATION2. Data Flow Equations (Contd.) :Note the following points onerning the use of theapproah based on data ow equations.1. The data ow equation for eah node of the ontrol owgraph is di�erent� the loal information gen and kill is di�erent for eahnode.� predeessors/suessors are di�erent for eah node.2. The data ow equations have to be solved simultaneously forall nodes in the ontrol ow graph. The solution of theseequations has to satisfy the properties of self-onsisteny,onservativeness and meaningfulness. (More about this as-pet later.)3. Solution of data ow equations is more eÆient than use ofthe MOP approah.4. The MOP solution is of theoretial interest as it indiatesthe maximum data ow information for a ontrol ow graph.5. MOP approah is impratial due to various reasons (eÆ-ieny is only one of them !).

Code Optimisation : 60



SETTING UP DATA FLOW EQUATIONS
AVINi = \8p AVOUTpAVOUTi = AVINi �AVKILLi [ AVGENiwhere,AVIN/AVOUT represent availability at entry/exit,AVKILL represents information killed in node,AVGEN represents information generated in node.

 := a+ b����
����������� AVINi

���� HHHHHHHHHHY AVOUTi
AVGENi = fa+ b; : : :gAVKILLi = f � d; � e; : : :g?���	 ���R

?���	���R

� 8i AVKILLi and AVGENi are onstants whih an bedetermined during the preparatory phase.� Using these onstants, we de�ne a transfer funtion fi(S) foreah basi blok, as fi(S) = (S� AVKILLi) [ AVGENi.
Code Optimisation : 61



DATA FLOW ANALYSIS
COMPUTING GLOBAL DATA FLOW INFORMATIONQ : Is the information obtained through data ow equationsequivalent to the MOP solution ?A: Depends on distributivity of the data ow.
The Distributivity Conditionf(� u v) = f(�) u f(�) 8 �; � and f

w : x := exp ;���� AVINi = \8p AVOUTp?���	���R
� For the MOP solution, we use f(�) u f(�) at the point w(here � and � represent the data ow information along thepaths reahing w, and f is the transfer funtion).� For solving the data ow equations we use �u� at the entryof eah basi blok (here � and � represent AVOUTp).� The data ow equations an not yield the MOP solutionunless the data ow is distributive.

Code Optimisation : 62



GENERAL FORM OF DATA FLOW EQUATIONS
1. Forward Data Flow ProblemsINi = �8p OUTpOUTi = INi �KILLi [ GENiwhere,� is the onuene operator [ or \,IN/OUT indiate information at entry/exit,KILL indiates information killed in node,GEN indiates information generated in node.
2. Bakward Data Flow ProblemsOUTi = �8s INsINi = OUTi �KILLi [ GENiwhere,� is the onuene operator [ or \,IN/OUT indiate information at entry/exit,KILL indiates information killed in node,GEN indiates information generated in node.

Code Optimisation : 63



COMMON DATA FLOW PROBLEMS
1. FORWARD DATA FLOW PROBLEMS(a) Available ExpressionsAVINi = \8p AVOUTpAVOUTi = AVINi �AVKILLi [ AVGENiwhere,AVIN/AVOUT indiate availability at entry/exit,AVKILL indiates presene of operand de�nition(s),AVGEN indiates expressions generated in node.(b) Reahing De�nitionsDEFINi = [8p DEFOUTpDEFOUTi = DEFINi �DEFKILLi [ DEFGENiwhere,DEFIN/DEFOUT indiate reahing defs. at entry/exit,DEFKILL indiates presene of another de�nition(s),DEFGEN indiates de�nitions generated in node.

Code Optimisation : 64



COMMON DATA FLOW PROBLEMS
2. BACKWARD DATA FLOW PROBLEMS(a) Busy ExpressionsBUSYOUTi = [8s BUSYINsBUSYINi = BUSYOUTi �BUSYKILLi [ BUSYGENiwhere,BUSYIN/BUSYOUT indiate busy exps. at entry/exit,BUSYKILL indiates presene of operand de�nition(s),BUSYGEN indiates busy expressions generated in node.(b) Live VariablesLIVEOUTi = [8s LIVEINsLIVEINi = LIVEOUTi � LIVEKILLi [ LIVEGENiwhere,LIVEIN/LIVEOUT indiate variables live at entry/exit,LIVEKILL indiates presene of another de�nition(s),LIVEGEN indiates live variables generated in node.

Code Optimisation : 65



DATA FLOW ANALYSISSETTING UP DATA FLOW EQUATIONSWe will onsider the proess of setting up data owequations to ollet the information required for an optimisa-tion. Consider the following spei�ation of an optimisation.Copy PropagationWe an replae a by b in the following statement if ais a opy of b at program point w (i.e. if a has the same value asb at w).
w : z := a + y ;

Approah :1. Deide on what information is adequate to perform thedesired substitution. (Note : You may de�ne your ownonepts and notations for this purpose.)2. Analyse the nature of the information to deide how itmay be olleted.3. Design a data ow problem to ollet the information.Develop data ow equations for the same.
Code Optimisation : 66



SETTING UP DATA FLOW EQUATIONSExample (Contd.) :1. What information is adequate to perform the desired sub-stitution ?
w : z := a + y ;� COPIESw = f� � �g

Let COPIES be a set of pairsf(x; y) j assignment x := y; exists along some path g| COPIES an be omputed for every program pointby using C IN and C OUT to be the set of opiesassoiated with the entry/exit of nodes.2. Analyse the nature of the information to deide how itmay be olleted.| Q : When should we add (delete) a pair (x; y)to (from) C IN or C OUT ?3. Design a data ow to ollet the information. Developdata ow equations for the same.| This should be easy one step 2 is performed.
Code Optimisation : 67



SETTING UP DATA FLOW EQUATIONS
Example (Contd.) :2. The nature of the data ow information

w : z := a + y ;� COPIESw = f� � �g
Q : What is the nature of the information in COPIES ?This is a matter of de�nition, hene there is no uniqueanswer. For example,(a) Let the set COPIESw bef(a; b), (a; ) � � �gThis situation ould arise beause the statements a := b;and a := ; may reah the node along di�erent paths, andthe onuene operator � = [. In this ase, a an not besubstituted by either b or .(b) Alternatively, we ould de�ne the onuene operator� = \. Now, at most one pair (a; v) may exist in COPIESwfor any a, and existene of suh a pair indiates orret-ness of substituting a by v.

Code Optimisation : 68



SETTING UP DATA FLOW EQUATIONS
Example (Contd.) :3. The data ow equationsThe information ow is forwards. Hene we an usethe generi form of data ow equations :C INi = �8p C OUTpC OUTi = C INi �C KILLi [ C GENiwhere,� is the onuene operator [ or \,C IN/C OUT indiate information at entry/exit,C KILL indiates information killed in node,C GEN indiates information generated in node.
Questions :1. If � is hosen to be [, then is the C IN / C OUT dataow the same as the reahing de�nitions data ow ?2. De�ne the terms C GEN and C KILL for the above dataow problem.

Code Optimisation : 69



SETTING UP DATA FLOW EQUATIONS
Example (Contd.) :3. The data ow equations (Contd.)For the assignment statement :

w : x := y ;
C GEN = f(x; y)g, andC KILL = f(x; h), (h; x) 8hg.Q : Explain the pairs inluded in C KILL above.

Code Optimisation : 70



DATA FLOW ANALYSIS
A solution of the data ow equations onsists of anassignment of values to the IN and OUT sets of eah node inthe ontrol ow graph.To be useful for optimisation, the information on-tained in a solution must satisfy the following onditions :(a) Self-onsisteny : The values assigned to the di�erentnodes must be mutually onsistent (else the solution isinorret !). Suh a onsistent solution is known as a�xed point of the data ow equations.(b) Conservative information : The data ow informationmust be onservative in that optimisation using thisinformation should not hange the meaning of a programunder any irumstanes.() Meaningfulness : The omputed values of the propertiesshould provide meaningful (in fat, maximum) oppor-tunities for optimisation. This is important, sine notperforming any optimisation is onservative but hardlymeaningful in an optimising ompiler !

Code Optimisation : 71



DATA FLOW ANALYSISCONSERVATIVE SOLUTION OF DATA FLOW EQUATIONSDuring data ow analysis, we onsider all paths inthe ontrol ow graph (i.e. all graph theoreti paths). However,during exeution, some paths may never be visited, i.e. the setof exeution paths may be di�erent from the set of graph theoretipaths. Hene the omputed data ow information may be dif-ferent from the atual data ow information.Q : Would optimisation based on the omputed data owinformation be orret ?A: The optimisation would be orret if the di�erenesbetween the omputed and atual values lie on the safer side,i.e. the di�erenes tend to disallow ertain feasible optimisa-tions, but never enable erroneous optimisations.Consider available expressions at the statement fol-lowing an if statement. Let a � b be available prior to the ifstatement, and let the then branh kill the expression a�b. Thenit is onservative to assume that a � b is not available at the fol-lowing statement, even if the then brah is never visited duringthe program's exeution. Use of \ as the onuene operatorensures a onservative solution. Optimisation based on this so-lution will never be wrong.Code Optimisation : 72



DATA FLOW ANALYSISCONSERVATIVE ESTIMATES OF DF PROPERTIESMaking Conservative AssumptionsIt is neessary to make onservative assumptions whenomplete and preise data ow information is not available.We should use onservative assumptions in(a) array assignments, viz.a[i℄ :=< exp >;Values of a[i℄ 8 i are assumed killed.(b) pointer based assignments, viz.� � � := a � b;�p := � � �;� � � := a � b;Conservative : a � b is not a CSE !These assumptions an be relaxed if preise informa-tion onerning assignments to i and p is available.

Code Optimisation : 73



DATA FLOW ANALYSISCONSERVATIVE ESTIMATES OF DF PROPERTIESWe should also make onservative assumptions in(a) proedure alls, viz.� � � := a � b;p(a; x);� � � := a � b;Conservative : a � b is not a CSE !(b) proedure bodies, viz.proedure q(a; b; x);� � � := a � b;x :=< exp >;� � � := a � b;Conservative : a � b is not a CSE !
Conservative estimates make the omputed values ofdata ow properties less preise. This an only be orretedthrough more analysis, viz. interproedural analysis, alias anal-ysis, et.

Code Optimisation : 74



DATA FLOW ANALYSISALIASINGIdenti�er v1 is said to be an alias of identi�er v2, if v1; v2refer to the same variable/share the same storage loation.Example :
p := &x;�p is now an alias of variable x.The onservativeness assoiated with an assignmentthrough a pointer variable �p an be relaxed if we determinethe set of variables fvg suh that eah v is an alias of �p.Question : Set up a data ow problem to ollet the set of vari-ables whose values an hange as a result of the pointer basedassignment�p := : : : ;

Code Optimisation : 75



SOLVING DATA FLOW EQUATIONSITERATIVE DATA FLOW ANALYSIS
1. Set the IN and OUT properties of all nodes in the ontrolow graph (exept the program entry / exit nodes) tosome initial values.2. Visit all nodes in the ontrol ow graph and reomputetheir IN and OUT properties.3. If any hanges our in any IN or OUT properties, thenrepeat steps 2 and 3.

Note : Boundary onditions hold for the program entry / exitnodes (for forward and bakward data ow problems, respe-tively). Unless interproedural analysis is performed, no dataow information an be assumed to be available at the bound-aries.
Q : The solution is a �xed point. Is it unique ?

Code Optimisation : 76



SOLVING DATA FLOW EQUATIONSITERATIVE DATA FLOW ANALYSISThe solution of iterative data ow analysis is not unique.Example :

43 ?
2 ??

e11 ?

Let IN1 = fg.(i) Let IN = OUT = fe1g elsewhere.Then solution ontains IN2 = IN3 = IN4 = fe1g.(ii)Let IN = OUT = fg elsewhere.Then solution ontains IN2 = IN3 = IN4 = fg.

Code Optimisation : 77



SOLVING DATA FLOW EQUATIONS
(ROUND ROBIN) ITERATIVE DATA FLOW ANALYSISAVAILABLE EXPRESSIONS/* Initialisations */AVINn0 := fg; AVOUTn0 := AVGENn0;8 i 2 N � fn0g AVOUTi := U � AVKILLi[ AVGENi;/* U is the universal set of expressions *//* Iteration */hange := true;while hange do beginhange := false;8 i 2 N � n0 do beginAVINi := \8p AVOUTp;oldouti := AVOUTiAVOUTi := (AVINi � AVKILLi) [ AVGENi;if AVOUTi 6= oldout then hange := true;end;end;Q : What is the omplexity of iterative df analysis ?A: O(n) iterations, where n is the number of nodes.

Code Optimisation : 78



SOLVING DATA FLOW EQUATIONSMEANINGFUL SOLUTION OF DATA FLOW EQUATIONSFor the problem of available expressions, initialisingIN and OUT properties of all nodes to fg leads to a trivial solu-tion of the data ow equations. We must avoid trivial solutionsand try to obtain the most meaningful solution, i.e. the largestpossible solution to the equations (also alled the maximum �xedpoint(MFP)).Initialisation for the Maximum Fixed Point
(a) For \ problems initialise all nodes to the universal set.(b) For [ problems initialise all nodes to fg.

Code Optimisation : 79



DATA FLOW ANALYSIS
CONVERGENCE OF ITERATIVE DATA FLOW ANALYSISQ : Is the proess of iterative data ow analysis guaranteedto onverge ?A: Depends on monotoniity of the data ow.
The Monotoniity Condition� � � implies f(�) � f(�) 8 �; � and f

w : x := exp ;���� AVINi = \8p AVOUTpAVOUTi =AVGENi [ (AVINi�AVKILLi)?���R
� Let � be the initial value of AVINi, and let � be the valueof AVINi after the �rst iteration. Hene � � �.� Sine � � �, from monotoniity AVOUTi after the �rst iter-ation � the initial value of AVOUTi.� Hene the values assumed by AVINi (AVOUTi) form a non-inreasing sequene. This guarantees onvergene.Note : Most pratial data ow problems are monotone !Code Optimisation : 80



SOLVING DATA FLOW EQUATIONS
COMPLEXITY OF ITERATIVE DATA FLOW ANALYSISDepth �rst numberingA depth �rst numbering (dfn) of the nodes of a graphis the reverse of the order in whih we last visit eah node in apre-order traversal of the graph.Depth �rst numbering has the following properties :� 8i 2 dominators(j); dfn(i) < dfn(j),� 8 forward edges (i; j), dfn(i) < dfn(j),

In a reduible ow graph (Refer to A-S-U for de�nition),an edge (i; j) is a loop forming edge (also alled a bak edge) ifdfn(j) < dfn(i).Iterative analysis in depth �rst order :Fewer iterations are required if we visit the nodes ofthe graph in depth �rst order (or reverse depth �rst order) dur-ing eah iteration, rather than in some random order (exampleon next transpareny).
Code Optimisation : 81



SOLVING DATA FLOW EQUATIONS
COMPLEXITY OF ITERATIVE DATA FLOW ANALYSISDepth of a Control Flow Graph (d)Depth (d) is the maximum number of bak edges in anyayli path in the ontrol ow graph (Note that this is not thesame as the nesting depth !).Complexity of iterative analysisWhen the nodes of a graph are visited in a depth �rstorder (reverse depth �rst order) for a forward data ow problem(bakward data ow problem), d + 1 iterations are suÆient toreah a �xed point.Example :

6 ?54 ?a := : : :3 ???
2 depth = 1nesting depth = 2?a � b1 ?

Code Optimisation : 82



SOLVING DATA FLOW EQUATIONS
COMPLEXITY OF ITERATIVE DATA FLOW ANALYSISd+ 1 iterations are adequate for data ow analysis� For a forward data ow problem, we visit the nodes in theinreasing order by depth �rst numbers. If there are noloops in the program (i.e. d = 0), the data ow informationomputed in the �rst iteration would be a �xed point of thedata ow equations.� If a single loop exists in the program, d = 1. Now, the newvalue of the loop exit node omputed in the �rst iterationan inuene the property of the loop entry node. This anonly be ahieved in the next iteration. Hene 2 iterationsare neessary.� If another bak-edge starts on some node of the loop, suhthat the loop formed by it is not ontained in the outerloop, then yet another iteration is required (see the nexttranspareny for an example).

Code Optimisation : 83



SOLVING DATA FLOW EQUATIONS
COMPLEXITY OF ITERATIVE DATA FLOW ANALYSISd+ 1 iterations are adequate for data ow analysisExample

6 ?a := : : :54 ?
3 ???
2 depth = 2?a � b1 ?

The e�et of the assignment a := : : : is felt on theavailability of a � b at the entry of blok 2 only in the thirditeration.

Code Optimisation : 84



SOLVING DATA FLOW EQUATIONS
WORKLIST ITERATIVE DF ANALYSIS (adapted: Muhnik)AVAILABLE EXPRESSIONS/* Initialisations */AVINn0 := fg; AVOUTn0 := AVGENn0;8 i 2 N � fn0g AVINi := AVOUTi := U;/* U is the universal set of expressions */Worklist := N �fn0g;/* Iteration */while worklist not empty do beginRemove �rst node from worklist, let it be niAVINi := \8p AVOUTp;oldout := AVOUTiAVOUTi := (AVINi � AVKILLi) [ AVGENi;if AVOUTi 6= oldout thenAdd all suessors of ni to worklist;end;end;

Code Optimisation : 85



REGISTER ASSIGNMENT & ALLOCATION
A note on terminologyRegister assignment and alloation are two distintphases in the work aimed at making e�etive utilisation ofregisters of the target mahine (by reduing the number ofLoad/Store instrutions). The distintion between the twoterms has not always been maintained in the literature.We will, however, make a distintion between the twoterms and use them with the meanings desribed in the followingtwo transparenies.

Code Optimisation : 86



REGISTER ASSIGNMENT & ALLOCATION
Register assignment� Managing the use of hypothetial registers.{ A hypothetial register is assumed to be available for ev-ery data item / expression. During register assignment,we deide where to plae Load / Store instrutions sothat the value of the data item / expression is availablein a register at every usage point, and is available in thememory ell alloated for that data item / expression atall other points.{ An unbounded number of hepothetial registers is as-sumed to be available for the purpose of assignment.

Code Optimisation : 87



REGISTER ASSIGNMENT & ALLOCATION
Register alloation� Managing the use of real registers in a target mahine.{ The use of hypothetial registers is mapped into the useof real registers existing in the target mahine.{ The motivation is to hold frequently used data values inregisters instead of memory loations in the interests ofexeution eÆieny of the target program.
Sope :(i) Loal Register Alloation : Alloation of registers to dataitems / expressions within a basi blok.(ii)Global Register Alloation : Alloation of registers todata items / expressions over regions of a program.

Code Optimisation : 88



LOCAL REGISTER ALLOCATION
... alloation of registers to date items / expressionswithin a basi blok (i.e. in straight line ode).

Note the following points in this ontext� Code generation preedes register alloation.� Register assignment may have been performed during odegeneration, e.g. the ode generation algorithm may assumethe presene of a large number of registers, possibly one forevery data item / expression.� Some register alloation may have been performed duringode generation, e.g. the ode generation algorithm maysave / restore partial results from registers when it runsout of registers to use for expression evaluation. (The Aho-Johnson and Sethi-Ullman algorithms even try to do this`optimally'.)� Register assignment / alloation performed for a sourestatement may have to be modi�ed to improve register us-age within a basi blok, e.g. if a variable var is used in twoonseutive statements, holding var in a register aross thestatements would save a Load instrution !
Code Optimisation : 89



LOCAL REGISTER ALLOCATION
Register Referene String: : : represents the sequene in whih hypothetial reg-isters are used in a basi blok. This provides the basis foralloation deisions. ( Note : We use r1, r2, et. to representhypothetial registers, and R1, R2, et. to represent mahine,i.e. real, registers.)Example r1; r�2; r3; r1; r2

Here, r�2 indiates that the hypothetial register isreferened-and-modi�ed in this step.

Code Optimisation : 90



LOCAL REGISTER ALLOCATION
Managing the registers over a basi blokWhen all mahine registers hold useful values and anew register is required for alulations, we free one of the ma-hine registers (say, Ri). This is alled pre-emption of a register.Let Ri ontain the value represented by a hypothetialregister rj.� If rj (i.e. the data item represented by it) has been modi�edsine it was last loaded from the memory ell, then we needto store its value in the memory ell while freeing it foranother purpose.(a) Belady proposed that the value whose next use liesfarthest in the register referene string should bepre-empted from the mahine register.(b) Kennedy, Horowitz, Fisher di�erentiate between{ a referene of a hypothetial register, and{ a referene-and-modi�ation of a hypothetial reg-isterduring pre-emption, sine the latter requires a Storewhile the former does not. They onsider alterna-tive pre-emption deisions and ompute the totalost of the register alloation for the basi blok.The lowest ost alternative is seleted.

Code Optimisation : 91



LOCAL REGISTER ALLOCATIONExample : Consider loal register alloation in a 2-registermahine for the referene string :
r1; r�2; r3; r1; r2

Belady's Algorithm : `Maximum distane' pre-emption.Register Mahine Costreferene RegisterR1 R2r1 r1 | 1r�2 r1 r�2 1r3 r1 r3 2r1 r1 r3 0r2 r1 r2 1|||total ost = 5
Note : Load and Store instrutions are introdued atappropriate points, i.e. whenever the ontents of a mahineregister are hanged. Both are assumed to ost 1 unit eah.Code Optimisation : 92



LOCAL REGISTER ALLOCATIONExample : Consider loal register alloation in a 2-registermahine for the referene string :
r1; r�2; r3; r1; r2

Kennedy et al Algorithm :Register Mahine Costreferene RegisterR1 R2r1 r1 | 1r�2 r1 r�2 1r3 r3 r2 1r1 r1 r2 1r2 r1 r2 0|||total ost = 4
Note : Load and Store instrutions are introdued atappropriate points, i.e. whenever the ontents of a mahineregister are hanged. Both are assumed to ost 1 unit eah.Code Optimisation : 93



LOCAL REGISTER ALLOCATION
Comparison of algorithmsThe algorithm by Kennedy et al is an optimal algo-rithm, in that it always �nds the least ost alloation. However,this algorithm is omputationally expensive sine it onsidersthe alternative pre-emption deisions and selets the best one.Belady's algorithm is not an optimal algorithm in thatit does not guarantee least ost alloation. However, it it om-putationally eÆient.The manner of variation of the register alloation ex-penses with the size of the register referene string is very im-portant from the viewpoint of ompilation eÆieny. As pro-grams are ontinually inreasing in size, it is useful that analgorithm used in the ompiler should be linear in nature. Ifthis is not possible, it should at least not be exponential in itsbehaviour. Belady's algorithm is more pratial from this view-point.

Code Optimisation : 94



GLOBAL REGISTER ALLOCATION
Notation : R : Set of mahine registersD : Set of data itemsRk : Set of registers alloated todk 2 DDl : Set of data items to whihrl 2 R is alloatedj : : : j : Cardinality of a setFor high pro�ts, register utilisation should be max-imised. Any alloation of registers in R to data items in D mustsatisfy the following onditions :(i) Non-interferene : Data items to whih the same regis-ter has been alloated should not be simultaneouslylive at any point.(ii)Consisteny : At most one register should be alloatedto a data item at any program point.

Code Optimisation : 95



GLOBAL REGISTER ALLOCATION
Nature of global alloation(a) one-one alloation : Eah mahine register is alloatedexlusively to one data value and a value is alloated toat most one register.(b) many-one alloation : At least one mahine register isshared between more than one data values.() many-few alloation : At least one register is shared be-tween more than one data values, and at least one datavalue is resident in di�erent registers in diferent regionsof the program.Q : Charaterise many-few alloation formally.

Code Optimisation : 96



GLOBAL REGISTER ALLOCATION
Alloation of registers aross basi blok boundaries.PreliminariesWhen a value is alloated to a mahine register, it isneessary that :(i) The value is available in a register at all points inthe program where it is used (i.e. at all its refer-ene/de�nition points), and(ii)The value is available in a memory loation at allpoints in the program where it is not ontained ina register.Load and Store instrutions have to be inserted atstrategi points in the program to ensure this.Live range of a valueThe program region over whih a value x needs toreside in a register is alled the live range of the value x (i.e. lrx).A live range is often represented as a set of basi bloks fbg ofa program.Identi�ation of the live range of a value onstitutesregister assignment for the value.

Code Optimisation : 97



GLOBAL REGISTER ASSIGNMENT
The pro�t of a live rangeThe pro�t of a live range lrx is the number ofexeutions of Load/Store instrutions of x eliminated by holdingits value in a register.Example : Stati estimation of pro�tsConsider a live range lr onsisting of a set of basibloks fbg. We haveMPlr = Pb2lr #ob � wnbPlr = MPlr � ost of inserted Loads/Stores.where MPlr is the maximum pro�t for live range lr ,Plr is the realisable pro�t for live range lr ,#ob is the number of Loads/Stores in b,nb is the stati nesting level of b, andw is the nesting weightage (usually 5 or 10). (wnb indi-ates how many times b may exeute in a run)Pro�t of a register alloationThe pro�t of a register alloation is the sum of the pro�tsof all live ranges to whih registers have been alloated.

Code Optimisation : 98



GLOBAL REGISTER ASSIGNMENT
Live Range Examples

5 � � � := b4 ?
� � � := a3 ??

2 ?
a := � � �1 ?

Live range of a : f1; 2; 3; 4g| Store in blok 1.| MPa = 11, Pa = 10 for w = 10.Live range of b : f2; 3; 4g| Load at exit of blok 2.| MPb = 10, Pb = 9 for w = 10.Many methods for identifying the live range of a dataitem have been designed. We see one suh method in the fol-lowing.
Code Optimisation : 99



GLOBAL REGISTER ASSIGNMENT
METHODS OF LIVE RANGE IDENTIFICATIONChow-Hennessy ApproahA basi blok of the program belongs to the live rangeof a value if the value is live within that basi blok and a refer-ene or a de�nition of the value reahes it. The live range is theset of suh basi bloks.1. Value is live : This implies that the value is used alongsome path through this blok, hene it is meaningful tohold it in a register.2. A referene is reahing and the value is live : This implies thatthe value is urrently in a register (it would have beenloaded at the referene that is reahing), and is requiredalong some path through this blok.3. A de�ntion is reahing and the value is live : The value is ur-rently in a register (it would have been put there by thede�nition that is reahing), and is required along somepath through this blok.

Code Optimisation : 100



GLOBAL REGISTER ASSIGNMENT
METHODS OF LIVE RANGE IDENTIFICATIONChow-Hennessy Approah (Contd.)Example :

5 � � � := b4 ?
� � � := a3 ??

2 ?
a := � � �1 ?

Live range of a : f1; 2; 3; 4gLive range of b : f3; 4gLoad instrutions are inserted (if neessary) in all en-try bloks of the live range. Store instrutions are inserted(where neessary) in all exit bloks of the live range.Note that blok 2 is not ontained in the live range ofb. Code Optimisation : 101



THE BASIS FOR REGISTER ALLOCATION
INTERFERENCE OF LIVE RANGESIf some basi blok b of the program belongs to liveranges lr1 and lr2, then live ranges lr1, lr2 are said to interfere(in that blok).The same mahine register an not be alloated tointerfering live ranges.Example

5 � � � := b4 ?
� � � := a3 ??

2 ?
a := � � �1 ?

Live range of a : f1; 2; 3; 4gLive range of b : f3; 4gLive ranges lra, lrb interfere in bloks 3 and 4, henethe same register an not be alloated to variables a and b.
Code Optimisation : 102



GLOBAL REGISTER ALLOCATION
REGISTER INTERFERENCE GRAPHRegister Interferene graph is an undireted graphIG = (L; IE)where (i) L is the set of live ranges for the values whih areandidates for register alloation(ii) IE is the set of edges (lri, lrj) suh that live ranges lriand lrj interfere, i.e. lri \ lrj 6= �.Example &%'$1

&%'$2 &%'$3
&%'$4

������������ ������

Code Optimisation : 103



GLOBAL REGISTER ALLOCATION
THE GRAPH COLOURING APPROACHGraph ColouringThe problem of graph olouring is de�ned as :(a) give di�erent olours to nodes lri, lrj if the edge(lri, lrj) exists in IG,(b) use minimum number of olours
Register alloation: : : an be looked upon as a olouring of IG !?Example &%'$1

&%'$2 &%'$3
&%'$4

������������ ������
������

Code Optimisation : 104



GLOBAL REGISTER ALLOCATION
ONE-ONE & MANY-ONE ALLOCATION: : : is feasible when # olours required to olour theinterferene graph is � # registers.Example &%'$1

&%'$2 &%'$3
&%'$4

������������ ������
Alloation for a 3 register mahine :register 1 : live ranges 1, 4register 2 : live range 2register 3 : live range 3

Code Optimisation : 105



GLOBAL REGISTER ALLOCATION
MANY-FEW ALLOCATIONQ : What if # olours required is > # registers ?
Constrained live rangesA onstrained live range is a live range whose degreein IG � r, the number of registers.(a) An unonstrained live range an always be oloured. Itmay or may not be possible to olour a onstrained one.(Refer to interferene graph on previous transpareny.)(b) For onstrained live ranges, one-one or many-one allo-ation may not be feasible. In that ase, live range splittingmay be used to perform many-few alloation.

Code Optimisation : 106



GLOBAL REGISTER ALLOCATION
LIVE RANGE SPLITTINGExample ����1
����2 ����3 )
����4

���������� �����
����1l22 l21 ����3
����4

���������� �����
Alloation for a 2 register mahine :Live ranges 1,2 and 4 are onstrained. Live range 2 an be splitto failitate alloation. Hene :register 1 : live ranges 1, 3, 21register 2 : live range 4, 22where 21 and 22 are parts of live range 2, whih do not interferewith nodes 1 and 4 respetively.

Code Optimisation : 107



GLOBAL REGISTER ALLOCATION
PRACTICAL LIVE RANGE SPLITTINGIn pratie, it is not always possible to �nd live rangepartitions as shown in previous transpareny. Hene, live rangesplitting is performed as follows :(a) A olourable live range partition is found. This partitionof the live range has a degree � n, where n is the numberof mahine registers.(b) The remainder of the live range is represented by an-other node in the interferene graph. This node mayhave a degree as muh as the original live range. (Hene,it may be neessary to split this partition of the liverange further.)In the previous transpareny, live range 22 may beidenti�ed so that it only interferes with live range 1. Live range21 may interfere with nodes 1 and 4. Hene, it an not bealloated a olour without further splitting.

Code Optimisation : 108



GLOBAL REGISTER ALLOCATIONCHOW-HENNESSY'S PRIORITY BASED COLOURING� Priority Plr = ( pro�ts / # bloks in live range )� Forbidden set for eah node is the set of olours whih havebeen given to neighbouring nodes.Algorithm outline1. Separate onstrained and unonstrained live ranges.2. While a onstrained live range and an alloatable registerexists(a) Compute the priorities Plr for all live ranges, ifnot already done.(b) Find the lr with highest Plr� Colour this lr with a olour not present in itsforbidden set.� Update the forbidden set for the neighbours ofthis live range in IG.� Split the neighbours of this lr, if neessary.(This is done when the forbidden set of a neigh-bour is `full', i.e. it ontains all possible olours.)3. Colour the unonstrained live ranges.Q : Should we identify onstrained live ranges again instep 2? Explain why.Code Optimisation : 109



GRADED EXERCISES
1. Study the program ow graph given below and indiatewhether any of the following optimising transformations anbe applied to it(a) ommon subexpression elimination(b) elimination of dead ode() onstant propagation, and(d) frequeny redutionClearly justify your answers.

6
5

3 4
2
1

: : : := a � bd :=  � 2?
x := y + b?

: : : := a � b := 3:5QQQQQQs : : : := a � b������+
?x := 5:2y := 9:4������+ QQQQQQs

a := : : :b := : : :?

Code Optimisation : 110



GRADED EXERCISES
2. Speify the neessary and suÆient onditions for perform-ing(a) Constant propagation(b) dead ode elimination, and() loop optimisation3. Develop omplete algorithms for the following optimisations(a) ommon subexpression elimination(b) elimination of dead ode() onstant propagation, and(d) frequeny redutionApply these algorithms to the program ow graph of ques-tion 1, and ompare the answers with your own answers inquestion 1.4. Write a note justifying the need for d+1 iterations, where dis the depth of a graph, for the iterative solution of a dataow problem.

Code Optimisation : 111



GRADED EXERCISES
5. Given an assignment statement of the forma := b;opy propagation implies substituting b for a at every usagepoint of a reahed by the de�nition a := b;.(a) Develop a omplete algorithm for opy propagation.(Hint : Refer to the disussion of opy propagation inthis module.)(b) Can opy propagation be performed transitively ? Forexample, ina := b; := a;Can  be replaed by b ? If so, explain how you willmodify your algorithm to perform this enhaned opypropagation.

Code Optimisation : 112


