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Abstract Instruction selection is the primary task in automatic code generation. This paper proposes a 
practical system for performing optimal instruction selection based on tree pattern matching for expression 
trees. A significant feature of  the system is its ability to perform code generation without requiring cost 
analysis at code generation time. The target machine instructions are specified as attributed production 
rules in a regular tree grammar  augmented with cost information in Graham Glanville style. Instruction 
selection is modelled as a process of  determining min imum cost derivation for a given expression tree. 

A matching au tomaton  is used for instruction selection. Cost information is encoded into the states of  
this au tomaton  so that cost analysis is not required at code generation time. The folding technique of table 
compression is extended to this au tomaton  and two schemes of table compression based on cost 
information are proposed. 

Compilers Retargetable code generation Code-generator Code-generator-generator Tree-pattern 
matching Instruction selection Table compression 

1. I N T R O D U C T I O N  

In the last decade, substantial efforts have been made to automate object code generation [1,2]. 
In most schemes, the target machine instructions are represented as tree patterns and the 
intermediate representation (IR) is a sequence of expression trees created by the compiler front end. 
The code generator generator preprocesses the tree patterns and builds tables for a matching 
automaton. The matching automaton with supporting routines such as register allocation forms 
the code generator. It takes one expression tree at a time from IR and generates code using pattern 
matching and replacement scheme. 

The PQCC system [3] automatically derives the patterns from the ISP like machine descriptions 
[4] and uses a greedy heuristic for pattern matching. In Graham-Glanville technique, [5], tree 
pattern matching is reduced to string pattern matching by linearising the expression and pattern 
trees and LR-parsing is used for string pattern matching. Since the grammar used for specifying 
machine instructions is highly ambiguous, shift-reduce and reduce-reduce conflicts may arise in 
LR-parsing. In case of ambiguity, longest pattern or the first pattern in the order of specification 
is selected. The main advantages of this method are: specifications are easy to write, the operation 
of the parser can be proved to be correct, and well understood algorithms exist for constructing 
the tables. However, instruction selection is not optimal and code generator may block if the 
conflicts are not resolved properly. 

Aho et  al. [6] associate costs with the patterns and use a top-down tree pattern matching 
algorithm coupled with the dynamic programming algorithm of Aho and Johnson [7] to selec, t the 
optimal sequence of patterns. In addition to optimal instruction selection, the dynamic program- 
ming algorithm allows highly ambiguous grammars. Since the ambiguities are resolved using a cost 
measure during code generation, user need not order the patterns or worry about factoring. Hence 
it allows the user to specify concise and elegant description of the target machine instructions. 
However the algorithm requires expensive cost analysis to be performed during code generation. 
Hatcher and Christopher [8] have used a technique based on bottom-up tree pattern matching 
algorithm to perform optimal instruction selection without requiring cost analysis during code 
generation. However, their technique requires modifying some part of machine description to retain 
optimality. 

+Author to whom correspondence should be addressed. 
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Pelegri-Llopart and Graham [9] have used a class of rewrite systems called BURS to solve the 
instruction selection problem. It differs from the work of other tree pattern matching techniques 
in its ability to encode cost information into states of  the automaton (thus avoiding cost analysis 
at code generation time) and in handling a larger class of rewrite systems. 

We propose a system in which target machine instructions are represented as attributed 
production rules in regular tree grammar and instruction selection is modelled as a process of 
finding minimum cost derivation. A variation of bottom-up tree pattern matching automaton is 
used to find the minimum cost derivation. The cost information is encoded into states of the 
matching automaton. The table compaction technique of Chase [10] is extended to this automaton. 

Our technique is similar to Hatcher and Christopher's technique [8]. However it differs from their 
technique in the following ways. 

(i) It does not require modifying machine description to retain optimality. The required context 
information to find the minimum cost derivation is encoded into the states of the automaton. 

(ii) A formal description based on regular tree grammar as in Giegerich and Schmal [11] is 
adopted for specifying machine descriptions. 

(iii) An extension of  Chase's [10] technique is used which improves the preprocessing time and 
table compression. Two schemes of  table compression based on cost information are 
proposed. 

The idea of  encoding cost information into states has been mentioned in [5] and was later 
successfully adopted in [9]. We have also used this idea in our code generating system independent 
of the work of  Pelegri-Llopart and Graham [9]. Our tree grammar based approach has following 
advantages over BURS theory [9]: It is simpler to understand and implement. As against the 
notions of  rewrite rules and reachability, grammars and derivations are well understood. The 
grammar can be easily enhanced with attributes and predicates to aid the other supporting routines 
in code generation as in [12]. Blocking problem can be easily detected and good table compression 
techniques can be applied. 

It is assumed that readers are familiar with tree pattern matching algorithms [10, 13] and the 
issues in retargetable code generation [8, 14]. The rest of  the paper is organised as follows. The next 
section describes the instruction selection problem. In Section 3 we describe table construction and 
code generation algorithms. Section 4 describes experience with our code generation algorithm. 
Section 5 contains comparison with other work. 

2. I N S T R U C T I O N  S E L E C T I O N  

2. I Tree grammar 

A ranked alphabet is a finite set A of  symbols, together with a function rank (or arity), such 
that rank(a) > 0 for each a ~ A. The symbols with rank 0 are called terminals (T) and the symbols 
with rank > 0 are called operators(0). 

The homogeneous tree language trees(A) over the ranked alphabet A, is defined by 

- - t  ~ trees(A), if t is a terminal. 
- - a  term op(fi . . . . .  tq) ~ trees(A), if ti ~ trees(A) for 1 _< i _< q, op ~ 0 and rank(op) = q. 

Example  2.1.1 Let A be the alphabet { ..=, + ,  deref, c, sp} with ranks 2, 2, !, 0 and 0 respectively. 
Elements of trees(A) are, for example: + (c, c), + (deref(+ (c, sp)), c). 

A regular tree grammar G augmented with cost is a quadruple (N, A, P, S), where 

- - N  is a finite set of  nonterminal symbols, 
- -A  is a ranked alphabet, A R N = 0. 
- - P  is a finite set of  production rules augmented with cost. A production rule (or simply rule) 

is of  the form X ~ t, with X ~ N and t ~ trees(A U N), with nonterminals given rank 0. 
Associated with each production rule is a cost called rule-cost. The rule-cost is a 
non-negative real number. 

- - S  is a special nonterminal symbol called start symbol. 

A tree pattern is a tree p e trees(A U N) such that there exists a rule r or the form X ~ p. 
For t, t '  ~ trees(A U N), t immediately derives t ' ,  written t ~ t', if there is a r ~ P, say X ~ p 

such that t '  results from t by replacing a leaf labeled X by p. The r used in the derivation step is 
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1. S --* := deref  G R  [2] 
2. S --* ,= deref  cR [2] 
3. R --* c [2] 
4. a --. sp 10l 
5. a --, R [01 
6. R --, a [11 
7. R ~ + G R  [1] 
8. R -~ +Ro [11 
9. R ~ deref  G [2] 

10. R --, + Rc [2] 
11. R --* + c R  [21 
12. R ---, deref  + G c  [3] 
13. R --, deref  + cG [3] 
14. R - - - ,  + d e r e f  G R  [2] 
15. R ~ + R deref  G [2] 
16. R ~ + R  deref  + G c  [3] 
17. R --, + R deref  + cG [3] 
18. R --* + deref  + GcR [3] 
19. R --* + d e r e f  + c G R  [3] 

Fig. 1. P roduc t ion  rules for a ta rge t  machine .  

indicated by writing ~ r ,  where relevant. The relations ~ +  and ~ *  are the transitive and the 
transitive and reflexive closure of  ~ .  As in context free grammar,  we can associate a parse tree 
with a derivation. 

Let L(X)= {t It ~ trees(A) and X ~ *  t}, then L(S) is the language of G. 
The rule-cost of  r is incurred each time the production rule r is used in a derivation. The cost 

of  a derivation is the sum of rule-costs of  all rules used in derivation. Minimum cost derivation 
for a tree t is a derivation S ~ *  t such that cost of  the derivation is minimum. 

A production rule of  the form X ~ Y, with X, Y ~ N is a chain rule. The chain rules may lead 
to circular derivation of  the form X ~ *  X. 

Example 2.1.2 Let P be the set of  production rules shown in Fig. 1. Let G1 be the regular tree 
g rammar  {(R, G), A, P, S} with A as before. " , =  (deref(c), + (c, c))" belongs to L(S), since S ~ *  
"..= (deref(c), + (c, c))". The derivation steps are as follows. 

S ~2  '= (deref(c), R) 
~ 0  "= (deref(c), + (R, c)) 
~3  '=  (deref(c), + (c, c)) 

The derivation R ~ 6 G  ~ s R  is a circular derivation. 

2.2 The instruction selection problem 

Retargetable code generation consists of  the following steps: 

(i) specification of IR and target machine instructions; 
(ii) building tables for a matching automaton;  

(iii) generating code from IR using the matching automaton.  

The target machine instructions are specified as attributed production rules in regular tree 
grammar  augmented with cost information in Graham-Glanvi l le  style, The intermediate represen- 
tation IR is represented as a sequence of  trees at the semantic level of  the target machine as in 
[5], i.e. IR trees and the machine g rammar  use the same alphabet. The instruction selection process 
can be considered as finding the minimum cost derivation for a given IR tree. There is an action 
routine associated with each production rule. Given a derivation, a sequence of instructions can 
be generated using a scheme similar to syntax-directed translation. 

As an example, Fig. 2 shows an IR tree for an assignment statement a .'= b + 1 in which a is 
a global variable stored in memory and b is a local variable stored on stack whose run time address 
is given as offset cb from the stack pointer stored in register sp. The operator  'deref '  is a 
de-referencing operator  which gives the value at the address specified by operand. Figure 3 shows 
action routines for some rules in Fig. 1. Figure 4 shows one possible parse tree with the code 
sequence generated for that parse tree by executing the action routines. 



130 A. BALACHANDRAN et al. 

: =  

/ \  
deref + 

I dere/f \ Ca C I 
f 

+ 

Cb 

Fig. 2. Intermediate representation of a:= b + 1 

2. s ~ ,=deref c,R i {Emit ("STORE r%s, %s" i, a)} 
19. R i ~ +deref+ c/GkR~ {Emit ("ADD %s[%s], %s",j, k, i)} 
3. Ri ~ C/ {Allocreg(i); Emit("MOV # %s, %s",j, i)} 
4. Gi--* s p. {i:= sp} 

Fig. 3. Action routines for some rules in Fig. 1. 

2.3 Minimum cost derivation 

A rule r o f  the form X ~ p matches  a tree t, t ~ t rees(A),  i f  there exists a der iva t ion  such that  
X =*'r P =~* t. A non te rmina l  X matches  a tree t if  there  exists a rule r o f  the form X ~ p which 
matches  t. A rule (or  non te rmina l )  matches  a tree t a t  node  n if  the rule (or  the non te rmina l )  matches  
the subtree  roo ted  at  the node  n. 

F o r  a tree t e t rees(A),  let r :  X ~ p be a rule which matches  the tree t at  node  n. We define the 
fol lowing.  

(i) Cos t  o f  rule r ma tch ing  t at  node  n. 
(ii) cost  o f  non t e rmina l  X ma tch ing  t at  node  n. 

The  cost  o f  the rule r is m i n i m u m  o f  the cost  o f  all poss ible  der iva t ions  o f  the form X =~r P =~* t. 
The  cost  o f  the ma tch ing  non t e rmina l  X is m i n i m u m  of  the cost  o f  all rules r o f  the form X ~ p 
which matches  t. No te  tha t  unl ike the rule-cost ,  the cost  o f  the rule r ma tch ing  a tree t depends  
upon  t. 

To  de te rmine  m i n i m u m  cost  de r iva t ion  for  a tree t, all de r iva t ions  need not  be found.  Ins tead  
it is sufficient to de te rmine  all ma tch ing  rules and  non te rmina l s  and  their  costs  at  each node  o f  
the tree. M i n i m u m  cost  de r iva t ion  is a sequence o f  rules, s tar t ing with a m in imum cost  rule 
co r r e spond ing  to s tar t  symbol ,  say r:  S ~ p such that  S =~r P =~* t. The rule r matches  the tree at  
the roo t  and  the successive rules in the de r iva t ion  can be ob ta ined  by a t o p - d o w n  t raversal  of  the 
tree. 

2.4 Computing minimum cost derivation 

Let p be any tree pa t te rn ,  a ( p )  is a subs t i tu t ion  in which each non te rmina l  Xe in p is replaced 
by a tree t t, t~ e t rees(A).  The  node  at  which the tree t~ is roo ted  is cal led touching  pos i t ion  o f  X~. 
A tree pa t t e rn  ma tch ing  a lgo r i thm can be used to find whether  there exists a subs t i tu t ion  such that  
a ( p )  = t. A subs t i tu t ion  is valid,  if  each Xi matches  ti. A pa t t e rn  matches  t, if  there is a val id 
subs t i tu t ion  a ( p ) =  t. A va r ia t ion  o f  b o t t o m - u p  tree pa t t e rn  match ing  a lgor i thm can be used to 
find all val id  subs t i tu t ions  (or  ma tch ing  pa t te rns)  at  each node  o f  a tree. 

S 
I 

 °re/f \ 5  ° I 
c. + 

/ \  
deref 

Cb 

I 
sp 

Fig. 4. The parse tree for the |R 

MOV # 1, r0 

ADD b[sp], r0 

STORE r0, a 

in Fig. 2. Bold lines indicate the parse tree relation. 
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I f  a term o p ( f i . . ,  tq) is a pattern, then the terms tt . . . .  , tq are called subpatterns. The crux of 
the bot tom-up tree pattern matching algorithm is that given the patterns and subpatterns at the 
sons of  a node n, the patterns and subpatterns matching at node n can be computed. The possible 
combinations of  the matching patterns and subpatterns can be precomputed and a matching 
automaton can be built using these combinations. The automaton is appropriately modified so that 
the matching rules can be computed instead of matching patterns. 

The cost of  a pattern p matching t at node n is equal to the sum of the cost of  the nonterminals 
in p matching the subtrees at their touching positions. The cost of  the pattern which does not 
contain any nonterminal is defined to be zero. The cost of  the rule r: X --, p is equal to sum of 
the cost of  pattern p and rule-cost(r). Instead of evaluating the cost at parsing time (i.e. at code 
generation time), the cost information can also be encoded into states of  the matching automaton.  
Now the state is not just the set of  rules, but a set of  pairs (rule, delta-cost) called items. The 
delta-cost is defined by subtracting from the cost associated with each rule, the smallest cost 
associated with any rule in the set. The number of  item sets are finite for real machines (see [9] 
for a discussion). They can be enumerated and an automaton can be built to determine the item 
sets. 

Now to find the minimum cost derivation for a tree t, we proceed as follows: Tranverse the tree 
t "bo t tom-up"  and compute the itemsets at each node using the automaton.  Minimum cost rule 
corresponding to start symbol matching at root node can be determined from the itemset. 
Traversing the tree top-down, the minimum cost derivation can be determined, 

2.5 Blocking and looping 

Given a tree t, t ¢ trees(A), the automaton will always find a derivation if it exists. Otherwise 
it will go to an error state. However  one may want to know whether a given target machine 
specification g rammar  G (of language L (Sz)) is complete in the sense that any tree t in IR language 
L(S~R) would have a derivation in g rammar  G or alternatively L(StR)~-L(Sz) .  Though this 
problem is decidable [11], no purely automatic method is used in practice. This problem can be 
avoided easily. We have to just describe IR specification as a subset of  grammar  G. Even if the 
g rammar  is complete, the code generator may get blocked due to "semantic blocking". This can 
be avoided by having a default action for every rule. 

Looping can occur only due to circular derivations. Since they are computed using closure 
function, the problem does not occur. 

3. A L G O R I T H M  FOR CODE G E N E R A T I O N  

Let Match_rule  and M a t ch_NT be two functions which give the set of  matching rules and 
matching nonterminals of  a tree. An itemset l(t)  matching a tree t, t ~ trees(A) is a defined as 
follows: 

I(t) = {(r, A~)lr e Match_rule(t)} 

where A m is difference between cost of  r and the smallest cost associated with any rule in l(t). The 
set of nonterminals matching t and the set of  the respective A-costs can be obtained from l(t)  using 
the two functions rt,, and zt,. We view these sets as ordered lists. 7z,(I(t)) is the set of nonterminals 
matching t. rt~,(I(t)) gives the j t h  element in the set. 7z{(I(t)) is the delta-cost of the nonterminal 
rci,(l(t)). A function nr is defined which gives the minimum cost rule corresponding to the 
nonterminal, zt¢(I(t)) is defined to be a rule r: n --, p such that delta-cost of  the rule r is 7z~,(l(t)) 
and n = ~z¢,(I(t)). There may be more than one rule having the minimum cost (i.e. rt/,(l(t))), in 
which case we choose the rule occurring earlier in the specification. 

In the next section we describe a table driven algorithm to determine itemsets. The procedure 
requires the production rules to be in normal form. 

3.1 Normal form production rules 

To treat pattern and subpattern information uniformly, the production rules are written in 
normal form. A rule is defined to be in normal form if it is either a chain rule or a rule of  the form 
X ~ y or X --* op(X~ . . . . .  Xu) where X, A"~ . . . . .  Xq are nonterminals, y is a terminal and op is an 
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Fig. 5. N o r m a l  

1. S ~ := Y R  [3] 
2. S ~ ,= W R  [31 
3. Y ~ deref  G [0] 
4. W --* deref  C [0] 
5. R ~ C [2] 
6. G --* S P  [0] 
7. G --, R [01 
8. R ~ G [1] 
9. R --* + G R  [1 l 

10. R --* + R G  [1] 
11. R ~ deref  G [3] 
12. R ~ + R C  [2] 
13. R --, + C R  [2] 
14. X ~ + G C  [0] 
15. X ~ + C G  [0] 
16. R ~ deref  X [3] 
17. R ~ + Y R  [3] 
18. R ---, + R Y  [3] 
19. Z --* deref  X [0] 
20. R --, + Z R  [3] 
21. R ~ + R Z  [3] 
22. C --* c [0] 
23. S P  --* sp  [0] 

fo rm p roduc t ion  rules for  the target  mach ine  in Fig. 1. 

operator  of  arity q. Any rule can be converted into normal form by introducing new nonterminals 
and rules. Rule-costs of  the introduced rules are defined to be zero. 

Figure 5 shows the production rules of  grammar G1 (see Fig. l) in normal form. The terminals 
c and sp are replaced by nonterminals C and SP. The nonterminals W, X, Y and Z are introduced 
to represent subpatterns. Representing subpatterns by nonterminals simplifies the computation of  
matching patterns at a node. The conversion of  rules into normal form does not put any undue 
restrictions on the user. Further this process can be automated easily. 

Note that the nonterminal may be used for factoring also. For  example, Xis used for representing 
the two patterns + GC and + CG. Factoring reduces the number of  rules in specification and helps 
in minimising table size. 

3.2 Computing itemsets 

Given the itemsets at sons of  a node, computation of  the itemset matching at the node involves 
following steps. First the matching rules at a node are computed from the matching nonterminals 
at the sons. Then the matching nonterminals at that node are found from the matching rules. From the 
matching nonterminals the matching chain rules are determined using Closure function and they 
are added to the set of  matching rules. Then the A component is calculated for each matching rule. 

For  the sake of brevity, we assume 

r, rj, r 2 . . . . .  E P (the set of  production rules), 
n, n~, n2 . . . . .  e N (the set of nonterminals), 
ntc, ntc~, nt% . . . . .  e powerset(N) and 
op, opt,  op2 . . . . .  e 0 (the set of operators). 

Auxiliary functions 

First_rule: 

First_rule(op = {r [r is n ~ op(nj . . .  nq)} 

Father_rule functions: 

Father_ruler(n) = {r Jr is n '  --* o p ( n l . . ,  n i . . .  nq), 

n, = n)}  

Closure_NT, Closure_rule: 

Closure_NY(n) = {nj Inl =~+ n} 

Closure_rule(n) = {r [r is nl ~ n2, nl =*,n2 =~* n} 
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The defini t ions o f  F a t h e r _ r u l e  funct ions  and  c losure  funct ions  are ex tended  to a non te rmina l  
c o m b i n a t i o n  by tak ing  unions.  

Father_ruleg(ntc)  = U Father_rule~(n)  
n • n t c  

Closure_ru le (n tc )  = U Closure_ru le (n )  
n e n t c  

C l o s u r e _ N T ( n t c )  = ~ C l o s u r e _ N T ( n )  
n e n t c  

Example 3.2.1 Fi r s t_ ru l e (de re f )  = { Y ~ dere f  G, W ~ deref  C, R --* dere f  G, 

R ~ dere f  X, Z --* deref  X} 

Father_rule~ (Y) = {R --* + YR, S ~ ".= YR } 

Father_ru le2(C)  = {R -~ + RC, X --* + GC} 

C l o s u r e _ N T ( G )  = {R, G } 

C losu re_ ru l e (G)  = {R ~ G, G ~ R} 

Algorithm 3.2.1 Computing itemset 

P R O C E D U R E  I( t )  
B E G I N  

I F  t is a te rminal  T H E N  
B E G I N  

L E T  R U L E  = {rLr is n ~ t} 
L E T  N O N T E R M  = {n ISr: n ~ t , r  e R U L E }  
F o r  each r e R U L E ,  LET C r =  0 

E N D  
E L S E  

B E G I N  LET t be a term of  the form op(t l  . . . . .  to) 
where q is the ar i ty  of  the o p e r a t o r  ' op ' .  

LET ntci = M a t c h _ N T ( t i ) ,  1 < i _< q. 
LET R U L E  = F i r s t_ ru l e (op )  N Father_rule~ (ntct)  N . . .  N 

Fa ther_ru l%(ntcq) .  
LET N O N T E R M  -- {n 19r: n o p ,  r • R U L E }  

F o r  each r: n ~ p ,  r • R U L E ,  

LET p be a term of  the form op(n~, 1 . . . . .  nj(ql ) 
where  j ( i )  is an index such that  ~t~i)(I(t~))= njiit 

L E T  Cr = nlW(I( t t  )) + " .  + 7~!q)(I(tq)) 
E N D  

M a t c h _ N T ( t )  = N O N T E R M  U C l o s u r e _ N T ( N O N T E R M )  
M a t c h _ r u l e ( t )  = R U L E  U C l o s u r e _ r u l e ( N O N T E R M )  

Ini t ia l ise  A t = ~ ,  for each r • M a t c h _ r u l e ( t )  
Ini t ial ise DCOSTNT, ,  = ~ ,  for each n • M a t c h _ N T ( t )  

F o r  each r, r • R U L E  

LET COSTr  = Cr + ru le-cos t ( r ) .  
L E T  COSTmi . = m i n { C O S T r l r  e R U L E } .  
F o r  each r • R U L E ,  

LET A~ = COST~ - C O S W m i  n . 

F o r  each n, n • N O N T E R M  
D C O S T N T , ,  = m i n { A r l 3 r : n  ~ p, r • R U L E }  

W H I L E  change  o f  value o f  D C O S T N T ,  or  A, occurs  do  
B E G I N  
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For each r: n ~ n~ such that r e Closure_Rule(Match_NT(t) )  
BEGIN 
D C O S T N T .  = m i n (DC OS TNT. .  DCOSTNT.,  L + rule-cost(r)) 
A = rain(A,. DCOSTNT,,, + rule-cost(r)) 
END 

E N D  
R E T U R N  {(r, A,)lr  ~ Match_rule(t)} 

E N D  
Example  3.2.2 
Consider a tree + (cc). 

R U L E  at terminal c = {C ~ c} 
N O N T E R M  at terminal c = {C} 
Match_NT(c)  = {R, G, C} 

Match_rule(c) = {C ~ c, R --* C, G ~ R, R --* G}. 
I ( c )  = {C ~ c ,O) , (R  ~ C, 2), ( a  ~ R, 2), (R ~ G, 3)} 
x , ( I ( c ) )  = [C, R, G] 
x,.(l(c)) = [0, 2, 2]  

ztr(I(c)) = [C -~ c, R ~ C, G ~ R]. 
R U L E  at root of  the tree( + (c, c)) 

= { R  ~ R C,  R --. + G R ,  R ~ + R G ,  

R ~ + C R ,  X ~ + G C ,  X ---* + C G }  
N O N T E R M  at root of  the tree (+ (c ,  c ) ) =  { R , X }  
M a t c h _ N T ( +  (c, c)) = {R, X, G} 
Ma tch_ ru l e (+ (c , c ) )  = {R ~ + R C ,  R ~ + C R ,  

R ~ + R G ,  R ~ 4-GR, 
X ~ + G C ,  R ~ + C G ,  
R  G,G 

l ( + c c )  = {(g ~ + RC, 2), (R ~ CR, 2), 
(R ~ -4-GR, 3), (R ~ + RG, 3). 
( x  ~ + GC, 0), ( X  --, + CG, 0), 
(R ~ G, 3), (G ~ R, 2)} 

rt,,(I ( + (c, c ))) = [R, X, G] 
x , ( I ( +  (c, c))) = [2, 0, 2] 
x r ( I ( + ( c , c ) ) ) = [ R  --* + R C ,  X ~ + G C ,  G --. R]. 

3.3 Table generation 

The itemsets are enumerated and an integer is used as index for each itemset. As in the bot tom-up 
tree pattern matching algorithm, tables are built for each operator. Given the indices of  the 
matching itemsets at the sons, the index of the matching itemset at a node can be determined by 
table look-up. The required enumeration of itemsets and tables may be generated by a simple 
closure strategy which starts with itemsets for the terminals and repeatedly generates itemsets for 
trees with increasing heights, till no more itemsets are generated. Then the following table driven 
algorithm can be used to find the index I ( t )  of  the itemset matching a tree t. 

Algorithm 3.3.1 Table driven algorithm for  computing itemset 

I ( t )  = If  t is a terminal A then TABLEA 
else TABLEA(I( t l )  . . . . .  I(tq)) 

where t is a term A (t~ . . . . .  tq). 

Where TABLEA is the table for each operator  and terminal. 

Chase [10] has used equivalence classes of  match sets to compress tables and speed up 
preprocessing. In a two dimensional table, say for an operator "4 - " ,  duplicate rows and columns 
represent the equivalence classes. They are called duplicate subtables in higher dimensions. It is 
possible to compress the interior of  the table by "folding" duplicate subtables using "index maps".  
This idea can be extended to itemsets as follows. 
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LET NAj be the set of all nonterminals occurring in j t h  position in 
at least one pattern p of the form A(nt . . . . .  n i . . . . .  n q ) .  

Two itemsets i l and i2 are Aj-equivalent if 

n ,( i l )  f] NAj = n,(i2) r] NAj = NTSET(say) 
and C, is constant over all n e NTSET. 

Where C, = nk~(il) -- n,k?(i2), n,k~(il) = n*,Z(i2) = n. (i.e. The respective cost differences of the 
nonterminals in NTSET are also same.) 

It can be easily verified that if i l  and i2 are Aj-equivalent, then the table for the operator A 
of arity q contains a duplicate subtable at position j. As in [10], an eqivalence class of sets is 
represented by a member of that class. This member is called representer set for that class. Let X, 
be the set of  itemsets generated after processing trees of  height i. Let SAj, be the set of representer 
sets for a given A, j and X i. To determine the set of itemsets Xi+~, we proceed as follows. Initialise 
X,+ ~ = X~. Then construct all possible trees for each operator A from the representer set SAj, and 
determine the matching itemset for each tree. Check whether any new itemset is formed. Add the 
new itemset to X~+~. Repeat this until no more itemsets are generated. 

Algorithm 3.3.2 Generating all itemsets 

X: indexed set of itemset; 
BEGIN 

X0 .'= U {I(A)} 
A e terminal set 

Generate SAj0 for each A and j. 
REPEAT 

A ~ op-set  

END; 

U J=q I(A (s I . . . . .  sq))]) 
(st . . . . .  Sq)e H saji 

j = l  

Generate SAj~, +,~ for each A and j, 1 < j  < arity(A). 
UNTIL  Vj SAj,, + ,~ = SAj, ; 

Algorithm 3.3.2 can be suitably modified to build the tables also. Let the index tables be 
represented by MAj and the interior of  the tables by T~. Then the modified table driven algorithm 
to compute the itemset l ( t )  matching a tree t is given as follows. 

Algorithm 3.3.3 Table driven algorithm for computing itemset 

I ( t )  = If t is a terminal A then T~ 
else TA(Mm (l( t , ) )  . . . . .  MAq(I(tq))) 

where t is a term A (h . . . . .  Tq). 

The index map tables and tables for unary operators occupy considerable space. This can be 
reduced by using one more level of indexing by exploiting the property that itemset matching at 
a node depends only on the matching nonterminals and their cost (given by n, and rt,) at the sons 
of the node rather than on complete information about itemsets at the sons. This property is called 
/3-equivalence. Two itemsets il  and i2 are said to be/%equivalent,  if 

~z,,(il)= rt,(i2) and rc,(il)=lt,.(i2). 

Example 3.3.1 

The itemsets 

i3 = {(R ~ +RC,  Z) , (X --. +GC, O),(R ~ G, 3),(G ~ R, 2), 

(R ~ + GR, 3), (R ---, + RG,  3)} 
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and 

i4 = {(R --. + CR, 2), (X  ~ + CG, 0), (R --. G, 3), (G --. R, 2), 

(R --, + GR, 3), (R --, + RG, 3)} 

are B-equivalent, 

since rt,(i3) = 7r,(i4) = [R, X, G] and 

n,(i3) = rr,.(i4) = [2, 0, 2]. 

//-equivalence implies A j-equivalence for all A and j. Hence there will not be any reduction in 
the interior of  the table (T-tables of  Algorithm 3.3.3) for the operators of  arity more than one. 
But the index map tables and tables for unary operators are reduced considerably. The 
preprocessing time for unary operators is also reduced. 

Further the information required in the itemset, to get the minimum cost derivation is merely 
the set of  nonterminals matching at each node and the corresponding minimum cost rule for each 
nonterminal. This fact can be used to reduce itemsets. Two itemsets i l  and i2 are said to be 
e-equivalent, if 

~,( i l)  = 7r,(i2), rc,(il) = rt,(i2) and rr,(il) = ~r(i2). 

Example 3.3.2 

The itemsets 

i3 = {(R --, +RC,  2), (X  ~ +GC, 0), (R --* G, 3), (G ~ R, 2), 

(R ~ +GR,  3), (R ~ +RG,  3)} 

and 

i5 = {R ~ CR, 2), (X  --* CG, 0), (R --. +RC,  2), 

(X  --. + GC, 0), (R --. G, 3), (G --* R, 2), 

(R ~ GR, 3), (R ~ + RG, 3)} 

are ~-equivalent, 

since rc,(i3) -- r~,(i5) = [R, X, G], 

zc,.(i3) = rr,.(i4) = [2, 0, 2] and 

~rr(i3) = nr(i4) = [R --* + RC, X --* +GC, G --* R]. 

e-equivalence implies fl-equivalence. Hence there may not be much reduction in the tables. But 
the space required to store information about itemsets can be reduced. The tables are modified such 
that they now return an equivalent representer set I,(t) rather than I( t) .  The modified table driven 
algorithm is as follows. 

Algorithm 3.3.4 Table driven algorithm for computing itemset 

Ix(t) = If t is a terminal A then :ira 

else TA(M A, (//(I~(tj ))) . . . . .  M Aq(// (/~(tq)))) 

where t is a term A (h . . . . .  t,). 

The significance of  e equivalence classes is due to following consideration. Hoffmann and 
O'Donnell [13] have shown that "independent" patterns give rise to exponential growth of table 
size. Hatcher and Christopher [8] have observed that most of  the independent patterns occur in 
machine specifications due to duplication of  patterns for commutative operator and they discard 
one of the pattern in favour of  the other if both of  them match. In our case, such independent 
patterns are factored by nonterminals and e-equivalence class is used for discarding patterns. 
Unlike the Hatcher and Christopher technique [8], our technique discards patterns only if it does 
not affect the selection of  minimum cost pattern. In Example 3.2.2, the nonterminal X factors the 
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patterns " +  GC" and " +  CG". The nonterminal R factors the patterns " +  RC" and " +  CR". One 
of the pattern in each case is discarded by a-equivalence. 

Further the size of the tables depends upon the number of operators and the rank of 
the operators. An n-ary operator can be converted into binary operator using a pairing function 
operator. A set of operators having identical patterns and cost can be replaced by a generic 
operator. 

3.4 Code generation algorithm 

The code generator makes three passes over the tree. In the first pass IR tree is traversed 
bottom-up and itemsets matching at each node are found. The itemset has the information about 
matching nonterminals and the minimum cost rule corresponding to each nonterminal. At the end 
of first pass the start symbol should match at the root (otherwise it is an error condition). In the 
second pass the tree is traversed top-down to get the minimum cost parse tree. In the third pass 
the parse tree is traversed and the instructions are emitted by executing actions. 

4. I M P L E M E N T A T I O N  

The actual implementation of  the itemsets computation algorithm involves much more book 
keeping than described here. The target machine specifications are compiled into coded form. The 
set of rules is represented as a bit vector and the set union and intersection operations are 
implemented using bit vector " A N D "  and " O R "  operations. Two hash tables are maintained to 
check whether a new Match_rule set or a new itemset is formed. Formation of  a new Match_rule 
set implies formation of a new itemset. If the Match_rule set is already present, A is computed 
for that set and checked in the hash table for the formation of a new itemset. The hash tables store 
an unique index for each Match_rule set and itemset. The functions First, Father and Closure, and 
the itemsets corresponding to terminals are computed first. The set of itemsets is represented as 
a list of indices. All iterations over sets and product of sets are done over the indices corresponding 
to the sets and products. An itemset is formed during each iteration and if it is a new one (checked 
using hash search), then it is added to the list corresponding to Xi+~. Further it is not necessary 
to iterate over all the members 

j = q  

H SA/, 
j=l 

but only over the members in 
j=q /--q 
H SA./, -- E SAy(,-,, 

j = l  j = l  

4. I Experimental results 

We have developed a prototype code generator system (TCGG) based on the technique described 
in this paper and have got some encouraging results during the investigation on Motorola 
MC68000 and VAX 11 code generators on a M68020 processor based machine. The relevant 
statistics for the code generators are tabulated in Fig. 6. 

The quality of  the code generated is compared for different IRs with that of Graham-Glanvil le 
scheme and it was found to be better, since T C G G  utilised the addressing mode instructions 
optimally. The code generator produces 200 assembly instructions per sec in Motorola 68020 based 
system. The size of the code generator is about 70K for VAX-11 and 100K for MC68000. 

Though the number of rules are less for MC68000 code generator than for VAX-I 1, the table 
size is more for MC68000 due to the following reason. There are two types of  general purpose 
registers, viz. data registers and address registers. In some cases it is beneficial to use an address 
register instead of a data register. This irregularity in instruction set gives rise to large 
A-components. Hence the number of  itemsets and preprocessing is considerably high. a-equivalence 
is more effective for this type of machines. In MC68000 code generator, around 25K of  itemset 
storage (storing 2430 itemsets) is reduced to 3K (storing 342 itemsets) by a-equivalence. In VAX- 11 
code generator, around 3.6K of  itemset storage (storing 526 itemsets) is reduced to 1.8K (storing 
263 itemsets).//-equivalence reduces space for index maps and unary operator tables by almost half 
in both cases, taking into account the reduction of itemsets by a-equivalence. 
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VAX II Motorola MC68000 

No of rules 144 114 
No of nonterminals 20 18 
No of terminals 15 12 
No of unary operators 8 9 
No of binary operators 18 16 
No of itemsets 526 2430 
No of ~t-equivalence Classes 263 342 
No of fl-equivalence Classes 94 149 

Table size 

Index maps 7.2K 9.6K 
unary op tables 1.6K 2.7K 
Interior of binary op tables 1.4K 19.2K 
Itemset storage 1.8K 3.0K 
Total table size 12.0K 34.5K 

Preprocessing time 108 sec 720 sec 

Fig. 6. Statistics of VAX 11 and MC68000 code generator systems 

Note that only 9 bits are required to represent each element in the tables for MC68000 code 
generator. In Fig. 6, it is assumed that each element is represented by a word (two bytes). The table 
size can be reduced to approximately 20K by bit-compression techniques. 

5. C O M P A R I S O N  WITH O T H E R  WORK 

Locally optimal instruction selection and specification ease are the main advantages of  the tree 
pattern matching techniques [15] over LR-parser methods. Our method inherits these advantages. 
It differs from Aho e t  a l . ' s  tree specification scheme in its ability to perform code generation without 
cost analysis during code generation and from Hatcher and Christopher's scheme in not requiring 
modification of  specification for optimality. Since we do not have any implementation based on 
other tree pattern matching methods, our comparison is qualitative rather than quantitative. 

The main advantage over Aho e t  a l . ' s  [14] method is faster code generation due to following 
reasons: 

(i) An efficient bottom-up tree pattern matching algorithm which is linear in input tree size is 
used compared to the top-down tree matching algorithm used by them which is quadratic 
in pattern size and input tree size. 

(ii) Cost analysis is not required at code generation time. 
(iii) The matching chain rules are precomputed. 

Though the preprocessing time and space requirement are more for the bottom-up tree pattern 
matching techniques, Chase [10] has shown that it is practicable. Pelegri-Llopart and Graham's  
experiments, and our own confirm this. 

Our technique is similar to Hatcher and Christopher's [8] technique in the sense that we use same 
type of machine descriptions and make three passes over IR tree to generate code. The main 
differences are the following: 

(i) Their technique requires modifying some part of  machine description to retain optimality. 
If the pattern set is large, it is difficult to do such modification by hand. In our system, the 
context information required to determine the minimum cost derivation is automatically 
generated. 

(ii) In our method, a formal description based on regular tree grammar as in Giegerich and 
Schmal's paper [ll]  is adopted for specifying machine descriptions. This enables a more 
thorough treatment of the blocking problem. Giegerich and Schmal perform cost analysis 
(as in [7]) at code generation time. We define itemsets to encode cost information into tables. 

(iii) An extension of Chase's [10] technique is used which improves the preprocessing time and 
table compression. Two schemes of  table compression based on cost information are 
proposed. Unlike in Hatcher and Christopher's technique, the necessary information for 
table compression is automatically generated. 
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In Pelegri-Llopart and Graham's  code generator system, cost information is encoded into the 
states so that cost analysis need not be done at code generation time. In this aspect, our technique 
is similar to theirs. Their system handles a larger rewrite system in which commutativity property 
of the operators and "constant folding" type rules can be directly specified. However we are able 
to use better compression schemes and detect the blocking problem more easily. Patterns duplicated 
for commutative operators are factored by nonterminals and :~-equivalence is used to minimise 
states by exploiting cost information. Unlike their method, the minimised set of states is directly 
generated by the table generator rather than first determining the set of all possible states and then 
compressing them using :~-equivalence relation. Further it is simpler to understand and implement. 
As against the notions of rewrite rules and reachability, grammar and derivation are well 
understood and the grammar can be easily enhanced with attributes and predicates to aid the other 
supporting routines in code generation as in [17]. 

6. C O N C L U S I O N  

Locally optimal instruction selection and specification ease are the main advantages of the tree 
specification scheme. Previous techniques using tree specification scheme perform expensive cost 
analysis during code generation or require modification of specification for optimal instruction 
selection. We have developed a practical technique by which it is possible to perform optimal 
instruction selection without requiring cost analysis during code generation. Two table compression 
schemes based on cost information have been proposed which reduce the table size considerably. 

7. S U M M A R Y  

This paper proposes a system based on tree pattern matching for performing optimal instruction 
selection for expression trees without requiring cost analysis at code generation time. The target 
machine instructions are specified as attributed production rules in a regular tree grammar 
augmented with cost information in Graham-Glanvil le  style. The intermediate representation IlR) 
is a sequence of expression trees. Instruction selection is modelled as a process of determining 
minimum cost derivation for a given IR tree. 

Matching of a rule and matching of  a nonterminal are defined and a derivation is expressed in 
terms of matching rules and nonterminals. A variation of bottom-up tree pattern matching 
automaton is proposed to find matching rules and nonterminals. To determine the minimum cost 
derivation, each state of the automaton is defined to be a set of pairs (rule, delta-cost) called itemset. 
An algorithm is described to build the automaton. Table folding technique of Chase is extended 
to this automaton which reduces the preprocessing time and table size. Two compression techniques 
(called c~-equivalence and /~-equivalence techniques) based on cost information are proposed. 

A prototype code generator system is developed and a report on the investigations of Motorola 
M68000 and VAX-I1 code generators is included. 
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