
Comput. Lang. Vol. 15, No. 3, pp. 127-140, 1990 0096-0551/90 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright (" 1990 Pergamon Pre'~s plc

E F F I C I E N T R E T A R G E T A B L E C O D E G E N E R A T I O N U S I N G

B O T T O M - U P T R E E P A T T E R N M A T C H I N G

A. BALACHANDRAN, D. M. DHAMDHEREt and S. BISWAS
Indian Institute of Technology, Bombay-400076, India

(Received 3 July 1989; received for publication 4 January 1990)

Abstract Instruction selection is the primary task in automatic code generation. This paper proposes a
practical system for performing optimal instruction selection based on tree pattern matching for expression
trees. A significant feature of the system is its ability to perform code generation without requiring cost
analysis at code generation time. The target machine instructions are specified as attributed production
rules in a regular tree grammar augmented with cost information in Graham Glanville style. Instruction
selection is modelled as a process of determining min imum cost derivation for a given expression tree.

A matching au tomaton is used for instruction selection. Cost information is encoded into the states of
this au tomaton so that cost analysis is not required at code generation time. The folding technique of table
compression is extended to this au tomaton and two schemes of table compression based on cost
information are proposed.

Compilers Retargetable code generation Code-generator Code-generator-generator Tree-pattern
matching Instruction selection Table compression

1. I N T R O D U C T I O N

In the last decade, substantial efforts have been made to automate object code generation [1,2].
In most schemes, the target machine instructions are represented as tree patterns and the
intermediate representation (IR) is a sequence of expression trees created by the compiler front end.
The code generator generator preprocesses the tree patterns and builds tables for a matching
automaton. The matching automaton with supporting routines such as register allocation forms
the code generator. It takes one expression tree at a time from IR and generates code using pattern
matching and replacement scheme.

The PQCC system [3] automatically derives the patterns from the ISP like machine descriptions
[4] and uses a greedy heuristic for pattern matching. In Graham-Glanville technique, [5], tree
pattern matching is reduced to string pattern matching by linearising the expression and pattern
trees and LR-parsing is used for string pattern matching. Since the grammar used for specifying
machine instructions is highly ambiguous, shift-reduce and reduce-reduce conflicts may arise in
LR-parsing. In case of ambiguity, longest pattern or the first pattern in the order of specification
is selected. The main advantages of this method are: specifications are easy to write, the operation
of the parser can be proved to be correct, and well understood algorithms exist for constructing
the tables. However, instruction selection is not optimal and code generator may block if the
conflicts are not resolved properly.

Aho et al. [6] associate costs with the patterns and use a top-down tree pattern matching
algorithm coupled with the dynamic programming algorithm of Aho and Johnson [7] to selec, t the
optimal sequence of patterns. In addition to optimal instruction selection, the dynamic program-
ming algorithm allows highly ambiguous grammars. Since the ambiguities are resolved using a cost
measure during code generation, user need not order the patterns or worry about factoring. Hence
it allows the user to specify concise and elegant description of the target machine instructions.
However the algorithm requires expensive cost analysis to be performed during code generation.
Hatcher and Christopher [8] have used a technique based on bottom-up tree pattern matching
algorithm to perform optimal instruction selection without requiring cost analysis during code
generation. However, their technique requires modifying some part of machine description to retain
optimality.

+Author to whom correspondence should be addressed.

127

128 A. BALACHANDRAN et al.

Pelegri-Llopart and Graham [9] have used a class of rewrite systems called BURS to solve the
instruction selection problem. It differs from the work of other tree pattern matching techniques
in its ability to encode cost information into states of the automaton (thus avoiding cost analysis
at code generation time) and in handling a larger class of rewrite systems.

We propose a system in which target machine instructions are represented as attributed
production rules in regular tree grammar and instruction selection is modelled as a process of
finding minimum cost derivation. A variation of bottom-up tree pattern matching automaton is
used to find the minimum cost derivation. The cost information is encoded into states of the
matching automaton. The table compaction technique of Chase [10] is extended to this automaton.

Our technique is similar to Hatcher and Christopher's technique [8]. However it differs from their
technique in the following ways.

(i) It does not require modifying machine description to retain optimality. The required context
information to find the minimum cost derivation is encoded into the states of the automaton.

(ii) A formal description based on regular tree grammar as in Giegerich and Schmal [11] is
adopted for specifying machine descriptions.

(iii) An extension of Chase's [10] technique is used which improves the preprocessing time and
table compression. Two schemes of table compression based on cost information are
proposed.

The idea of encoding cost information into states has been mentioned in [5] and was later
successfully adopted in [9]. We have also used this idea in our code generating system independent
of the work of Pelegri-Llopart and Graham [9]. Our tree grammar based approach has following
advantages over BURS theory [9]: It is simpler to understand and implement. As against the
notions of rewrite rules and reachability, grammars and derivations are well understood. The
grammar can be easily enhanced with attributes and predicates to aid the other supporting routines
in code generation as in [12]. Blocking problem can be easily detected and good table compression
techniques can be applied.

It is assumed that readers are familiar with tree pattern matching algorithms [10, 13] and the
issues in retargetable code generation [8, 14]. The rest of the paper is organised as follows. The next
section describes the instruction selection problem. In Section 3 we describe table construction and
code generation algorithms. Section 4 describes experience with our code generation algorithm.
Section 5 contains comparison with other work.

2. I N S T R U C T I O N S E L E C T I O N

2. I Tree grammar

A ranked alphabet is a finite set A of symbols, together with a function rank (or arity), such
that rank(a) > 0 for each a ~ A. The symbols with rank 0 are called terminals (T) and the symbols
with rank > 0 are called operators(0).

The homogeneous tree language trees(A) over the ranked alphabet A, is defined by

- - t ~ trees(A), if t is a terminal.
- - a term op(fi tq) ~ trees(A), if ti ~ trees(A) for 1 _< i _< q, op ~ 0 and rank(op) = q.

Example 2.1.1 Let A be the alphabet { ..=, + , deref, c, sp} with ranks 2, 2, !, 0 and 0 respectively.
Elements of trees(A) are, for example: + (c, c), + (deref(+ (c, sp)), c).

A regular tree grammar G augmented with cost is a quadruple (N, A, P, S), where

- - N is a finite set of nonterminal symbols,
- -A is a ranked alphabet, A R N = 0.
- - P is a finite set of production rules augmented with cost. A production rule (or simply rule)

is of the form X ~ t, with X ~ N and t ~ trees(A U N), with nonterminals given rank 0.
Associated with each production rule is a cost called rule-cost. The rule-cost is a
non-negative real number.

- - S is a special nonterminal symbol called start symbol.

A tree pattern is a tree p e trees(A U N) such that there exists a rule r or the form X ~ p.
For t, t ' ~ trees(A U N), t immediately derives t ' , written t ~ t', if there is a r ~ P, say X ~ p

such that t ' results from t by replacing a leaf labeled X by p. The r used in the derivation step is

Efficient re ta rge tab le code genera t ion 129

1. S --* := deref G R [2]
2. S --* ,= deref cR [2]
3. R --* c [2]
4. a --. sp 10l
5. a --, R [01
6. R --, a [11
7. R ~ + G R [1]
8. R -~ +Ro [11
9. R ~ deref G [2]

10. R --, + Rc [2]
11. R --* + c R [21
12. R ---, deref + G c [3]
13. R --, deref + cG [3]
14. R - - - , + d e r e f G R [2]
15. R ~ + R deref G [2]
16. R ~ + R deref + G c [3]
17. R --, + R deref + cG [3]
18. R --* + deref + GcR [3]
19. R --* + d e r e f + c G R [3]

Fig. 1. P roduc t ion rules for a ta rge t machine .

indicated by writing ~ r , where relevant. The relations ~ + and ~ * are the transitive and the
transitive and reflexive closure of ~ . As in context free grammar, we can associate a parse tree
with a derivation.

Let L(X)= {t It ~ trees(A) and X ~ * t}, then L(S) is the language of G.
The rule-cost of r is incurred each time the production rule r is used in a derivation. The cost

of a derivation is the sum of rule-costs of all rules used in derivation. Minimum cost derivation
for a tree t is a derivation S ~ * t such that cost of the derivation is minimum.

A production rule of the form X ~ Y, with X, Y ~ N is a chain rule. The chain rules may lead
to circular derivation of the form X ~ * X.

Example 2.1.2 Let P be the set of production rules shown in Fig. 1. Let G1 be the regular tree
g rammar {(R, G), A, P, S} with A as before. " , = (deref(c), + (c, c))" belongs to L(S), since S ~ *
"..= (deref(c), + (c, c))". The derivation steps are as follows.

S ~2 '= (deref(c), R)
~ 0 "= (deref(c), + (R, c))
~3 '= (deref(c), + (c, c))

The derivation R ~ 6 G ~ s R is a circular derivation.

2.2 The instruction selection problem

Retargetable code generation consists of the following steps:

(i) specification of IR and target machine instructions;
(ii) building tables for a matching automaton;

(iii) generating code from IR using the matching automaton.

The target machine instructions are specified as attributed production rules in regular tree
grammar augmented with cost information in Graham-Glanvi l le style, The intermediate represen-
tation IR is represented as a sequence of trees at the semantic level of the target machine as in
[5], i.e. IR trees and the machine g rammar use the same alphabet. The instruction selection process
can be considered as finding the minimum cost derivation for a given IR tree. There is an action
routine associated with each production rule. Given a derivation, a sequence of instructions can
be generated using a scheme similar to syntax-directed translation.

As an example, Fig. 2 shows an IR tree for an assignment statement a .'= b + 1 in which a is
a global variable stored in memory and b is a local variable stored on stack whose run time address
is given as offset cb from the stack pointer stored in register sp. The operator 'deref ' is a
de-referencing operator which gives the value at the address specified by operand. Figure 3 shows
action routines for some rules in Fig. 1. Figure 4 shows one possible parse tree with the code
sequence generated for that parse tree by executing the action routines.

130 A. BALACHANDRAN et al.

: =

/ \
deref +

I dere/f \ Ca C I
f

+

Cb

Fig. 2. Intermediate representation of a:= b + 1

2. s ~ ,=deref c,R i {Emit ("STORE r%s, %s" i, a)}
19. R i ~ +deref+ c/GkR~ {Emit ("ADD %s[%s], %s",j, k, i)}
3. Ri ~ C/ {Allocreg(i); Emit("MOV # %s, %s",j, i)}
4. Gi--* s p. {i:= sp}

Fig. 3. Action routines for some rules in Fig. 1.

2.3 Minimum cost derivation

A rule r o f the form X ~ p matches a tree t, t ~ t rees(A), i f there exists a der iva t ion such that
X =*'r P =~* t. A non te rmina l X matches a tree t if there exists a rule r o f the form X ~ p which
matches t. A rule (or non te rmina l) matches a tree t a t node n if the rule (or the non te rmina l) matches
the subtree roo ted at the node n.

F o r a tree t e t rees(A), let r : X ~ p be a rule which matches the tree t at node n. We define the
fol lowing.

(i) Cos t o f rule r ma tch ing t at node n.
(ii) cost o f non t e rmina l X ma tch ing t at node n.

The cost o f the rule r is m i n i m u m o f the cost o f all poss ible der iva t ions o f the form X =~r P =~* t.
The cost o f the ma tch ing non t e rmina l X is m i n i m u m of the cost o f all rules r o f the form X ~ p
which matches t. No te tha t unl ike the rule-cost , the cost o f the rule r ma tch ing a tree t depends
upon t.

To de te rmine m i n i m u m cost de r iva t ion for a tree t, all de r iva t ions need not be found. Ins tead
it is sufficient to de te rmine all ma tch ing rules and non te rmina l s and their costs at each node o f
the tree. M i n i m u m cost de r iva t ion is a sequence o f rules, s tar t ing with a m in imum cost rule
co r r e spond ing to s tar t symbol , say r: S ~ p such that S =~r P =~* t. The rule r matches the tree at
the roo t and the successive rules in the de r iva t ion can be ob ta ined by a t o p - d o w n t raversal of the
tree.

2.4 Computing minimum cost derivation

Let p be any tree pa t te rn , a (p) is a subs t i tu t ion in which each non te rmina l Xe in p is replaced
by a tree t t, t~ e t rees(A). The node at which the tree t~ is roo ted is cal led touching pos i t ion o f X~.
A tree pa t t e rn ma tch ing a lgo r i thm can be used to find whether there exists a subs t i tu t ion such that
a (p) = t. A subs t i tu t ion is valid, if each Xi matches ti. A pa t t e rn matches t, if there is a val id
subs t i tu t ion a (p) = t. A va r ia t ion o f b o t t o m - u p tree pa t t e rn match ing a lgor i thm can be used to
find all val id subs t i tu t ions (or ma tch ing pa t te rns) at each node o f a tree.

S
I

 °re/f \ 5 ° I
c. +

/ \
deref

Cb

I
sp

Fig. 4. The parse tree for the |R

MOV # 1, r0

ADD b[sp], r0

STORE r0, a

in Fig. 2. Bold lines indicate the parse tree relation.

Efficient retargetable code generation 131

I f a term o p (f i . . , tq) is a pattern, then the terms tt , tq are called subpatterns. The crux of
the bot tom-up tree pattern matching algorithm is that given the patterns and subpatterns at the
sons of a node n, the patterns and subpatterns matching at node n can be computed. The possible
combinations of the matching patterns and subpatterns can be precomputed and a matching
automaton can be built using these combinations. The automaton is appropriately modified so that
the matching rules can be computed instead of matching patterns.

The cost of a pattern p matching t at node n is equal to the sum of the cost of the nonterminals
in p matching the subtrees at their touching positions. The cost of the pattern which does not
contain any nonterminal is defined to be zero. The cost of the rule r: X --, p is equal to sum of
the cost of pattern p and rule-cost(r). Instead of evaluating the cost at parsing time (i.e. at code
generation time), the cost information can also be encoded into states of the matching automaton.
Now the state is not just the set of rules, but a set of pairs (rule, delta-cost) called items. The
delta-cost is defined by subtracting from the cost associated with each rule, the smallest cost
associated with any rule in the set. The number of item sets are finite for real machines (see [9]
for a discussion). They can be enumerated and an automaton can be built to determine the item
sets.

Now to find the minimum cost derivation for a tree t, we proceed as follows: Tranverse the tree
t "bo t tom-up" and compute the itemsets at each node using the automaton. Minimum cost rule
corresponding to start symbol matching at root node can be determined from the itemset.
Traversing the tree top-down, the minimum cost derivation can be determined,

2.5 Blocking and looping

Given a tree t, t ¢ trees(A), the automaton will always find a derivation if it exists. Otherwise
it will go to an error state. However one may want to know whether a given target machine
specification g rammar G (of language L (Sz)) is complete in the sense that any tree t in IR language
L(S~R) would have a derivation in g rammar G or alternatively L(StR)~-L(Sz) . Though this
problem is decidable [11], no purely automatic method is used in practice. This problem can be
avoided easily. We have to just describe IR specification as a subset of grammar G. Even if the
g rammar is complete, the code generator may get blocked due to "semantic blocking". This can
be avoided by having a default action for every rule.

Looping can occur only due to circular derivations. Since they are computed using closure
function, the problem does not occur.

3. A L G O R I T H M FOR CODE G E N E R A T I O N

Let Match_rule and M a t ch_NT be two functions which give the set of matching rules and
matching nonterminals of a tree. An itemset l(t) matching a tree t, t ~ trees(A) is a defined as
follows:

I(t) = {(r, A~)lr e Match_rule(t)}

where A m is difference between cost of r and the smallest cost associated with any rule in l(t). The
set of nonterminals matching t and the set of the respective A-costs can be obtained from l(t) using
the two functions rt,, and zt,. We view these sets as ordered lists. 7z,(I(t)) is the set of nonterminals
matching t. rt~,(I(t)) gives the j t h element in the set. 7z{(I(t)) is the delta-cost of the nonterminal
rci,(l(t)). A function nr is defined which gives the minimum cost rule corresponding to the
nonterminal, zt¢(I(t)) is defined to be a rule r: n --, p such that delta-cost of the rule r is 7z~,(l(t))
and n = ~z¢,(I(t)). There may be more than one rule having the minimum cost (i.e. rt/,(l(t))), in
which case we choose the rule occurring earlier in the specification.

In the next section we describe a table driven algorithm to determine itemsets. The procedure
requires the production rules to be in normal form.

3.1 Normal form production rules

To treat pattern and subpattern information uniformly, the production rules are written in
normal form. A rule is defined to be in normal form if it is either a chain rule or a rule of the form
X ~ y or X --* op(X~ Xu) where X, A"~ Xq are nonterminals, y is a terminal and op is an

132 A. BALACHANDRAN et at.

Fig. 5. N o r m a l

1. S ~ := Y R [3]
2. S ~ ,= W R [31
3. Y ~ deref G [0]
4. W --* deref C [0]
5. R ~ C [2]
6. G --* S P [0]
7. G --, R [01
8. R ~ G [1]
9. R --* + G R [1 l

10. R --* + R G [1]
11. R ~ deref G [3]
12. R ~ + R C [2]
13. R --, + C R [2]
14. X ~ + G C [0]
15. X ~ + C G [0]
16. R ~ deref X [3]
17. R ~ + Y R [3]
18. R ---, + R Y [3]
19. Z --* deref X [0]
20. R --, + Z R [3]
21. R ~ + R Z [3]
22. C --* c [0]
23. S P --* sp [0]

fo rm p roduc t ion rules for the target mach ine in Fig. 1.

operator of arity q. Any rule can be converted into normal form by introducing new nonterminals
and rules. Rule-costs of the introduced rules are defined to be zero.

Figure 5 shows the production rules of grammar G1 (see Fig. l) in normal form. The terminals
c and sp are replaced by nonterminals C and SP. The nonterminals W, X, Y and Z are introduced
to represent subpatterns. Representing subpatterns by nonterminals simplifies the computation of
matching patterns at a node. The conversion of rules into normal form does not put any undue
restrictions on the user. Further this process can be automated easily.

Note that the nonterminal may be used for factoring also. For example, Xis used for representing
the two patterns + GC and + CG. Factoring reduces the number of rules in specification and helps
in minimising table size.

3.2 Computing itemsets

Given the itemsets at sons of a node, computation of the itemset matching at the node involves
following steps. First the matching rules at a node are computed from the matching nonterminals
at the sons. Then the matching nonterminals at that node are found from the matching rules. From the
matching nonterminals the matching chain rules are determined using Closure function and they
are added to the set of matching rules. Then the A component is calculated for each matching rule.

For the sake of brevity, we assume

r, rj, r 2 E P (the set of production rules),
n, n~, n2 e N (the set of nonterminals),
ntc, ntc~, nt% e powerset(N) and
op, opt, op2 e 0 (the set of operators).

Auxiliary functions

First_rule:

First_rule(op = {r [r is n ~ op(nj . . . nq)}

Father_rule functions:

Father_ruler(n) = {r Jr is n ' --* o p (n l . . , n i . . . nq),

n, = n)}

Closure_NT, Closure_rule:

Closure_NY(n) = {nj Inl =~+ n}

Closure_rule(n) = {r [r is nl ~ n2, nl =*,n2 =~* n}

Efficient retargetable code generation 133

The defini t ions o f F a t h e r _ r u l e funct ions and c losure funct ions are ex tended to a non te rmina l
c o m b i n a t i o n by tak ing unions.

Father_ruleg(ntc) = U Father_rule~(n)
n • n t c

Closure_ru le (n tc) = U Closure_ru le (n)
n e n t c

C l o s u r e _ N T (n t c) = ~ C l o s u r e _ N T (n)
n e n t c

Example 3.2.1 Fi r s t_ ru l e (de re f) = { Y ~ dere f G, W ~ deref C, R --* dere f G,

R ~ dere f X, Z --* deref X}

Father_rule~ (Y) = {R --* + YR, S ~ ".= YR }

Father_ru le2(C) = {R -~ + RC, X --* + GC}

C l o s u r e _ N T (G) = {R, G }

C losu re_ ru l e (G) = {R ~ G, G ~ R}

Algorithm 3.2.1 Computing itemset

P R O C E D U R E I(t)
B E G I N

I F t is a te rminal T H E N
B E G I N

L E T R U L E = {rLr is n ~ t}
L E T N O N T E R M = {n ISr: n ~ t , r e R U L E }
F o r each r e R U L E , LET C r = 0

E N D
E L S E

B E G I N LET t be a term of the form op(t l to)
where q is the ar i ty of the o p e r a t o r ' op ' .

LET ntci = M a t c h _ N T (t i) , 1 < i _< q.
LET R U L E = F i r s t_ ru l e (op) N Father_rule~ (ntct) N . . . N

Fa ther_ru l%(ntcq) .
LET N O N T E R M -- {n 19r: n o p , r • R U L E }

F o r each r: n ~ p , r • R U L E ,

LET p be a term of the form op(n~, 1 nj(ql)
where j (i) is an index such that ~t~i)(I(t~))= njiit

L E T Cr = nlW(I(t t)) + " . + 7~!q)(I(tq))
E N D

M a t c h _ N T (t) = N O N T E R M U C l o s u r e _ N T (N O N T E R M)
M a t c h _ r u l e (t) = R U L E U C l o s u r e _ r u l e (N O N T E R M)

Ini t ia l ise A t = ~ , for each r • M a t c h _ r u l e (t)
Ini t ial ise DCOSTNT, , = ~ , for each n • M a t c h _ N T (t)

F o r each r, r • R U L E

LET COSTr = Cr + ru le-cos t (r) .
L E T COSTmi . = m i n { C O S T r l r e R U L E } .
F o r each r • R U L E ,

LET A~ = COST~ - C O S W m i n .

F o r each n, n • N O N T E R M
D C O S T N T , , = m i n { A r l 3 r : n ~ p, r • R U L E }

W H I L E change o f value o f D C O S T N T , or A, occurs do
B E G I N

134 A. BALACHANDRAN et al.

For each r: n ~ n~ such that r e Closure_Rule(Match_NT(t))
BEGIN
D C O S T N T . = m i n (DC OS TNT. . DCOSTNT., L + rule-cost(r))
A = rain(A,. DCOSTNT,,, + rule-cost(r))
END

E N D
R E T U R N {(r, A,)lr ~ Match_rule(t)}

E N D
Example 3.2.2
Consider a tree + (cc).

R U L E at terminal c = {C ~ c}
N O N T E R M at terminal c = {C}
Match_NT(c) = {R, G, C}

Match_rule(c) = {C ~ c, R --* C, G ~ R, R --* G}.
I (c) = {C ~ c ,O) , (R ~ C, 2), (a ~ R, 2), (R ~ G, 3)}
x , (I (c)) = [C, R, G]
x,.(l(c)) = [0, 2, 2]

ztr(I(c)) = [C -~ c, R ~ C, G ~ R].
R U L E at root of the tree(+ (c, c))

= { R ~ R C, R --. + G R , R ~ + R G ,

R ~ + C R , X ~ + G C , X ---* + C G }
N O N T E R M at root of the tree (+ (c , c)) = { R , X }
M a t c h _ N T (+ (c, c)) = {R, X, G}
Ma tch_ ru l e (+ (c , c)) = {R ~ + R C , R ~ + C R ,

R ~ + R G , R ~ 4-GR,
X ~ + G C , R ~ + C G ,
R G,G

l (+ c c) = {(g ~ + RC, 2), (R ~ CR, 2),
(R ~ -4-GR, 3), (R ~ + RG, 3).
(x ~ + GC, 0), (X --, + CG, 0),
(R ~ G, 3), (G ~ R, 2)}

rt,,(I (+ (c, c))) = [R, X, G]
x , (I (+ (c, c))) = [2, 0, 2]
x r (I (+ (c , c))) = [R --* + R C , X ~ + G C , G --. R].

3.3 Table generation

The itemsets are enumerated and an integer is used as index for each itemset. As in the bot tom-up
tree pattern matching algorithm, tables are built for each operator. Given the indices of the
matching itemsets at the sons, the index of the matching itemset at a node can be determined by
table look-up. The required enumeration of itemsets and tables may be generated by a simple
closure strategy which starts with itemsets for the terminals and repeatedly generates itemsets for
trees with increasing heights, till no more itemsets are generated. Then the following table driven
algorithm can be used to find the index I (t) of the itemset matching a tree t.

Algorithm 3.3.1 Table driven algorithm for computing itemset

I (t) = If t is a terminal A then TABLEA
else TABLEA(I(t l) I(tq))

where t is a term A (t~ tq).

Where TABLEA is the table for each operator and terminal.

Chase [10] has used equivalence classes of match sets to compress tables and speed up
preprocessing. In a two dimensional table, say for an operator "4 - " , duplicate rows and columns
represent the equivalence classes. They are called duplicate subtables in higher dimensions. It is
possible to compress the interior of the table by "folding" duplicate subtables using "index maps".
This idea can be extended to itemsets as follows.

Efficient retargetable code generation 135

LET NAj be the set of all nonterminals occurring in j t h position in
at least one pattern p of the form A(nt n i n q) .

Two itemsets i l and i2 are Aj-equivalent if

n ,(i l) f] NAj = n,(i2) r] NAj = NTSET(say)
and C, is constant over all n e NTSET.

Where C, = nk~(il) -- n,k?(i2), n,k~(il) = n*,Z(i2) = n. (i.e. The respective cost differences of the
nonterminals in NTSET are also same.)

It can be easily verified that if i l and i2 are Aj-equivalent, then the table for the operator A
of arity q contains a duplicate subtable at position j. As in [10], an eqivalence class of sets is
represented by a member of that class. This member is called representer set for that class. Let X,
be the set of itemsets generated after processing trees of height i. Let SAj, be the set of representer
sets for a given A, j and X i. To determine the set of itemsets Xi+~, we proceed as follows. Initialise
X,+ ~ = X~. Then construct all possible trees for each operator A from the representer set SAj, and
determine the matching itemset for each tree. Check whether any new itemset is formed. Add the
new itemset to X~+~. Repeat this until no more itemsets are generated.

Algorithm 3.3.2 Generating all itemsets

X: indexed set of itemset;
BEGIN

X0 .'= U {I(A)}
A e terminal set

Generate SAj0 for each A and j.
REPEAT

A ~ op-set

END;

U J=q I(A (s I sq))])
(st Sq)e H saji

j = l

Generate SAj~, +,~ for each A and j, 1 < j < arity(A).
UNTIL Vj SAj,, + ,~ = SAj, ;

Algorithm 3.3.2 can be suitably modified to build the tables also. Let the index tables be
represented by MAj and the interior of the tables by T~. Then the modified table driven algorithm
to compute the itemset l (t) matching a tree t is given as follows.

Algorithm 3.3.3 Table driven algorithm for computing itemset

I (t) = If t is a terminal A then T~
else TA(Mm (l(t ,)) MAq(I(tq)))

where t is a term A (h Tq).

The index map tables and tables for unary operators occupy considerable space. This can be
reduced by using one more level of indexing by exploiting the property that itemset matching at
a node depends only on the matching nonterminals and their cost (given by n, and rt,) at the sons
of the node rather than on complete information about itemsets at the sons. This property is called
/3-equivalence. Two itemsets il and i2 are said to be/%equivalent, if

~z,,(il)= rt,(i2) and rc,(il)=lt,.(i2).

Example 3.3.1

The itemsets

i3 = {(R ~ +RC, Z) , (X --. +GC, O),(R ~ G, 3),(G ~ R, 2),

(R ~ + GR, 3), (R ---, + RG, 3)}

136 A. BALACHANDRAN e t al.

and

i4 = {(R --. + CR, 2), (X ~ + CG, 0), (R --. G, 3), (G --. R, 2),

(R --, + GR, 3), (R --, + RG, 3)}

are B-equivalent,

since rt,(i3) = 7r,(i4) = [R, X, G] and

n,(i3) = rr,.(i4) = [2, 0, 2].

//-equivalence implies A j-equivalence for all A and j. Hence there will not be any reduction in
the interior of the table (T-tables of Algorithm 3.3.3) for the operators of arity more than one.
But the index map tables and tables for unary operators are reduced considerably. The
preprocessing time for unary operators is also reduced.

Further the information required in the itemset, to get the minimum cost derivation is merely
the set of nonterminals matching at each node and the corresponding minimum cost rule for each
nonterminal. This fact can be used to reduce itemsets. Two itemsets i l and i2 are said to be
e-equivalent, if

~,(i l) = 7r,(i2), rc,(il) = rt,(i2) and rr,(il) = ~r(i2).

Example 3.3.2

The itemsets

i3 = {(R --, +RC, 2), (X ~ +GC, 0), (R --* G, 3), (G ~ R, 2),

(R ~ +GR, 3), (R ~ +RG, 3)}

and

i5 = {R ~ CR, 2), (X --* CG, 0), (R --. +RC, 2),

(X --. + GC, 0), (R --. G, 3), (G --* R, 2),

(R ~ GR, 3), (R ~ + RG, 3)}

are ~-equivalent,

since rc,(i3) -- r~,(i5) = [R, X, G],

zc,.(i3) = rr,.(i4) = [2, 0, 2] and

~rr(i3) = nr(i4) = [R --* + RC, X --* +GC, G --* R].

e-equivalence implies fl-equivalence. Hence there may not be much reduction in the tables. But
the space required to store information about itemsets can be reduced. The tables are modified such
that they now return an equivalent representer set I,(t) rather than I(t) . The modified table driven
algorithm is as follows.

Algorithm 3.3.4 Table driven algorithm for computing itemset

Ix(t) = If t is a terminal A then :ira

else TA(M A, (//(I~(tj))) M Aq(// (/~(tq))))

where t is a term A (h t,).

The significance of e equivalence classes is due to following consideration. Hoffmann and
O'Donnell [13] have shown that "independent" patterns give rise to exponential growth of table
size. Hatcher and Christopher [8] have observed that most of the independent patterns occur in
machine specifications due to duplication of patterns for commutative operator and they discard
one of the pattern in favour of the other if both of them match. In our case, such independent
patterns are factored by nonterminals and e-equivalence class is used for discarding patterns.
Unlike the Hatcher and Christopher technique [8], our technique discards patterns only if it does
not affect the selection of minimum cost pattern. In Example 3.2.2, the nonterminal X factors the

Efficient retargetable code generation 137

patterns " + GC" and " + CG". The nonterminal R factors the patterns " + RC" and " + CR". One
of the pattern in each case is discarded by a-equivalence.

Further the size of the tables depends upon the number of operators and the rank of
the operators. An n-ary operator can be converted into binary operator using a pairing function
operator. A set of operators having identical patterns and cost can be replaced by a generic
operator.

3.4 Code generation algorithm

The code generator makes three passes over the tree. In the first pass IR tree is traversed
bottom-up and itemsets matching at each node are found. The itemset has the information about
matching nonterminals and the minimum cost rule corresponding to each nonterminal. At the end
of first pass the start symbol should match at the root (otherwise it is an error condition). In the
second pass the tree is traversed top-down to get the minimum cost parse tree. In the third pass
the parse tree is traversed and the instructions are emitted by executing actions.

4. I M P L E M E N T A T I O N

The actual implementation of the itemsets computation algorithm involves much more book
keeping than described here. The target machine specifications are compiled into coded form. The
set of rules is represented as a bit vector and the set union and intersection operations are
implemented using bit vector " A N D " and " O R " operations. Two hash tables are maintained to
check whether a new Match_rule set or a new itemset is formed. Formation of a new Match_rule
set implies formation of a new itemset. If the Match_rule set is already present, A is computed
for that set and checked in the hash table for the formation of a new itemset. The hash tables store
an unique index for each Match_rule set and itemset. The functions First, Father and Closure, and
the itemsets corresponding to terminals are computed first. The set of itemsets is represented as
a list of indices. All iterations over sets and product of sets are done over the indices corresponding
to the sets and products. An itemset is formed during each iteration and if it is a new one (checked
using hash search), then it is added to the list corresponding to Xi+~. Further it is not necessary
to iterate over all the members

j = q

H SA/,
j=l

but only over the members in
j=q /--q
H SA./, -- E SAy(,-,,

j = l j = l

4. I Experimental results

We have developed a prototype code generator system (TCGG) based on the technique described
in this paper and have got some encouraging results during the investigation on Motorola
MC68000 and VAX 11 code generators on a M68020 processor based machine. The relevant
statistics for the code generators are tabulated in Fig. 6.

The quality of the code generated is compared for different IRs with that of Graham-Glanvil le
scheme and it was found to be better, since T C G G utilised the addressing mode instructions
optimally. The code generator produces 200 assembly instructions per sec in Motorola 68020 based
system. The size of the code generator is about 70K for VAX-11 and 100K for MC68000.

Though the number of rules are less for MC68000 code generator than for VAX-I 1, the table
size is more for MC68000 due to the following reason. There are two types of general purpose
registers, viz. data registers and address registers. In some cases it is beneficial to use an address
register instead of a data register. This irregularity in instruction set gives rise to large
A-components. Hence the number of itemsets and preprocessing is considerably high. a-equivalence
is more effective for this type of machines. In MC68000 code generator, around 25K of itemset
storage (storing 2430 itemsets) is reduced to 3K (storing 342 itemsets) by a-equivalence. In VAX- 11
code generator, around 3.6K of itemset storage (storing 526 itemsets) is reduced to 1.8K (storing
263 itemsets).//-equivalence reduces space for index maps and unary operator tables by almost half
in both cases, taking into account the reduction of itemsets by a-equivalence.

138 A. BALACHANDRAN et al.

VAX II Motorola MC68000

No of rules 144 114
No of nonterminals 20 18
No of terminals 15 12
No of unary operators 8 9
No of binary operators 18 16
No of itemsets 526 2430
No of ~t-equivalence Classes 263 342
No of fl-equivalence Classes 94 149

Table size

Index maps 7.2K 9.6K
unary op tables 1.6K 2.7K
Interior of binary op tables 1.4K 19.2K
Itemset storage 1.8K 3.0K
Total table size 12.0K 34.5K

Preprocessing time 108 sec 720 sec

Fig. 6. Statistics of VAX 11 and MC68000 code generator systems

Note that only 9 bits are required to represent each element in the tables for MC68000 code
generator. In Fig. 6, it is assumed that each element is represented by a word (two bytes). The table
size can be reduced to approximately 20K by bit-compression techniques.

5. C O M P A R I S O N WITH O T H E R WORK

Locally optimal instruction selection and specification ease are the main advantages of the tree
pattern matching techniques [15] over LR-parser methods. Our method inherits these advantages.
It differs from Aho e t a l . ' s tree specification scheme in its ability to perform code generation without
cost analysis during code generation and from Hatcher and Christopher's scheme in not requiring
modification of specification for optimality. Since we do not have any implementation based on
other tree pattern matching methods, our comparison is qualitative rather than quantitative.

The main advantage over Aho e t a l . ' s [14] method is faster code generation due to following
reasons:

(i) An efficient bottom-up tree pattern matching algorithm which is linear in input tree size is
used compared to the top-down tree matching algorithm used by them which is quadratic
in pattern size and input tree size.

(ii) Cost analysis is not required at code generation time.
(iii) The matching chain rules are precomputed.

Though the preprocessing time and space requirement are more for the bottom-up tree pattern
matching techniques, Chase [10] has shown that it is practicable. Pelegri-Llopart and Graham's
experiments, and our own confirm this.

Our technique is similar to Hatcher and Christopher's [8] technique in the sense that we use same
type of machine descriptions and make three passes over IR tree to generate code. The main
differences are the following:

(i) Their technique requires modifying some part of machine description to retain optimality.
If the pattern set is large, it is difficult to do such modification by hand. In our system, the
context information required to determine the minimum cost derivation is automatically
generated.

(ii) In our method, a formal description based on regular tree grammar as in Giegerich and
Schmal's paper [ll] is adopted for specifying machine descriptions. This enables a more
thorough treatment of the blocking problem. Giegerich and Schmal perform cost analysis
(as in [7]) at code generation time. We define itemsets to encode cost information into tables.

(iii) An extension of Chase's [10] technique is used which improves the preprocessing time and
table compression. Two schemes of table compression based on cost information are
proposed. Unlike in Hatcher and Christopher's technique, the necessary information for
table compression is automatically generated.

Efficient retargetable code generation 139

In Pelegri-Llopart and Graham's code generator system, cost information is encoded into the
states so that cost analysis need not be done at code generation time. In this aspect, our technique
is similar to theirs. Their system handles a larger rewrite system in which commutativity property
of the operators and "constant folding" type rules can be directly specified. However we are able
to use better compression schemes and detect the blocking problem more easily. Patterns duplicated
for commutative operators are factored by nonterminals and :~-equivalence is used to minimise
states by exploiting cost information. Unlike their method, the minimised set of states is directly
generated by the table generator rather than first determining the set of all possible states and then
compressing them using :~-equivalence relation. Further it is simpler to understand and implement.
As against the notions of rewrite rules and reachability, grammar and derivation are well
understood and the grammar can be easily enhanced with attributes and predicates to aid the other
supporting routines in code generation as in [17].

6. C O N C L U S I O N

Locally optimal instruction selection and specification ease are the main advantages of the tree
specification scheme. Previous techniques using tree specification scheme perform expensive cost
analysis during code generation or require modification of specification for optimal instruction
selection. We have developed a practical technique by which it is possible to perform optimal
instruction selection without requiring cost analysis during code generation. Two table compression
schemes based on cost information have been proposed which reduce the table size considerably.

7. S U M M A R Y

This paper proposes a system based on tree pattern matching for performing optimal instruction
selection for expression trees without requiring cost analysis at code generation time. The target
machine instructions are specified as attributed production rules in a regular tree grammar
augmented with cost information in Graham-Glanvil le style. The intermediate representation IlR)
is a sequence of expression trees. Instruction selection is modelled as a process of determining
minimum cost derivation for a given IR tree.

Matching of a rule and matching of a nonterminal are defined and a derivation is expressed in
terms of matching rules and nonterminals. A variation of bottom-up tree pattern matching
automaton is proposed to find matching rules and nonterminals. To determine the minimum cost
derivation, each state of the automaton is defined to be a set of pairs (rule, delta-cost) called itemset.
An algorithm is described to build the automaton. Table folding technique of Chase is extended
to this automaton which reduces the preprocessing time and table size. Two compression techniques
(called c~-equivalence and /~-equivalence techniques) based on cost information are proposed.

A prototype code generator system is developed and a report on the investigations of Motorola
M68000 and VAX-I1 code generators is included.

R E F E R E N C E S

1. Ganapathi, M., Fischer, C. and Hennessy, J. Retargetable compiler code generation. Compul. Sum'. 14:573 592:
December 1982.

2. Graham, S. Table driven code generators. 1EEE Comput. 13:25 34: August 1980.
3. Leveren, B., Cattell, R. et al. An overview of the production-quality compiler--compiler project. IEEE Comput. 13:

38-49: August 1980.
4. Bell. C. G. and Newell, A. Computer Structures: Reading and Examples. New York: McGraw Hill; 1971.
5. Henry, R. R. Graham Glanville code-generators. Ph.D. dissertation, University of California, Berkeley; 1984.
6. Aho. A. V., Ganapathi, M. and Tjiang, S. W. K. Code generation using tree matching and dynamic programming.

ACM TOPLAS. To appear.
7. Aho, A. V. and Johnson, S. C. Optimal code generation for expression trees. J. ACM 23: 488-452: 1976.
8. Hatcher, P. J. and Christopher, T. W. High quality code generation via bottom-up tree pattern matching. Proc 13th

ACM Symposium on Principles of Programming Languages, pp. 119 129; 1986.
9. Pelegri-Llopart, E. and Graham, S. Optimal code generation for expression trees: An application of BURS theory. Proc.

15th Annual ACM Symposium on Principles o) c Programming Languages, pp. 294 308; January 1988.
10. Chase. D. R. An improvement to bottom-up tree pattern matching. Proc. 14th ACM Symposium on Principles ~[

Programming Languages, pp. 168 177; 1987.

140 A. BALACHANDRAN et al.

1 I. Giegerich, R. and Schmal, K. Code selection techniques: Pattern matching, tree parsing, and inversion of derivors.
European Symposium on Programming Languages. Lecture Notes in Computer Science 300:247 268; 1988.

12. Ganapathi, M. and Fischer, C. N. Affix grammar driven code generation. ACM TOPLAS 7: 560--599; October 1985.
13. Hoffmann, C. and O'Donnell, M. Pattern matching in trees. J. ACM 29: 68-95; 1982.
14. Aho, A. V. and Ganapathi, M. Efficient tree pattern matching: An aid to code generation. Proc. 12th ACM Symposium

on Principles o f Programming Languages, pp. 334-340; 1985.
15. Appel, A. W. Concise specifications of locally optimal code generators. Technical Report, University of Princeton;

February 1987.
16. Ganapathi, M. Retargetable code generation and optimisation using attribute grammars. Ph.D. dissertation, University

of Wisconsin-Madison; 1980.
17. Glanville, R. S. and Graham, S. L. A new method for compiler code generation. Proc. 5th Annual ACM Symposium

on Principles o f Programming Languages, pp. 231-240; January 1978.

About the Author--ARUNACHALAM BALACHANDRAN received his B.Sc in physics from Madras University
in 1979 and his B.E. in electrical technology and electronics from the Indian Institute of Science, Bangalore
in 1982. He worked in ORG Systems, Baroda as a Hardware Engineer from 1982 to 1985. Presently he
is working for his Ph.D. in the Department of Computer Science and Engineering at the Indian Institute
of Technology, Bombay. His current areas of interest are automatic code generators, tree transformation
systems and parallel compilers.

About the Author--DHANANJAY MADHAV DHAMDHERE was born in Pune, India in 1949. He received his
B.Tech., M. Tech. degrees in electrical engineering and Ph.D. in computer science from the Indian Institute
of Technology, Bombay. Dr Dhamdhere joined the faculty of the Indian Institute of Technology in 1972,
becoming Assistant Professor of computer science in 1974. He became Associate Professor in 1983 and
Professor of computer science in 1985. During 1974-81, while in charge of the System Software Group,
he led the design and implementation of the fast turn around Fortran system IITFORT for IBM
mainframe computers. As a member of the Computer Society of India, he served as the editor of its journal
Computer Science and Informatics for the period 1983-86. During 1986-88 he was a Visiting Professor
at the University of Connecticut, Storrs. His research and consultancy interests are in the area of
optimising compilers, programming languages and operating systems. He is the author of several research
papers and two books entitled Compiler Construction and Introduction to System Software.

Ahout the Author--SUPRATIM BISWAS received his Ph.D. degree in computer science from the Indian
Institute of Technology, Kharagpur in 1982. He joined the Department of Computer Science and
Engineering, Indian Institute of Technology, Bombay in 1980 and is presently an Assistant Professor. His
research interests are in the areas of compiler optimisation, compilers for multiprocessors, algorithms and
complexity, and combinatorial optimisation.

