A Distributed File System

(that has the name spaces and semantics that resemble
those of the Windows File System)

Design Overview Document

Submitted by:

Surabhi Ghaisas (07305005)
Rakhi Agrawal (07305024)
Election Reddy (07305054)
Mugdha Bapat (07305916)
Mahendra Chavan(08305043)
Mathew Kuriakose (08305062)
Sameera Deshpande (08405003)

Issues in Implementation of Distributed File System

Al B

Stateful vs stateless file system
File sharing semantics

Namespace server and permissions
File caching

Locking and granularity

Stateful vs Stateless File System

Stateful file system

In stateful file system, the state of the file processing activity is remembered in metadata.
In stateful file system,

Client opens the file.

Server fetches information about the file from its disk.

It loads that file in its memory

A connection identifier unique to the client and the open file is given to the client.
This identifier is used by client to perform subsequent accesses to file until the
session ends.

Its server's responsibility to reclaim the main memory used by clients that are no
longer active.

Advantages:

It is simple.

Fewer disk accesses are needed at server side.

Server knows if the file was opened for sequential access, and hence can read
ahead the next blocks.

It reduces the network traffic as client need not send state information with every
call to server.

Disadvantages:

When the client crashes, the file processing activity should be abandoned, and the
file state should have to be restored to its previous consistent state, so that the
client can restart its file processing activity.

The resources allocated to aborted file processing should have to be released.
When the server crashes, the state information stored in file server metadata is
lost, hence the file processing activity should be terminated. Thus client knows
about server crashes.

Stateless file system

In stateless file system, the state information about file accessing activity is not
maintained by the server. Instead, client maintains state information about the file
processing activity. The information about the desired activity is provided to the server
when the service is requested through file system call.

In stateless file service,

Client performs system call which contains information about which file to be
accessed, which operation to be performed, which part of the file to be accessed,
etc.

At this call, server opens the desired file, and performs the action on the specified
part of the file.

When client receives the response from server, it assumes that the operation
requested has been completed successfully.

If the file server crashes, timeouts and retransmission occurs at client site.

When server site recovers, it answers to the retransmitted request of client. Hence,
client is unaware of server crashes.

Advantages:

Stateless server is more robust than stateful file server, hence they provide fault
tolerance.

Lost connections can't leave a file in an invalid state.

Rebooting the server does not lose state information.

Rebooting the client does not confuse a stateless server.

Disadvantages:

As the server doesn't maintain any state information about file processing activity,

it cannot detect and discard duplicate requests from client.

To ensure consistency of files, the requests made by clients must be idempotent.

The stateless file server incurs performance penalty due to:

- The file server opens the file at every file operation.

« When client performs write operation, the changes are needed to be reflected
in disk copy of the file.

« Stateless file server cannot employ file caching or disk caching.

In windows, stateful file system is used. We plan to implement stateful file system. The
state of the file consists of:

1

2.
3.
4.

File id (information about file can be retrieved from metadata of file system)
Id of next record to be read

Location where the file exists

Client for which the file is being accessed

File Sharing Semantics

There are different types of file sharing semantics:

* Unix Semantics - Every operation on a file is instantly visible to all processes.

* Session Semantics - No changes are visible to other processes until the file is
closed.

* Immutable files - A file once created cannot be changed. Such a file cannot be
opened for modification, it can be opened only for reading. In case of immutable
files cache coherency becomes easier to implement.

* Atomic Transaction - To access a file a process executes a begin transaction to
notify that all futher operations will be executed indivisibly. After completion it
executes an end transaction.

We plan to use session semantics for our distributed file system. In this case, as
mentioned above, changes to a file are not visible until the file is closed. So we need to
limit the concurrent access to a file by different processes in the system by use of a
distributed locking mechanism.

Namespace Server and Permissions

There are two strategies which we can adopt for implementing the name space server:
1. Stand-alone (Centralized)
2. Domain-based (Distributed).

We are planning to go for domain-based namespace server. In our case it would be a two
level model. At the root level would be the RootDNS. Root DNS would be maintaining
the list of all the files/folders created immediately under /. For each of the files/folders in
this list, it would keep the addresses of the respective DomainDNSs on which they were
created. Please note that RootDNS will not store the links and permissions for any of the
files/folders. Below the root level would be a number of DomainDNS servers. Every
DomainDNS would serve for a number of nodes. Each DomainDNS server would
maintain a virtual tree of all files/folders created by the nodes in its domain under /.

We would be providing read, write, modify, read&execute, fullcontrol permissions for
files and read, write, modify, read&execute, fullcontrol, listfoldercontents for folders.
Permissions for folders and files would be maintained along with the links in the
DomainDNS namespaces. Whenever a user tries to access a file/folder, permissions will
be checked at DomainDNS level and will be given access to actual file/folder only if
he/she has the requested permission to access.

Example
As shown in the Figure 1 nodes will be divided into domains say A,B,C,... .Each domain

will have one DomainDNS. There will be one RootDNS. DomainDNS_A will maintain
the information about folders (level 1) and files(level 1) created by nodes in DomainA.

DomainDNS_A also maintains information about folders and files created under its level

1 folders by any node in any Domain.
(-\ i el

' ¢ lwwll
RaotDNG

A

[
/E' /\m /—)\pqr dac
Domaing Domaing

\\l:‘l_cma nDHG A TomarDhs B
des, pef

Figure 1
Few scenarios

In the following scenarios, we assume that each node has one user with name same as the
node name.

1. Node CI requests DomainDNS_A to create a folder /A

DFS Actions:

a. A folder would be created on C1 and DomainDNS_A would create a folder
entry for folder /A in its virtual tree along with a link to the folder and
permissions bitmap (Full Control in this case) in its virtual tree.

b. DomainDNS_A would pass on the folder name /A to RootDNS.

c. RootDNS would insert (/A,DomainDNS_A) in its list of files/folders.

2. Node C2 requests DomainDNS_A to create a folder /A/B

DFS Actions:

a. A folder would be created on C2 and DomainDNS_A would create a folder entry
for folder /A/B along with the link to the folder and permissions bitmap (Full
Control in this case) in its virtual tree. (Please note that, information about /A/B is
not passed to the RootDNS)

3. Node C4 requests DomaionDNS_B to create a file A/B/dos.pdf

DFS Actions:

a. File dos.pdf would be created on C4.

b. DomainDNS_B would lookup its virtual tree for the directory /A/B. It would not
find it. It would pass the file creation request to the RootDNS. (It would pass the
link of the created file and the permissions also)

c. RootDNS would lookup its list for the folder /A. It would find and entry
(A, DomainDNS_A). It would pass the request to DomainDNS_A

d. DomainDNS_A would lookup /A/B. It would find the node /A/B and would
create an entry in the namespace under B for dos.pdf with a link for the file
dos.pdf (which is on C4) and Permissions bitmap for the current user.

4. Node C2 gives ListFiolderContents permissions to Node C5 for folder /A/B

DFS Actions:
a. DomainDNS_B would create a entry (C5, PermissionsBitmap) in the permissions
list for folder /A/B in the namespace tree.

5. Node C5 requests DomainDNS_B to read the file /A/B/dos.pdf

DFS Actions

a. DomainDNS_B would lookup the file in its virtual tree. It would not find it,
would pass on the request to RootDNS.

b. RootDNS would lookup to find out the entry (A,DomainDNS_A). It would pass
on the file access request to DomainDNS_A.

c. DomainDNS_A would lookup the file /A/B/dos.pdf and check the permissions
for user C5. Since C5 does not have permissions, it would deny the file request.
The Permission denied response would be sent back to the RootDNS and then to
DomainDNS_B which wil send it to C5.

File Caching

We can employ caching to improve system performance. There are four places in a
distributed system where we can hold data:

1. On the server's disk

2. In a cache in the server's memory

3. In the client's memory

4. On the client's disk

The first two places are not an issue since any interface to the server can check the
centralized cache. It is in the last two places that problems arise and we have to consider
the issue of cache consistency. Several approaches may be taken:

1. Write-through: All accesses would require checking with the server first (adds
network congestion) or require the server to maintain state on who has what files
cached. Write-through also does not alleviate congestion on writes.

2. Write-back (delayed writes): Data can be buffered locally (where consistency

suffers) but files can be updated periodically. A single bulk write is far more

efficient than lots of little writes every time any file contents are modified.

Unfortunately the semantics become ambiguous.

Write on close: This is admitting that the file system uses session semantics.

4. Centralized control: Server keeps track of who has what open in which mode. We
would have to support a stateful system and deal with signaling traffic.

el

We plan to implement cache in each client’s disk. Cache consistency will be ensured
using write on close approach. This requires that at any point of time server should
maintain the list of clients that have accessed file since the last latest write to the file.
Server should ensure the following:

* Not allow caching when concurrent-write sharing occurs i.e. disable cache when a

file is opened in conflicting modes.
* Allow many readers.
» If a client opens for writing, inform all the clients to purge their cached data.

Locking and Granularity

Each file has a lock associated with it. Before accessing the file, client should acquire the
lock in one of the following modes:

* Shared lock — for reading file

* Exclusive lock - for writing to file
Shared mode is compatible with shared mode, while shared mode with exclusive mode is
incompatible. Exclusive mode with another exclusive mode is also incompatible.
If a request is made for a file which is already granted an incompatible lock then the
request fails.

