
Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 1

UART

Introduction
This chapter will introduce you to the capabilities of the Universal Asynchronous
Receiver/Transmitter (UART). The lab uses the LaunchPad board and the Stellaris Virtual Serial
Port running over the debug USB port.

Agenda

Features...

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO

Interrupts and the Timers

ADC12

Hibernation Module

USB

Memory and Security

Floating-Point

BoosterPacks and grLib

Synchronous Serial Interface

UART

µDMA

Sensor Hub

PWM

UART Features and Block Diagram

12 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

Chapter Topics

UART .. 12-1

UART Features and Block Diagram .. 12-3

Basic Operation ... 12-4

UART Interrupts and FIFOs .. 12-5

UART “stdio” Functions and Other Features .. 12-6

Lab 12 ... 12-7
Objective ... 12-7

 UART Features and Block Diagram

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 3

UART Features and Block Diagram

UART Features

 Separate 16x8 bit transmit and receive FIFOs

 Programmable baud rate generator

 Auto generation and stripping of start, stop, and
parity bits

 Line break generation and detection

 Programmable serial interface
 5, 6, 7, or 8 data bits

 even, odd, stick, or no parity bits

 1 or 2 stop bits

 baud rate generation, from DC to processor clock/16

 Modem flow control on UART1 (RTS/CTS)

 IrDA and EIA-495 9-bit protocols

 µDMA support

Block Diagram...

Block Diagram

Basic Operation...

Basic Operation

12 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

Basic Operation

Basic Operation
 Initialize the UART

 Enable the UART peripheral, e.g.
SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 Set the Rx/Tx pins as UART pins
GPIOPinConfigure(GPIO_PA0_U0RX);
GPIOPinConfigure(GPIO_PA1_U0TX);
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 Configure the UART baud rate, data configuration
ROM_UARTConfigSetExpClk(UART0_BASE, ROM_SysCtlClockGet(), 115200,

UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE));

 Configure other UART features (e.g. interrupts, FIFO)

 Send/receive a character
 Single register used for transmit/receive
 Blocking/non-blocking functions in driverlib:

UARTCharPut(UART0_BASE, ‘a’);
newchar = UARTCharGet(UART0_BASE);
UARTCharPutNonBlocking(UART0_BASE, ‘a’);
newchar = UARTCharGetNonBlocking(UART0_BASE);

Interrupts...

 UART Interrupts and FIFOs

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 5

UART Interrupts and FIFOs

UART Interrupts
Single interrupt per module, cleared automatically

Interrupt conditions:

 Overrun error

 Break error

 Parity error

 Framing error

 Receive timeout – when FIFO is not empty and no further data is
received over a 32-bit period

 Transmit – generated when no data present (if FIFO enabled, see next
slide)

 Receive – generated when character is received (if FIFO enabled, see
next slide)

Interrupts on these conditions can be enabled individually

Your handler code must check to determine the source
of the UART interrupt and clear the flag(s)

FIFOs...

Using the UART FIFOs

 Both FIFOs are accessed via the
UART Data register (UARTDR)

 After reset, the FIFOs are enabled*,
you can disable by resetting the FEN
bit in UARTLCRH, e.g.

UARTFIFODisable(UART0_BASE);

 Trigger points for FIFO interrupts can
be set at 1/8, 1/4, 1/2,3/4, 7/8 full, e.g.

UARTFIFOLevelSet(UART0_BASE,

UART_FIFO_TX4_8,

UART_FIFO_RX4_8);

Transmit
FIFO

UART_FIFO_TX4_8

UART_FIFO_TX1_8

UART_FIFO_TX2_8

UART_FIFO_TX6_8

UART_FIFO_TX7_8

FIFO Level
Select

* Note: the datasheet says FIFOs are disabled at reset

stdio Functions...

UART “stdio” Functions and Other Features

12 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

UART “stdio” Functions and Other Features

UART “stdio” Functions

 TivaWare “utils” folder contains functions for C stdio
console functions:
c:\TivaWare\utils\uartstdio.h

c:\TivaWare\utils\uartstdio.c

 Usage example:
UARTStdioInit(0); //use UART0, 115200

UARTprintf(“Enter text: “);

 See uartstdio.h for other functions

 Notes:
 Use the provided interrupt handler UARTStdioIntHandler()

code in uartstdio.c

 Buffering is provided if you define UART_BUFFERED
symbol

Receive buffer is 128 bytes

Transmit buffer is 1024 bytes

Other UART Features...

Other UART Features
 Modem flow control on UART1 (RTS/CTS)

 IrDA serial IR (SIR) encoder/decoder
 External infrared transceiver required

 Supports half-duplex serial SIR interface

 Minimum of 10-ms delay required between transmit/receive, provided by software

 ISA 7816 smartcard support
 UnTX signal used as a bit clock

 UnRx signal is half-duplex communication line

 GPIO pin used for smartcard reset, other signals provided by your system design

 LIN (Local Interconnect Network) support: master or slave

 µDMA support
 Single or burst transfers support

 UART interrupt handler handles DMA completion interrupt

 EIA-495 9-bit operation
 Multi-drop configuration: one master, multiple slaves

 Provides “address” bit (in place of parity bit)

 Slaves only respond to their address

Lab...

 Lab 12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 7

Lab 12

Objective
In this lab you will send data through the UART. The UART is connected to the emulator’s virtual serial
port that runs over the debug USB cable.

 Initialize UART and echo characters
using polling

 Use interrupts

Lab 12: UART

USB Emulation Connection

Lab 12

12 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop

Procedure

Import Lab12

1. We have already created the l
necessary project and build options set.

► Maximize Code Composer and click Project
settings shown below and click Finish.

Make sure that the “Copy projects into workspace”

2. ► Expand the project by
click on main.c to open it for review.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop

e have already created the lab12 project for you with a main.c file, a startup file, and all th
necessary project and build options set.

Maximize Code Composer and click Project  Import Existing CCS Eclipse Project. Make the
settings shown below and click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

 clicking on the + or next to lab12 in the Project Explorer pane. Double
to open it for review. The code looks like the next page:

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

file, a startup file, and all the

Import Existing CCS Eclipse Project. Make the

in the Project Explorer pane. Double-

 Lab 12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 9

#include<stdint.h>
#include<stdbool.h>
#include"inc/hw_memmap.h"
#include"inc/hw_types.h"
#include"driverlib/gpio.h"
#include"driverlib/pin_map.h"
#include"driverlib/sysctl.h"
#include"driverlib/uart.h"

intmain(void) {

SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

GPIOPinConfigure(GPIO_PA0_U0RX);
GPIOPinConfigure(GPIO_PA1_U0TX);
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 115200,
 (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));

UARTCharPut(UART0_BASE, 'E');
UARTCharPut(UART0_BASE, 'n');
UARTCharPut(UART0_BASE, 't');
UARTCharPut(UART0_BASE, 'e');
UARTCharPut(UART0_BASE, 'r');
UARTCharPut(UART0_BASE, ' ');
UARTCharPut(UART0_BASE, 'T');
UARTCharPut(UART0_BASE, 'e');
UARTCharPut(UART0_BASE, 'x');
UARTCharPut(UART0_BASE, 't');
UARTCharPut(UART0_BASE, ':');
UARTCharPut(UART0_BASE, ' ');

while (1)
 {
 if (UARTCharsAvail(UART0_BASE)) UARTCharPut(UART0_BASE, UARTCharGet(UART0_BASE));
 }

}

3. In main(), notice the initialization sequence for using the UART:

 Set up the system clock

 Enable the UART0 and GPIOA peripherals (the UART pins are on GPIO Port A)

 Configure the pins for the receiver and transmitter using GPIOPinConfigure

 Initialize the parameters for the UART: 115200, 8-1-N

 Use simple “UARTCharPut()” calls to create a prompt.

 An infinite loop. In this loop, if there is a character in the receiver, it is read, and then written to

the transmitter. This echos what you type in the terminal window.

Lab 12

12 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop

Build, Download, and Run the UART Example Code

4. ► Click the Debug button to build and download your
program to the TM4C123GH6PM flash

 We can communicate with the board
which is connected as a virtual serial port through the
emulator USB connection. You
number for this serial port
workbook on page 18 or 19.

 In WinXP, ► open HyperTerminal by clicking Star
Run…, then type hypertrm in the Open: box and click OK.
Pick any name you like for your connection and click OK. In
the next dialog box, change the Connect using: selection to
COM##, where ## is the COM port number you noted earlier
from Device Manager. Click OK. Make the selections
shown below and click OK.

 When the terminal window opens
should see the characters echoed into the terminal window.
Skip to step 8.

5. In Win7, ► double-click on
settings shown below and then click Open. Your COM
port number will be the one you noted earlier
one.

 When the terminal window opens
button in CCS, thentype some characters and
should see the characters echoed into the terminal
window.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop

Build, Download, and Run the UART Example Code

Click the Debug button to build and download your
TM4C123GH6PM flash memory.

We can communicate with the board through the UART,
is connected as a virtual serial port through the

emulator USB connection. You can find the COM port
for this serial port back in chapter one of this

workbook on page 18 or 19.

open HyperTerminal by clicking Start 
Run…, then type hypertrm in the Open: box and click OK.
Pick any name you like for your connection and click OK. In
the next dialog box, change the Connect using: selection to
COM##, where ## is the COM port number you noted earlier

. Click OK. Make the selections
shown below and click OK.

When the terminal window opens click the Resume button in CCS, then type some characters and
should see the characters echoed into the terminal window.

click on putty.exe. Make the
settings shown below and then click Open. Your COM
port number will be the one you noted earlierin chapter

When the terminal window opens► click the Resume
type some characters and you

e the characters echoed into the terminal

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

type some characters and you

 Lab 12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 11

Using UART Interrupts

Instead of continually polling for characters, we’ll make some modifications to our code to allow the use of
interrupts to receive and transmit characters. In the first part of this lab, the only indication we had that our
code was running was to open the terminal window to type characters and see them echoed back. In this
part of the lab, we’ll add a visual indicator to show that we received and transmitted a character. So we’ll
need to add code similar to previous labs to blink the LED inside the interrupt handler.

6. First, let’s add the code in main() to enable the UART interrupts we want to handle. ► Click on the
Terminate button to return to the CCS Edit perspective. We need to add two additional header files at
the top of the file:

#include"inc/hw_ints.h"
#include"driverlib/interrupt.h"

7. Now we need to add the code to enable processor interrupts, then enable the UART interrupt, and then
select which individual UART interrupts to enable. We will select receiver interrupts (RX) and
receiver timeout interrupts (RT). The receiver interrupt is generated when a single character has been
received (when FIFO is disabled) or when the specified FIFO level has been reached (when FIFO is
enabled). The receiver timeout interrupt is generated when a character has been received, and a second
character has not been received within a 32-bit period. ► Add the following code just below the
UARTConfigSetExpClk() function call:

IntMasterEnable();
IntEnable(INT_UART0);
UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT);

8. We also need to initialize the GPIO peripheral and pin for the LED. ► Just before the function
UARTConfigSetExpClk() is called, add these two lines:

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2);

9. ► Finally, we can create an empty while(1) loop at the end of main by commenting out the line of
code that’s already there:

while (1)
{
//if (UARTCharsAvail(UART0_BASE))UARTCharPut(UART0_BASE,UARTCharGet(UART0_BASE));
}

10. ► Save the changes you made to main.c (but leave it open for making additional edits).

Lab 12

12 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

11. Now we need to write the UART interrupt handler. The interrupt handler needs to read the UART in-
terrupt status register to know which specific interrupt event(s) just occurred. This value is then used to
clear the interrupt status bits (we only enabled RX and RT interrupts, so those are the only possible
sources for the interrupt). The next step is to receive and transmit all the characters that have been re-
ceived. After each character is “echoed” to the terminal, the LED is blinked for about 1 millisecond. ►
Insert this code below the include statements and above main():

void UARTIntHandler(void)
{
uint32_t ui32Status;

ui32Status = UARTIntStatus(UART0_BASE, true); //get interrupt status

 UARTIntClear(UART0_BASE, ui32Status); //clear the asserted interrupts

 while(UARTCharsAvail(UART0_BASE)) //loop while there are chars
 {
 UARTCharPutNonBlocking(UART0_BASE, UARTCharGetNonBlocking(UART0_BASE));
 //echo character
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2); //blink LED
 SysCtlDelay(SysCtlClockGet() / (1000 * 3)); //delay ~1 msec
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0); //turn off LED
 }
}

12. We’re almost done. We’ve added all the code we need. The final step is to insert the address of the
UART interrupt handler into the interrupt vector table. ► Open the
tm4c123gh6pm_startup_ccs.cfile.Just below the prototype for _c_int00(void), add the UART
interrupt handler prototype:

extern void UARTIntHandler(void);

13. On about line 68, you’ll find the interrupt vector table entry for “UART0 Rx and Tx”. It’s just below
the entry for “GPIO Port E”. The default interrupt handler is named IntDefaultHandler. ► Replace this
name with UARTIntHandlerso the line looks like:

UARTIntHandler, // UART0 Rx and Tx

 Lab 12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 13

14. Save your work. Your main.ccode should look like this.

#include<stdint.h>
#include<stdbool.h>
#include"inc/hw_ints.h"
#include"inc/hw_memmap.h"
#include"inc/hw_types.h"
#include"driverlib/gpio.h"
#include"driverlib/interrupt.h"
#include"driverlib/pin_map.h"
#include"driverlib/sysctl.h"
#include"driverlib/uart.h"

voidUARTIntHandler(void)
{
uint32_t ui32Status;
 ui32Status = UARTIntStatus(UART0_BASE, true); //get interrupt status
UARTIntClear(UART0_BASE, ui32Status); //clear the asserted interrupts

while(UARTCharsAvail(UART0_BASE)) //loop while there are chars
 {
UARTCharPutNonBlocking(UART0_BASE, UARTCharGetNonBlocking(UART0_BASE)); //echo character
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2); //blink LED
SysCtlDelay(SysCtlClockGet() / (1000 * 3)); //delay ~1 msec
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0); //turn off LED
 }
}

intmain(void) {

SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

GPIOPinConfigure(GPIO_PA0_U0RX);
GPIOPinConfigure(GPIO_PA1_U0TX);
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); //enable GPIO port for LED
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2); //enable pin for LED PF2

UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 115200,
 (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));

IntMasterEnable(); //enable processor interrupts
IntEnable(INT_UART0); //enable the UART interrupt
UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT); //only enable RX and TX interrupts

UARTCharPut(UART0_BASE, 'E');
UARTCharPut(UART0_BASE, 'n');
UARTCharPut(UART0_BASE, 't');
UARTCharPut(UART0_BASE, 'e');
UARTCharPut(UART0_BASE, 'r');
UARTCharPut(UART0_BASE, ' ');
UARTCharPut(UART0_BASE, 'T');
UARTCharPut(UART0_BASE, 'e');
UARTCharPut(UART0_BASE, 'x');
UARTCharPut(UART0_BASE, 't');
UARTCharPut(UART0_BASE, ':');
UARTCharPut(UART0_BASE, ' ');

while (1) //let interrupt handler do the UART echo function
 {
// if (UARTCharsAvail(UART0_BASE)) UARTCharPut(UART0_BASE, UARTCharGet(UART0_BASE));
 }

}

Lab 12

12 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

15. ► Click the Debug button to build and download your program to the TM4C123GH6PM memory.

16. ► If you’ve closed it, open Hyperterminal or puTTY, and configure it as before.

17. ► Click the Resume button. Type some characters and you should see the characters echoed into the
terminal window. Note the LED.

18. ► Close puTTY or HyperTerminal. Click the Terminate button to return to the CCS Edit perspective.
► Close the Lab12 project and minimize Code Composer Studio.

You’re done.

