I3 TEXAS
INSTRUMENTS

Getting Started with the Tiva™
TM4C123G LaunchPad Workshop

Student Guide and Lab Manual

Revision 1.22
November 2013

Technical Training
Organization

Important Notice

Important Notice

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright © 2013 Texas Instruments Incorporated

Revision History

May 2013 — Revision 1.00 Initial release

May 2013 —Revision 1.01 errata

May 2013 — Revision 1.02 errata

May 2013 — Revision 1.03 errata

June 2013 — Revision 1.04 errata

July 2013 — Revision 1.10 Added Sensor Hub chapter
July 2013 —Revision 1.11 errata

August 2013 — Revision 1.12 Added security slide and errata

August 2013 — Revision 1.20 Added PWM chapter, updated labs to TivaWare 1.1, errata
October 2013 — Revision 1.21 CCS 5.5 and TivaWare 1.1 additional changes

November 2013— Revision 1.22 minor errate

Mailing Address

Texas Instruments

Training Technical Organization
6550 Chase Oaks Blvd

Building 2

Plano, TX 75023

ii Getting Started With the Tiva C Series TM4C 123G LaunchPad Workshop

Table of Contents

Table of Contents

Introduction to the ARM® Cortex -M4F and Peripherals
Code Composer StUAIOcccevveiiniiiiiieiiiniiieiiniiiereiireieteinrosasescnns
Hints and TiPS ..cceiveeiiieiiieienicineiieiossrosstsercsnsesssssssssssossssonsosses

Introduction to TivaWare , Initialization and GPIOc..ccceuuuunnen..

BoosterPacks and Graphics Libraryccoceiiiiiiiiiiiiiiiiiiiiiiiiiiiiniinne

Synchronous Serial Interfaceccooceviiiiiiiiiiiiiiiiiiiiiiiiiiieiineennn.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop -

iif

Table of Contents

iv

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop

Introduction

Introduction

This chapter will introduce you to the basics of the Cortex-M4F and the Tiva™ C Series

peripherals. The lab will step you through setting up the hardware and software required for the

rest of the workshop.

Agenda

(Introduction to ARM® Cortex™-M4F and Peripherals |
Code Composer Studio
Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers (Vg
ADC12
Hibernation Module
USB
Memory and Security
Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA
Sensor Hub
PWM

Portfolio ...

The Wiki page for this workshop is located here:

http://www.ti.com/TM4C123G-Launchpad-Workshop

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

http://www.ti.com/TM4C123G-Launchpad-Workshop

Chapter Topics

Chapter Topics

Introduction 1-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 1-2

TI Processor Portfolio and Tiva C Series ROAAMAP..............c...ccoeeueiiieeeiiiiiiieeiie e 1-3
Tiva™ TMACI23G Series OVEFVIEW..........cccccueuerueiirieiiiieieieteeie sttt 1-4
TMACI23GHOPM SPECTIICS.......oocueeeiie ettt et e s eesaeesab e e easeessbaeenseenebaennsee e 1-5
LaunchPad BOGFd.................c.cccooviiiiiiiiiiiiiiiiieeiiee ettt 1-8
Labl: Hardware and SOftware Set Up.............cccocuciiiiiiiiiiiiiiiniiist ettt 1-9

L0 10} 1< 15 4T SURTTRPRS 1-9
PIOCEAULEoeiiieicee et ettt sttt st 1-10

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Tl Processor Portfolio and Tiva C Series Roadmap

Tl Processor Portfolio and Tiva C Series Roadmap

Microcontroller (MCU)

Portfolio at a Glance

McU
16-bit ultra-low 32-bit
power MCUs real-time MCUs
MSP430™ C2000™

ARM®-Based Processor
Portfolio at a Glance

Software, Tools, Kits & Boards

32-bit
ARM® MCUs

Tiva™ C Series
ARM Cortex™-M4F

32-bit ARM® 32-bit ARM®
safety MCUs processors
Hercules™ Sitara™
ARM Cortex-R4F ARM Cortex-A8
ARM9™

Tl Embedded Processing Portfolio
[CnbedderbiocsssigPoole |

Digital Signal Processor (DSP
Portfolio at a Glance

DSP & ARM® MPU

Singlecore Multicore
DSPs processors
C5000™ C6000™ DSP
C6000™ and ARM
Cortex-A15

| TSWeKis | “SWEKE

Upto 40 MHz to
25MHz 300 MHz
Flash Flash, RAM
1KBto 256KB 16KB to 512KB
Analog /0, ADC, PWM, ADC,
LCD, USB, FRAM CAN, SPI, EC
Measurement, Motor control,
sensing, general digital power,
purpose lighting, ren. energy
$0.2510 $9.00 $1.85t0 $20.00

MPUs — Microprocessors

—
| —SWEKE— |

Upto
80MHz
Flash
32KB to 256 KB
USB, CAN,
ADC, PWM, SPI
Home, buiding,

and industial

$2.15t0 $5.25

TSWEKis || TSWEKE

Fixed/floating Ug!n
upto 220 MHz 1.36GHz
256 KFB‘iéhg MB Upto 32KB ID cache
256KB L2, LPDDR,
USB, ENET, FlexRay™, g i
TimerPWM, DDR2/3 support
ADC, CAN, LIN, GEMAC, PCle+PHY,
SPI, FC, EMIF SATA+PHY, CAN.
o USB+PHY, PRICSS
alel, Consumer, industrial
FE"SDO’%DO"- connected home, POS
industrial & medical smart grid, medical
$5.0010 $30.00 $5.00-$26.00

If you're looking for DaVinci products. please click here.

| S

Up to 800MHz Upto 10GHz
DSPs mutticore, fixed/
SORAM, DDR2 floating + accelerators
Upto 4 MB SL2,
PP, PC, S, UHPI 32KBL1,1MB L2

McASP/MEBSP, LCDC,
integrated connectivity
options: USB 2.0, EMAC

Rapidl0®, PCle, McBSP,
10/100 MAC, uPP, UART,
Hyperlink, DDR2/3

et morsom) Telecom, medical,
b\osn’%eatr&os;celgy, mission critical,
industrial drives base stations
$200to $25.00 $30t0 $225.00
TM4C123GMCU ...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Infroduction

Tiva™ TM4C123G Series Overview

Tiva™ TM4C123G Series Overview

Tiva™ TM4C123G Microcontroller

Low power consumption

ARM® ¢ As low as 370 yA/MHz

Cortex™-M4F

Flash
32KB # 500us wakeup from low-power modes

JTAG MPU # RTC currents as low as 1.7pA

Nvic ETM BoKBEEPROM

SWDIT FPU

+ Internal and external power control

Serial Interfaces Motion Control System

8UARTs 2 Quadrature Clocks, Reset
Encoder Inputs System Control
.

HUSB Full Speed

Timer

Comparators

2Watchdog Timers
PWM PWM =
Dead-Band 32chDMA
Ciarator Precision Oscillator

R Battery-Backed
B3 Hibernate

Coreand FPU ...

M4 Core and Floating-Point Unit

K 32-bit ARM® Cortex™-M4 core
¢ Thumb2 16/32-bit code: 26% less memory & 25 % faster than pure 32-bit

¢ System clock frequency up to 80 MHz
100 DMIPS @ 80MHz

Flexible clocking system
¢ Internal precision oscillator
¢ External main oscillator with PLL support
¢ Internal low frequency oscillator o TS
¢ Real-time-clock through Hibernation module ‘i}"&’éﬁa\ﬂﬂeﬂ

Saturated math for signal processing
Atomic bit manipulation. Read-Modify-Write using bit-banding
Single Cycle multiply and hardware divider

Unaligned data access for more efficient memory usage
IEEE754 compliant single-precision floating-point unit

JTW and Serial Wire Debug debugger access
¢ ETM (Embedded Trace Macrocell) available through Keil and IAR emulators

* o

L 2R 2R JNK R 4

*

Memory ...

1-4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

TM4C123GH6PM Specifics

TM4C123GH6PM Specifics

TM4C123GH6PM Memory

*
*

*

/

256KB Flash memory

32KB single-cycle SRAM with bit-banding
Internal ROM loaded with TivaWare software

W aw c
T

Single-cycle to 40MHz

Pre-fetch buffer and speculative branch improves
performance above 40 MHz 3 @
3y TR

¢ Peripheral Driver Library
+ Boot Loader (0x00000000 Fiash
¢ Advanced Encryption Standard (AES) cryptography [0x01000000 ROM
tables
¢ Cyclic Redundancy Check (CRC) error [0x20000000 SRAM
detection functionallty [0122000000 Bitbanded SRAM
2KB EEPROM (fast, saves board space)
+ Wear-leveled 500K program/erase cycles [0x40000000 Peripherals & EEPROM
¢ Thirty-two 16-word blocks | 0x42000000 Bitbanded Peripherals
¢ Can be bulk or block erased
.

10 year data retention [0xE0000000 Instrumentation, ETM, etc.

)
)
)
)
)
)
)

4 clock cycle read time

Peripherals ...

TM4C123GH6PM Peripherals

*
*
*
*
*
*

*
*
*
*

K.

ﬁattery-backed Hibernation Module

Serial Connectivity

Internal and external power control (through external voltage regulator)
Separate real-time clock (RTC) and power source
VDD3ON mode retains GPIO states and settings

Wake on RTC or Wake pin

Sixteen 32-bit words of battery backed memory

5 yA Hibernate current with GPIO retention. 1.7 pA without

USB 2.0 (OTG/Host/Device)

8 - UART with IrDA, 9-bit and 1ISO7816 support
6-12C

4 - SPI, Microwire or Tl synchronous serial interfaces
2 - CAN

More ...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

TM4C123GH6PM Specifics

TM4C123GH6PM Peripherals

Two 1MSPS 12-bit SAR ADCs

L 2K 2R 2R 2R 2K 2K 2R 2R 4

*

*

L 2R 2

0 -43 GPIO

Twelve shared inputs

Single ended and differential measurement

Internal temperature sensor

4 programmable sample sequencers

Flexible trigger control: SW, Timers, Analog comparators, GPIO
VDDA/GNDA voltage reference

Optional hardware averaging .C ceries
3 analog and 16 digital comparators '\"N?Mcus
uDMA enabled pR

Any GPIO can be an external edge or level triggered
interrupt

Can initiate an ADC sample sequence or uDMA transfer
directly

Toggle rate up to the CPU clock speed on the Advanced
High-Performance Bus

5-V-tolerant in input configuration
(except for PB0/1 and USB data pins when configured as GPI0O)

Programmable Drive Strength (2, 4, 8 mA or 8 mA with slew rate control)
Programmable weak pull-up, pull-down, and open drain

q S
wT\%’éﬁuw‘E‘“

More ...

TM4C123GH6PM Peripherals

Memory Protection Unit (MPU)

*

L 2ER R JNR R 4

>

>

*
*
*

Timers

32 channel uyDMA

Generates a Memory Management Fault on incorrect access to region

2 Watchdog timers with separate clocks

SysTick timer. 24-bit high speed RTOS and other timer

Six 32-bit and Six 64-bit general purpose timers

PWM and CCP modes

Daisy chaining

User enabled stalling on CPU Halt flag from debugger for all timers

Basic, Ping-pong and scatter-gather modes
Two priority levels

8,16 and 32-bit data sizes

Interrupt enabled

More...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

TM4C123GH6PM Specifics

TM4C123GH6PM Peripherals

Nested-Vectored Interrupt Controller (NVIC)
¢ 7 exceptions and 71 interrupts with 8 programmable priority levels
¢ Tail-chaining and other low-latency features
¢ Deterministic: always 12 cycles or 6 with tail-chaining
¢ Automatic system save and restore

Two Motion Control modules. Each with: > g senie®
¢ 8 high-resolution PWM outputs (4 pairs) '\;&?Mcus
¢ H-bridge dead-band generators and hardware polarity control
¢ Fault input for low-latency shutdown
¢ Quadrature Encoder Inputs (QEI) Jj”‘%’éﬁ%ﬂvﬂ‘:‘“ﬁ
¢ Synchronization in and between the modules

Board...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

LaunchPad Board

LaunchPad Board

Tiva™ EK-TM4C123GXL LaunchPad

¢ ARM® Cortex™-M4F i) ‘tﬁ'i?aﬁﬁ.ﬁim ®
64-pin 80MHz TM4C123GH6PM : |

¢ On-board USB ICDI
(In-Circuit Debug Interface)

¢ Micro AB USB port
¢ Device/ICDI power switch

¢ BoosterPack XL pinout also supports
legacy BoosterPack pinout

www.ti.com/launchpad RZ
g M= gy
EK-TMACI23GXL REV A 3
A3

RN 2
ane i 0 BB T

R28 ® e

¢ 2 user pushbuttons - g 005 N ; “‘.\m/// ’\“ “pr3 paz S|
(SW2 is connected to the WAKE pin) P 42 o0 Poo Y Y e AN

* g PBI PDY X ////// © o Pca PO Sy Ny

¢ Reset button i PES PD2 <) PC5 ST *4)
3 user LEDs (1 tri-color device) el e : R
¢ Current measurement test points ¥ i Z L W 8
L 2P PAS PE3 a0 PD7 PA3 4\ ‘

¢ 16MHz Main Oscillator crystal 7 e e Pre paz Q¥

) 3 # TExas INSTRUMENTS |, G}m}[

¢ 32kHz Real Time Clock crystal " e, 8 =
+ 3.3V regulator S (@& %va“CSeries D) e,

o™ ©

¢ Support for multiple IDEs:

GIAR -
embedded SYSIEMS ARMDEKE"‘ b

1-8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Lab1: Hardware and Software Set Up

Lab1: Hardware and Software Set Up

Objective

The objective of this lab exercise is to download and install Code Composer Studio, as well as
download the various other support documents and software to be used with this workshop. Then
we’ll review the contents of the evaluation kit and verify its operation with the pre-loaded
quickstart demo program. These development tools will be used throughout the remaining lab
exercises in this workshop.

Lab 1: Hardware and Software Setup

USB Emulation Connection

iy
@° ¢ 80 PO X %, = R
¢ Install the software & Poto % N e
o 3 PC5 RST ©
¢ Review the kit contents rev-vei QR
y i 3 oo v,
¢ Connect the hardware B s : = :Qt
¢ Test the QuickStart application ;e "% TEXAS INSTRUMENTS P
E R 3—'3, <

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1-9

Lab1: Hardware and Software Set Up

Procedure

Hardware

1. You will need the following hardware:

A 32 or 64-bit Windows XP, Windows7 or 8 laptop with 2G or more of free hard
drive space. 1G of RAM should be considered a minimum ... more is better.
Apple laptops running any of the above OS’s are acceptable. Linux laptops are
not recommended.

Wi-Fi is highly desirable

If you are working the labs from home, a second monitor will make the process
much easier. If you are attending a live workshop, you are welcome to bring one.
If you are attending a live workshop, please bring a set of earphones or ear-
buds.

If you are attending a live workshop, you will receive an evaluation board,
otherwise you need to purchase one.

If you are attending a live workshop, a digital multi-meter will be provided;
otherwise you need to purchase one to complete lab 6.

If you are attending a live workshop, you will receive a second A-male to micro-
B-male USB cable. Otherwise, you will need to provide your own to complete
Lab 7.

If you are attending a live workshop, you will receive a Kentec 3.5” TFT LCD
Touch Screen BoosterPack (Part# EB-LM4F120-L35). Otherwise, you will
need to provide your own to complete lab 10.

Modified Olimex 8x8 LED array Boosterpacks SensorHubs and modified

R/C servos will be available to borrow during the live workshop. Otherwise you
will need to purchase and modify as covered in labs 11, 14 and 15.

As you complete each of the following steps, check the box in the title to assure that
you have done everything in order.

1-10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

http://www.ti.com/tool/ek-tm4c123gxl
http://www.harborfreight.com/catalogsearch/result?q=multimeter
http://www.newark.com/kentec-electronics/eb-lm4f120-l35/exp-board-lcd-boosterpack-stellaris/dp/48W2063?in_merch=Popular%20Products
http://www.newark.com/kentec-electronics/eb-lm4f120-l35/exp-board-lcd-boosterpack-stellaris/dp/48W2063?in_merch=Popular%20Products
http://www.mouser.com/new/olimex/olimexLED8x8/
http://www.ti.com/tool/boostxl-senshub
http://www.hobbyking.com/hobbyking/store/__662__HXT900_9g_1_6kg_12sec_Micro_Servo.html

Lab1: Hardware and Software Set Up

Download and Install Code Composer Studio O

2. P Download and start the latest version of Code Composer Studio (CCS) 5.x web

installer from http://processors.wiki.ti.com/index.php/Download _CCS (do not download
any beta versions). Bear in mind that the web installer will require Internet access until it
completes. If the web installer version is unavailable or you can’t get it to work,
download, unzip and run the offline version. The offline download will be much larger
than the installed size of CCS since it includes all the possible supported hardware.

This version of the workshop was constructed using CCS version 5.5. Your version may
be later. For this and the next few steps, you will need a my.TI account (you will be
prompted to create one or log into your existing account).

Note that the “free” license of CCS will operate with full functionality for free while
connected to a Tiva™ C Series evaluation board.

If you downloaded the offline file, ® launch the ccs setup 5.xxxxx.exe file in
the folder created when you unzipped the download.

4. P Accept the Software License Agreement and click Next.

Code Composer Studio v3 Setup @

License Agreement \l

Please read the following license agreement carefully.

V4
ml |\

Code Composer Studio 5.4 Software License Agreement

IMPORTANT — PLEASE READ THE FOLLOWING LICENSE AGREEMENT CAREFULLY, THISIS A
LEGALLY BINDING AGREEMENT. AFTER YOU READ THIS LICENSE AGREEMENT, YOU WILL BE
ASKED WHETHER. YOU ACCEPT AND AGREE TO THE TERMS OF THIS LICENSE AGREEMENT, DO
NCT CLICK "T ACCEPT™ UNLESS: (1) YOU ARE AUTHORIZED TO ACCEPT AND AGREE TO THE
TERMS OF THIS LICENSE AGREEMEMT ON BEHALF OF YOURSELF AMD YOUR COMPANY; AND

(2) YOU INTEND TO ENTER. INTO AND TO BE BOUND BY THE TERMS OF THIS LEGALLY BINDING
AGREEMENT OM BEHALF OF YOURSELF AND YOUR COMPANY. -

}

4

(71 I do not accept the terms of the license agreement.

Texas Instruments

< Back Next =] [Cancel]

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

http://processors.wiki.ti.com/index.php/Download_CCS

Lab1: Hardware and Software Set Up

5. Unless you have a specific reason to install CCS in another location, P accept the default
installation folder and P click Next. If you have another version of CCS and you want to
keep it, we recommend that you install this version into a different folder.

Code Composer Studic v5 Setup | PG |

Choose Installation Location

Where should Code Composer Studio w5 be installed?

To change the main installation folder didk the Browse button.

c

"CCS Install Folder

[Install £CS plugins into an existing Edipse installation

Texas Instruments

[< Back] ’ Next =] ’ Cancel

6. P Select “Custom” for the Setup type and click Next.

-
Code Composer Studic v5 Setup ﬁ
Setup Type !
Select the setup type that best suits your needs.
Click the type of Setup you prefer.
ICustom rDescription
Complete Feature Set Select this option if you wish to
customize the individual features that
are installed.
Texas Instruments
< Back] [Next> | [Cancel
ko Fl

1-12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Lab1: Hardware and Software Set Up

7. In the next dialog, » select the processors that your CCS installation will support. You
must select “Tiva C Series ARM MCUSs” in order to run the labs in this workshop. You
can select other architectures, but the installation time and size will increase.

» Click Next.

Code Composer Studic v5 Setup | =

Processor Support
Select Processor Architectures to be installed

Description

MSP430 Low Power MCUs W | Procssor Architechres
O c28x 32-bit Real-time MCUs included: Cortex M

O stellaris Cortex M MCUs
4
O Tiva E Series ARM MCUs

|:| Wireless Connectivity CCxxxx Cortex M Devices

O cortex-raF MCUs

»

m

[~ select Al

Download size: 787,84 ME. Install size: 2363, 52 MB,

Texas Instruments

< Back ” MNext =] ’ Cancel

8. In the Component dialog, keep the default selections and P click Next.

Code Composer Studic v5 Setup Iﬂ

Select Components

Select the components you want installed and deselect components you
want to leave out.

Description
= I Compiler Tools Il s

GCC ARM Compiler Tools
TI MSP430 Compiler Tools
TI ARM Compiler Tools
TI Documentation

= Device Software
D MSP430ware only

v I S WO TR o AP E P N,)

Simulators

m

Install size: 2725.74 MB. Special:

Texas Instruments

< Back] [Mext >] ’ Cancel

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1-13

Lab1: Hardware and Software Set Up

9. In the Emulators dialog, » uncheck the Blackhawk and Spectrum Digital emulators,
unless you plan on using either of these. P Click Next.

Code Composer Studic v5 Setup @

Select Emulators

Select the emulators you want installed and deselect emulators you want to
leave out,

Description

Add support for Spectrum Digital
Emulators

= ¥l ITAG Emulator Support Il
O Blackhawk Emulatars
a
Stellaris Emulators
M5P430 Emulators
MSP430 USE FET
TI Emulators

o R R NPU S

m

Install size: 2526.06 MB.

Texas Instruments

< Back] [Mext >] ’ Cancel

10. When you reach the final installation dialog, P click Next. The web installer process
should take 15 - 30 minutes, depending on the speed of your connection. The offline
installation should take 10 to 15 minutes. When the installation is complete, uncheck the
“Launch Code Composer Studio v5” checkbox and then P click Finish.

Code Composer Studic v5 Setup Iﬁ

CCS Install Options

Setup is ready to begin installation.

If you want to review or change any settings, dick Back. Click Next to begin installation.

Install Directory: C:\tifccsv5

| »

m

Setup Type: Custom ‘

Product Families selected:
MSP430 Low Power MCUs
Stellaris Cortex M MCUs

Components to be installed:
JRE
Edlipse
Edipse Core

= SR T, Y O S

4 [

Texas Instruments

< Back]| Next> | ’ Cancel

1-14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Lab1: Hardware and Software Set Up

Code Composer Studic v5 Setup @

Code Composer Studio v5
Installation Complete

Code Composer Studio v5 has been
successfully installed.

Click Finish to exit the installation wizard,

[“]Launch Code Composer Studio v5:
Create Desktop Shortout
Create Start Menu Shortcut

11. There are several additional tools that require installation during the CCS install process.

Click “Yes” or “OK” to proceed when these appear.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Infroduction

Lab1: Hardware and Software Set Up

Install TivaWare™ for C Series (Complete) O

12. » Download and install the latest full version of TivaWare
from: http://www.ti.com/tool/sw-tm4c . The filename is SW-TM4C-x.x .exe . This
workshop was built using version 1.1. Your version may be a later one. If at all possible,
please install TivaWare into the default C: \TI\TivaWare C Series-x.x folder.

Install LM Flash Programmer O

13. » Download, unzip and install the latest LM Flash Programmer
(LMFLASHPROGRAMMER) from http://www.ti.com/tool/Imflashprogrammer .

Download and Install Workshop Lab Files O

14. » Download and install the lab installation file from the workshop materials section of
the Wiki site below. The file will install your lab files in:
C:\Tiva TM4C123G_LaunchPad.

http://www.ti.com/TM4C123G-Launchpad-Workshop

Download Workshop Workbook O

15. » Download a copy of the workbook pdf file from the workshop materials section of the
Wiki site below to your desktop. It will be handy for copying and pasting code.

http://www.ti.com/TM4C123G-Launchpad-Workshop

Terminal Program O

16. If you are running WindowsXP, you can use HyperTerminal as your terminal program.
Windows7 does not have a terminal program built-in, but there are many third-party
alternatives. The instructions in the labs utilize HyperTerminal and PuTTY. You can
download PuTTY from the address below.

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

Windows-side USB Examples O

17. » Download and install the Windows-side USB examples from this site:

WWW.tl.com/sw-usb-win

Download and Install GIMP O

18. We will need a graphics manipulation tool capable of handling PNM formatted images.
GIMP can do that. » Download and install GIMP from here: www.gimp.org

1-16

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

http://www.ti.com/tool/sw-tm4c
http://www.ti.com/tool/lmflashprogrammer
http://www.ti.com/TM4C123G-Launchpad-Workshop
http://www.ti.com/TM4C123G-Launchpad-Workshop
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://www.ti.com/sw-usb-win
http://www.gimp.org/

Lab1: Hardware and Software Set Up

LaunchPad Board Schematic

19. For your reference, the schematic is included at the end of this workbook.

Helpful Documents and Sites

20. There are many helpful documents that you should have, but at a minimum you should
have the following documents at your fingertips.

With TivaWare™ installed, look in C: \TI\TivaWare C Series-1.1\docs and
you’ll find:

Peripheral Driver User’s Guide (SW-DRL-UG-x.x.pdf)
USB Library User’s Guide (SW-USBL-UG-x.x.pdf)
Graphics Library User’s Guide (SW-GRL-UG-x.x.pdf)
LaunchPad Firmware User’s Guide (SW-EK-TM4C123GXL-UG-x.x.pdf)
21. Go to: http://www.ti.com/lit/gpn/tm4c123gh6pm and download the TM4C123GH6PM

Microcontroller Data Sheet. Tiva™ C Series data sheets are actually the complete user’s
guide to the device, so expect a large document.

22. If you are migrating from an earlier Stellaris design, you will find this document
ful: http://www.ti.com/litv/pdf/spma050a

23. Download the ARM Optimizing C/C++ Compilers User Guide
from http://www.ti.com/lit/pdf/spnul51 (SPNU151). Of particular interest are the sizes
for all the different data types in table 6-2. You may see the use of “TMS470” here ...
that is the TI product number for its ARM devices.

24. You will find a “Hints” section at the end of chapter 2. This information will be handy if
you run into problems during the labs.

You can find additional information at these websites:

Main page: www.ti.com/launchpad

Tiva C Series TM4C123G LaunchPad: http://www.ti.com/tool/ek-tm4c123 gxl

TM4C123GH6PM folder: http://www.ti.com/product/tm4c123gh6pm

BoosterPack webpage: www.ti.com/boosterpack

LaunchPad Wiki: www.ti.com/launchpadwiki

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Infroduction 1-17

http://www.ti.com/lit/gpn/tm4c123gh6pm
http://www.ti.com/litv/pdf/spma050a
http://www.ti.com/lit/pdf/spnu151
http://www.ti.com/launchpad
http://www.ti.com/tool/ek-tm4c123gxl
http://www.ti.com/product/tm4c123gh6pm
http://www.ti.com/boosterpack
http://www.ti.com/launchpadwiki

Lab1: Hardware and Software Set Up

Kit Contents
25. » Open up your kit

You should find the following in your box:

e The TM4C123GXL LaunchPad Board

e USB cable (A-male to micro-B-male)

e README First card

e If you are in a live workshop, you should find a 2"’ USB cable
Initial Board Set-Up

26. Connecting the board and installing the drivers

The TM4C123GXL LaunchPad Board ICDI USB port (marked DEBUG and
shown in the picture below) is a composite USB port and consists of three con-

nections:

Stellaris ICDI JTAG/SWD Interface - debugger connection
Stellaris ICDI DFU Device - firmware update connection
Stellaris Virtual Serial Port - a serial data connection

Using the included USB cable, » connect
the USB emulation connector on your evalu-
ation board (marked DEBUG) to a free USB
port on your PC. A PC’s USB port is capable
of sourcing up to 500 mA for each attached
device, which is sufficient for the evaluation
board. If connecting the board through a
USB hub, it must be a powered hub.

The drivers should install automatically. If
they do not, the steps to install them will be
covered shortly.

1-18 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Lab1: Hardware and Software Set Up

QuickStart Application

Your LaunchPad Board came preprogrammed with a quickstart application. Once you
have powered the board, this application runs automatically. You probably already no-
ticed it running as you installed the drivers.

27. Make sure that the power switch in the upper left hand cor- o
ner of your board is in the right-hand DEBUG position as) s ' |
shown: I‘J o [l-

28. The software on the TM4C123GH6PM uses the timers as u W R
pulse-width modulators (PWMs) to vary the intensity of all B RE
three colors on the RGB LED (red, green, and blue) individually. By doing so,
your eye will perceive many different colors created by combining those primary
colors.

The two pushbuttons at the bottom of your board are marked SW1 (the left one)
and SW2 (the right one). » Press or press and hold SW1to move towards the red-
end of the color spectrum. » Press or press and hold SW2 to move towards the
violet-end of the color spectrum.

If no button is pressed for 5 seconds, the software returns to automatically chang-
ing the color display.

29. » Press and hold both SW1 and SW2 for 3 seconds to enter hibernate mode. In
this mode the last color will blink on the LEDs for 2 second every 3 seconds. Be-
tween the blinks, the device is in the VDD3ON hibernate mode with the real-
time-clock (RTC) running. » Pressing SW2 at any time will wake the device and
return to automatically changing the color display.

30. We can communicate with the board through the UART. The UART is connected
as a virtual serial port through the emulator USB connection.

The following steps will show how to open a connection to the board using
HyperTerminal (in WinXP) and PuTTY (in Windows 7 or 8).

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1-19

Lab1: Hardware and Software Set Up

31. We need to find the COM port number of the Stellaris Virtual Serial Port in the
Device Manager. Skip to step 32 if you are using Windows 7 or 8.

Windows XP:

A. » Click on the Windows Start button. » Right-click on My Computer and se-
lect Properties from the drop-down menu.

B. In the System Properties window, » click the Hardware tab.

C. » Click the Device Manager button.

The Device Manager window displays a list of hardware devices installed on your
computer and allows you to set the properties for each device. If you see any of
the three devices listed in step 26 in the “Other” category, it means that the driver
for those devices is not installed. Run step 37, and then return to here.

=
Device Manage A

File Action View Help
g @

-2 cnan192895
+ a Batteries
- I Computer
+-E8 Controlvault Device
+-%g# Disk drives
+ § Display adapters
+ _“, DVD/CD-ROM drives
+-{&g Human Interface Devices
+|-i=% IDE ATA/ATAPI controllers
+|-&gp IEEE 1394 Bus host controllers
+-38 Imaging devices
+-%» Keyboards
+ '_')' Mice and other pointing devices
+ L Modems
+ § Monitors
+-E8 Metwork adapters
=& Ports (COM &LPT)
r;y' Dell Wirgless 5520 (EV-DO-HSPA) Mabile Broadband Mini-Card Disgnostics {COM3)
Ay’ Dell wireless 5620 {EV-DO-HSPA) Mobile Broadband Mini-Card NMEA {COMS)
- ECP Printer Port (LPT1)
M RIM Virtual Serial Port w2 (COM7)
r;y' RIM Virtual Serial Port w2 (COME)
Ay’ Stellaris Virtual Serial Port (COM30)
ﬂ Processors
+ % SCSI and RAID controllers
+ Smart card readers
+- @) Sound, video and game controllers
= § Stellaris In-Circuit Debug Interface
% stellaris ICD1 DFU Device
@ Stellaris ICDI TTAG/SWD Interface

+-%g®# Storage volumes
+- ¢ System devices
+ Universal Serial Bus controllers

» Expand the Ports heading and write number for the Stellaris Virtual Serial Port
here: COM

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Lab1: Hardware and Software Set Up

32. Windows 7 or 8:

A. » Click on the Windows Start button. » Right-click on Computer and select
Properties from the drop-down menu.

B. » Click on Device Manager on the left of the dialog.

The Device Manager window displays a list of hardware devices installed on your
computer and allows you to set the properties for each device. If you see any of
the three devices listed in step 26 in the “Other” category, it means that the driver
for those devices is not installed. Run step 37, and then return to here.

File Action View Help
as | @ EH HE B &ss

& =y Scott-PC

b % Batteries

» 78 Computer

g Disk drives

- B Display adapters

> 4 DVD/CD-ROM drives

- 0% Human Interface Devices

‘g IDE ATASATAPI controllers

> Z5 Imaging devices

b E Infrared devices

p S Keyboards

--ﬂ Mice and other pointing devices

. Monitors

:, -F Metwork adapters

» & Portable Devices

4 75" Ports (COM & LPT)

o ‘? Communications Port (COML)
T Stellaris Virtual Serial Port (COMS)

m Processors

> -%| Sound, video and game controllers
A",-', Stellaris In-Circuit Debug Interface

. ..M4 Stellaris ICDI DFU Device

: B Stellaris ICDITAG/SWD Interface
p 1M Systemn devices

b - ' Univerzal Serial Buz controllers

» Expand the Ports heading and write number for the Stellaris Virtual Serial Port
here: COM

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Infroduction 1-21

Lab1: Hardware and Software Set Up

33. In WinXP, open HyperTerminal by » clicking Start = Run..., then type
hypertrm in the Open: box and click OK. Pick any name you like for your
connection and click OK. In the next dialog box, change the Connect using:
selection to COM##, where ## is the COM port number you noted earlier. Click
OK. Make the selections shown below and click OK.

COMA48 Properties

Port Settings |

Bits per sscond: | 115200 v
Dat bits: |2 v|
Pariy: | Noe v|

Stop bits: [1 v

Restore Defaults

[ok [cencel | 2oy |

When the terminal window opens, press Enter once and the LaunchPad board will
respond with a > indicating that communication is open. Skip to step 31.

34. In Win7 or 8, » double-click on putty.exe. Make the settings shown below
and then click Open. Your COM port number will be the one you noted earlier

2 PuTTY Configuration

Category:
(=] Sezsion Basic options for your PUTTY session
o7 I_.oglglng Specify the destination you want to connect to
amina
Keyboard Seral line Speed
Bel [com4s |[115200 |

Features Connection type:
= Windaow ORaw O Telnet O Rlogin O 55H (& Serial
Appearance

) Load, save or delete a stored session
Behaviour

Translation Saved Sessions
Selection | |
Colure

= Connection today
oete Save
Prosey
Rlogin

SSH

Cloge window on exit:
O Aways O Never (8 Cnly on clean exit

About I Open l [Cancel]

When the terminal window opens, press Enter once and the LaunchPad board will
respond with a > indicating that communication is open.

1-22 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Lab1: Hardware and Software Set Up

35. You can communicate by » typing the following commands and pressing enter:
help: will generate a list of commands and information

hib: will place the device into hibernation mode. Pressing SW2 will wake the
device.

rand: will start a pseudo-random sequence of colors

intensity: adjust the LED brightness between 0 to 100 percent. For instance
intensity 100 will change the LED to maximum brightness.

rgb: follow with a 6 hex character value to set the intensity of all three LEDs.
For instance: rgb FF0000 lights the red LED, rgb 00FF00 lights the blue LED and
rgb 0000FF lights the green LED.

36. » Close your terminal program.

You’re done.

37. Run this step only if your device drivers did not install properly.

» Obtain the ICDI drivers from your instructor or download the zip file

from http://www.ti.com/tool/stellaris_icdi_drivers. » Unzip the file to a folder on
your desktop. » Back in the Device Manager, right-click on each of the “Other”
devices (one at the time) and select Update Driver. In the following dialogs point
the wizard to the folder on your desktop with the unzipped files.

If the process seems to take longer than it should, the wizard is likely searching
on-line. Turn off your wireless or disconnect your network cable to prevent this.

» Make sure all three devices listed in step 26 are properly installed.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1-23

http://www.ti.com/tool/stellaris_icdi_drivers

Lab1: Hardware and Software Set Up

1-24 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Introduction

This chapter will introduce you to the basics of Code Composer Studio. In the lab, we will

Code Composer Studio

explore some Code Composer features.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals

(Code Composer Studio |

Introduction to TivaWare™, Initialization and GPI1O

Interrupts and the Timers 5N
ADC12 |
Hibernation Module
USB
Memory and Security
Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART
UDMA I
Sensor Hub Aswnchiood <o 9= @
PWM

IDEs...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 1

Chapter Topics

Chapter Topics

Code Composer Studio 2-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 2-2
Tiva C Series DevelOPmeEnt TOOLSc..ccceueuiiciieeie ettt esebeeenaee e 2-3
TT SOftWATE ANA ECOSYSTEMceveeiieeee et eee et et e et e e e st e s e ssbeeesbeessbeeessaesnseennseensbeennseenens 2-4
Code Composer Studio FUunctional OVerVIewcccooecueecveeeeeeiiieeiiesiiieeiaeesreesreesveesseesseessnee e 2-5
Target Configuration and EMUIGTOFSccccceviaiiiiiiieeeeeieee ettt 2-6
Projects And WOFKSPACEScc.cooiiiiiiiiiiieeeeet ettt 2-7
Creating a New Project and Adding Filesccocooiioiiiniiiiiiiiiiiiiieeeeee et 2-8
POFEADIE PFOJECES ...ttt ettt 2-9
Path and Build VAriQBIes.................ccoccuoiiiiiiiiiiiieeeeeee ettt ettt eae e 2-10
BUild CORIGUIALIONS ...ttt ettt ettt e 2-11
LiCeNnSING ANA PFICINGceiiiiiriiiiiit ittt ettt st 2-12
Lab2: Code COMPOSEE STUAIOcc.oooouieeiiiiieeie ettt ettt ebeesbaeensaeenreas 2-13

(0)0) 51015 A USRS 2-13
LD 2 PPOCEAUFE ...ttt ettt ettt ettt et 2-14
Add Path and Build Variablescccoeoiiiiiiiniiiniineccce e e 2-18
Add fI1E5 t0 FOUL PIOJECEeeuviiuieiiieeiieteett ettt ettt sttt et ettt eb et e bt et esteseeesaeenbeeneeenee 2-20
Build, Load, RUD ...oovviiiiiiiiieecec ettt e ettt e e e e e et e e e e e e s e enaaaaeeeeeeseenareeeeas 2-24
POISPECLIVES ..ivtieieeeiiecitet ettt ettt ettt et e et e st e bt e b e e asesseesate st enseenseenseessensaenseenseensesnsesneesseenseenes 2-26
VARS.INI — An Easier Way to Add Variables............coceeviiriiriienieieieee et 2-28
LM FIASH PROZIAMMEEccuveniiiiiiiit ettt ettt ettt eee s 2-30
Optional: Creating a bin File for the Flash Programmerccccccccoivueiiieieiieiieniensaeeeeeeeeeen. 2-32
HINES GIA TEPS ..ottt 2-33

2 -2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Tiva C Series Development Tools

Tiva C Series Development Tools

Development Tools for Tiva C Series MCUs

eli2y SR | armimen |
Eval Kit 30-day full | 32KB code size | 32KB code size Full function.
License function. limited. limited. Onboard
Upgradeable Upgradeable Upgradeable emulation limited
Compiler GNU C/C++ IAR C/C++ RealView C/C++ TI C/C++
C-SPY/ .
Debugger / . i CCS/Eclipse-
gdb / Eclipse Embedded MVision p
IDE Workbench based suite
99 USD .
personal MDK-Basic (256
Full Upgrade edition / 2700 USD KB) = €2000 445 USD
2800 USD (2895 USD)
full support
JTAG J-Link, 299 USD | U-Link, 199 USD | XDS100, 79 USD
Debugger SIS SIS 2

TI SW Ecosystem ...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 -3

Tl Software and Ecosystem

Tl Software and Ecosystem

Tl Software and Tools Ecosystem

Run-Time Software Development

Tools

» CCStudio™ Integrated
Development Environment (IDE)
and other IDEs

. HigF?-IeveI OS support and
TI-RTOS

+ OS Independent support and
TI-Wares software packages . Optimizing compilers

« Design Kits & Evaluation Modules

Support & ,

Community

« Tl Design Network: off-the-shelf
software, tools and services

* Forums & Wikis

 In-person and online training

Run-Time Software ...

Run-Time Software

Tl Wares: minimizes programming _TI-RTOS: provides an optimized real-
complexity w/ optimized drivers & OS time kernel at no ch\IIaarr%es that works with Tl
independent support for Tl solutions
* Real-time kernel (SYSBIOS) + optimized

Low-level driver libraries for Tl devices:

Peripheral programming interface + Scheduling

Tool-chain agnostic C code + Memory management

Available today « Utilities

* Foundational software packages (Tl
Wares)

« Libraries and examples
» TI RTOS available today

TI-RTOS

* File systems

SYSBIOS + TI Wares + « Network stack

- USB

SDK
Software Development Kit

CCS Functional Overview ...

2 -4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Code Composer Studio Functional Overview

Code Composer Studio Functional Overview

Code Composer Studio Functional Overview

—r——— —_—_——— e

|
| Standard | EYS/BIOS: '
| Runtime | " i o es |
| Libraries | |

o
ng g
o = Q
D =
a X

Emulator/

b@ LaunchPad

—_———

SYS/BIOS | User.cmd I 'map 'gel L Stand-Alone
Config] | Emulator
(.cfg) |—— Bios.cmd |
L

¢ Integrated Development Environment (IDE) based on Eclipse \,

¢ Contains all development tools — compilers, assembler, linker, :
debugger, BIOS and includes one target — the Simulator . —

¢ GEL files initialize the debugger so that it understands where Target Board
memory, peripherals, etc. are

Target configuration and Emulators...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 -5

Target Configuration and Emulators

Target Configuration and Emulators

Target Configuration and Emulators

p # The Target Configuration File specifies:
— Simulator
* Connection to the target (Simulator or Emulator type)
e Target device
* GEL file (if applicable) for hardware setup

%) EK-TM4C123GXL.ccxml &3
Emulator/
LaunchPad Basic

General Setup

This section describes the general configuration about the target.

Connection [Stellar\; In-Circuit Debug Interface -
Stand-Alone Boerd or Device
Emulator type filter text

Tiva TM4C123GHEPM e
[] Tiva TM4C123GHBPZ

[] Tiva TM4C123GHEZRB
"_’- - —y

4 Emulator (Connection) Options

Target Board

Built-in and external emulators from Tl, Blackhawk,
Spectrum Digital and others

* XDS100v1/v2, 200, 510, 560, 560v2

Projects and Workspaces ...

2 -6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Projects and Workspaces

Projects and Workspaces

Projects and Workspaces (viewed in CCS)

[Project Explorer &3 5EE ¥ =) \
4 [[= lab2 [Active - Debug]|

| s 9};—?’ Binaries
- > [t Includes

> = Debug

» = targetConfigs >

- €] startup_ces.c

> | g trdcl23ghBpm.cmd
B, driverlib.lib /

4 = lab3

> [al Includes

> [= targetConfigs

. €] main.c

» @ startup_ccs.c
o g tmdcd23ghbpm.cmd

PROJECT

> WORKSPACE

Projects and Workspaces ...

Projects and Workspaces

VA _Link_ Source Files
Project * Code and Data

/

Workspace /

* Project 1 Link * Source Files Link Header Files
* Project 2 —— * Header Files ~ T« Declarations
* Project 3 * Library Files Link _Library Files
* Settings/preferences * Build/tool settings |~ ~— ~ « Code and Data
>
& WORKSPACE folder contains: & PROIJECT folder contains:
* IDE settings and preferences * Build and tool settings (for use
* Projects can reside in the workspace in managed MAKE projects)
folder or be linked from elsewhere * Files can be linked to or
* When importing projects into the reside in the project folder
workspace, linking is recommended * Deleting a linked file within the
* Deleting a project within the Project tP}:gJﬁﬁT(Explorer only deletes

Explorer only deletes the link

Creating a New Project ...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 -7

Creating a New Project and Adding Files

Creating a New Project and Adding Files

Creating a New Project

5 Mew CCS Project =] . N
: . | |File—New—cCS Project
CCS Project —

Create a new CCS Project.

(in Edit perspective...)

Project name: lab2

Outputtype: |Executable - * PrOJECt Location
[E] Use defauttlocation * Default = workspace
Location: CA\Tiva_LaunchPad_Workshop\lab2\project ° Manual = anywhere you ||ke
Device
Famity: [[ARM - & Connection
Variant: <select or type filter text> - [Tiva TM4C123GHEPM v]

* If target is specified, user can
choose “connection” (i.e. the
b A i target configuration file)

 Project templates and examples

Connection [Stellaris In-Circuit Debug Interface -

¢ Project templates
* Empty
* Empty but with a main.c
* Assembly only
* BIOS
* others

type filter tet Creates an empty project fully initialized
for the selected device.

4 mpty Broje ~
[Empty Project [
TEr EMply PTOJECt (With main.c

[Empty Assembly-only Project -

Adding Files to a Project ...

Adding Files to a Project

¢ Users can ADD (copy or link) files into their project
* SOURCE files are typically COPIED
* LIBRARY files are typically LINKED (referenced)

@ Right-click on project and select: @ Select file(s) to add to the project:
4= lab2 [Active - Debug]
s :#';P Binaries =] hw_tmpﬂﬂﬁ.h
¢ [ai Includes _| i2Zem_drv.c
by Add Files.. & Zcm divh
@ Select “Copy” or “Link” ¢ COPY

* Copies file from original location

Select how files should be imported inte the project: to projectfo/der (tWO COpiES)

@ Copy files
) Link to files ¢ LINK

* References (points to) source
file in the original folder

* Can select a “reference” point —
typically PROJECT_LOC

Create link locations relative to: | PROJECT_LOC

Lty — PN,

Making a Project Portable ...

2 -8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Portable Projects

Portable Projects

Portable Projects

¢ Why make your projects “portable”?
* Simplifies project sharing
* You can easily re-locate your projects

* Allow simple changes to link to new releases of software libraries

[/ Project Explorer i@ EEaE

4 1% lab? [Active - Debug] Copied files are not a problem (they
- 3 Binaries move with the project folder)
> [Includes Linked files may be an issue. They
> [= Debug

> = targetConfigs

> main.c

3 @ startup_ccs.c
tmdcl23ghbprn.cmd

[By driverlib.lib

L R P

are located outside the project
folder via a:

- absolute path, or
- relative path

y
% File Operation [

Select how files should be imported into the project:

This is the Path Variable
for a relative path. This
can be specified for every
linked file.

©) Copy files
@ Link to files

Create link locations relative to

il

PROJECT_LOC -

Path and Build Variables ...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 -9

Path and Build Variables

Path and Build Variables

Path Variables and Build Variables

¢ Path Variables
* Used by CCS (Eclipse) to store the base path for relative linked files
* Example: PROJECT_LOC is set to the path of your project, say "
c:/Tiva_ LaunchPad Workshop/lab2/project
* Used as a reference point for relative paths, e.g.
${PROJECT LOC}/../files/main.c]

¢ Build Variables

* Used by CCS (Eclipse) to store base path for build libraries or files

* Example: CG_TOOL_ROQT is set to the path for the code
generation tools (compiler/linker)

* Used to find #include .h files, or object libraries, e.g.
${CG_TOOL_ROOT}/include OF ${CG_TOOL ROOT}/lib

¢ How are these variables defined?

* The variables in these examples are automatically defined
when you create a new project (PROJECT_LOC) and when you
install CCS with the build tools (CG_TOOL_ROOT)

* What about TivaWare or additional software libraries? You can define
some new variables yourself

Adding Variables ...

Adding Variables

¢ Why are we doing this?

* We could use PROJECT_LOC for all linked resources or PROJECT_ROOT as
the base for build variables

* Itis “almost” portable, BUT if you move or copy your project, you have
to put it at the same “level” in the file system

* Defining a link and build variable for TivaWare location gives us a relative
path that does NOT depend on location of the project (much more portable)

* Also, if we install a new version of TivaWare, we only need to change these
variables — which is much easier than creating new relative links

4 How to add Path and Build Variables

* Project — Properties, expand the Resource category, click on
Linked Resources. You will see a tab for Path Variables, click New
to add a new path variable

* Project — Properties, click on Build category, click on the Variables tab,
Click New to add a new build variable

* In the lab, we’ll add a path variable and build variable TIVAWARE_INSTALL
to be the path of the latest TivaWare release

¢ Note:
* This method defines the variables as part of the project (finer control)
* You can also define variables as part of your workspace (do it once)

Build Configurations ...

2 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Build Configurations

Build Configurations

Build Configurations

¢ Code Composer has two pre-defined BUILD CONFIGURATIONS:
Debug (symbols, no optimization) — great for LOGICAL debug
« Release (no symbols, optimization) — great for PERFORMANCE
¢ Users can create their own custom build configurations] - -
Right-click on the project and select Properties

_F
Then click “Processor Options” or any other category: 2 Release

' Properties for Stellaris_Hwi_Swi_ledToggle_

type filter text Processor Options LTy
> Rescurce
General
4 Build Configuration: |Debug [Active] '] [Managa Conﬁgurat\on;m]
a ARM Compiler
Processor Options
Optimization

Target processor version (~-silicon_version, -mv) [TI\M L4

Debug Optiens]
Include Options Designate code state, 16-bit (thumb) or 32-bit (~code_state) |16 -

MISRA-C:2004

> Advanced Options Specify floating point suppert (--float_support) [FP\MSPDI& -

> ARM Linker
> KDCtools

[Eabi

Application binary interface. (--abi)

=

CCS Licensing and Pricing ...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 11

Licensing and Pricing

Licensing and Pricing

CCSvs5 Licensing and Pricing

¢ Licensing

* Wide variety of options (node locked, floating, time based)
* All versions (full, DSK, free tools) use the same image 3
* Updates readily available online TMDSCCS-ALLNOL -

Code Composer Studio
IDE - Platinum Node
Locked Single User

¢ Pricing ('f"_l)

* Includes FREE options noted below Tesas Inatuments

* Annual subscription - $99 ($159 for floating license)
Item Description Price Annual
Platinum Eval Tools Full tools with 90 day limit (all EMU) | FREE
Platinum Bundle XDS100 use (EVM or simulator) FREE *
Platinum Node Lock Full tools tied to a machine $495/$445 ** $99
Platinum Floating Full tools shared across machines | $795 $159
MSP430 Code-Limited | MSP430 (16KB code limit) FREE

* recommended option: purchase Development Kit, use XDS100v1-2, & Free CCSv5
** $495 includes DVD, $445 is download only
CCSFYI...

CCSv5 — For More Information
Category:CCS Training Modules Library

The goal of the modules library is to provide trainin
to facilitate customization and translation of the mat
particular device but the training focuses on the fe

Category:CCS Training

This page provides a collection of training mater] Module Video

Contents [hide]
1 Getling Started Guides
2 Workshops
2.1 CCS Specific Workshops
2.1.1 Fundamentals Workshops
2.1.2 Advanced Workshops e Il
2.2 Device Specific Workshops
2.2.1 MSP430
2.2.2 C2000 Video Training

2.2.3 Stellaris (ARM Cortex-Mx)

Portable Projects

Target Configuration

2.2.4 Sitara (ARM Cortex-Ag) . CCS‘;‘? Getting Started (Video) &"- This demo goes through a basic project
2 2.5 Davinci / ARM Corex-AS + CCSvh Video Tutonals: Collection of short wideo tutorials {with audio) on va;
226 C6000 + CCS Quick Tips: Collection of short quick video captures (no audio) to de
= . S5 AR in-) ; L : d
3 Video Training o Introduction to CCSvE & An in-depth video (with audio) introducing the C

g N and (of course) informative way. The version of CCS shown is vd but many™
« C2000 Piccolo Control Law Accelerator Debug with CCS &' This video wil

5 Modules Library ; L -
ocules Hbrary « C2000 Real-Time Features é: This video tutorial covers two ve

seful fog

lasan 0 e

http://processors.wiki.ti.com/index.php/Category:CCS_Training Lab...

2 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Lab2: Code Composer Studio

Lab2: Code Composer Studio

Objective

In this lab, we’ll create a project that contains two source files, main. c and

tm4cl23gh6pm startup ccs.c, which contain the code to blink an LED on your
LaunchPad board. The purpose of this lab is to practice creating projects and getting to know the
look and feel of Code Composer Studio. In later labs we’ll examine the code in more detail. So
far now, don’t worry about the C code we’ll be using in this lab.

Lab 2: Code Composer Studio

USB Emulation Connection

g r————
AL TR
BUG o 3

===
pra—— 1]
PR can OO
o o 1337 vaus -
i 4 PB5 OND . PF3 PB2 <3 4
e w Y e
@° ¢ 780 PDO i 83 P30 43
g oo -
LN 78

¢ Create a new project R . 2

POS bhe

¢ Experiment with some CCS features A .

4N ear pr

+ Use the LM Flash Programmer 77" Texas InstRumENTS

)}f” Tiva™ C Series
~

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 13

Lab 2 Procedure

Lab 2 Procedure

Folder Structure for the Labs

1. Browse the directory structure for the workshop labs
» Using Windows Explorer, locate the following folder:
C:\TM4C123G_LaunchPad Workshop

In this folder, you will find all the lab folders for the workshop. If you don’t see this folder on
your c: \ drive, check to make sure you have installed the workshop lab files. Expand

the \ 1ab2 folder and you’ll notice that there are two sub-folders \files and \project.

The \ files folder will sometimes contain additional files for your reference. The \project
folder will contain your project settings and files for both the projects that you create and the
projects we created that you will import. It will also contain solution files saved as text files. You
will be able to see these files in the Project Explorer and easily cut/paste the contents into your
files if and when necessary.

Note: When you create a project, you have a choice to use the “default location” which is the
CCS workspace or to select another location. In this workshop, we will not be using the
workspace for the project files; rather, we’ll use the folder where you installed the lab
files, C:\TM4C123G_LaunchPad Workshop.

The workspace will only contain CCS settings, and links to the projects we create or
import.

2 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Lab 2 Procedure

Create a New CCS Project

2. Create a new project

» Launch CCS. When the “Select a workspace” dialog appears, P browse to your My
Documents folder:

(In WinXP) C:\Documents and Settings\<user>\My Documents

(In Win7 or 8) C:\Users\<user>\My Documents

Obviously, replace <user> with your own username. The name and location for your workspace
isn’t critical, but we suggest that you use MyWorkspaceTM4C123G. Do not check the “Use this
as the default and do not ask again” checkbox. If at some point you accidentally check this box, it
can be changed in CCS.

» Click OK.
3. Select a CCS License

If you haven’t already licensed Code Composer, you may be asked to do so in the next few
installation steps. You can do this step manually from the CCS Help menu.

» Click on Help — Code Composer Studio Licensing Information.

» Select the “Upgrade” tab, and then select the “Free” license. As long as your PC is connected
to the LaunchPad board, CCS will have full functionality, free of charge.

4. Close TI Resource Explorer and/or Grace

When the “TI Resource Explorer” and/or “Grace” windows appear, close these windows using
the “X” on the tab. At this time, these tools support other processor families, e.g. MSP430.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 15

Lab 2 Procedure

5. Create a New Project

Project | Run Scripts Wi
C4% MNew CCS Project

To create a new project, P select Project — New CCS Project:

» For the project name, type lab2

» Uncheck the box “Use default location™ and click the Browse...

button. Navigate to:
C:\TM4C123G LaunchPad Workshop\lab2\project

and click OK.
¥ Mew CCS Project 5 |

CCS Project —
Create a new CCS Project. 'i' .[r

Project name: lab2

» Select Device family: ARM, for Variant,
type 123G in the filter text field, then select
Tiva TM4C123GH6PM

Output type: | Executable V]

in the drop-down box (typing 123G i

narrows the list making it easier to find the Location: CATMA4C123G_LaunchPzd_Workshoplab2\project

exact part on the Tiva LaunchPad board. e

» For Connection: choose Stellaris In- Fomity: [ARM z)

Circuit Debug Interface . This is the built- V| 1235 ~ | [Eadc1ziceN)
Connection: lSteIIarisIn-Cirr_uit Debug Interface ']

in emulator on the LaunchPad board.

¥ Advanced settings

» In the Project templates and examples
box, choose Empty Project and then click ” Projecttempltes and eamples .
type filter text Creates an empty project fully initialized — »

ni. for the selected device.
FlnlSh' 4 ||=| Empty Projects -

|& Empty Project L]
['gr Empty Project (with main.c)
= Empty Assembly-enly Project

1

@) < Back Next > Finish] l Cancel

2 - 16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Lab 2 Procedure

6. Review the CCS Editing GUI

w# CCS Edit - Code Composer Studio =

G | S

File Edit View MNavigate Project Run Scripts Window Help

ik A-itp~iP-iE izl [} #5 CCS Debug
I Project Explorer &2 -
4 12 lab2

4[5l Includes Editor

- (B C/TeesvS/tools/compiler/arm 5.1 1/include
4 [= targetConfigs n
2 readme.t<t pa e
[#] Tiva TMAC123GHEPM.coeml [Active/Default]
> g tmdcl23ghBpm_startup_ces.c

» [tmici23gh6pm.cmd E Consele i3 | >y~ "=0 B_ Problems 2 | | Advice
— Mo consoles to display at this time. 0 items
Description
Project Explorer Console Problems

pane pane pane

Licensed

Note the names of the Code Composer GUI panes above.

-
» In the Project Explorer pane on your desktop, click the symbol next to lab2, Includes
and targetConfigs to expand the project. Your project should look like the above.

7. You probably noticed that the New Project wizard added a startup file called

tm4cl23ghépm startup ccs.c into the project automatically. We’ll look more
closely at the contents of this file later.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 17

Lab 2 Procedure

Add Path and Build Variables

If you recall in the presentation, the path and build variables are used for:

e Path variable — when you ADD (link) a file to your project, you can specify a “relative to”
path. The default is PROJECT _LOC which means that your linked resource (like a .1ib
file) will be linked relative to your project directory.

e Build variable — used for items such as the search path for include files associated with a
library —i.e. it is used when you build your project.

Variables can either have a PROJECT scope (that they only work for this project) or a
WORKSPACE scope (that they work across all projects in the workspace).

In the next step, we need to add (link) a library file and then add a search path for include files.
First, we’ll add these variables MANUALLY as PROJECT variables. Later, we will show you a
quick and easy way to add these variables into your WORKSPACE so that any project in your
workspace can use the variables.

8. Adding a Path Variable

To add a path variable, ®» Right-click on your project and select
Properties. » Expand the Resource list in the upper left-hand
corner as shown and click on Linked Resources:

4 Resource
Linked Resources
Resource Filters

Linked Resources
You will see two tabs on the right side — Path

Variables and Linked Resources: Path Variables

Linked Resources

In the Path Variables tab, notice that PROJECT LOC is listed and will display as the default path
variable for linked resources in your project.

We want to add a New variable to specify exactly where you installed TivaWare.

» Click New
» When the New Variable [& NewVvariabie (B s |
dialog appears, Define a New Path Variable

type T IVAWARE_INS TALL Enter a new variable name and its associated location.
for the name .

MName: TIVAWARE_INSTALL

Lacation: CA\TI\TivaWare_C_Series-1.1 File. || Folder. || Variable..
> For the Locationa CIiCk Resolved Location: C:\TI\TivaWare_C_Series-1.1
the Folder... button and
navigate to your TivaWare
installation. Click on the @ ok | [Conee
folder name and then click
OK.

» Click OK. You should see your new path variable listed in the Path Variables list.

2 - 18 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Lab 2 Procedure

9. Adding a Build Variable

Now let’s add a build variable that we will use in the include search path for the INCLUDE files
associated with the TivaWare driver libraries.

» Click on Build and then the Variables tab:

4 | Build

» Click the Add button. When the Define a New 4 ARM Compiler

Build Variable dialog appears,

insert TTVAWARE INSTALL into the Variables

name box.

» Check the “Apply to all
configurations” checkbox

» Change the Type to Directory and
browse to your Tivaware installation
folder.

» Click OK.

» Click OK again to save and close
the Build Properties window.

Processor Options

Optimization

o Variables

v
«« Define a New Build Variable

Variable name: | TIVAWARE INSTALL
[¥] Apply to all configurations

Value: CATITivaWare C_Series-1.1

Browse

ok ||

Cancel

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 19

Lab 2 Procedure

Add files to your project

We need to add main. c to the project. We also need to add the TivaWare driverlib.1lib
object library. The C file should be copied to the project, the driverlib file should be linked.

10. Add (copy) the C file
» Select Project — Add Files... » Navigate to the folder:

C:\TM4C123G LaunchPad Workshop\lab2\files

Select main. c and click Open.

Then select Copy Files and click OK.

r 1
i Add files to lab2 [
@-v-vl ., <« TM4C123G_LaunchPad Workshop » lab2 » files - | ‘,H Search files }D'
Organize = MNew folder =~ O ':ﬂ'
=
. TM4C123G_LaunchPad_Workshop “ Name Date modified Type Size
J lab2 . = = ==
- | main.c 5/2/201310:08 AM CFile 1KB|
files -
project
. lab3
lab4 i .)
e w+ File Operation &J
J la
| lab6 E |
| 1ab8 17 Select how files should be impoerted into the project:
) labg @ Copy files
J labl0 T -
i () Link to files
| lab11 o
. Create link locations relative to: | PROJIECT_LOC
File name: main.c =
Configure Drag and Drop Settings...
3
@ ok [cancel
. J

2 - 20 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Lab 2 Procedure

11. Link the TivaWare driverlib.lib file to your project
» Seclect Project-Add Files... Navigate to:

C:\TI\TivaWare C Series-1.l1\driverlib\ccs\Debug\driverlib.lib

... and P click Open. The File Operation dialog will open ...

Use the TIVAWARE INSTALL path variable you created earlier. This means that the LINK
(or reference to the library) file will be RELATIVE to the location of the TivaWare
installation. If you hand this project to someone else, they can install the project anywhere in
the file system and this link will still work. If you choose PROJECT LOC, you would get a
path that is relative to the location of your project and it would require the project to be
installed at the same “level” in the directory structure. Another advantage of this approach is
that if you wanted to link to a new version, say TivaWare C Series-1.2, all you have
to do is modify the variable to the new folder name.

«r File Qperation Ié]
Select how files should be imported into the project:
() Copy files
@) Link to files
Create link locations relative to: [WAWARE_INSTALL ']

Configure Drag and Drop Settings..
@j [QK l [Cancel]

» Make the selections shown and click OK.

Your project should now look something like the screen capture below. Note E‘
the symbol for driverlib.1lib denotes a linked file. K

L[Project Explorer &3 ===
4 = lab2 [Active - Debug]

» [wil! Includes

» = targetConfigs

- |g] main.c

> @ startup_ccs.c

» | tmdcl23ghGpm.cmd

Ex driverlib.lib

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 21

Lab 2 Procedure

12. Add the INCLUDE search paths for the header files

» Open main.c by double-clicking on the
filename in the Project Explorer pane of CCS.
You should see “?” warnings in the left
margin which indicate “unresolved
inclusion”. Hover your cursor over the
question mark to see the helpful message.

Until now, you haven’t told the project where
to find these header files.

[main.c 2

ol

1 #include
2 #include
3 #include
4 #include
5 #include
& #include

?
=
2
=
2?
=
?
=

» Right-click on your lab2 project in the Project Explorer
pane and select Properties.

» Click on Build — ARM Compiler — Include Options (as

shown):

» In the lower-right panel, click the “+” sign next to Add
dir to #include search path

7 int main(void)

"stdint.h"
"stdbool.h"

“inc/hw types.h”
"inc/hw_memmap.h"
"driverlib/sysctl. h”
"driverlib/gpio.h”

4 Build
4 ARM Compiler
Processor Options
Optirnization
Debug Options
[Include Gptions|
MISRA-C:2004

Add dir to #Finclude search path (--include_path, -I)

"HYCG TOOL ROOTYinclude"

88 8 5l 0

and add the following path using the build variable you created earlier. Place the variable name
inside braces, after the $ as shown:

${TIVAWARE INSTALL}

» Click OK.

%+ Properties for lab2

type filter text

» Resource
General
4 Build
4 ARM Compiler

Optimization
Debug Options
Include Options
MISRA-C:2004

> ARM Linker
Debug

Include Options

Processor Options

» Advanced Options

Specify a preinclude file (--preinclude)

Add dir to #Finclude search path (--include_path, -T)
"${CG_TOOL_ROOT}include"

"S{TIVAWARE INSTALLY'

aa 3 5 &

m

a5 830

» Click OK again, and now you should see those “?”” in main. c disappear after a moment.

Problem solved.

2 - 22 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Lab 2 Procedure

13. Examine your Project files using Windows Explorer

» Using Windows Explorer, locate your lab2 project folder:
C:\TM4C123G_LaunchPad Workshop\lab2\project

Do you see main. c? It should be there because you copied it there. Do you see

the driverlib. 1ib file? This file should NOT be there because it’s only linked in your
project. Notice the other folders in the \project folder — these contain your CCS project-
specific settings. Close Windows Explorer.

14. Examine the properties of your new project

» In CCS, right-click on your project and select Properties. Click on each of the sections below:

Resource: This will show you the path of your current project and the resolved path if it is linked
into the workspace. Click on “Linked Resources” and both tabs associated with this.

What is the PROJECT_LOC path?

Are there any linked resources? If so, what file(s)?

General: shows the main project settings. Notice you can change almost every field here AFTER
the project was created.

Build —» ARM Compiler: These are the basic compiler settings along with every compiler
setting for your project.

Other: feel free to click on a few more settings, but don’t change any of them.

» Click Cancel.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 23

Lab 2 Procedure

Build, Load, Run

15. Build your project and fix any errors

» Assure that your LaunchPad is connected to your laptop. Build and load your #ﬁ;\
project to the TM4C123GH6PM flash memory by clicking the Debug button . If you

ever want to build the project without loading it, click the HAMMER (Build)

button. I% =

-

» Fix any errors that occur. For the & Stellaris In-Circuit Debug Interface/CORTEX_M4_0 (SNBSS |
present you can ignore any warnings. If
you encounter the error shown, your board | Frror connecting to the target: L
is disconnected, your power switch is in the @ Frequency is out of range.)l
wrong position or your drivers are

incorrectly installed.] ’

The program counter will run to main () and stop as shown:

16. Getting to know the CCS Debug GUI

¥» CCS Debug - lab2/main.c - Code Composer Studia

File Edit View Project Teols Run Scripts Window Help
milhe #- [En a8~ & - -ﬁQCCSEdit
%5 Debug 52 = 0| ®9= Variables &3 | 5 Expressions | ifi} Registers =0
0o | AR L 5 | & § et et ™

a ¢l lab2 [Code Composer Studio - Device Debugging] Name Type Value
52 Stellaris In-Circuit Debug Interface/ CORTEX_M4 _0 (Running)

Debug Pane Watch & Expressions Panes

4| 1 |4 [} 2

[main.c &2

1#include <stdint.h>

2 #include <stdbool.h>

3 #include "inc/hw_types.h" ‘
4 #include "inc/hw_memmap.h"

5 #include "driverlib/gpio.h”
6 #include "driverlib/sysctl.h”

& int main(void) Code/Editor Pane

a{ o
- e
El Console &2 IIL1§|=_’E'L=?'=E|

lab2
CORTEX_M4_@: GEL Output:
Memory Map Initialization Complete

Console and Problems Panes i

T B Licensed LE

Note the names of the Code Composer panes above. There are two pre-defined perspectives
in Code Composer; CCS Edit and CCS Debug. » Click and drag the tabs (at the arrow
above) to the left so you can see both. Perspectives are only a “view” of the available data ...
you can edit your code here without changing perspectives. And you can modify these or
create as many additional perspectives as you like. More on that in a moment.

2 - 24 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Lab 2 Procedure

17. Run your program.

» Click the Resume button or press the F8 key on your keyboard: [

The tri-color LED on your target board should blink showing the three colors in sequence. If not,
attempt to solve the problem yourself for a few minutes, and then ask your instructor for help.

To stop your program running, » click the Suspend button: o

If the code stops with a “No source available ...” indication, click on the main. c tab. Most of
the time in the while () loop is spent inside the delay function. That source file is not linked
into this project.

18. Set a Breakpoint

In the code window in the middle of your screen, double-click in the blue area to the left of the
line number of the GPIOPinWrite () instruction. This will set a breakpoint (it will look like
this: #5:). Click the Resume (e button to restart the code. The program will stop at the
breakpoint and you will see an arrow on the left of the line number, indicating that the program
counter has stopped on this line of code. Note that the current ICDI driver does not support
adding or removing breakpoints while the processor is running. Click the Resume button a
few times or press the F8 key to run the code. Observe the LED on the LaunchPad board as you
do this.

19. View/Watch memory and variables.
» Click on the Expressions tab in the Watch and Expressions pane.

» Double-click on the ui 8 LED variable anywhere inmain ().

7

» Right-click on ui8LED and select: F;v R B "

» Click OK. Right-click on ui 8 LED in the Expressions pane, and select Number Format =
Hex. Note the value of ui8LED.

Of course, the ui 8 LED variable is located in SRAM. You can see the address in the expressions
view. But let’s go see it in memory.

» Select View — Memory Browser: @ Memory Browser i

» Type &ui8LED into the memory window to display | U Memen Browser &2
ui8LED in memory: BuwigLED

0x200001f8 - uiBLED <Memory Rendering1> &3
[32-BitHex- TIStyle ~|

ex200001F &l 0anapa02 [l Ll v

Bx20000200 _lock
Bx2@000208 BBBEETET
Gx20000204 _unlock
Bx28086284 BBEBBTET
@x20000208 _cleanup_ptr
Bx20000208 ©DEOBOOE
Bx28008028C _dtors_ptr
Gx2eaan GeaaBe0

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 25

Lab 2 Procedure

20. View Registers

» Select View — Registers and notice that you can see the contents of all of the registers in your
target’s architecture. This is very handy for debugging purposes.

Bk Registers EZ 6’:?:Expre55ions 2t = | c:&| T | Q’%‘9 ¥ =08

MName Value Description

. % Core Registers

. B WATCHDOGO

. B WATCHDOGL

. B GPIO_PORTA

. B GPIO_PORTB

. B GPIO_PORTC

. &% GPIO_PORTD =
4 L} 3

» Click on the arrow on the left to expand the register view. Note that non-system peripherals
that have not been enabled cannot be read. In this project you can view Core Registers,
GPIO_PORTA (where the UART pins are), GPIO_PORTF (where the LEDs and pushbuttons are
located), HIB, FLASH CTRL, SYSCTL and NVIC.

Perspectives

CCS perspectives are quite flexible. You can customize the perspective(s) and save them as your
own custom views if you like. It’s easy to resize, maximize, open different views, close views,
and occasionally, you might wonder “How do I get things back to normal?”

21. Let’s move some windows around and then reset the perspective.

» Right-click on the Console window tab and select “Detached”. You can now move this
window around wherever you want. » Right click again and select “Detached” to re-attach it.

In the editing pane, » double-click on the tab _ '
. X L.¢| main.c &2
showing main.c: -

Notice that the editor window maximizes to full screen.
Double-click on the tab again to restore it.

» Move some windows around on your desktop by clicking-and-holding on the tabs.

Whenever you get lost or some windows seem to have disappeared in either the CCS Edit, CCS
Debug or your own perspectives, you can restore the window arrangement back to the default.

» Find and click the Restore button on the left or right of your display. If you want to reset
the view to the factory default you can also choose Window — Reset Perspective:

NOTE: Do not use the perspective tabs to move back and forth between perspectives.
Clicking the CCS Debug tab only changes the view; it does not connect to the device,
download the code or start a debug session. Likewise, clicking the CCS Edit tab does
not terminate a debug session.

Only use the Debug and Terminate buttons to move between perspectives in this
workshop.

2 - 26 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Lab 2 Procedure

22. Remove all breakpoints
» Click Run = Remove All Breakpoints from the menu bar or double-click on the breakpoint
symbol in the editor pane. Again, breakpoints can only be removed when the processor is not
running.

Terminate the debug session.

» Click the red Terminate button to terminate the debug session and return to the
CCS Edit perspective.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 27

Lab 2 Procedure

VARS.INI — An Easier Way to Add Variables

Recall that earlier in the lab you created two variables — a path variable and a build variable. They
were the SAME variable set to the SAME path, but used in two different ways — one was
for linking files into your project and the other was used for include search paths during the build.

The variables you created earlier were available on a project level. So, if you had two projects
open in your workspace, the other project would NOT be able to use the variables that you
created.

Now, we’ll show you how to add these variables almost automatically to your WORKSPACE so
that ANY project in the workspace can use them.

23. Using vars.ini to set workspace path and build variables.

First, let’s look at a new file called vars.ini. P Select File = Open File and browse to:
C:\TM4C123G LaunchPad Workshop\vars.ini

» Click Open

You’ll find the single TIVAWARE INSTALL variable listed inside the file:

E| vars.ini 52
TIVAWARE _INSTALL = c:\TI\TivaWare C_ Series-1.1

Before we import this file into the workspace, let’s see where these variables are stored.

» Select Window = Preferences. When the dialogue

appears, P type “linked” into the filter field as shown — linked
then click on Linked Resources: 4 General

a4 Editors
This displays all of your WORKSPACE level path 4 Text Editors
variables. We set these variables at the PROJECT level Linked Mode
before. We’re now ready to set them at the WORKSPACE 4 Workspace
level so that all projects in our workspace can use the same kel Besmanpes
variables.

You could simply add the variable here manually, but
importing them from vars. ini is simpler and will set
BOTH variables at the same time.

» Type “build” into the filter area and click on Build a C/Ces
Variables as shown: 4 Build

Build Variables

This is where you can set WORKSPACE level build
variables. Again, you could just add the variable now manually, but vars.ini will do this for
us.

Both the Linked Resources and Build Variables areas for your workspace were BLANK —
containing no workspace variables at all. That’s about to change...

» Click Cancel.

2 - 28 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Lab 2 Procedure

Let’s import the file vars.ini and see what happens....

» Select File 2 Import, then expand

the CCS category, click on Build (= General
Variables (as shown): = C/C++
4 (= Code Composer Studio

o@, Build Variables

» Click Next and browse to the location of vars.ini:
C:\TM4C123G LaunchPad Workshop\vars.ini

» Click Open, then click Finish. ™ Then select Window Preferences and locate your
WORKSPACE path variable and your build variable. Did they show up? It should have

imported the variable listed into both the path and build variable areas (as shown):

MName Value

= TIVAWARE_INSTALL CATI\TivaWare_C_Series-1.0

» Click OK. Minimize Code Composer.

Using VARS.INI — Conclusion

Now, ANY project in your workspace (like all the future labs in this workshop) can use these
variables without any more importing. They are part of your workspace. Also, if you export a
project and hand it to a friend, these workspace variables will NOT be included in the project.
That’s pretty handy. Why? Your friend may have a DIFFERENT install location for the tools. So,
if they use the same WORKSPACE VARIABLE names, but different paths, their builds will
work just fine. You now have a completely and totally PORTABLE PROJECT.

Note: If you change workspaces, you will have to re-import vars.ini to set these
variables again. If your tools installation changes, you’ll have to
edit vars.ini and re-import. So be careful.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 29

LM Flash Programmer

LM Flash Programmer

LM Flash Programmer is a standalone programming GUI that allows you to program the flash of
a Tiva C Series device through multiple ports. Creating the files required for this is a separate
build step in Code Composer that it shown on the next page. If you have not done so already,
install the LM Flash Programmer onto your PC.

Make sure that Code Composer Studio is not actively running code in the CCS Debug
perspective... otherwise CCS and the Flash Programmer may conflict for control of the USB
port.

24. Open LM Flash Programmer

There should be a shortcut to the LM Flash Programmer on your desktop, ﬂk‘
double-click it to open the tool. If the shortcut does not appear, go to Start > —
All Programs = Texas Instruments = Stellaris 2 LM Flash Programmer and Hﬂﬁuuuﬁu

click on LM Flash Programmer.

Your evaluation board should currently be programmed with the lab2 application and it should be
running. If the User LED isn’t blinking, press the RESET button on the board.
We’re going to program the original application back into the TM4C123GH6PM flash memory.

» Click the Configuration tab. Select the TM4C123G LaunchPad from the Quick Set pull-down
menu under the Configuration tab. If TM4CI123G LaunchPad does not appear, select
LMA4F120 LaunchPad from the list.

See the user’s guide for information on how to manually configure the tool for targets that are not
evaluation boards.

- <
ET) LM Flash Programmer - Build 1543 = "

Configuration | program | Flash Utiities | Other Utities | Help
Quick Set

-
Interface

Port: |JTAG
ICD1I (Eval Board)
Speed (Hz): | 2000000

Clock Source

' 16 MHz

o 6000000

Wi TEXAS INSTRUMENTS

Idle

2 - 30 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

LM Flash Programmer

25. Click the Program Tab, then click the Browse button and navigate to:

c:\TI\TivaWare C Series-1.l\examples\boards\ek-tm4cl23gxl\
gs-rgb\ccs\Debug\gs-rgb.bin

and P click Open. You may find that clicking on the " symbol rather than the file name is
easier to navigate.

gs-rgb is the application that was programmed into the flash memory of the
TM4C123GH6PM when you removed it from the box.

Note that there are applications here which have been built with each supported IDE.

» Make sure that the following checkboxes are selected:

Options
Erase Method:
{+ Erase Entire Flash - (faster)
" Erase Mecessary Pages - (slower)

[v Verify After Program
[Reset MCU After Program

Program Address Offset: 0x |0

26. Program

» Click the Program button. You should see the programming and verification status at the
bottom of the window. After these steps are complete, the quickstart application should be
running on your LaunchPad.

27. Close the LM Flash Programmer

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 31

Optional: Creating a bin File for the Flash Programmer

Optional: Creating a bin File for the Flash Programmer

If you want to create a . bin file for use by the stand-alone programmer in any of the labs in this
workshop or in your own project, use these steps below.

Remember that the project will have to be open before you can change its properties.
28. Set Post-Build step to call “tiobj2bin” utility

» In CCS Project Explorer, right-click on your project and select Properties. On the left, click
Build and then the Steps tab. Paste the following commands into the Post-build steps Command
box.

Note: The following four “lines” should be entered as a single line in the Command
box. To make it easier, we included a text file that you can copy-paste.
Navigate to C: \TM4C123G_LaunchPad Workshop\postbuild.txt to
find the complete command line.

"${CCS_INSTALL ROOT}/utils/tiobj2bin/tiobj2bin"
"S{BuildArtifactFileName}" "S${BuildArtifactFileBaseName}.bin"
"${CG_TOOL ROOT}/bin/armofd" "${CG TOOL ROOT}/bin/armhex"
"${CCS_INSTALL ROOT}/utils/tiobj2bin/mkhex4bin"

29. Rebuild your project

This post-build step will run after your project builds and the .bin file will be in
the C:\TM4C123G_LaunchPad Workshop\labx\project\debug folder. You can
access this .bin in the CCS Project Explorer in your project by expanding the Debug folder.

If you try to re-build and you receive a message “gmake: Nothing to be done for
‘all’ .”, this indicates that no files have changed in your project since the last time you
built it. You can force the project to build by first right-clicking the project and then select
Clean Project. Now you should be able to re-build your project which will run the post-build
step to create the .bin file.

30. If you opened lab2 to perform these steps, close it now.

You’re done.

2 - 32 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Optional: Creating a bin File for the Flash Programmer

Hints and Tips

There are several issues and errors that users commonly run into during the class. Here are a
few and their solutions:

1. Header files can’t be found

When you create the main.c file and include the header files, CCS doesn’t know the
path to those files and will tell you so by placing a question mark left of those lines.
After you change the Compiler and Linker options, these question marks should go
away and CCS should find the files during the build. If CCS reports that your header
files can’t be found, check the following:

a. Under the Project Properties click Resource on the left. Make sure that your
project is located
in: C:\TM4C123G_LaunchPad Workshop\labx\project.
If you located it in the labx folder it is possible to adjust the Include and File
Search paths. If you located the project in the workspace, your best bet is to
remake the project.

b. Review the steps above and assure that your path and build variables are set
properly.
2. Unresolved symbols

This is usually the result of step 1b above or you are using a copy of the startup ccs.c
file that includes the ISR name used in the Interrupts lab. You’ll have to remove the
extern declaration and change the timer ISR link back to the default.

3. Frequency out of range

This usually means that CCS tried to connect to the evaluation board and couldn’t.
This can be the result of the USB drivers or a hardware issue:

Unplug and re-plug the board from your USB port to refresh the drivers.
b. Open your Device Manager and verify that the drivers are correctly installed.

c. Assure that your emulator cable is connected to the DEBUG microUSB port,
not the DEVICE port, and make sure the PWR SELECT switch is set to the
rightmost DEBUG position.

4. Error loading dll file

This can happen in Windows7 when attempting to connect to the evaluation board.
This is a Win7 driver installation issue and can be resolved by copying the files:
FTCJTAG.d1l and ftd2xx.d11 to:

C:\CCS5.x\ccsv5\ccs base\DebugServer\drivers

and

C:\Windows\System32

Download these files from http://www.ti.com/tool/Im_ftdi driver .

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 33

http://www.ti.com/tool/lm_ftdi_driver

Optional: Creating a bin File for the Flash Programmer

5. Program run tools disappear in the Debug perspective

The tools aren’t part of the perspective, but part of the Debug window. Somehow you
closed the window. Click View = Debug from the menu bar or click the Restore
button.

6. CCS doesn’t prompt for a workspace on startup

You checked the “don’t ask anymore” checkbox. You can switch workspaces by
clicking File > Switch workspace ... or you can do the following: In CCS, click
Window - Preferences. Now click the + next to General, Startup and Shutdown, and
then click Workspaces. Check the “Prompt for workspace on startup” checkbox and
click OK.

7. The windows have changed in the CCS Edit or Debug perspective from the
default and you want them back

On the CCS menu bar, click Window = Reset Perspective ... and then click Yes.

2 - 34 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

TivaWare™, Initialization and GPIO

Introduction

This chapter will introduce you to TivaWare, the initialization of the device and the operation of
the GPIO. The lab exercise uses TivaWare API functions to set up the clock, and to configure and

write to the GPIO port.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Interrupts and the Timers
ADC12
Hibernation Module
USB
Memory and Security
Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA

Sensor Hub LY el A

PWM

TivaWare...

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Chapter Topics

Chapter Topics

TivaWare™, Initialization and GP1O 3-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 3-2
TEVAWATC. ... ettt e e e 3-3
CLOCKITG ...ttt ettt ettt e ea ettt e ne e e et et e et enne e 3-4
GPIO ...ttt ettt ettt ettt e e reeneenne 3-6
Lab 3: Initialization and GPIOc....ocooeioeeeeeeeeeeeee e 3-9

L0 10} 1< 15 4R SRRUTSPRSR 3-9
PIOCEAUIE ..ottt ettt ettt e bt et e et esaee s st e st e esseanseenseesaensaenseenseensesnsesneesseanseenes 3-10

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

TivaWare

TivaWare

TivaWare™ for C Series Features

Peripheral Driver Library

¢ License & royalty free use for Tl Cortex-M parts
¢ Available as object library and as source code
¢ Programmed into the on-chip ROM

+ High-level API interface to complete peripheral set

[

v

L a2

USB Stacks and Examples

¢ USB Device and Embedded Host compliant

¢ Device, Host, OTG and Windows-side examples
¢ Free VID/PID sharing program

Extras
¢ Wireless protocols
¢ 1Q math examples

¢ Bootloaders
+ Windows side applications

Ethernet
+ Ilwip and uip stacks with 1588 PTP modifications
¢ Extensive examples

)\

Graphics Library
¢ Graphics primitive and widgets
¢ 153 fonts plus Asian and Cyrillic

¢ Graphics utility tools

*

*
*

Sensor Library
An interrugt driven 12C master driver for

handling I°C transfers
A set of drivers for I2C connected sensors
A set of routines for common sensor operations

Three layers: Transport, Sensor and
Processing

ISP Options...

In System Programming Options

/Tiva Serial Flash Loader

debugger interface.
* UART or SSl interface option

\0 See application note SPMA029

* Small piece of code that allows programming of the flash without the need for a

* All Tiva C Series MCUs ship with the loader in flash

* The LM Flash Programmer interfaces with the serial flash loader

~

“

iva Boot Loader
application loader

microcontroller.

. Preloaded in ROM or can be programmed at the beginning of flash to act as an
* Can also be used as an update mechanism for an application running on a Tiva

* Interface via UART (default), I12C, SSI, Ethernet, USB (DFU H/D)
\0 Included in the Tiva Peripheral Driver Library with full applications examples /

/
=

Fundamental Clocks...

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Clocking

Clocking
Fundamental Clock Sources
Precision Internal Oscillator (PIOSC)
¢ 16 MHz + 3%
. . . I ?]
Main Oscillator (MOSC) using... ,]gf P
¢ An external single-ended clock source ¥
¢ An external crystal _,u
Internal 30 kHz Oscillator
¢ 30 kHz £ 50%
¢ Intended for use during Deep-Sleep power-saving modes
Hibernation Module Clock Source
¢ 32,768Hz crystal
K ¢ Intended to provide the system with a real-time clock source
SysClk Sources...
System (CPU) Clock Sources

ﬁl’he CPU can be driven by any of the fundamental clocks \

¢ |Internal 16 MHz

¢ Main

¢ Internal 30 kHz

¢ External Real-Time

- Plus -

¢ The internal PLL (400 MHz)

Ko The internal 16MHz oscillator divided by four (4MHz + 3%) /
Clock Source Drive PLL? Used as SysClk?
Internal 16MHz Yes Yes
Internal 16Mhz/4 No Yes
Main Oscillator Yes Yes
Internal 30 kHz No Yes
Hibernation Module No Yes
PLL - Yes

Clock Tree...
3-4 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Clocking

T =
XTAL®
USBPWRDN®

C Series Clock Tree

USB PLL
(480 MHz)
XTALY
PWRONE
MOSCDIS =

=4 PLL
- Main OSC (400 MHZ) |
4
P

1OSCDIS®

Precision —
Internal OSC
{16 MHz)

Internal OSC
(30 kHz)
] =
< ribemation
osc OSCSRCEA
7]
D (32768 kHz)

—
SYSOIv® J
L N
L

driverLib APl SysCtIClockSet() selects:

SYSDIV divider setting
OSC or PLL

Main or Internal oscillator
Crystal frequency

USB Clock

UART Baud Clock

System Clock

551 Baud Clock

ADC Clock

GPIO...

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

GPIO

GPIO

General Purpose 10

¢ Any GPIO can be an interrupt: \
¢ Edge-triggered on rising, falling or both
¢ Level-sensitive on high or low values

¢ Can directly initiate an ADC sample sequence or uDMA transfer

¢ Toggle rate up to the CPU clock speed on the Advanced
High-Performance Bus. 2 CPU clock speed on the Standard.

+ 5V tolerant in input configuration

¢ Programmable Drive Strength (2, 4, 8mA or 8mA with slew rate
control)

¢ Programmable weak pull-up, pull-down, and open drain
¢ Pin state can be retained during Hibernation mode /

Pin Mux Utility...

Pin Mux Utility

¢ Allows the user to graphically configure the device pin-out
¢ Generates source and header files for use with any of the supported IDE’s

File Edit Help

i % Change Device: L1z seres - LisFIz0mS0R -~ Output Code: (¥ ROM Function Calls

Pin Display Modules Treeview

Digtal 10 | m-ss1
Timer

UART

CAN

Nl

a3 2 SSIOFSS = | = Analog Comparator
Pas 2 ssoRX TRACE

Pas 2 ssom WTimer

Digtal2 Dgtal3 Digtal Digtal s

Pz 18 ssicLk

Ps) eeiscL 12¢

ApC
Pa7 2 Eei1sDA
usB

Pa0 s UtRK T2ccP0
Pa1 ® Ui TaccPt
Pa2 a7 peOSCL | Tacee
Pa3 ® ocospA | Taccet
Pas) Anto ssecLk TICCPO | CANORX
Pas 57 An SSeFss TICCPt | caneTX

Pas 1 SSERX Tocceo
sserx Toccet
Téccro
Taccet
TsccPo

Log Window

To enable a GPIO, double-click on the port name (Ex: PAO) or on the pin number [Double-cick orright-cick on a perpheral function to enable .
To enable a function. double click on its cell. Right click on cell for more options
Hover over

Legend items for more info on color mappin

Function name in the pin display for addtional function info

Legend

Enavieainpul EqaEa O SCIMN Ful Enaiea

fon Enavled Output OD Locked out Partaly Enabled
o

http://www.ti.com/tool/tm4c_pinmux
Masking...

http://www.ti.com/tool/tm4c pinmux

3-6 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

http://www.ti.com/tool/tm4c_pinmux

GPIO

GPIO Address Masking

Each GPIO port has a base address. You can write an 8-bit value directly to this base
address and all eight pins are modified. If you want to modify specific bits, you can use a
bit-mask to indicate which bits are to be modified. This is done in hardware by mapping
each GPIO port to 256 addresses. Bits 9:2 of the address bus are used as the bit mask.

/ GPIO Port D (0x4005.8000)
The register we want to change is GPIO Port D (0x4005.8000)
Current contents of the register is: mmmnnnmn
Write Value (0xEB)

1{1{1]0|1{0|1]1

The value we will write is OXEB:

Instead of writing to GPIO Port D directly, write to l l
0x4005.8098. Bits 9:2 (shown here) become a bit-mask ---I|0|0|0|0|1 |0|0|1 |1 |0|0|0|

for the value you write.

Only the bits marked as “1” in the bit-mask are
Y changed. ojoj1{1)1{0|1|1

New value in GPIO Port D (note
\ that only the red bits were wriney

GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_5|GPIO_PIN_2|GPIO_PIN_1, OxEB);

Note: you specify base address, bit mask, and value to write.
The GIPOPinWrite() function determines the correct address for the mask.

GPIOLOCK ...

The masking technique used on Tiva C Series GPIO is similar to the “bit-banding” technique
used in memory. To aid in the efficiency of software, the GPIO ports allow for the modification
of individual bits in the GPIO Data (GPIODATA) register by using bits [9:2] of the address bus
as a mask. In this manner, software can modify individual GPIO pins in a single, atomic read-
modify-write (RMW) instruction without affecting the state of the other pins. This method is
more efficient than the conventional method of performing a RMW operation to set or clear an
individual GPIO pin. To implement this feature, the GPIODATA register covers 256 locations in
the memory map.

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3-7

GPIO

Critical Function GPIO Protection

Six pins on the device are protected against accidental
programming:
PC3,2,1 & 0: JTAG/SWD
PD7 & PFO: NMI
Any write to the following registers for these pins will not be
stored unless the GPIOLOCK register has been unlocked:
GPIO Alternate Function Select register
GPIO Pull Up or Pull Down select registers
GPIO Digital Enable register
The following sequence will unlock the GPIOLOCK register for
PFO0 using direct register programming:

Reading the GPIOLOCK register returns it to lock status

Lab...

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

Lab 3: Initialization and GPIO

Objective

In this lab we’ll learn how to initialize the clock system and the GPIO peripheral using TivaWare.

We’ll then use the GPIO output to blink an LED on the evaluation board.

Lab 3: Initialization and GPIO

USB Emulation Connection

g r————
AL TR

¢ Configure the system clock
¢ Enable and configure GPIO

¢ Use a software delay to toggle an LED
on the evaluation board

PF3 P2 <3 €2

P> P30 43 2

PCe PO Y

PC5 RST *§

PCe a7 43 &

PC7 pB6 ~§ <

POS R4 G“ N

PO7 PAS ’\ N

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

Procedure
Create lab3 Project

1. » Maximize Code Composer. On the CCS menu bar select File > New = CCS Project.
Make the selections shown below. Make sure to uncheck the “Use default location”
checkbox and select the correct path to the project folder as shown. In the variant box,
just type “123G” to narrow the results in the right-hand box. In the Project templates and
examples window, select Empty Project (with main.c). Click Finish.

& New CCS Project B

S

CCS Project —Re
Create a new CCS Project. ; E

Project name: lab3

Output type: | Executable Y]

[] Use default location

Location: CATMAC123G_LaunchPad_Workshophlab3\project

Device

Family: [ARM v
Variant: 123G ~ | Tiva TM4C123GHGP M vl
Connection: [Stellaris In-Circuit Debug Interface V]

b Advanced settings

* Project templates and examples

type filter text Creates an empty project fully initialized
for the selected device, The project will
contain an empty ‘main.c’ source-file,

e

4 | =] Empty Projects
| Empty Project
| Empty Project (with main.c)
| Empty Assembly-only Project
|y Empty DSP/BIOS v5.x Project
\#r Empty RTSC Project

4 |=| Basic Examples
|5 Hello World

Next > [Fnish || cancel |

m
o

@

When the wizard completes, click the " next to lab3 in the Project Explorer pane to
expand the project. Note that Code Composer has automatically added a mostly empty
main. c file to your project as well as the startup file.

Note: We placed a file called main. txt inthe 1ab3/project folder which contains
the final code for the lab. If you run into trouble, you can refer to this file.

3-10 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

Header Files

2. P Delete the current contents of main. c.

TivaWare™ is written using the ISO/IEC 9899:1999 (or C99) C programming standards
along with the Hungarian standard for naming variables. The C99 C programming
conventions make better use of available hardware, including the IEE754 floating point
unit. To keep everything looking the same, we’re going to use those guidelines.

» Type (or cut/paste from the pdf file) the following lines into main.c to include the
header files needed to access the TivaWare APIs as well as a variable definition:

#include <stdint.h>

#include <stdbool.h>
#include "inc/hw memmap.h"
#include "inc/hw types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"

uint8 t ui8PinData=2;

The use of the <> restricts the search path to only the specified path. Using the
causes the search to start in the project directory. For includes like the two standard ones,
you want to assure that you’re accessing the original, standard files ... not one’s that may
have been modified.

stdint.h: Variable definitions for the C99 standard
stdbool.int: Boolean definitions for the C99 standard

hw_memmap . h : Macros defining the memory map of the Tiva C Series device. This
includes defines such as peripheral base address locations such as GPIO_PORTF_BASE.

hw_types.h : Defines common types and macros

sysctl.h: Defines and macros for System Control API of DriverLib. This includes
API functions such as SysCt1ClockSet and SysCtlClockGet.

gpio.h : Defines and macros for GPIO API of DriverLib. This includes API functions
such as GPIOPinTypePWM and GPIOPinWrite.

uint8_ t ui8PinData=2;: Creates an integer variable called ui8PinData and
initializes it to 2. This will be used to cycle through the three LEDs, lighting them one at
a time. Note that the C99 type is an 8-bit unsigned integer and that the variable name
reflects this.

You will see question marks to the left of the include lines in main. c displayed in the
edit pane, telling us that the include files can’t be found. We’ll fix this later.

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3-11

Lab 3: Initialization and GPIO

main() Function
3. Let’s drop in a template for our main function.
» Leave a line for spacing and add this code after the previous declarations:
int main(void)
{
}

If you type this in, notice that the editor will automatically add the closing brace when
you add the opening one. Why wasn’t this thought of sooner?

3-12 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

Clock Setup

4. Configure the system clock to run using a 16 MHz crystal on the main oscillator, driving
the 400MHz PLL. The 400MHz PLL oscillates at only that frequency, but can be driven
by crystals or oscillators running between 5 and 25MHz. There is a default /2 divider in

the clock path and we are specifying another /5, which totals 10. That means the System
Clock will be 40MHz.

» Enter this single line of code inside main () :

SysCtlClockSet (SYSCTL_SYSDIV_5|SYSCTL USE_ PLL|SYSCTL XTAL 16MHZ|SYSCTL OSC_MAIN) ;

The diagram below is an abbreviated drawing of the clock tree to emphasize the System
Clock path and choices. Note the darkened path.

PLL -,
N— . (400 Wriz) LWART B Clock
|
@E L+ _ |"
L System Clock
Ereciaion _—
Internal OSC I s
(18 MHz)
inbemal CrSC
30 kHz
oK) - —— 55| Baud Clock
L - 35
. Hibsmation i
Iosc - QSCSRCDA .
[32.768 kHz) L
- =]

The diagram below is an excerpt from the LaunchPad board schematic. Note that the

crystal attached to the main oscillator inputs is 16MHz, while the crystal attached to the
real-time clock (RTC) inputs is 32,768Hz.

FMEU PN
ﬁ)
res oo
RESET ‘D“%
RESET | I?
—e
1
T T] TAREETrE
J_ma
O1F
Tor
— us
— ®\mEsEr WARE
= 4 csci mERE
05C0 -
2 VBAT—
- 2 xasco N
?anx VDDA —|
2 P g=LL XOSC1 1
e 88 | 8% vool 2
0 A e SR
L. L - =
—12 e
cH caz 27 p
—|—1DpF Tﬂ}pF I | an vopchZ
— %8 | yooc oDC -2
078K
Y1 LM4F120

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3-13

Lab 3: Initialization and GPIO

GPIO Configuration

5. Before calling any peripheral specific driverLib function, we must enable the clock
for that peripheral. If you fail to do this, it will result in a Fault ISR (address fault).This is
a common mistake for new Tiva C Series users. The second statement below configures
the three GPIO pins connected to the LEDs as outputs. The excerpt below of the
LaunchPad board schematic shows GPIO pins PF1, PF2 and PF3 are connected to the
LED:s.

28 —F
pr1 [22 PEQ
30 PE1
PF2
31 E
PF3
PF4 -2 PE3
PE4,
LM4F120
0, Rl e ,
] (USRS,
R AAA =5k ED R
RAA M=) ED.B
VR ;: LED.G
—WW USR_SW1;

» Leave a line for spacing, then enter these two lines of code inside main () after the
line in the previous step.

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF) ;
GPIOPinTypeGPIOOutput (GPIO_PORTF_BASE, GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3);

The base addresses of the GPIO ports listed in the User Guide are shown below. Note
that they are all within the memory map’s peripheral section shown in module 1. APB
refers to the Advanced Peripheral Bus, while AHB refers to the Advanced High-
Performance Bus. The AHB offers better back-to-back performance than the APB bus.
GPIO ports accessed through the AHB can toggle every clock cycle vs. once every two
cycles for ports on the APB. In power sensitive applications, the APB would be a better
choice than the AHB. In our labs, GPIO PORTF BASE is 0x40025000.

GPIO Port A (APB): 0x4000.4000
GPIO Port A (AHB): 0x4005.8000
GPIO Port B (APB): 0x4000.5000
GPIO Port B (AHB): 0x4005.9000
GPIO Port C (APB): 0x4000.6000
GPIO Port C (AHB): 0x4005.A000
GPIO Port D (APB): 0x4000.7000
GPIO Port D (AHB): 0x4005.B000
GPIO Port E (APB): 0x4002.4000
GPIO Port E (AHB): 0x4005.C000
GPIO Port F (APB): 0x4002.5000 <:|
GPIO Port F (AHB): 0x4005.D000

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

while() Loop

6. Finally, create a while (1) loop to send a “1” and “0” to the selected GPIO pin, with an
equal delay between the two.

SysCtlDelay () is a loop timer provided in TivaWare. The count parameter is the loop
count, not the actual delay in clock cycles. Each loop is 3 CPU cycles.

To write to the GPIO pin, use the GPIO API function call GPIOPinWrite. Make sure
to read and understand how the GPIOPinWrite function is used in the datasheet. The
third data argument is not simply a 1 or 0, but represents the entire 8-bit data port. The
second argument is a bit-packed mask of the data being written.

In our example below, we are writing the value in the ui 8PinData variable to all three
GPIO pins that are connected to the LEDs. Only those three pins will be written to based
on the bit mask specified. The final instruction cycles through the LEDs by making
ui8PinData equal to 2, 4, 8, 2, 4, 8 and so on. Note that the values sent to the pins match
their positions; a “one” in the bit two position can only reach the bit two pin on the port.

Now might be a good time to look at the Datasheet for your Tiva C Series device. Check
out the GPIO chapter to understand the unique way the GPIO data register is designed
and the advantages of this approach.

» Leave a line for spacing, and then add this code after the code in the previous step.

while (1)

{

GPIOPinWrite (GPIO_PORTF_BASE, GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3, ui8PinData);
SysCtlDelay (2000000) ;

GPIOPinWrite (GPIO_PORTF_BASE, GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3, 0x00);
SysCtlDelay (2000000) ;

if (ui8PinData==8) {ui8PinData=2;} else {ui8PinData=ui8PinData*2;}

}

If you find that the indentation of your code doesn’t look quite right, » select all of your
code by clicking CTRL-A and then right-click on the selected code. Select Source >
Correct Indentation. Notice the other great stuff under the Source and Surround With
selections.

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3-15

Lab 3: Initialization and GPIO

7.

» Click the Save button to save your work. Your code should look something like this:

#tinclude
#tinclude
#tinclude
#tinclude
#include
#include

uint8_t

int main

<stdint.h>
<stdbool.h>
"inc/hw_memmap.h"
"inc/hw_types.h"
"driverlib/sysctl.h"
"driverlib/gpio.h"

ui8PinData=2;
(void)
SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN 2|GPIO_PIN 3);

while(1)

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1| GPIO_PIN_2| GPIO_PIN_3, ui8PinData);
SysCtlDelay(2000000) ;

GPIOPinWrite(GPIO_PORTF_BASE, GPIO _PIN_1|GPIO PIN_2|GPIO_PIN_3, 0x00);
SysCtlDelay(2000000) ;

if(ui8PinData==8) {ui8PinData=2;} else {ui8PinData=ui8PinData*2;}

If you’re having problems, you can cut/paste this code into main. c or you can cut/paste
from the main. txt file in your Project Explorer pane.

If you were to try building this code now (please don’t), it would fail. Note the question
marks next to the include statements ... CCS has no idea where those files are located ...
we still need to set our build options.

NOTE: There is a delay of 3 to 6 clock cycles between enabling a peripheral and being
able to use it. In most cases, the amount of time required by the API coding itself
prevents any issues, but there are situations where you may be able to cause a system
fault by attempting to access the peripheral before it becomes available.

A good programming habit is to interleave your peripheral enable statements as follows:

Enable ADC
Enable GPIO
Config ADC
Config GPIO

This interleaving will prevent any possible system faults without incorporating software
delays.

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

Startup Code

8.

In addition to the main file you have created, you will also need a startup file specific to
the tool chain you are using. This file contains the vector table, startup routines to copy
initialized data to RAM and clear the bss section, and default fault ISRs. The New Project
wizard automatically added a copy of this file into the project for us.

» Double-click on tm4c123gh6pm startup ccs.c in your Project Explorer pane
and take a look around. Don’t make any changes at this time. Close the file.

Set the Build Options
9. P Right-click on Lab3 in the Project Explorer pane and select Properties.

Click Include Options under ARM Compiler. In the bottom, include op |
search path pane, click the Add button and add the following search path:

${TIVAWARE_INSTALL}

Remember that those are braces, not parentheses. This is the path we created earlier by
using the vars. ini file in the lab2 project. Since those paths are defined at the
workspace level, we can simply use it again here.

'+ Properties for lab3 G |
type filter text Include Options (=1 g v
» Resource
General
4 Build Cenfiguration: [Dabug [Active] '] [Manage Configurations...
4 ARM Compiler
Processor Options
Optimization
Debug Options Specify a preinclude file {--preinclude) &
Include Options
MISRA-C:2004
» Advanced Options
> ARM Linker
Debug
Add dir to #Finclude search path (--include_path, -T) LER ER=T
"${CG_TOOL_ ROOT}include"
@) Show advanced settings OK] [Cancel

» Click OK.

After a moment, CCS will refresh the project and you should see the question marks dis-
appear from the include lines inmain.c.

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3-17

Lab 3: Initialization and GPIO

10. Add the Driver Library File

The driverlib.lib file needs to be in the 1ab3 project. In 1ab2 we added a link to this
file. You can see it under your 1ab2 project in the Project Explorer pane. Can it be as
simple as dragging it over? Let’s try it.

» Click and hold driverlib.1ib under the 1ab2 project in the Project Explorer
pane. » Drag it onto the 1ab3 project and release7. You should now see the file under
lab3.

The file that was linked to 1ab2 is now linked to 1ab3. That was even easier.

11. It can be easy to get confused and mistakenly build or work on the wrong project or file.
To reduce that possibility, P right-click on 1ab2 and select Close Project. This will
collapse the project and close any open files you have from the project. You can open it
again at any time. » Click on the lab3 project name to make sure the project is active. It
will say 1ab3 [Active - Debug]. This tells you that the lab3 project is active and
that the build configuration is debug.

12. Stack Considerations

» Test build the lab3 to check for errors by clicking the Build (Hammer)
button. Note that a warning appears in the Problems pane in the lower right ':%
of CCS. This error; “creating .stack section with default size of 0x800...”
tells us that the stack size was not specified. We can eliminate this warning
by specifying the stack size(s).

» Right-click on the lab3 project in the Project Explorer pane and select Properties. Expand
Build 2 ARM Linker and click on Basic Options. Find the Heap size and Set C system
stack size boxes as shown below.

type filter text Basic Options (IR SR
> Resource
General
4 Build Configuration: IDEbUQ [Active] '] IManage Configurations...]
» ARM Compiler
a ARM Linker
Basic Options
File Search Path Specify output file name (--output _file, -o) "§{ProjMame}.out” Browse... |
DEE Advanced Options Input and output sections listed into <file> (--map_file, -m) "§{ProjMame}.map"”
ebug
Heap size for C/C++ dynamic memory allocation (--heap_size, -heap) 0
Set C system stack size (--stack_size, -stack) 100

» Enter 0 for the Heap size and 100 for the C system stack size and click OK. We won’t be
using the heap in these labs and our need for a C stack is very limited. Failure to monitor
the size of your stack(s) can result in significant amount of memory being wasted. Test
build again to make sure the warning no longer appears.

These settings will be made for you in the rest of the labs.

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

Compile, Download and Run the Code

13. » Compile and download your application by clicking the Debug button on
the menu bar. If you are prompted to save changes, do so. If you have any
issues, correct them, and then click the Debug button again (see the hints

R

page in section 2). After a successful build, the CCS Debug perspective will appear.

» Click the Resume button to run the program that was downloaded to the
flash memory of your device. You should see the LEDs flashing. If you want
to edit the code to change the delay timing or which LEDs that are flashing,
go ahead.

L[

If you suspend the code and get the message “No source available for ...”, simply close
that editor tab. The source code for that function is not present in our project. It is only

present as a library file.

» Click on the Terminate button to return to the CCS Edit perspective.

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

Examine the Tiva C Series Pin Masking Feature

14.

15.

16.

17.

18.

19.

20.

Let’s change the code so that all three LEDs are on all the time. Make the following
changes:

» Find the line containinguint8 t ui8PinData=2; and change it to
uint8 t ui8PinData=14; That’s 8+4+2=14, meaning all three LEDs will light.

» Find the line containing i f (ui8PinData ... and comment it out by
adding // to the start of the line.

T

» Compile and download your application by clicking the Debug button on the menu
bar. » Click the Resume button to run the code. With all three LEDs being lit at the
same time, you should see them flashing an almost white color.

» Click the Save button to save your changes.

Now let’s use the pin masking feature to light the LEDs one at the time. Remember that
we don’t have to go back to the CCS Edit perspective to edit the code. We can do it right
here. In the code window, look at the first line containing GPIOPinWrite () . The pin
mask here is GPIO PIN 1| GPIO PIN 2| GPIO PIN 3, meaning that all three of
these bit positions, corresponding to the positions of the LED will be sent to the GPIO
port. » Change the bit mask to GPIO PIN 1. The line should look like this:

GPIOPinWrite (GPIO PORTF BASE, GPIO PIN 1, ui8PinData);

» Compile and download your application by clicking the Debug button on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to flash:

» Click the Resume button. If you predicted red, you were correct.

In the code window, P change the first GPIOPinWrite() line to:

GPIOPinWrite (GPIO PORTF BASE, GPIO PIN 2, ui8PinData);

» Compile and download your application by clicking the Debug button on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to flash:

» Click the Resume button. If you predicted blue, you were correct.

In the code window, P change the first GPIOPinWrite() line to:

GPIOPinWrite (GPIO PORTF BASE, GPIO PIN 3, ui8PinData);

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Lab 3: Initialization and GPIO

21. » Compile and download your application by clicking the Debug button on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to flash:

» Click the Resume button. If you predicted green, you were correct.

22. Let’s change the code back to the original set up: Make the following changes:

» Find the line containinguint8 t ui8PinData=14; and change it back to
uint8 t ui8PinData=2;
» Find the line containing 1 £ (ui8PinData ... and uncomment it

» Find the line containing the first GPTOPinWrite () and change it back to:

GPIOPinWrite (GPIO PORTF BASE, GPIO PIN 1| GPIO PIN 2| GPIO PIN 3, ui8PinData);

23. » Compile and download your application by clicking the Debug button on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes. Click the Resume button and verify that the code
works like it did before.

24. » Click on the Terminate button to return to the CCS Edit perspec-
tive. » Minimize Code Composer Studio.

Homework idea: Look at the use of the ButtonsPoll () APIcall inthe gs-rgb.c
file in the quickstart application (qs-rgb) folder. Write code to use that API function to
turn the LEDs on and off using the pushbuttons.

You’re done.

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3-21

Lab 3: Initialization and GPIO

3-22 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Interrupts and the Timers

Introduction

This chapter will introduce you to the use of interrupts on the ARM® Cortex-M4" and the general
purpose timer module (GPTM). The lab will use the timer to generate interrupts. We will write a
timer interrupt service routine (ISR) that will blink the LED.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio
Introduction to TivaWare™, Initialization and GPIO
(Interrupts and the Timers | ‘
ADC12
Hibernation Module
USB
Memory and Security
Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA
Sensor Hub
PWM

NVIC...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4-1

Chapter Topics

Chapter Topics

Interrupts and the Timers 4-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 4-2
COTLEX-ME INVIC ...ttt ettt ettt et ettt et et e en et et e e e enneennen 4-3
Cortex-M4 Interrupt Handing GNd VECIOFS............cc.cccuiuiiiiiieiieiie ettt 4-7
General Purpose Timer MOGUIEcc..occueeciieeiiiiiieeeiee ettt eseseesevaeenaee e 4-9
Lab 4: Interrupts And the TIMETccuoceeiiiuieeiie ettt et e st e b e eseesbeeenseeenseas 4-11

L0 10} 115 AR 4-11
PIOCEAULIE ...ttt ettt ettt bbbt ea ettt st b e s bt bt et e st e e nae b e 4-12

4-2

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Cortex-M4 NVIC

Cortex-M4 NVIC
Nested Vectored Interrupt Controller (NVIC)

Handles exceptions and interrupts \
8 programmable priority levels, priority grouping

7 exceptions and 71 Interrupts

Automatic state saving and restoring

Automatic reading of the vector table entry
Pre-emptive/Nested Interrupts

Tail-chaining

Deterministic: always 12 cycles or 6 with tail-chaining /

K000000>

Motor control ISRs (e.g. PWM, ADC)

Communication ISRs (e.g. CAN)

Main 1pp|ication (foreground)
t

Tail Chaining...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4-3

Cortex-M4 NVIC

Interrupt Latency - Tail Chaining

o N

Priority | TRQ1

1RQ2

Tail-chaining

Cortex-M4 - ISR 1 l ISR 2
InterruptHl‘\zndlmg in * 12 # # 6 }« F 12 »‘

k Cycles Cycles Cycles /

Pre-emption ...

In the above example, two interrupts occur simultaneously.

In most processors, interrupt handling is fairly simple and each interrupt will start a

PUSH PROCESSOR STATE — RUN ISR — POP PROCESSOR STATE process. Since IRQ1 was
higher priority, the NVIC causes the CPU to run it first. When the interrupt handler (ISR) for the
first interrupt is complete, the NVIC sees a second interrupt pending, and runs that ISR. This is
quite wasteful since the middle POP and PUSH are moving the exact same processor state back
and forth to stack memory. If the interrupt handler could have seen that a second interrupt was
pending, it could have “tail-chained” into the next ISR, saving power and cycles.

The Tiva C Series NVIC does exactly this. It takes only 12 cycles to PUSH and POP the
processor state. When the NVIC sees a pending ISR during the execution of the current one, it
will “tail-chain” the execution using just 6 cycles to complete the process.

If you are depending on interrupts to be run quickly, the Tiva C Series devices offer a huge
advantage here.

4-4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Cortex-M4 NVIC

Interrupt Latency — Pre-emption

Priority IRQ1

~

IRQ2

Typical processor ISR 1 POP m POP

Cortex-M4 [ISR 1 m ISR 2
| Dy 12~

k | Cyicfes‘ Cycles Cycles /

Late arrival...

In this example, the processor was in the process of popping the processor status from the stack
for the first ISR when a second ISR occurred.

In most processors, the interrupt controller would complete the process before starting the entire
PUSH-ISR-POP process over again, wasting precious cycles and power doing so.

The Tiva C Series NVIC is able to stop the POP process, return the stack pointer to the proper
location and “tail-chain” into the next ISR with only 6 cycles.

Again, this is a huge advantage for interrupt handling on Tiva C Series devices.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4-5

Cortex-M4 NVIC

Interrupt Latency — Late Arrival

4 N

Highest| IRQ1———
Priority

IRQ2

Cortex-M4 . ISR 1 l ISR 2
| ok 12~

Cycles Cycles

- /

Interrupt handling...

In this example, a higher priority interrupt has arrived just after a lower priority one.

In most processors, the interrupt controller is smart enough to recognize the late arrival of a
higher priority interrupt and restart the interrupt procedure accordingly.

The Stellaris NVIC takes this one step further. The PUSH is the same process regardless of the
ISR, so the Stellaris NVIC simply changes the fetched ISR. In between the ISRs, “tail chaining”
is done to save cycles.

Once more, Stellaris devices handle interrupts with lower latency.

4-6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Cortex-M4 Interrupt Handing and Vectors

Cortex-M4 Interrupt Handing and Vectors

Cortex-M4® Interrupt Handling

Interrupt handling is automatic. No instruction overhead.

(Entry N
¢ Automatically pushes registers RO—R3, R12, LR, PSR, and PC onto the
stack
¢ In parallel, ISR is pre-fetched on the instruction bus. ISR ready to start
_ executing as soon as stack PUSH complete)
(" Exit N
¢ Processor state is automatically restored from the stack
< In parallel, interrupted instruction is pre-fetched ready for execution
upon completion of stack POP
Exception types...
Cortex-M4® Exception Types
Vector Exception Priority Vector Descriptions
Number Type address
1 Reset -3 0x04 Reset
2 NMI -2 0x08 Non-Maskable Interrupt
3 Hard Fault -1 0x0C Error during exception processing
4 Memory Programmable 0x10 MPU violation
Management
Fault
5 Bus Fault Programmable 0x14 Bus error (Prefetch or data abort)
6 Usage Fault Programmable 0x18 Exceptions due to program errors
7-10 Reserved - 0x1C - 0x28
1" Svcall Programmable 0x2C SVC instruction
12 Debug Monitor | Programmable 0x30 Exception for debug
13 Reserved - 0x34
14 PendSV Programmable 0x38
15 SysTick Programmable 0x3C System Tick Timer
16 and above | Interrupts Programmable 0x40 External interrupts (Peripherals)

Vector Table...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

4-7

Cortex-M4 Interrupt Handing and Vectors

Cortex-M4® Vector Table
Exception number IRQ number Offset Vector
154 138 IRQ131
0x0268
ﬂfter reset, vector table is located at \ : L :
address 0 : : :
0x004C
18 2 IRQ2
) . 0x0048
Each entry contains the address of the v ' o fRa1
function to be executed 16 oo IRa0
15 -1 Systick
0x003C
i) 14 2 PendSV
The value in address 0x00 is used as 1 0x0038 Reserved
starting address of the Main Stack 12 Reserved for Debug
Pointer (MSP) It 5 SvCall
0x002C
10
+ Vector table can be relocated by writing 9 Reserved
to the VTABLE register 8
(must be aligned on a 1KB boundary) T
6 -10 Usage fault
0x0018
5 il 0x0014 Bus fault
* Ope_n startup_ccs.c to see vector table 4 12 oo o [Memery management aut
Qadmg 3 3 ooe Hard fault
2 -14 NMI
0x0008
1 Reset
0x0004 -
Initial SP value
0x0000
GPTM...

4-8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

General Purpose Timer Module

General Purpose Timer Module

General Purpose Timer Module

ﬁSix 16/32-bit and Six 32/64-bit general purpose timers \
¢ Twelve 16/32-bit and Twelve 32/64-bit capture/compare/PWM pins
¢ Timer modes:

- One-shot

- Periodic R

- Input edge count or time capture with 16-bit prescaler LR \

- PWM generation (separated only))
- Real-Time Clock (concatenated only) ‘&

Count up or down Y A
¢ Simple PWM (no deadband generation)

¢ Support for timer synchronization, daisy-chains, and stalling
during debugging

¢ May trigger ADC samples or DMA transfers /

Lab...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4-9

General Purpose Timer Module

4-10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Lab 4: Interrupts and the Timer

Lab 4: Interrupts and the Timer

Objective

In this lab we’ll set up the timer to generate interrupts, and then write the code that responds to
the interrupt ... flashing the LED. We’ll also experiment with generating a system level
exception, by attempting to configure a peripheral before it’s been enabled.

Lab 4: Interrupts and the GP Timer

USB Emulation Connection

@ ¢ PB5 CNO - -
@° 47 P80 PDO) o R LR
i i Py et 2 PC4 PFO 4})‘
¢ Enable and configure the Timer g™ ==Y
¢ Enable and configure Interrupts y i ,',’Z::f;;: '{
& Write the ISR code and test i ' = 3
) #3 TExas INSTRUMENTS
¢ Generate an exception S

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4-11

Lab 4: Interrupts and the Timer

Procedure

Import Lab4 Project

1. We have already created the Lab4 project for you with an empty main. c, a startup file

and all necessary project and build options set.

» Maximize Code Composer and click Project = Import Existing CCS Eclipse Project.

Make the settings show below and click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

-

v+ Import CCS Eclipse Projects

—

Select Existing CCS Eclipse Project
Select a directory to search for existing CC5S Eclipse projects.

@) Select search-directory: CATMAC123G_LaunchPad_Workshophlabd'\project

(71 Select archive file:

Discovered projects:

BT labd [CATMAC123G_LaunchPad_Workshop'labdproject]

[] Copy projects into workspace
[Automatically import referenced projects

Cpen the Resource Explorer and browse available example projects...

=)

Browse...

Browse...

Select All
Deselect All

Refresh

@:‘ Finish

Cancel

» Close the 1ab3 project by right-clicking on 1ab3 in the Project Explorer pane and

selecting Close Project.

4-12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Lab 4: Interrupts and the Timer

Header Files

2. P Expand the lab by clicking the " to the left of lab4 in the Project Explorer pane.
Open main. c for editing by double-clicking on it.

» Type (or copy/paste) the following seven lines into main.c to include the header files
needed to access the TivaWare APIs :

#include <stdint.h>

#include <stdbool.h>

#include "inc/tm4c123gh6pm.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/interrupt.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"

Several new include headers are needed to support the hardware we’ll be using in this
code:

tm4c123gh6pm. h: Definitions for the interrupt and register assignments on the Tiva C
Series device on the LaunchPad board

interrupt.h : Defines and macros for NVIC Controller (Interrupt) API of
driverLib. This includes API functions such as IntEnable and
IntPrioritySet.

timer.h : Defines and macros for Timer API of driverLib. This includes API
functions such as TimerConfigure and TimerLoadSet.

Note that there are no question marks shown in the editor pane beside your include
statements. The paths have already been set up for you in the imported project.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4-13

Lab 4: Interrupts and the Timer

main()

3. We’re going to compute our timer delays using the variable ui32Period. Create main()

along with an unsigned 32-bit integer (that’s why the variable is called ui32Period) for
this computation.

» Leave a line for spacing and type (or cut/paste) the following after the previous lines:

int main(void)

{
uint32_t ui32Period;
}
Clock Setup

4. Configure the system clock to run at 40MHz (like in lab3) with the following call.

» Leave a blank line for spacing and enter this line of code inside main () :

SysCtlClockSet (SYSCTL SYSDIV_5|SYSCTL_USE PLL|SYSCTL XTAL 16MHZ|SYSCTL_OSC MAIN) ;

GPIO Configuration

5.

Like the previous lab, we need to enable the GPIO peripheral and configure the pins
connected to the LEDs as outputs.
» Leave a line for spacing and add these lines after the last ones:

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF) ;
GPIOPinTypeGPIOOutput (GPIO_PORTF_BASE, GPIO_PIN 1|GPIO_PIN 2|GPIO_PIN 3);

Timer Configuration

6.

Again, before calling any peripheral specific driverLib function we must enable the
clock to that peripheral. If you fail to do this, it will result in a Fault ISR (address fault).

The second statement configures Timer 0 as a 32-bit timer in periodic mode. Note that
when Timer O is configured as a 32-bit timer, it combines the two 16-bit timers Timer 0A
and Timer 0B. See the General Purpose Timer chapter of the device datasheet for more
information. TIMERO BASE is the start of the timer registers for Timer0 in, you guessed
it, the peripheral section of the memory map.

» Add a line for spacing and type the following lines of code after the previous ones:

SysCtlPeripheralEnable (SYSCTL_ PERIPH TIMERO) ;
TimerConfigure (TIMERO BASE, TIMER CFG_PERIODIC) ;

4-14

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Lab 4: Interrupts and the Timer

Calculate Delay

7. To toggle a GPIO at 10Hz and a 50% duty cycle, you need to generate an interrupt at /2
of the desired period. First, calculate the number of clock cycles required for a 10Hz
period by calling SysCt1ClockGet () and dividing it by your desired frequency.
Then divide that by two, since we want a count that is /2 of that for the interrupt.

This calculated period is then loaded into the Timer’s Interval Load register using the
TimerLoadSet function of the driverLib Timer API. Note that you have to subtract
one from the timer period since the interrupt fires at the zero count.

» Add a line for spacing and add the following lines of code after the previous ones:

ui32Period = (SysCtlClockGet() / 10) / 2;
TimerLoadSet (TIMERO_BASE, TIMER A, ui32Period -1);

Interrupt Enable

8. Next, we have to enable the interrupt ... not only in the timer module, but also in the
NVIC (the Nested Vector Interrupt Controller, the Cortex M4’s interrupt controller).
IntMasterEnable () is the master interrupt enable API for all interrupts.
IntEnable enables the specific vector associated with TimerOA. TimerIntEnable,
enables a specific event within the timer to generate an interrupt. In this case we are
enabling an interrupt to be generated on a timeout of Timer OA.

» Add a line for spacing and type the next three lines of code after the previous ones:

IntEnable (INT_TIMEROA) ;
TimerIntEnable(TIMERO_BASE, TIMER_TIMA_TIMEOUT);
IntMasterEnable() ;

Timer Enable

9. Finally we can enable the timer. This will start the timer and interrupts will begin
triggering on the timeouts.
» Add a line for spacing and type the following line of code after the previous ones:

TimerEnable (TIMERO BASE, TIMER A);

while(1) Loop

10. The main loop of the code is simply an empty while (1) loop since the toggling of the
GPIO will happen in the interrupt service routine.

» Add a line for spacing and add the following lines of code after the previous ones:

while (1)
{
1

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4-15

Lab 4: Interrupts and the Timer

Timer Interrupt Handler

11. Since this application is interrupt driven, we must add an interrupt handler or ISR for the
Timer. In the interrupt handler, we must first clear the interrupt source and then toggle
the GPIO pin based on the current state. Just in case your last program left any of the
LEDs on, the first GPIOPinWrite () call turns off all three LEDs. Writing a 4 to pin 2
lights the blue LED.

» Add a line for spacing and add the following lines of code after the final closing brace
ofmain () .

void TimerOIntHandler (void)

{
// Clear the timer interrupt
TimerIntClear (TIMERO_BASE, TIMER TIMA TIMEOUT) ;

// Read the current state of the GPIO pin and
// write back the opposite state

if (GPIOPinRead (GPIO_PORTF_BASE, GPIO_PIN_2))

{

GPIOPinWrite (GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0);
}

else
{
GPIOPinWrite (GPIO_PORTF BASE, GPIO_PIN 2, 4);
}
}

» If your indentation looks wrong, select all the code by pressing Ctrl-A, right-click on
the selected code and pick Source = Correct Indentation.

4-16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Lab 4: Interrupts and the Timer

12. » Click the Save button to save your work.

Your code should look something like this:

#include <stdint.h>

#include <stdbool.h>

#include "inc/tm4c123gh6pm.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/interrupt.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"

int main(void)
uint32_t ui32Period;
SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

SysCtlPeripheralEnable (SYSCTL_PERIPH_TIMER®);
TimerConfigure(TIMERO_BASE, TIMER_CFG_PERIODIC);

ui32Period = (SysCtlClockGet() / 10) / 2;
TimerLoadSet (TIMERO_BASE, TIMER_A, ui32Period -1);

IntEnable (INT_TIMER@A);
TimerIntEnable(TIMERO_BASE, TIMER_TIMA_TIMEOUT);
IntMasterEnable();

TimerEnable(TIMER®_BASE, TIMER_A);

while(1)
{
}
}
void Timer©@IntHandler(void)
{
// Clear the timer interrupt
TimerIntClear(TIMERO_BASE, TIMER_TIMA_TIMEOUT);
// Read the current state of the GPIO pin and
// write back the opposite state
if(GPIOPinRead (GPIO_PORTF_BASE, GPIO_PIN_2))
{
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0);
}
else
{
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 4);
}
¥

If you’re having problems, this code is contained in main . txt in your project folder.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4-17

Lab 4: Interrupts and the Timer

Startup Code

13. » Open tm4cl23ghébpm startup ccs.c for editing. This file contains the vector
table that we discussed during the presentation.

» Open the file and look for the Timer 0 subtimer A vector.

When that timer interrupt occurs, the NVIC will look in this vector location for the
address of the ISR (interrupt service routine). That address is where the next code fetch
will happen.

» You need to carefully find the appropriate vector position and replace
IntDefaultHandler with the name of your Interrupt handler (We suggest that you
copy/paste this). In this case you will add TimerO0IntHandler to the position with the
comment “Timer 0 subtimer A” asshown below:

IntDefanltHandler, S ADC Sequence 2
IntDefanltHandler, S ADC Sequence 3
IntDefanltHandler, S/ Watchdog timer
TimerO0IntHandler, // Timer 0 subtimer A
IntDefaultHandler, /¢ Timer 0 subtimer B
IntDefanltHandler, S/ Timer 1 subtimer A

You also need to declare this function at the top of this file as external. This is necessary
for the compiler to resolve this symbol.

» Find the line containing:

extern void _c_int00(void);

» and add:

extern void TimerOIntHandler (void) ;

right below it as shown below:

ff External declaration for the reset handler that i= to be called when the

f/ processor is started

21 extern vold _c_int00(void);
42 extern void TimerOIntHandler (void) ;

By the way, the IntDefaultHandler handler will catch any “unintentional”
interrupts that may occur. Since this handler is also a while (1) loop, you might want
to consider changing it for your production system.

» Click the Save button.

4-18 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Lab 4: Interrupts and the Timer

Pre-defined Name

14. In order for the compiler to find the correct interrupt mapping it needs to know exactly
which part is being used. We do that through a build option called a pre-defined name.

» Right-click on lab4 in your Project Explorer and select Properties.

» Under Build > ARM Compiler - Advanced Options > Predefined Symbols, and
assure that PART_TM4C123GH6PM is listed as shown below. If it isn’t, click

the add button for top pane and add PART_TM4C123GH6PM as the pre- E
define NAME as shown below. :
f '+ Properties for labd LI_I—J@ e |
type filter text Predefined Symbols (=1 v v
> Resource
General
a Build Configuration: |Debug [Active] '] [ManageConfigurations...l

4 ARM Compiler
Processor Options

Optimization

Debug Options Pre-define NAME (--define, -0} 28 8
Include Options PART_TM4C123GHEPM

MISRA-C:2004

4 Advanced Options
Advanced Debug Options
Language Options
Parser Preprocessing Opti
Predefined Symbols
Diagnostic Options
Runtime Model Options
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumpt

Undefine MAME (--undefing, -U) {a

Assembler Options
File Type Specifier
Directory Specifier
Default File Extensions
Command Files
> ARM Linker
Debug

< | i | +

'?‘\
C) Show advanced settings oK J [Cancel

This property, along with the others that we’ve already seen, will already be set in the
remaining labs in this workshop

» Click OK.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4-19

Lab 4: Interrupts and the Timer

Compile, Download and Run The Code

15. » Click the Debug button on the menu bar to compile and download your

application. If you have any issues, correct them, and then click the Debug #;3:\
button again. (You were careful about that interrupt vector placement,

weren’t you?) After a successful build, the CCS Debug perspective will
appear.

» Click the Resume button to run the program that was downloaded to the I_IB
flash memory of your device. The blue LED should be flashing quickly on
your LaunchPad board.

When you’re done, P> click the Terminate button to return to the Editing
perspective. Iil
Exceptions
16. » Find the line of code that enables the GPIO peripheral and comment it out as shown
below:
13 SysCtlClockSet (SYSCTL SYSDIV 5|SYSCTL USE PLL|SYSCTL XTAL 16MHZ|SYSCTL OSC_MAIN) ;

SysCtlPeripheralEnakble (5¥YS5CTL PERTFH GPIOF):

GPIOPinTypeGPIOOntpnt (FFIC FORTE BAS

£, GPIO FIN 1|GPFIC PIN 2|GPIC PIN 3);

17.

18.

19.

Now our code will be accessing the peripheral without the peripheral clock being
enabled. This should generate an exception.

» Compile and download your application by clicking the Debug button on the menu
bar. Save your changes when you’re prompted. » Click the Resume button to run the
program. What?! The program seems to run just fine doesn’t it? The blue LED is
flashing. The problem is that we enabled the peripheral in our earlier run of the code ...
and we never disabled it or power cycled the part.

» Click the Terminate button to return to the editing perspective. » Cycle the power on
the board using the power switch. This will return the peripheral registers to their default
power-up states.

The code with the enable line commented out is now running, but note that the blue LED
isn’t flashing now.

» Compile and download your application by clicking the Debug button on the menu
bar, then click the Resume button to run the program. Again, the blue LED should not be
blinking.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Lab 4: Interrupts and the Timer

20. » Click the Suspend button to stop execution. You should see that
execution has trapped inside the Fault ISR () interrupt routine. All of
the exception ISRs trap in while(1) loops in the provided code. That (| B
probably isn’t the behavior you want in your production code.

21. » Back in main. c, uncomment the line enabling the GPIO port. » Compile, download
and run your code to make sure everything works properly. When you’re done, P click
the Terminate button to return to the Editing perspective

22. » Close the lab4 project. Minimize CCS.

Homework Idea: Investigate the Pulse-Width Modulation capabilities of the general
purpose timer. Program the timer to blink the LED faster than your eye can see, usually
above 30Hz and use the pulse width to vary the apparent intensity. Write a loop to make
the intensity vary periodically.

You’re done.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4-21

Lab 4: Interrupts and the Timer

4-22 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

ADC12

Introduction

This chapter will introduce you to the use of the analog to digital conversion (ADC) peripheral on

the TM4C123GH6PM. The lab will use the ADC and the sequencer to sample the on-chip

temperature sensor.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio
Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers iE
Hibernation Module
USB
Memory and Security
Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA
Sensor Hub
PWM

ADC...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Chapter Topics

Chapter Topics
ADC12 5-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 5-2
ADCI2 .ttt bbb 5-3
SAMPLE SEGUERICETS. ..ottt ettt et e e ettt e s tb e et e e s tbeeeabeestbeensbeessbeenaseessbeensseenens 5-4
LAD 5: ADCI2. ...t 5-5
[0)0] 1015 AU ST 5-5
PIOCEAULEceiiiiciee ettt nens 5-6
Hardware QVerGZING................c.cccoviiiiiiiiiiiieet ettt 5-16
Calling APIS from ROM...........c.cccooiiiiiiiiiiiiieeee sttt e 5-17
5-2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

ADC12

ADC12

Analog-to-Digital Converter

¢ Tiva TM4C MCUs feature two ADC modules /

(ADCO and ADC1) that can be used to
convert continuous analog voltages to
discrete digital values

¢ Each ADC module has 12-bit resolution
¢ Each ADC module operates independently

and can:
Execute different sample sequences

Sample any of the shared analog input
channels

Generate interrupts & triggers

12
Input —~o—
Channels ADCO

—

Interrupts/
Triggers

Interrupts/
—— Triggers

Triggers

)

AV

N\
pd
AN

101
100
3 011
N
010
001

000
t

Features...

TM4C123GH6PM ADC Features

¢ Two 12-bit 1IMSPS ADCs
¢ 12 shared analog input channels

¢ Single ended & differential input
configurations

¢ On-chip temperature sensor

¢ Maximum sample rate of one million
samples/second (1MSPS).

¢ Fixed references (VDDA/GNDA) due to
pin-count limitations

¢ 4 programmable sample conversion

sequencers per ADC
erarate analog power & ground pins

¢ Flexible trigger control
Controller/ software
Timers
Analog comparators
GPIO

¢ 2x to 64x hardware averaging

~

+ 8 Digital comparators / per ADC
¢ 2 Analog comparators
¢ Optional phase shift in sample time,

between ADC modules ...
programmable from 22.5 ° to 337.5°

/

AV

Vin

Vour

Sequencers...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Sample Sequencers

Sample Sequencers

ADC Sample Sequencers

¢ Tiva TM4C ADC'’s collect and sample data using programmable sequencers.
¢ Each sample sequence is a fully programmable series of consecutive (back-to-back)
samples that allows the ADC module to collect data from multiple input sources without
having to be re-configured.
¢ Each ADC module has 4 sample sequencers that control sampling and data capture.
¢ All sample sequencers are identical except for the number of samples they can capture
and the depth of their FIFO.
¢ To configure a sample sequencer, the following information is required:
Input source for each sample
Mode (single-ended, or differential) for each sample
Interrupt generation on sample completion for each sample
Indicator for the last sample in the sequence

¢ Each sample sequencer can transfer data Number of
kndepender;tly thcr"ough a dedicated uDMA channel. By Samples Depth of FIFO
SS3 1 1
SS2 4 4
SS1 4 4
SS0 8 8
Lab...

5-4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Lab 5: ADC12

Lab 5: ADC12

Objective

In this lab we’ll use the ADC12 and sample sequencers to measure the data from the on-chip
temperature sensor. We’ll use Code Composer to display the changing values.

Lab 5: ADC12

USB Emulation Connection

o
AL LR

e, www.ti.com/launchpad
oevice

T, WY ECTMACZIGN. REY A
PRI i G- RN

o o 43,37 VBl o

¢ Enable and configure ADC and S
sequencer P

¢ Measure and display values from
internal temperature sensor y g

+ Add hardware averaging S e st =

¢ Use ROM peripheral driver library 77" Xip TEXAS INSTRUMENTS 3y ot
calls and note size difference O e S

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Lab 5: ADC12

Procedure

Import labb Project

1. We have already created the lab5 project for you with an empty main. c, a startup file
and all necessary project and build options set.

» Maximize Code Composer and click Project = Import Existing CCS Eclipse Project.
Make the settings shown below and click Finish. Make sure that the “Copy projects
into workspace” checkbox is unchecked.

e

v+ Import CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CC5 Eclipse projects.

| o

@ Select search-directory: CATM4C123G_LaunchPad_Workshop\lab5\project Browse...
() Select archive file: Browse...
Discovered projects:

W 1ab5 [CATMAC123G_LaunchPad_Waorkshop'lab5\project] Select All

Deselect All

Refresh

[] Copy projects into workspace
[] Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

@ Finish |

Cancel

Header Files

2. P Delete the current contents of main. c. Add the following lines into main. c to
include the header files needed to access the TivaWare APIs:

#include <stdint.h>

#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/adc.h"

adc.h: definitions for using the ADC driver

5-6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Lab 5: ADC12

main()
3. P Setupthemain () routine by adding the three lines below:

int main (void)
{
}

4. The following definition will create an array that will be used for storing the data read
from the ADC FIFO. It must be as large as the FIFO for the sequencer in use. We will be
using sequencer 1 which has a FIFO depth of 4. If another sequencer was used with a
smaller or deeper FIFO, then the array size would have to be changed. For instance, se-
quencer 0 has a depth of 8.

» Add the following line of code as your first line of code inside main () :

uint32_ t ui32ADCOValue[4];

5. We’ll need some variables for calculating the temperature from the sensor data. The first
variable is for storing the average of the temperature. The remaining variables are used to
store the temperature values for Celsius and Fahrenheit. All are declared as 'volatile' so
that each variable cannot be optimized out by the compiler and will be available to the
'Expression' or 'Local' window(s) at run-time.

» Add these lines after that last line:

volatile uint32_t ui32TempAvg;
volatile uint32_t ui32TempValueC;
volatile uint32_t ui32TempValueF;

6. Set up the system clock again to run at 40MHz. » Add a line for spacing and add this
line after the last ones:

SysCtlClockSet (SYSCTL_SYSDIV_5|SYSCTL USE_PLL|SYSCTL OSC_MAIN|SYSCTL XTAL 16MHZ) ;

7. Let’s enable the ADCO peripheral next. » Add a line for spacing and add this line after
the last one:

SysCtlPeripheralEnable(SYSCTL_PERIPH_ADCO);
8. For this lab, we’ll simply allow the ADCI12 to run at its default rate of 1Msps.
Reprogramming the sampling rate is left as an exercise for the student.

Now, we can configure the ADC sequencer. We want to use ADCO0, sample sequencer 1,
we want the processor to trigger the sequence and we want to use the highest priority.

» Add a line for spacing and add this line of code:

ADCSequenceConfigure(ADCO_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5-7

Lab 5: ADC12

9.

10.

11.

12.

13.

Next we need to configure all four steps in the ADC sequencer. Configure steps 0 - 2 on
sequencer 1 to sample the temperature sensor (ADC_CTL_TS) . In this example, our
code will average all four samples of temperature sensor data on sequencer 1 to calculate
the temperature, so all four sequencer steps will measure the temperature sensor. For
more information on the ADC sequencers and steps, reference the device specific
datasheet.

» Add the following three lines after the last:

ADCSequenceStepConfigure(ADCO_BASE, 1, ©, ADC_CTL_TS);
ADCSequenceStepConfigure(ADCO_BASE, 1, 1, ADC_CTL_TS);
ADCSequenceStepConfigure(ADCO_BASE, 1, 2, ADC_CTL_TS);

The final sequencer step requires a couple of extra settings. Sample the temperature
sensor (ADC CTL_TS) and configure the interrupt flag (ADC_CTL IE) to be set
when the sample is done. Tell the ADC logic that this is the last conversion on sequencer
1 (ADC_CTL_END) .

» Add this line directly after the last ones:

ADCSequenceStepConfigure (ADCO_BASE,1,3,ADC_CTL_TS |ADC_CTL_IE|ADC_CTL_END) ;
Now we can enable ADC sequencer 1.

» Add this line directly after the last one:

ADCSequenceEnable (ADCO_BASE, 1);

Still within main (), add a while loop to the bottom of your code.

» Add a line for spacing and enter these three lines of code:

while(1)
{
}

» Save your work.

As a sanity-check, click on the Build button. If you are having issues,
check the code on the next page:

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Lab 5: ADC12

#tinclude
#include
#include
#include
#include
#include
#include

int main

{

<stdint.h>
<stdbool.h>
"inc/hw_memmap.h"
"inc/hw_types.h"
"driverlib/debug.h"
"driverlib/sysctl.h"
"driverlib/adc.h"

(void)

uint32 t ui32ADCOValue[4];
volatile uint32_t ui32TempAvg;
volatile uint32_t ui32TempValueC;
volatile uint32_t ui32TempValueF;

SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);
SysCtlPeripheralEnable (SYSCTL_PERIPH_ADC®);

ADCSequenceConfigure(ADCO_BASE, 1, ADC_TRIGGER_PROCESSOR, 9);
ADCSequenceStepConfigure(ADCO_BASE, 1, ©, ADC_CTL_TS);
ADCSequenceStepConfigure(ADCO_BASE, 1, 1, ADC_CTL_TS);
ADCSequenceStepConfigure(ADCO_BASE, 1, 2, ADC_CTL_TS);
ADCSequenceStepConfigure (ADCO_BASE,1,3,ADC_CTL_TS|ADC_CTL_IE|ADC_CTL_END);
ADCSequenceEnable (ADCO_BASE, 1);

while(1)
{
}

When you build this code, you will get a warning “ui32ADC0Value was
declared but never referenced”. Ignore this warning for now, we’ll add
the code to use this array later.

Inside the while (1) Loop

14.

Inside the while (1) we’re going to read the value of the temperature sensor and
calculate the temperature endlessly.

The indication that the ADC conversion process is complete will be the ADC interrupt
status flag. It’s always good programming practice to make sure that the flag is cleared
before writing code that depends on it.

» Add the following line as your first line of code inside the while (1) loop:

ADCIntClear(ADCO_BASE, 1);

Getting Started

With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5-9

Lab 5: ADC12

15.

16.

17.

18.

Now we can trigger the ADC conversion with software. ADC conversions can be
triggered by many other sources.

» Add the following line directly after the last:

ADCProcessorTrigger (ADCO_BASE, 1);

We need to wait for the conversion to complete. Obviously, a better way to do this would
be to use an interrupt, rather than waste CPU cycles waiting, but that exercise is left for
the student.

» Add a line for spacing and add the following three lines of code:

while(!ADCIntStatus(ADCO_BASE, 1, false))
{
}

When code execution exits the loop in the previous step, we know that the conversion is
complete and that we can read the ADC value from the ADC Sample Sequencer 1 FIFO.
The function we’ll be using copies data from the specified sample sequencer output FIFO
to a buffer in memory. The number of samples available in the hardware FIFO are copied
into the buffer, which must be large enough to hold that many samples. This will only
return the samples that are presently available, which might not be the entire sample
sequence if you attempt to access the FIFO before the conversion is complete.

» Add a line for spacing and add the following line after the last:
ADCSequenceDataGet (ADCO_BASE, 1, ui32ADCOValue);

Calculate the average of the temperature sensor data. We’re going to cover floating-point
operations later, so this math will be fixed-point.

The addition of 2 is for rounding. Since 2/4 = 1/2 =0.5, 1.5 will be rounded to 2.0 with
the addition of 0.5. In the case of 1.0, when 0.5 is added to yield 1.5, this will be rounded
back down to 1.0 due to the rules of integer math.

» Add this line directly after the last:

ui32TempAvg = (ui32ADCOValue[@] + ui32ADCOValue[1] + ui32ADCOValue[2] + ui32ADCOValue[3] + 2)/4;

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Lab 5: ADC12

19. Now that we have the averaged reading from the temperature sensor, we can calculate the
Celsius value of the temperature. The equation below is shown in the TM4C123GH6PM
datasheet. Division is performed last to avoid truncation due to integer math rules. A later
lab will cover floating point operations.

TEMP = 147.5 — ((75 * (VREFP — VREFN) * ADCVALUE) / 4096)

We need to multiply everything by 10 to stay within the precision needed. The divide by
10 at the end is needed to get the right answer. VREFP — VREFN is Vdd or 3.3 volts.
We’ll multiply it by 10, and then 75 to get 2475.

» Enter the following line of code directly after the last:
ui32TempValueC = (1475 - ((2475 * ui32TempAvg)) / 4096)/10;

20. Once you have the Celsius temperature, calculating the Fahrenheit temperature is easy.
Wait to perform the division operation until the end to avoid truncation.

The conversion from Celsius to Fahrenheit is F = (C * 9)/5 +32. Adjusting that a little
gives: F=((C*9)+160)/5

» Enter the following line of code directly after the last:

ui32TempValueF = ((ui32TempValueC * 9) + 160) / 5;

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5-11

Lab 5: ADC12

21. » Save your work and compare it with our code below:

#include <stdint.h>

#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/adc.h"

int main(void)

uint32 t ui32ADCOValue[4];
volatile uint32_t ui32TempAvg;
volatile uint32_t ui32TempValueC;
volatile uint32_t ui32TempValueF;

SysCtlClockSet(SYSCTL_SYSDIV 5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);
SysCtlPeripheralEnable(SYSCTL_PERIPH_ADCO);

ADCSequenceConfigure (ADCO_BASE, 1, ADC_TRIGGER_PROCESSOR, 9);
ADCSequenceStepConfigure(ADCO_BASE, 1, ©, ADC_CTL_TS);
ADCSequenceStepConfigure(ADCO_BASE, 1, 1, ADC_CTL_TS);
ADCSequenceStepConfigure(ADCO_BASE, 1, 2, ADC_CTL_TS);
ADCSequenceStepConfigure (ADCO_BASE,1,3,ADC_CTL_TS|ADC_CTL_IE|ADC_CTL_END);
ADCSequenceEnable(ADCO_BASE, 1);

while(1)
{

ADCIntClear(ADCO_BASE, 1);
ADCProcessorTrigger (ADCO_BASE, 1);

while(!ADCIntStatus(ADCO_BASE, 1, false))
{
}

ADCSequenceDataGet (ADCO_BASE, 1, ui32ADCeValue);

ui32TempAvg = (ui32ADCOValue[@] + ui32ADCOValue[1l] + ui32ADCeOValue[2] + ui32ADC@Value[3] + 2)/4;
ui3z2TempvalueC = (1475 - ((2475 * ui32TempAvg)) / 4096)/10;

ui32TempValueF = ((ui32TempValueC * 9) + 160) / 5;

You can also find this code in mainl . txt in your project folder.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Lab 5: ADC12

Build and Run the Code

22. » Compile and download your application by clicking the Debug button on the menu
bar. If you have any issues, correct them, and then click the Debug button again. After a
successful build, the CCS Debug perspective will appear.

23. P Click on the Expressions tab (upper right). Remove all expressions (if there are any)
from the Expressions pane by right-clicking inside the pane and selecting Remove All.

» Find the ui32ADCOValue, ui32TempAvg, ui32TempValueC and ui32TempValueF
variables in the last four lines of code. Double-click on each variable to highlight it, then
right-click on it, select Add Watch Expression and then click OK. Do this for all four

variables, one at the time.

9= Variables | 9" Expressions &3 | ¥} Registers

Expression Type Value
- (= uid2ADCOValue unsigned int[4] 020000200
()= ui32Temphvg unsigned int a
(9= ui32TempValueC unsigned int 1453713120
(9= uid2TempValueF unsigned int 3084513938

= Add new expression

£ 3| &

%G| rict|ep~ =0
Address

(020000200

020000210

0x20000214

0x20000218

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5-13

Lab 5: ADC12

Breakpoint

Let’s set up the debugger so that it will update our watch windows each time the code
runs. Since there’s no line of code after the calculations are completed, we’ll choose the
one right before them and display the result of the last calculation.

24. » Set a breakpoint on the first
line of code in the while (1)
loop by double-clicking in the
blue area left of the line

while(1)

1
ADCIntClear(ADC@ BASE, 1);
ADCProcessorTrigger(ADC@® BASE, 1);

| oo B

number.

25. P Right-click on the breakpoint symbol and select Breakpoint Properties ...
Find the Action line and click on the Remain Halted value.

» Click on the down-arrow that appears on the right and select Refresh All
Windows from the list. » Click OK.

¥ Properties for E] |
Breakpoint Properties & Breakpoint Properties [
Propertics Values
4 Hardware Configuration
. Type Breakpoint
4 Debugger Response
Condition
. Skip Count 0
Action Refresh All Windows
4 Miscellaneous
Group Default Group
Name Breakpoint
This is what the IDE will do once the breakpoint has triggered and all logical conditions are Edit Property
met too
®

5-14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Lab 5: ADC12

26. » Click the Resume button to run the program. If the Watch window does
not immediately start updating, click the Suspend button and then the I_I B
Resume button.

You should see the measured value of ui32TempAvg changing up and down slightly.
Changed values from the previous measurement are highlighted in yellow. Use your
finger (rub it briskly on your pants), then touch the TM4C123GH6PM device on the
LaunchPad board to warm it. Press your fingers against a cold drink, then touch the
device to cool it. You should quickly see the results on the display.

9= Variables | £ Expressions 52 | i Registers +E B | o e dp |)
Expression Type Value Address
o (= uid2ADCOValue unsigned int[4] 0:200001E0 (200001 ED
()= ui3ZTempévg unsigned int 1958 (:200001F0
(9= ui3ZTempValueC unsigned int 29 (:200001F4
(9= ui32TempValueF unsigned int 84 0x200001F8

Bear in mind that the temperature sensor is not calibrated, so the values displayed are not
exact. That’s okay for this experiment, since we’re only looking for changes in the
measurements.

» Note the range over which ui32TempAvg is changing (not the rate of change, the
amount). We can reduce the amount by using hardware averaging in the ADC.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5-15

Hardware averaging

Hardware averaging

27. » Click the Terminate button to return to the CCS Edit perspective. Iil

28. » Find the ADC initialization section of your code as shown below:

SysCtlClockSet (SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

[WTR

sysCtlPeripheralEnable(SYSCTL_PERIPH_ADCA);

P

R RIS R TR R

o

Right after the SysCt1PeripheralEnable () APIL P add the following line:
ADCHardwareOversampleConfigure (ADCO_BASE, 64);

Your code will look like this:

SysCt1ClockSet (SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MATN|SYSCTL_XTAL_16MHZ);

LR S S

4

SysCtlPeripheralEnable (SYSCTL_PERIPH_ADCE);
ADCHardwareOversampleConfigure(ADC® BASE, 64);

RN ST ST R S)

oA

The last parameter in the API call is the number of samples to be averaged. This number
can be 2, 4, 8, 16, 32 or 64. Our selection means that each sample in the ADC FIFO will
be the result of 64 measurements being averaged together. We will then average four of
those samples together in our code for a total of 256.

29. » Build and download the code to your LaunchPad board. You may need to replace the
breakpoint as shown in step 24 if you cheated and loaded the solution. Run the program
and observe the ui32TempAvg variable in the Expressions window. You should notice
that the range over which it is changing is much smaller than before.

This code is saved inmain?2 . txt in your project folder.

5-16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Calling APIs from ROM

Calling APIs from ROM

30. Before we make any changes, let’s see how large the code section is for
our existing project. Iil

» Click the Terminate button to return to the CCS Edit perspective.

» In the Project Explorer, expand the Debug folder under the lab5 project. Double-click
on lab5.map.

31. When you click the build button, CCS compiles and assembles your source files into
relocatable object files (.obj). Then, in a multi-pass process, the linker creates an output
file (. out) using the device’s memory map as defined in the linker command (. cmd)
file along with any library (.11ib) files.. The build process also creates a map file (.map)
that explains how large the sections of the program are (.text = code) and where they
were placed in the memory map.

» In the 1ab5.map file, find the SECTION ALLOCATION MAP and look for . text
like shown below:

SECTION ALLOCATION MAP

output

section page origin length

Lintvecs @ aapaaeae BREEE26C
aapaaREe Baaaa26C

.init_array
g @ eaaoapRe gegoaape

.text] eReea26Cc BEEEE5e4 _
apeEa2ec gaaaaled

gpaeasvae eeeapade

The length of our . text section is 5e4h. P Check yours and write it here:

32. Remember that the Tiva C Series device on-board ROM contains the Peripheral Driver
Library. Rather than adding those library calls to our flash memory, we can call them
from ROM. This will reduce the code size of our program in flash memory. In order to do
so, we need to add support for the ROM in our code.

» Inmain.c, add the following include statement as the last ones in your list of
includes at the top of your code:

#define TARGET IS BLIZZARD RB1
#include "driverlib/rom.h"

Blizzard is the internal T1 product name for the device family on your LaunchPad. This
symbol will give the libraries access to the proper API’s in ROM.

» Save your work.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5-17

Calling APIs from ROM

33.

» Now add ROM _to the beginning of every DriverLib call as shown below in main.c:

#include
#include
#include
#include
#include
#include
#include

<stdint.h>
<stdbool.h>
"inc/hw_memmap.h"
"inc/hw_types.h"
"driverlib/debug.h"
"driverlib/sysctl.h"
"driverlib/adc.h"

#define TARGET_IS_BLIZZARD_RB1

#include

"driverlib/rom.h"

int main(void)

uint32_t ui32ADCOValue[4];
volatile uint32_t ui32TempAvg;
volatile uint32_t ui32TempValueC;
volatile uint32_t ui32TempValueF;

ROM_SysCt1ClockSet (SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_ADCO);
ROM_ADCHardwareOversampleConfigure (ADCO_BASE, 64);

ROM_ADCSequenceConfigure(ADCO_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
ROM_ADCSequenceStepConfigure(ADCO_BASE, 1, @, ADC_CTL_TS);
ROM_ADCSequenceStepConfigure(ADCO_BASE, 1, 1, ADC_CTL_TS);
ROM_ADCSequenceStepConfigure(ADCO_BASE, 1, 2, ADC_CTL_TS);
ROM_ADCSequenceStepConfigure (ADC@_BASE,1,3,ADC_CTL_TS|ADC_CTL_IE|ADC_CTL_END);
ROM_ADCSequenceEnable(ADCO_BASE, 1);

while(1)

{
ROM_ADCIntClear(ADCO_BASE, 1);
ROM_ADCProcessorTrigger (ADCO_BASE, 1);

while(!ROM_ADCIntStatus(ADCO_BASE, 1, false))
{
}

ROM_ADCSequenceDataGet (ADCO_BASE, 1, ui32ADCoOValue);

ui32TempAvg = (ui32ADCOValue[®] + ui32ADCOValue[1l] + ui32ADCOValue[2] + ui32ADCeValue[3] + 2)/4;
ui32TempValueC = (1475 - ((2475 * ui32TempAvg)) / 4096)/10;

ui32TempValueF = ((ui32TempValueC * 9) + 160) / 5;

If you’re having issues, this code is saved in your lab folder as main3. txt.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Calling APIs from ROM

Build, Download and Run Your Code

34. » Since you changed the instruction that the breakpoint was set on, the breakpoint has
likely disappeared. Remove the indicated “breakpoint” if there is one by double-clicking
on it. Add it back using the steps shown earlier.

35. P Click the Debug button to build and download your code to the TM4C123GH6PM
flash memory. When the process is complete, click the Resume button to run your code.
When you’re sure that everything is working correctly, click the Terminate button to
return to the CCS Edit perspective.

36. Check the SECTION ALLOCATION MAP in lab5.map. Our results are shown below:

P SECTION ALLOCATION MAP

I output

section page origin length

[.intvecs] EBEEEaeEa BEEEE26C
gaaEaane eReea26c

.init_array
| * a8 aaaaaaea gaaaaaea

Ltext @ apaea2oc egaeaice
b BEEEE26C Beeealls
BaEEE354 Baaaaa9Cc

The original length of our . text section was 5e4h. The new size is 3d4h. That’s 35%
smaller than before.

Write your results here:

37. When you’re finished, close the lab5 project and minimize Code Composer Studio.

You’re done.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5-19

Calling APIs from ROM

5-20 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Hibernation Module

Introduction

In this chapter we’ll take a look at the hibernation module and the low power modes of the Tiva C
Series device. The lab will show you how to place the device in sleep mode and you’ll measure

the current draw as well.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio
Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers ()
ADC12 '
(Hibernation Module |
USB
Memory and Security
Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA
Sensor Hub
PWM

D |
.]
!
3
3
A
\
A}
3
xt

Key Features...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

6-1

Chapter Topics

Chapter Topics

Hibernation Module 6-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 6-2
LOW POWEE MOUES...........ccceeiiiieeieee ettt ettt e et e e e e e 6-3
Lab 6: LOW POWEE MOMESoooeeiiiiiieeeeee ettt 6-5

[0)0] 1015 A RSP PUURRPR 6-5
PLOCEAUIE ...ttt e e e e et e e e e e e ettt e e e e e esestaareeeeeesennaaareeeeeeaan 6-6

6-2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

Low Power Modes

Low Power Modes

Key Features

ﬂeal Time Clock is a 32-bit seconds
counter with a 15-bit sub seconds
counter & add-in trim capability

¢ Dedicated pin for waking using an
external signal

¢ RTC operational and hibernation
memory valid as long as Vg, is valid

¢ GPIO pins state retention provided
during VDD3ON mode

¢ Two mechanisms for power control

- System Power Control for CPU
and other on-board hardware

- On-chip Power Control for CPU
only
N

¢ Low-battery detection, signaling, arh
interrupt generation, with optional

wake on low battery

¢ 32,768 Hz external crystal or an
external oscillator clock source

¢ 16 32-bit words of battery-backed
memory are provided for you to save
the processor state to during
hibernation

¢ Programmable interrupts for RTC
match, external wake, and low
battery events.

»t-z-z j

Low Power Modes...

Power Modes

KRun mode

¢ Sleep mode stops the
processor clock
- 2 SysClk wakeup time
¢ Deep Sleep mode stops the
system clock and switches
off the PLL and Flash

1.25 — 350 uS wakeup time

¢ Hibernate mode with only
hibernate module powered
(VDD3ON, RTC and no RTC)

k - ~500uS wakeup time /

~

35

Ipp (Current Consumption in mA)

1.05
0.005 0.0017 0.0016

RunMode Slesp DeepSleep Hibernate Hibernate Hibernate
Mode Mode VDD3ON (RTC) (noRTC)

Power Mode Comparison...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

Low Power Modes

Power Mode Comparison

Deep Sleep Hibernation Hibernation Hibernation

Run Mode Sleep Mode

Mode (VDD3ON) (RTC) (no RTC)

I
I
I
I
I

Vgar N.A. N.A. N.A. 3V | 3V 3v
I
I
I

Sy Clockl40 MHz with PLL40 MHz with PLL| 30 kHz Off I Off off
I
I
I

Powered On Powered On Powered On Off I Off Off
Core 4

Clocked Not Clocked Not Clocked Not Clocked : Not Clocked Not Clocked
I
Peripherals All On All Off All Off All Off I All Off All Off

I

Code while{1} N.A. NA. NA. : NA. NA.

I | Box denot des available on LaunchPad board
I | BOX denotes power modes available on LaunchFa oar LaunchPad Considerations ...

RN

LaunchPad Considerations

¢ The low-cost LaunchPad board does not have a battery holder

¢ VDD and VBAT are wired together on the board
(this disables battery-only powered low-power modes)

¢ Device current is measured between test points H24 and H25

RIE%
10k
Ko
="
TiF P
T o s ml =
L = e TR =
T :é %C'm FB?
5%9 - xoeco \'BATQ_ - A
[2
e L T e 1
Dl_. - 5| e % z Lc|sicﬁ,Lcwelw7Lmlc1
T 12 voor=—- [oovf| ow | oovF| oo [oonf| 1oF
o Lo b
717 e wmE -+
G0 vDOc| =
£ TRECTIE J—c||u= —Lunf L= J—Cﬁ'
-7 = T _Thoe T 22¢

Lab ...

6-4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

Lab 6: Low Power Modes

Lab 6: Low Power Modes

Objective

In this lab we’ll use the hibernation module to place the device in a low power state. Then we’ll
wake up from both the wake-up pin and the Real-Time Clock (RTC). We’ll also measure the
current draw to see the effects of the different power modes.

Lab 6: Low Power Modes

USB Emulation Connection Memower

Jumper

www.ti.com/launchpad
P EKTMACIZIONL REV A

Place device in low power modes S el T
/// RI WSW

* g P81 PO1 PG4 PFO &
o4 %

Wake from pin /) - s

PCs PB7 43

Wake from RTC d : ' b

Measure current £ A s QS
4 % Texas INSTRUMENTS
o 2

® 6 6 o o

No battery holder on board

e

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6-5

Lab 6: Low Power Modes

Procedure

Import lab6

1. We have already created the lab6 project for you with an empty main. c, a startup file
and all necessary project and build options set.

» Maximize Code Composer and click Project = Import Existing CCS Eclipse Project.
Make the settings shown below and » click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

-

(o]
B3

«# Import CCS Eclipse Projects

Select Existing CCS Eclipse Project

Select a directory to search for existing CC5S Eclipse projects,

hi
i
[N =,

@) Select search-directory: CATM4C123G_LaunchPad_Workshop'lab&'project Browse...
() Select archive file: Browse...
Discovered projects:
1T lab6 [CATM4C123G_LaunchPad_Workshop'labG' project] Select All
Deselect All

Refresh

["] Copy projects into workspace
[] Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

@ | Finish |

Cancel

6-6

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

Lab 6: Low Power Modes

Limitations

In order to keep the cost of the LaunchPad board ultra-low, the battery holder was
omitted, and Vparr is connected to the 3.3V supply voltage. We will be evaluating the
following power modes and wake events:

Run

Hibernate (VDD3ON)
Wake from pin (no RTC)
Wake from RTC

Header Files

2. P Expand lab6. Open main. c for editing and delete the current contents. Copy/paste
the following lines into main . c to include the header files needed to access the
TivaWare APIs :

#include <stdint.h>

#include <stdbool.h>

#include "utils/ustdlib.h"
#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h"
#include "driverlib/debug.h"
#include "driverlib/hibernate.h"
#include "driverlib/gpio.h"

main()

3. » Skip a line and add thismain () template after the error function:

int main (void)

{
}

Clock Setup

4. Configure the system clock to 40MHz again.

» Add this line as the first line of code inmain () :

SysCtlClockSet (SYSCTL_SYSDIV_5|SYSCTL USE_ PLL|SYSCTL XTAL 16MHZ|SYSCTL OSC_MAIN) ;

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6-7

Lab 6: Low Power Modes

GPIO Configuration

5.

We’re going the use the green LED (2=red=pinl, 4=blue=pin2 and 8=green=pin3) as an
indicator that the device is in hibernation (off for hibernate and on for wake).

» Add a line for spacing and add these lines of code after the last:

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF);
GPIOPinTypeGPIOOutput (GPTO PORTF _BASE, GPTIO PIN 1|GPIO PIN 2|GPIO PIN 3);
GPIOPinWrite (GPIO PORTF BASE,GPIO PIN 1|GPIO PIN 2|GPIO PIN 3, 0x08);

Hibernate Configuration

6. We want to set the wake condition to the wake pin. Take a look at the board schematics

and see how the WAKE pin is connected to user pushbutton 2 (SW2) on the LaunchPad
board.

The code below has the following functions:

Line 1: enable the hibernation module

Line 2: defines the clock supplied to the hibernation module

Line 3: Calling this function enables the GPIO pin state to be maintained during hiberna-
tion and remain active even when waking from hibernation.

Line 4: delay 4 seconds for you to observe the LED

Line 5: set the wake condition to the wake pin

Line 6: turn off the green LED before the device goes to sleep

» Add a line for spacing and add these lines after the last ones inmain () :

SysCtlPeripheralEnable (SYSCTL PERIPH HIBERNATE) ;
HibernateEnableExpClk (SysCtlClockGet()) ;
HibernateGPIORetentionEnable() ;

SysCtlDelay (64000000) ;

HibernateWakeSet (HIBERNATE_WAKE_PIN) ;
GPIOPinWrite (GPIO_PORTF_BASE , GPIO_PIN_3 , 0x00);

6-8

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

Lab 6: Low Power Modes

Hibernate Request

7. Finally we need to go into hibernation mode. The HibernateRequest () function re-
quests the Hibernation module to disable the external regulator, removing power from the
processor and all peripherals. The Hibernation module remains powered from the battery
or auxiliary power supply. If the battery voltage is low (or off) or if interrupts are current-
ly being serviced, the switch to hibernation mode may be delayed. If the battery voltage
is not present, the switch will never occur.

The while (1) loop acts as a trap while any pending peripheral activities shut down (or
other conditions exist).

» Add a line for spacing and add these lines after the last ones in main():

HibernateRequest () ;
while (1)

{

}

P> Click the Save button to save your work. Your code should look something like the
next page:

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6-9

Lab 6: Low Power Modes

#include <stdint.h>

#include <stdbool.h>

#include "utils/ustdlib.h"
#include "inc/hw types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin map.h"
#include "driverlib/debug.h"
#include "driverlib/hibernate.h"
#include "driverlib/gpio.h"

int main (void)

{

SysCtlClockSet (SYSCTL SYSDIV 5|SYSCTL USE PLL|SYSCTL XTAL 16MHZ|SYSCTL OSC MAIN) ;

SysCtlPeripheralEnable (SYSCTL_ PERIPH GPIOF);
GPIOPinTypeGPIOOutput (GPIO PORTF BASE, GPIO PIN 1|GPIO PIN 2|GPIO PIN 3);
GPIOPinWrite (GPIO PORTF BASE,GPIO PIN 1|GPIO PIN 2|GPIO PIN 3, 0x08);

SysCtlPeripheralEnable (SYSCTL PERIPH HIBERNATE) ;
HibernateEnableExpClk (SysCtlClockGet ()) ;
HibernateGPIORetentionEnable () ;

SysCtlDelay (64000000) ;

HibernateWakeSet (HIBERNATE WAKE PIN) ;
GPIOPinWrite (GPIO PORTF BASE,GPIO PIN 3, 0x00);

HibernateRequest () ;
while (1)

{

}

This code is saved in the 1ab6 project folder as mainl . txt. Don’t forget that you can
auto-correct the indentations.

6-10

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

Lab 6: Low Power Modes

Build, Download and Run the VDD3ON (no RTC) Code

8.

10.

11.

the menu bar. If you have any issues, correct them, and then click the Debug

» Compile and download your application by clicking the Debug button on
button again. After a successful build, the CCS Debug perspective will #;5:\

appear.

» Delete any existing watch expressions by right-clicking in the Expressions pane and

clicking Remove All, then click Yes.

» Click the Resume button. After about 4 seconds the green LED on the
LaunchPad board will go out, indicating that the Tiva device has gone into L'I P

hibernation.

P Press the SW2 button located at the lower right
corner of the LaunchPad board. The processor will

wake up and start the code again, lighting the green
LED.

Note that this wakeup process is the same as
powering up. We will not be using the battery-backed
memory in this lab, but that feature is essential to
applications that need to know how they “woke up”.
Your code can save/restore the processor state to that
memory. When your code starts, you can determine
that the processor woke from hibernation and restore
the processor state from the battery-backed memory.

» Click the Terminate button to return to the CCS Edit perspective. If you .II
see a “Error connecting to the target” warning in the Console pane of CCS, —

it’s caused by the device hibernating and unpowered ... disconnected from

the emulator.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6-11

Lab 6: Low Power Modes

12. Now that we know the code is running properly, we can take some current measurements.
Before we do, let’s comment out the line of code that lights the green LED so that the
LED current won’t be part of our measurement.

» Inmain.c, comment out the line of code shown below:

sysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput (GPIO PORTF_BASE, GPIO_PIN_1|GPIO_PIN 2|GPIO_PIN 3);
GPIOPinWrite(GPIO _PORTF_BASE,GPIO PIN 1|GPIO PIN 2|GPIO PIN 3, @x@8);

» Save your work.

13. » Press and hold SW2 on the LaunchPad board (to make sure it is #;3;

awake), then compile and download your application by clicking the Debug
button on the menu bar. When the Resume button appears in the Debug
pane, you can release SW2.

» Press the Terminate button to return to the CCS Edit perspective. When .ll
you do this a reset signal is sent to the LaunchPad, which runs the code in el
Flash memory.

Measure the Current

14. » Switch off the Launchpad’s power by moving
the power switch to the DEVICE position.

15. » Remove the jumper located on the LaunchPad
board near the DEVICE USB port and put it
somewhere for safekeeping.

» Connect your Digital Multi-Meter (DMM) test
leads to the pins with the positive lead nearest the
DEVICE USB port. Double check the lead
connections on the meter. Switch the meter to
measure DC current above 20mA.

"'k TEXAS INSTRUMENTS
NPTy A0 s
switch back to the DEBUG position. During the o zv/ﬁu,fé‘f#%’lf =
first four seconds the TM4C123GH6PM is in Run

mode (in the software delay loop).

16. » Watch the meter display and move the power

» Record this reading in the first row of the chart below.

17. After four seconds the device goes into the VDD3ON hibernate mode (no RTC).

» Switch your DMM to measure 10uA and record your reading in the second row of the
chart below.

6-12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

Lab 6: Low Power Modes

18. » Switch your DMM to measure DC current above 20mA. The equivalent series
resistance (ESR) of the DMM in low current settings can be too high to allow the Tiva
device enough current to run.

Mode Workbook Step | Your Reading | Our Reading
Run (40MHz) 16 mA 21.9 mA
VDD3ON
(no RTC) 17 HA 6.7 nA
VDD3ON
(RTC) 26 pA 6.9 nA

Wake Up on RTC

Now let’s change the code to enable the device to wake on either the RTC or the WAKE
pin. We’ll program the RTC to wake the device after 5 seconds.

19. » Move the power switch to the DEBUG position.
20. » Inmain. c, find this line of code:

HibernateWakeSet (HIBERNATE WAKE PIN) ;

Right above that line of code, P enter the three lines below. These lines configure the
RTC wake-up parameters; reset the RTC to 0, turn the RTC on and set the wake up time
for 5 seconds in the future.

HibernateRTCSet (0) ;

HibernateRTCEnable () ;
HibernateRTCMatchSet(0,5) ;

21. We also need to change the wake-up parameter from just the wake-up pin to add the
RTC.

» Find:
HibernateWakeSet (HIBERNATE WAKE PIN) ;
» and change it to:

HibernateWakeSet (HIBERNATE WAKE PIN | HIBERNATE WAKE RTC) ;

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6-13

Lab 6: Low Power Modes

22. » Uncomment the line of code that turns on the green LED, as shown below:

SysCtlPeripheralEnable (SYSCTL PERIPH GPICF);
GPIOPinTypeGPIOOutput (GFIC_FORTF_BASE, GPIC_PIN 1|GPIC_PIN 2 |GFIC_FIN 3);
GPIOPinWrite (GFIO PORTF BASE,GPIC PIN 1|GPIC PIN 2|GPIC PIN 3, Ox08):

» Save your changes.

Double-check your code. If you fail to specify a wakeup parameter it will be very
difficult to wake your part back up. Your code should look like this:

#include <stdint.h>

#include <stdbool.h>

#include "utils/ustdlib.h"
#include "inc/hw types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin map.h"
#include "driverlib/debug.h"
#include "driverlib/hibernate.h"
#include "driverlib/gpio.h"

int main (void)
{
SysCtlClockSet (SYSCTL_SYSDIV 5|SYSCTL USE PLL|SYSCTL XTAL 16MHZ|SYSCTL OSC MAIN) ;

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF);
GPIOPinTypeGPIOOutput (GPIO_ PORTF BASE, GPIO PIN 1|GPIO PIN 2|GPIO_PIN 3);
GPIOPinWrite (GPIO PORTF BASE,GPIO_PIN 1|GPIO_PIN 2|GPIO PIN 3, 0x08);

SysCtlPeripheralEnable (SYSCTL PERIPH HIBERNATE) ;
HibernateEnableExpClk (SysCtlClockGet ()) ;
HibernateGPIORetentionEnable () ;

SysCtlDelay (64000000) ;

HibernateRTCSet (0) ;

HibernateRTCEnable () ;

HibernateRTCMatchSet (0,5) ;

HibernateWakeSet (HIBERNATE WAKE PIN | HIBERNATE WAKE RTC);
GPIOPinWrite (GPIO PORTF BASE,GPIO PIN 3, 0x00);

HibernateRequest () ;
while (1)

{

}

If you’re having problems, this code is saved as main2 . txt in your project folder.

6-14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

Lab 6: Low Power Modes

23. P Press and hold the SW2 button on your evaluation board to assure the
TM4C123GH6PM is awake. » Compile and download your application by clicking the
Debug button on the menu bar.

CCS can’t talk to the device while it’s hibernating (or off). If you accidentally do this,
you’ll see the following when CCS attempts to communicate:

& Stellaris In-Circuit Debug Interface/CORTEX_M4_0

=ﬁrru:nr connecting to the target:
Frequency is out of range.

Cancel] [Retry]

If this happens, press and hold the SW2 button and click Retry. Release the SW2 button
when the debug controls appear in CCS.

24, » Press the Terminate button to return to the CCS Edit perspective. When the Debugger
terminates, it sends a reset signal to the TM4C123GH6PM. You should see the green
LED turn on for 4 seconds, then off for about 5 seconds, then repeat. The real-time-clock
(RTC) is waking the device up from hibernate mode after 5 seconds. Also note that you
can wake the device with SW2 at any time.

25. > Watch the meter display and press SW2. During the first four seconds the
TM4C123GH6PM is in Run mode (in the software delay loop). The reading may be a
little higher than it was before in Run mode since the LED is lit.

26. » When the green LED goes off, quickly switch the DMM to measure 10uA and record
your reading in the last row of the chart in step 18. Again, the equivalent series resistance
on most DMMs will be too high in the lowest current mode to allow the device to go
back to run mode.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6-15

Lab 6: Low Power Modes

27. » Switch off the Launchpad’s power by moving the power switch to the DEVICE
position.

28. » Disconnect and turn off your DMM and replace the jumper on the power measurement
pins.

29. » To make things easier for you during the next lab, use the LM Flash Programmer to
reprogram the gs—rgb bin file into the device (as shown in lab2).

Don’t forget to hold SW2 down as you launch the LM Flash Programmer and while the
programming process completes.

30. » Close the lab6 project and minimize Code Composer Studio.

Homework Idea: Experiment with the RTC to create a time-of-day clock that requires
the lowest possible power.

You’re done.

6-16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

USB

Introduction

This chapter will introduce you to the basics of USB and the implementation of a USB port on
Tiva C Series devices. In the lab you will experiment with sending data back and forth across a
bulk transfer-mode USB connection.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO

Interrupts and the Timers LI
ADC12
Hibernation Module
Memory and Security
Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA

Sensor Hub B Doumchoad <o o= 9

PWM

USB Basics...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

Chapter Topics

Chapter Topics

USB 7-1

CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 7-2

USB BUASICS......oueiesi ettt ettt 7-3
TMACI23GHOPM USB ..ottt e 7-4

USB Hardware And LIDVATY.............cccooecuieeieeiiiieeie et ee ettt nive e siae e sivaesaseesiseesaseessbaenasee e 7-5

LAD 7: USB....ooiiiiiieeee ettt 7-7

L0 10} 1< 15 4R SRRUTSPRSR 7-7

PIOCEAULE ..ottt 7-8

7-2

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

USB Basics

USB Basics

USB Basics

ﬁltiple connector sizes
4 pins — power, ground and 2 data lines —
(5t pin ID for USB 2.0 connectors) Type & Type B
Configuration connects power 15, then data i ey
Standards: ”u H:
+ USB 1.1 =

* Defines Host (master) and Device (slave) ,—l——
+ Speeds to 12Mbits/sec ﬁe‘ =
* Devices can consume 500mA (100mA for startup)| ——————

Different types of USB

+ USB 2.0 connectors from left o right
. * 8-pin AGOX
* Speeds to 480Mbits/sec - W3 pho
* Type B plug
o + Type A receptacie
OTG addendum e
+ USB 3.0 L

* Speeds to 4.8Gbits/sec S —

~rrri
* New connector(s) A
. . . - D+
» Separate transmit/receive data lines

USB Basics...

USB Basics

@B Device ... most USB products are slaves
USB Host ... usually a PC, but can be embedded -

USB OTG ... On-The-Go
+ Dynamic switching between host and device roles
« Two connected OTG ports undergo host negotiation
Host polls each Device at power up. Information from Device
includes:
. I(Djsvgc)e Descriptor (Manufacturer & Product ID so Host can find
1V

« Configuration Descriptor (Power consumption and Interface
descriptors)

« Endpoint Descriptors (Transfer type, speed, etc)

\. Process is called Enumeration ... allows Plug-and-Play /

TM4C123GH6PM USB...

-

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

TM4C123GH6PM USB

TM4C123GH6PM USB
TM4C123GH6PM USB

¢ USB 2.0 full speed (12 Mbps) and low speed (1.5 Mbps) \

operation
¢ On-the-go (OTG), Host and Device functions
¢ Integrated PHY
¢ Transfer types: Control, Interrupt, Bulk and Isochronous
¢ Device Firmware Update (DFU) device in ROM

Tiva collaterals mm@}

¢ Texas Instruments is a member of the
USB Implementers Forum.

¢ Tiva is approved to use the

USB logo . FEEEID/
endor
¢ Vendor/Product ID sharing Product ID
http://www.ti.com/lit/pdf/spmi001 sharing program '

Block Diagram...

Sublicense application: http://www.ti.com/lit/pdf/spml001

7-4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

http://www.ti.com/lit/pdf/spml001

USB Hardware and Library

USB Hardware and Library

Endpoint Control

USB Peripheral Block Diagram

DMA
Requests

EPO0 -15
Control

W

!

!

CPU Interface

E—
Cantrol

utM
Synchronization
USB PHY

USB FS1LS

Packet
Encode/Decode

Packet Encode
[
Packet Decode

FIFO RAM
Controller

—
AHB bus —

Interrupts
Comman
Regs

[PHY

[[CRC Gen/Check]

[Cvycle Control]

USB Data Lines
D+and D-

Cycle Slave mode

Cantrol

Integrated USB Controller and PHY with up to 16 Endpoints

+ 1 dedicated control IN endpoint and 1 dedicated control OUT endpoint
+ Up to 7 configurable IN endpoints and 7 configurable OUT endpoints
+ 4 KB dedicated endpoint memory (not part of device SRAM)
+ Separate DMA channels (up to three IN Endpoints and three OUT Endpoints)

+ 1 endpoint may be defined for double-buffered 1023-bytes isochronous packet size

USBLib...

example applications for Tiva MCUs
¢ Builds on DriverLib API
functionality

classes
¢ Layered structure

*

Embedded Host compliance testing

¢ License-free & royalty-free drivers, stack and
¢ USBLib supports Host/Device and OTG
Adds framework for generic Host and Device

Includes implementations of common USB

Drivers and .inf files included where appropriate
¢ Tiva MCUs have passed USB Device and

TivaWare™ USBL.ib

/ Device Examples

Windows INF for supported
devices

~

HID Keyboard

HID Mouse

CDC Serial

Mass Storage

Generic Bulk

Audio

Device Firmware Upgrade
Oscilloscope

Points to base Windows
drivers

Sets config string

Sets PID/VID

Precompiled DLL saves
development time

Device framework integrated into
K USBLib /

CERTIFIED

Abstraction Levels...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

USB Hardware and Library

USB API Abstraction Levels

Passes simplified Passes key info to Uses existing Implements

data to a higher the Driver API. API for generic its own USB

level API. : host/device protocol usin
Driver API handles operation. Driverlib. -

(Custom HID all lower level
mouse) functions for the Uses DriverLib (Third part;
HIGH chosen class. for features not USB stack

covered by
'S Host Class/ Device (Custom HID these APIS.
Class APls device)
Custom

lasses)

Host Class Driver/Device Class Driver
APls

Level of
abstraction

USB Host Controller API/USB Device API

Low USB DriverLib API

Low Level of customization HIGH ™

Lab...

7-6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

Lab 7: USB

Lab 7: USB

Objective

In this lab you will experiment with sending data back and forth across a bulk transfer-mode USB

connection.

Connection

¢ Runusb_bulk_example code
and windows side app

¢ Inspect stack setup
¢ Observe data on device

Lab 7: USB

DEVICE

#* 4 ro5 on0
@ ¢ P80 POO
& ¢ PB1 o0
&2 g m

& ¢ ves oz

rre
TeEXAS INSTRUMENTS

R13

USB Emulation Connection

o
d e

TOF EX1 7X0 RXD

G
wwwfl.com/launchpad
. PTEY ETMACIZIOL REV A
no» A\ !“~_ 5 ™
o o 33V vaus

o

RZ
oW
a3 - Ao

PE2 oxo BF
Rz
PF3 paz &
P83 P30 £
Pet pro -
pes AT 4}
pos po7 &
PG pus o =
Pos pe 6

PO7 PAS ‘\ \
Paz RQ°E

A e de &P R

o % -~
Y/ Tiva™ C Series i

aunchPad ™

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

Lab 7: USB

Procedure

Example Code

There are four types of transfer/endpoint types in the USB specification: Control transfers
(for command and status operations), Interrupt transfers (to quickly get the attention of
the host), Isochronous transfers (continuous and periodic transfers of data) and Bulk
transfers (to transfer large, bursty data).

Before we start poking around in the code, let’s take the usb bulk example fora
test drive. We’ll be using a Windows host command line application to transfer strings
over the USB connection to the LaunchPad board. The program there will change upper-
case to lower-case and vice-versa, then transfer the data back to the host.

Import The Project

1.

The usb_bulk example project is one of the TivaWare examples. When you import
the project, note that it will be automatically copied into your workspace, preserving the
original files. If you want to access these project files through Windows Explorer, the
files you are working on are in your workspace folder, not the TivaWare folder. If you
delete the project in CCS, the imported project will still be in your workspace unless you
tell the dialog to delete the files from the disk.

» Click Project > Import Existing CCS Eclipse Project.

Make the settings shown below and click P Finish

-

v+ Import CCS Eclipse Projects [= &J
N - N N - |
Select Existing CCS Eclipse Project r e
Select a directory to search for existing CC5 Eclipse projects. [;‘"‘I
-
@) Select search-directo ry: CATITivaWare_C_Series-1.1\examples\boards' ek-tmd c123gxlusb_dev_bulk
() Select archive file: Browse...

Discovered projects:
[¥] 181 usb_dev_bulk [C:\TI\TivaWare_C_Series-1.1\examples\boards'\ek-tm4cl23gxlush_dev_bulk\ccs] Select All

Deselect All

Refresh

Copy projects into workspace

[] Automatically import referenced projects

oy
I Cancel

@ Finish

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

Lab 7: USB

Build, Download and Run The Code

2. Make sure your evaluation board’s USB DEBUG port is connected to your
PC and that the usb _dev bulk project is active. Build and download #ﬁ;

your application by clicking the Debug button on the menu bar (make sure
your device is awake by pressing SW2 if you are still running code from the

hibernate lab). If you see a warning that the project was created with an earlier compiler
version, you can ignore it.

3. P Click the Terminate button, and when CCS returns to the CCS Edit
perspective, unplug the USB cable from the LaunchPad’s DEBUG port. 1
Move the PWR SELECT switch on the board to the DEVICE position | I |
(nearest the outside of the board). Plug your USB cable into the USB
DEVICE connector on the side of the LaunchPad board. The green LED in
the emulator section of the LaunchPad should be lit, verifying that the board is powered.

(@)

|

)

www.ti.com
-

DEVICE

4. In a few moments, your computer will detect that a generic bulk device has been
plugged into the USB port. P If necessary, install the driver for this device from:

C:\TI\TivaWare C Series-1.1l\windows drivers

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB 7-9

Lab 7: USB

5. Make sure that you installed the StellarisWare Windows-side USB examples
from www.ti.com/sw-usb-win as shown in module one. In Windows, » click Start > All
Programs = Texas Instruments > Stellaris > USB Examples = USB Bulk Example.

The window below will appear:

Stellaris Bulk USB Device Example

a partner application to the usb_dev_bulk example

with StellarisWare software releases for USB—enabled
. Strings entered here are t to the board which

the case of the characters in the string and returns

the host.

string (EHIT to exit>:

6. P Type something in the window and press Enter. For instance “TI” as shown below:

w _[5x
4|

Stellaris Bulk USE Device Example .

2187

a partner application to the ush_dev_bulk example
with Stellarislare software releases for USB-enabled

hoards. Strings entered here are sent to the board which
the case of the characters in the string and returns
the host.

string C(ERXIT to exit>: TI

2 hytes to the device. Expected 2
Read 2 bytes from device. Expected 2

Returned string: "ti"

Enter a string (EXIT to exit):

The host application will send the two ASCII bytes representing “TT” over the USB port
to the LaunchPad board. The code there will change uppercase to lowercase, blink the
LED and echo the transmission. Then the host application will display the returned string.
Feel free to experiment. Now that we’re assured that our data is traveling across the
DEVICE USB port, we can look into the code a little more.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

http://www.ti.com/sw-usb-win

Lab 7: USB

Digging Deeper
7. » Type EXIT to terminate the USB Bulk Example program on your PC.

» Connect your other USB cable from your PC to the DEBUG USB port the on the
LaunchPad and move the PWR SELECT switch on the board to the DEBUG position.
The green LED in the emulator section of the LaunchPad should be lit, verifying that the
board is powered. You should now have both ports connected to your PC.

8. P In Code Composer Studio, if usb_dev_bulk.c is not already open, expand the
usb_dev_bulk project in the Project Explorer pane and double-click on
usb_dev_bulk. c to open it for editing.

The program is made up of five sections:

SysTickIntHandler —an ISR that handles interrupts from the SysTick timer to
keep track of “time”.

EchoNewDataToHost — a routine that takes the received data from a buffer, flips the
case and sends it to the USB port for transmission.

TxHandler — an ISR that will report when the USB transmit process is complete.

RxHandler — an ISR that handles the interaction with the incoming data, then calls the
EchoNewDataHost routine.

main () — primarily initialization, but a while loop keeps an eye on the number of bytes
transferred

Note the UARTprintf () APIs sprinkled throughout the code. This technique “instru-
ments” the code, allowing us to monitor its status via a serial port.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB 7-11

Lab 7: USB

Watching the Instrumentation

9. As shown earlier in module 1, » start your terminal program and connect it to the
Stellaris Virtual Serial Port. Arrange the terminal window so that it takes up no more than
a quarter of your screen and position it in the upper left of your screen.

10. » Resize CCS so that it takes up the lower half of your screen. » Click the Debug
button to build and download the code and reconnect to your LaunchPad. » Run the
code by clicking the Resume button.

11. » Start the USB Bulk Example Windows application as shown in step 5. Place the
window in the upper right corner of your screen. This would be much easier with
multiple screens, wouldn’t it?

12. P Note the status on your terminal display and type something, like
TEXAS INSTRUMENTS into the USB Bulk Example Windows application and press
Enter. Note that the terminal program will display

r@ COM19 - PuTTY

BEE
[+

a partner application to the usbh_dev_bulk example

with StellarizsWare software releases for USB—enabhled
. 8trings entered here are sent to the hoard which

the case of the characters in the string and returns

the host.

Enter a string (EXIT to exit>: TEXAS INSTRUMENTS

Wrote 17 hytes to the device. Expected 17
Read 17 bytes from device. Expected 17

Returned string: "texas instruments'

Enter a string (EXIT to exit>:

7-12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

Lab 7: USB

13. » Click the Suspend button in CCS to halt the program.

To summarize, we’re sending bulk data across the DEVICE USB connection. At the
same time we are performing emulation control and sending UART serial data across the

DEBUG USB connection.

If you get things out of sync here and find that the USB Bulk Example won’t run,
remember that it must be started after the usb_dev_ bulk code on the LaunchPad is

running.

Watch the Buffers

14. » Remove all expressions (if there are any) from the Expressions pane by right-clicking
inside the pane and selecting Remove All.

15. » At about line 548 in
usb dev bulk.c, find the code
shown to the right:

TSRSt Rg_sTxBuffer);

UsBBufferInit(&g sRxBuffer);

» One at the time, highlight g sTxBuffer and g sRxBuffer and add them as
watch expressions by right-clicking on them, selecting Add Watch Expression ... and
then OK (by the way, we could have watched the buffers in the Memory Browser, but
this method is more elegant).

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB 7-13

Lab 7: USB

16. » Expand both buffers as shown below:

9= Variables | &7 Expressions &3 | 1M Registers

Expression Type Value Address
= bﬁ g_sTxBuffer struct unknown o 0000 2EQD
()= bTransmitBuffer unsigned char . 0x00002E00
» pmCalback unsigned long (*){(void*,unsigned long,unsigned long,void*) Ox0000287D0 Ox00002E04
» pyCBData void * 0x000020DE3 Ox 0000 2EDS
» pfTransfer unsigned long (*)(void*,unsigned char*,unsigned long,unsigned char) Ox00001EAS 00000 2E0C
» pfavailable unsigned long (*)(void™) Ox00002921 0000 2E 10
®» pyHandle void * 0x000020DE3 Ox00002E14
» pcBuffer unsigned char * 0% 20000500 “texas inst’ <:btle13
(%)= ulBuffersize unsigned long 258 Ox00002E 1C
» py'Workspace void * 0x20000740 Ox00002E20
= bﬁ a_sRuBuffer struct unknown o 0000 2D0C
()= bTransmitBuffer unsigned char . 0x0000200C
» pmCalback unsigned long (*){(void*,unsigned long,unsigned long,void*) Ox00001811 Ox00002DED
» pyCBData void * 0x000020DE3 Ox000020E4
» pinTransfer unsigned long (*)(void*, unsigned char *, unsigned long,unsigned char} 0x00001961 Ox000020ES
» pfavailable unsigned long (*)(void™) Ox0000266F Ox00002DEC
®» pyHandle void * 0x000020DE3 Ox000020F0
» pcBuffer unsigned char * 0% 20000400 "TEXAS INST <jl]2DF-‘r
(%)= ulBuffersize unsigned long 258 0x000020FE
» pyWWorkspace void * Ox2000072C Ox000020FC

The arrows above point out the memory addresses of the buffers as well as the contents.
Note that the Expressions window only shows the first 10 bytes in the buffer.

The usb_dev_bulk.c code uses both buffers as “circular” buffers ... rather than
clearing out the buffer each time data is received. The code just appends the new data
after the previous data in the buffer. When the end of the buffer is reached, the code starts
again from the beginning. You can use the Memory Browser to view the rest of the
buffers, if you like.

17. » Resize the code window in the Debug Perspective so you can see a few lines of code.
Around line 336 in usb_dev bulk. c, find the line containing 1 £ (ulEvent . This
is the first line in the TxHandler ISR. At this point the buffers hold the last received
and transmitted values. » Double-click in the gray area to the left on the line number to
set a breakpoint. Resize the windows again so you can see the entire Expressions pane.

SRR IR

if(ui32Event == USBE_EVENT TX_COMPLETE)
r

» Right-click on the breakpoint and select Breakpoint Properties ... Click on the Action
property value Remain Halted and change it to Update View. Click OK.

18. » Click the Core Reset button to reset the device. %

Make sure your buffers are expanded in the Expressions pane and » click
the Resume button to run the code. The previous contents of the buffers shown in the
Expressions pane will be erased when the code runs for the first time.

» Resize CCS back to the bottom half of your screen.

7-14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

Lab 7: USB

19.

20.

21.

22.

23.

» Restart your USB Bulk example Windows application so that it can reconnect with the
device.

» Since the Expressions view will only display 10 characters, type something short into
the USB Bulk Example window like “T1”.

» When the code reaches the breakpoint, the Expressions pane will update with the
contents of the buffer. Try typing “IS” and “AWESOME”. Notice that the “E” is the 11"
character and will not be displayed in the Expressions pane.

» When you’re done, close the USB Bulk Example and Terminal program windows.
» Click the Terminate button in CCS to return to the CCS Edit perspective.
» Close the usb_dev_bulk project in the Project Explorer pane.

» Minimize Code Composer Studio.
» Disconnect and store the USB cable connected to the DEVICE USB port.

You’re done.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB 7-15

Lab 7: USB

7-16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

Memory

Introduction

In this chapter we will take a look at some memory issues:

How to write to FLASH in-system.

How to read/write from EEPROM.

How to use bit-banding.

How to configure the Memory Protection Unit (MPU) and deal with faults.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio
Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers (Vg
ADC12 X
Hibernation Module
USB
(Memory and Security |
Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA
Sensor Hub
PWM

Memory Control...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8-1

Chapter Topics

Chapter Topics

Memory 8-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens §8-2
TREEINAL MEMIOTY ...ttt ettt e et e e bt e et e e ssaeestseesaeessaeessaeansseesaeensseens 8-3
FLAST ...ttt 8-4
EEPROM ...ttt ettt 8-5
SRAM ...ttt 8-6
Bit-BANING ..ottt ettt 8-7
Memory Protection URILcccccciiiiiiiiiiiiiiit ittt §8-8
PFIOFIEY LOVEILS ..ottt ettt et et 8-9
SECUTTIG YOUF TP ...ttt ettt et §8-10
Lab 8: Memory and the MPUccccocioiiiiiiiiiiiiiieee sttt 8-11

L0 10} 115 AU 8-11
ProCeAUIE ... 8-12

8-2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Internal Memory

Internal Memory

Cortex-M4F

Icode Bus

—q‘ RMCTL e ROM Array

Flash Control
FMA

FMD

Flash, SRAM and ROM Control

FMC

pResl FCRIS [«—» Flash Array
FCIM
FCMISC
c FSIZE
HH ., SSIZE
7 Flash Write Buffer
o en Memory Blocks and
prage p——— L——— Control Logic for:
| Flash Protection |
1 1 ¢ SRAM
| |
} User Registers 1 0 ROM
4.} BOOTCFG }
SRAM Array } USER_REGO } ’ Flash
| USER_REG1 |
| [UserR_reG2 |
} USER_REG3 }
EEPROM Control...
EEPROM Control [> < | EEFPROM Array
EESIZE < Security | e | [_Becko]
EEOFFSET —
EERDWR ILI
EERDWRING
EEDONE — —
o
EEUNLOCK
EEPROT
EEFASS0
EEPASS1 ¢ EEPROM Block and Control Logic
EEPASS2
EEINT ¢ EEPROM block is connected to the
TETIOE AHB (Advanced High Performance
EEDBGME Bus)

Flash Features...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Flash

Flash

Flash

256KB / 40MHz starting at 0x00000000 \
Organized in 1KB independently erasable blocks

Code fetches and data access occur over separate buses

Below 40MHz, Flash access is single cycle

Above 40MHz, the prefetch buffer fetches two 32-bit words/cycle.
No wait states for sequential code.

Branch speculation avoids wait state on some branches

0000}

Programmable write and execution protection available

Simple programming interface
0x00000000 Flash

Yo

M % 0x01000000 ROM)
rv.:rc'?fsamARM@’ ‘ [0x20000000 SRAM]
[022000000 Bit-banded SRAM]
[0x40000000 Peripherals & EEPROM]
[0x42000000 Bit-banded Peripherals]
[0xE0000000 Instrumentation, ETM, etc.] EEPROM...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

EEPROM

EEPROM

EEPROM

K 2KB of memory starting at 0x400AF000 in Peripheral space \
¢ Accessible as 512 32-bit words
¢ 32 blocks of 16 words (64 bytes) with access protection per block
¢ Built-in wear leveling with endurance of 500K writes
.

Lock protection option for the whole peripheral as well as per
block using 32-bit to 96-bit codes

Interrupt support for write completion to avoid polling
¢ Random and sequential read/write access (4 cycles max/word)

0x00000000 Flash

% 0x01000000 ROM]
[020000000 SRAM]
[0x22000000 Bit-banded SRAM]
[0x40000000 Peripherals & EEPROM]
|)
[]

*

Tivamapy @0

0x42000000 Bit-banded Peripherals
0xE0000000 Instrumentation, ETM, etc.

SRAM...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8-5

SRAM

SRAM

SRAM

ﬁ 32KB / 80MHz starting at 0x20000000 \
+ Bit banded to 0x22000000
¢ Can hold code or data

[0x00000000 Flash —

0x01000000 ROM

,;"C'lysa'MARMJ

0x40000000 Peripherals & EEPROM
[0x42000000 Bit-banded Peripherals]
[0xE0000000 Instrumentation, ETM, etc.] Bit-Banding...

8-6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Bit-Banding

Bit-Banding

Bit-Banding

¢ Reduces the number of read-modify-write operations

¢ SRAM and Peripheral space use address aliases to access
individual bits in a single, atomic operation

¢ SRAM starts at base address 0x20000000
Bit-banded SRAM starts at base address 0x2200000

¢ Peripheral space starts at base address 0x40000000
Bit-banded peripheral space starts at base address 0x42000000

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 0x20) + (bit number * 4)

For example, bit-7 at address 0x20002000 is:

0x20002000 + (0x2000 * 0x20) + (7 * 4) = 0x2204001C

MPU...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Memory Protection Unit

Memory Protection Unit
Memory Protection Unit (MPU)

¢ Defines 8 separate memory regions plus a background region
accessible only from privileged mode
¢ Regions of 256 bytes or more are divided into 8 equal-sized
sub-regions
¢ MPU definitions for all regions include:
Location
Size
Access permissions
Memory attributes
¢ Accessing a prohibited region causes a memory management
fault

Privilege Levels...

8-8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Priority Levels

Priority Levels

Cortex M4 Privilege Levels

¢ Privilege levels offer additional protection for software,
particularly operating systems

¢ Unprivileged : software has ...
Limited access to the Priority Mask register
No access to the system timer, NVIC, or system control block
Possibly restricted access to memory or peripherals (FPU, MPU, etc)
¢ Privileged: software has ...
use of all the instructions and has access to all resources

¢ ISRs operate in privileged mode

¢ Thread code operates in unprivileged mode unless the level is
changed via the Thread Mode Privilege Level (TMPL) bit in the
CONTROL register

Lab...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Securing Your IP

Securing Your IP

Securing Your IP

¢ Flash memory can be protected (per 2KB memory block).
Prohibited access attempts will generate a bus fault.

FMFPFEn FMPREn |Protection

o o Execute-only protection. The block may only be executed and may not be written or erased.
This mode is used to protect code.
o The block may be written, erased or executed, but not read. This combination is unlikely to
be usad.
o 1 Read-only protection. The block may be read or executed but may not be written or erased.

This mode is used to lock the block from further modification while allowing any read or
execute access.

Mo protection. The block may be written, erased, executed or read.

¢ The JTAG and SWD ports can be disabled. DBGO = 0 and DBG1 =
1 (in BOOTCFG register) for debug to be available. The user should
be careful to provide a mechanism, for instance via the bootloader of
enabling the ports since this is permanent.

¢ There is a set of steps in the UG for recovering a “locked”

microcontroller, but this will result in the mass erase of flash
memory.

8-10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

Lab 8: Memory and the MPU

Objective
In this lab you will

write to FLASH in-system.
read/write EEPROM.
Experiment with using the MPU
Experiment with bit-banding

¢ Create code to write to Flash
¢ Create code to read/write EEPROM

¢ Experiment with MPU and
bit-banding

o o 433
@ ¢ P85 OND
@° ¢ F0 POO
Py et
Pes PD2
PES PO3
PB4 pET
PAS PE2
£AS PES

Lab 8: Memory and the MPU

USB Emulation Connection

3 anv(._ =Y
AL TR

2866
00 101 £X7 1%0 RXD g
08C

www.ti.com/launchpad
P EKTMACIZIONL REV A

oW
PE2 OND

PF3 PB2 ©
P83 P30 43
RIWS
PG4 PFO -
FC5 RST *
PCs PB7 43
PC7 PBE ~§ ~

Now
RO R1O

7" % TEXAS INSTRUMENTS

o o

13

?] ~a
7/ Tiva™ C Series .
=

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

Procedure

Import lab8

1. We have already created the 1ab8 project for you with an empty main. c, a startup file
and all necessary project and build options set.

» Maximize Code Composer and click Project = Import Existing CCS Eclipse Project.
Make the settings shown below and P click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

-

v+ Import CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CC5 Eclipse projects,

| ok

@ Select search-directory: CATM4C123G_LaunchPad_Workshop\lab8\project Browse...
(7)1 Select archive file: Browse...
Discovered projects:

1 lab8 [CATMAC123G_LaunchPad_Workshop'lab8\project] Select All

Deselect All

Refresh

[] Copy projects into workspace
[7] Autornatically import referenced projects

Open the Resource Explorer and browse available example projects...

@ Finish |

Cancel

2. P Expand the project by clicking the : next to 1ab8 in the Project Explorer pane.
Double-click on main. c to open it for editing.

8-12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

3. Let’s start out with a straightforward set of starter code. » Copy the code below and
paste it into your empty main. c file.

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"

int main(void)

{
SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN 1|GPIO_PIN_2|GPIO_PIN_3, 0x00);
SysCtlDelay (20000000) ;
while(1)
{
}

}

You should already know what this code does, but a quick review won’t hurt. The
included header files support all the usual stuff including GPIO. Inside main (), we
configure the clock speed to 40MHz, set the pins connected to the LEDs as outputs and
then make sure all three LEDs are off. Next is a two second (approximately) delay
followed by a while (1) trap.

» Save your work.

If you’re having problems, this code is in your 1ab8/project folderasmainl. txt.

Writing to Flash

4. We need to find a writable block of flash memory. Right now, that would be flash
memory that won’t be holding the program we’ll be executing. » Under Project on the
menu bar, click Build All. This will build the project without attempting to download it to
the TM4C123GH6PM memory.

5. As we’ve seen before, CCS creates a map file of the program during the build process.
» Look in the Debug folder of 1ab8 in the Project Explorer pane and double-click
on 1ab8.map to open it.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8-13

Lab 8: Memory and the MPU

sections as shown below:

6. » Find the MEMORY CONFIGURATION and SEGMENT ALLOCATION MAP

run crigin
aaaaaaae
paaaapea
pREaBZEC
BEEEETEE
2paaaage
2pBeapea
2paaazas
2eaaazea

MEMORY CONFIGURATION

SEGMENT ALLOCATION MAP

load origin

origin
aaaaaaae
2eaaaaae

aeadlpBeE BBBERTaEc BBB3TESa
Gepaseee BBeeR214 eBRATYdec

init length

members

aaaaapea
apaaaaea
apeea2oc
BEeaa7as

28Bea0e8
2paaaaes

2BBea288
2paeazea

apeBaTas
BREaa26C
BEaaasla
BEEEEE 28

gaaEe2ee
gaaea2ee

peaaeald
aaaaaa14

BEaea7ad
apeaa2oc
@paeasla
BEaaEn28

BEaaameE
gpaaaaeE

Baaeaal14
apaaaald

Jdntvecs
Text
.cinit

.stack

.data

From the map file we can see that the amount of flash memory used is 0x07a8 in length
that starts at 0x0. That means that pretty much anywhere in flash located at an address
greater than 0x1000 (for this program) is writable. Let’s play it safe and pick the block

starting at 0x10000. Remember that flash memory is erasable in 1K blocks. Close

lab8.map.

» Backinmain.c, add the following include to the end of the include statements to
add support for flash APIs:

#tinclude "driverlib/flash.h"

» At the top of main (), enter the following four lines to add buffers for read and write
data and to initialize the write data:

uint32_t pui32Data[2];
uint32_t pui32Read[2];
= 0x12345678;
= Ox56789abc;

pui32Data[@]
pui32Data[1]

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

9.

10.

» Just above the while(1) loop at the end of main(), add these four lines of code:

FlashErase(0x10000);

FlashProgram(pui32Data, ©0x10000, sizeof(pui32Data));
GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO PIN_2|GPIO_PIN_ 3, 0x02);
SysCtlDelay(20000000) ;

Line:

1: Erases the block of flash we identified earlier.

2: Programs the data array we created, to the start of the block, of the length of the array.
3: Lights the red LED to indicate success.

4: Delays about two seconds before the program traps in the while (1) loop.

Your code should look like the code below. If you’re having issues, this code is located in
the 1ab8/project folderasmain2 . txt.

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/flash.h"

int main(void)

{
uint32_t pui32Data[2];
uint32_t pui32Read[2];
pui32Data[@] = ©x12345678;
pui32Data[1] = ©x56789abc;

SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN 1|GPIO_PIN_2|GPIO_PIN_3, 0x00);
SysCtlDelay(20000000);

FlashErase(0x10000);

FlashProgram(pui32Data, 0x10000, sizeof(pui32Data));
GPIOPinWrite(GPIO PORTF_BASE,GPIO_PIN 1|GPIO_PIN_2|GPIO PIN 3, 0x02);
SysCtlDelay(20000000);

while(1)
{
}

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8-15

Lab 8: Memory and the MPU

Build, Download and Run the Flash Programming Code

11. » Click the Debug button to build and download your program to the TM4C123GH6PM
memory. Ignore the warning about variable pui32Read not being referenced (we’ll use
it later). When the process is complete, P> set a breakpoint on the line containing the
FlashProgram () API function call.

12. » Click the Resume button to run the code. Execution will quickly stop at the
breakpoint. » On the CCS menu bar, click View - Memory Browser. In the provided
entry window, enter 0x10000 as shown below and click Go:

i x - O
7 @ex it

| 0x10000 v| [ew Tab |

0w 10000 <Memory Rendering 1> 23
|Hex 32 Bit - TI Style v|

Ox00010000 g FEFFEFEFE 3333333 P

0x00010008 FFFFFFFF FEFFFFFFE
0x00010010 FFFFFFFF FFFFFFFE
0x00010018 FFFFFFFF FEFFFFFFE
0x00010020 FFFFFFFF FEFFFFFFE
0x00010028 FFFFFFFF FEFFFFFFE
0x00010030 FFFFFFFF FEFFFFFE
0x00010038 FFFFFFFF FEFFFFFE
0x00010040 FFFFFFFF FEFFFFFFE
0x00010048 FFFFFFFF FEFFFFFFE
0x00010050 FFFFFFFF FEFFFFFE
0x00010058 FFEFFFEFFF FEFFEEFFEE
0x00010060 FFFFFFFF FEFFFFFE
0x00010068 FFFFFFFF FEFFFFFFE
0x00010070 FFFFFEFFF FFFEFEFFEE

0x00010078 FFEFFEFFFF FEFEFEFEFFE
0x00010080 FFFFFFFF FEFFFFFFE
0x00010088 FFFFFFFF FEFFFFFFE
0x00010080 FFFFFFFF FEFFFFFE
0x000100598 FFFFFFFF FEFFFFFFE w

Erased flash should read as all ones, since programming flash memory only writes zeros.
Because of this, writing to un-erased flash memory will produce unpredictable results.

13. » Click the Resume button to run the code. The last line of code before the while (1)
loop will light the red LED. » Click the Suspend button. Your Memory Browser will
update, displaying your successful write to flash memory.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

[J Memary Browser 52 = O
% - Pep ripct”

Oy 10000 <Memory Rendering 1> 3

Hex 32 Bit - TI Style b
0x00010000 123456738 36785ABC -
0x00010008 FEEFEFFEE FEFEFFFEE

0x00010010 FFEFFFFF FFEFFFFFE
0x00010018 FFEFFFFF FFEFFEFFFE

14. » Remove the breakpoint.
15. P Click the Terminate button to stop debugging and return to the CCS Edit perspective.

Bear in mind that if you repeat this exercise, the values you just programmed in flash will
remain there until that flash block is erased.

Reading and Writing EEPROM

16. » Backinmain.c, add the following line to the end of the include statements to add
support for EEPROM APIs:

#include "driverlib/eeprom.h™

17. » Just above the while(1) loop, enter the following seven lines of code:

SysCtlPeripheralEnable(SYSCTL_PERIPH_EEPROMO);

EEPROMINnit();

EEPROMMassErase();

EEPROMRead (pui32Read, 0x0, sizeof(pui32Read));
EEPROMProgram(pui32Data, 0x0, sizeof(pui32Data));

EEPROMRead (pui32Read, 0x0, sizeof(pui32Read));
GPIOPinWrite(GPIO_PORTF_BASE,GPIO PIN_1|GPIO_PIN 2|GPIO_PIN_3, 0x04);

Line:
1: Turns on the EEPROM peripheral.
2: Performs a recovery if power failed during a previous write operation.

3: Erases the entire EEPROM. This isn’t strictly necessary because, unlike flash,
EEPROM does not need to be erased before it is programmed. But this will allow
us to see the result of our programming more easily in the lab.

: Reads the erased values into pulRead (offset address)

: Programs the data array, to the beginning of EEPROM, of the length of the array.
: Reads that data into array pulRead.

: Turns off the red LED and turns on the blue LED.

~N N »n b

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8-17

Lab 8: Memory and the MPU

18. » Save your work.

Your code should look like the code below. If you’re having issues, this code is located in
the 1ab8/project folderasmain3. txt.

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/flash.h"
#include "driverlib/eeprom.h"

int main(void)

uint32_t pui32Data[2];
uint32_t pui32Read[2];
pui32Data[@] = ©x12345678;
pui32Data[1] = ©x56789abc;

SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
GPIOPinWrite(GPIO_PORTF_BASE,GPIO PIN 1|GPIO_PIN_2|GPIO_PIN_3, 0x00);
SysCtlDelay(20000000);

FlashErase(0x10000);

FlashProgram(pui32Data, 0x10000, sizeof(pui32Data));
GPIOPinWrite(GPIO PORTF_BASE,GPIO_PIN 1|GPIO_PIN_2|GPIO PIN 3, 0x02);
SysCtlDelay(20000000);

SysCtlPeripheralEnable (SYSCTL_PERIPH_EEPROM®);

EEPROMInit();

EEPROMMassErase();

EEPROMRead (pui32Read, 0x0@, sizeof(pui32Read));
EEPROMProgram(pui32Data, ©x@, sizeof(pui32Data));

EEPROMRead (pui32Read, 0x0, sizeof(pui32Read));

GPIOPinWrite(GPIO PORTF_BASE,GPIO_PIN 1|GPIO _PIN_2|GPIO PIN 3, 0x04);

while(1)
{
¥

8-18 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

Build, Download and Run the EEPROM Programming Code

19. » Click the Debug button to build and download your program to the TM4C123GH6PM
memory. Code Composer does not currently have a browser for viewing EEPROM
memory located in the peripheral area. The code we’ve written will let us read the values

and display them as array values.

20. » Click on the Variables tab and expand both of the arrays by clicking the + next to
them. P Right-click on the first variable’s row and select Number Format = Hex. Do
this for all four variables.

()= Variables &3 | 64 Expressions| % Breakpoints| i1t Registers +5 [| @ | et~ = O
Mame Type Value Location
4 ™ pui32Data unsigned int[2] 0:20000200 020000200
- 101 Select Al Ctrl+A (20000200
60 [1] _ (20000204
4 (@ pui32Read | (= Copy Variables Ctri+C 0208 020000208
9= [0] Enable 020000208
()= [1] Disable 0x2000020C
Number Format ’ Default
1 @, Cast To Type.. Hex :
View Memory Decimal
View Memory at Value Octal
Find... Ctrl+F Binary
Add Global Vaniables... String
Remove Global Vanables Restors To Preference
Remove All Global Variables
Q-Values 3
Y Watch
Graph
Breakpoint (Cede Compeser Studic) 4

21. P Set a breakpoint on the line containing EEPROMProgram (). We want to verify the
previous contents of the EEPROM. P Click the Resume button to run to the breakpoint.

22. Since we included the EEPROMMassErase () in the code, the values read from
memory should be all Fs as shown below:

< 57 | 61 Expressions| © Breakpoints | % Registers #H = | [| i e L
MName Type Value Location
4 = pui32Data unsigned int[2] 0200001 E8 0x200001E8
9= [0] unsigned int (12345678 (Hex) 0x200001E8
9= [1] unsigned int (GETEIABC (Hex) 0x200001EC
4 (= pui32Read unsigned int[2] 0200001 F0 (0200001 F0
9= [0] unsigned int OxFFFFFFFF (Hex) 0x200001F0
(= [1] unsigned int OxFFFFFFFF (Hex) 0200001 F4
4 I s

23. P Click the Resume button to run the code from the breakpoint. When the blue LED on
the board lights, click the Suspend button. The values read from memory should now be
the same as those in the write array:

s 3 | 97 Expressions| % Breakpoints | i} Registers k£ 2 ‘ 2} | it~ =0
Narne Type Value Location
4 = pui32Data unsigned int[2] 0x:200001E8 (0x200001E8
9= [0] unsigned int 012345678 (Hex) (0:200001E8
&= [1] unsigned int 0x56783ABC (Hex) 0:200001EC
4 [puil2Read unsigned int[2] 0x200001F0 0x200001F0
9= [0] unsigned int (1 2345678 (Hex) 0200001 F0
)= [1] unsigned int 0x56783ABC (Hex) 0x200001F4
] T 3

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8-19

Lab 8: Memory and the MPU

Further EEPROM Information

24. EEPROM is unlocked at power-up. Your locking scheme, if you choose to use one, can
be simple or complex. You can lock the entire EEPROM or individual blocks. You can
enable reading without a password and writing with one if you desire. You can also hide
blocks of EEPROM, making them invisible to further accesses.

25. EEPROM reads and writes are multi-cycle instructions. The ones used in the lab code are
“blocking calls”, meaning that program execution will stall until the operation is
complete. There are also “non-blocking” calls that do not stall program execution. When
using those calls you should either poll the EEPROM or enable an interrupt scheme to
assure the operation completes properly.

26. » Remove your breakpoint, click Terminate to return to the CCS Edit perspective and
close the 1ab8 project.

8-20 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

Bit-Banding

27. The LaunchPad board TivaWare examples include a bit-banding project. » Click Project
-> Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.
The example project will be copied to your workspace folder.

v+ Import CCS Eclipse Projects LIEI—E—hJ
Select Existing CCS Eclipse Project =
Select a directory to search for existing CCS Eclipse projects. / ,.r":
-
@ Select search-directory: CATI\TivaWare_C_Series-1.1\examples\boards\ek-trmdcl 23gxl\bitband
() Select archive file: Browse...

Discovered projects:
[#] &7 bitband [CATITivaWare_C_Series-1.1\examples\boards\ek-tm4c123gxl\bitband'ccs] Select All

Deselect All

Refresh

Copy projects into workspace

[7] Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

@ [Finish |

Cancel

28. P Double-click on bitband. c to open it for viewing. Page down until you reach
main () . You should recognize most of the setup code, but note that the UART is also
configured. We’ll be able to watch the code run via UARTprintf () statements that

send data to a terminal program running on your laptop. Also note that this example uses
ROM API function calls.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8-21

Lab 8: Memory and the MPU

29. » Continue paging down until you find the

for (ui32Idx=0;ui32Idx<32;ui32Idx++) loop. This 32-step loop will write
Oxdecafbad into memory bit by bit using bit-banding. This will be done using the
HWREGBITW () macro.

» Right-click on HWNREGBITW () and select Open Declaration.

The HWREGBITW (x,b) macro is an alias from:

HWREG (((uint32_t) (x) & OxF0000000) | 0x02000000 |
(((uint32 _t) (x) & OxO000FFFFF) << 5) | ((b) << 2))

which is C code for:

bit-band alias = bit-band base + (byte offset * 0x20) + (bit number * 4)

This is the calculation for the bit-banded address of bit b of location x. HWREG is a
macro that programs a hardware register (or memory location) with a value.

The loop in bitband. c reads the bits from 0xdecafbad and programs them into the
calculated bit- band addresses of g ui32Value. Throughout the loop the program
transfers the value in g_ui32Value to the UART for viewing on the host. Once all bits
have been written to g_ui32Value, the variable is read directly (all 32 bits) to make
sure the value is Oxdecafbad. There is another loop that reads the bits individually to
make sure that they can be read back using bit-banding

30. P Click the Debug button to build and download the program to the TM4C123GH6PM.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

31. » If you are using Windows 7 or 8, skip to step 33. In WinXP, open HyperTerminal by
clicking Start = Run..., then type hypertrm in the Open: box and click OK. Pick any
name you like for your connection and click OK. In the next dialog box, change the
Connect using: selection to COM##, where ## is the COM port number you noted in
Labl. Click OK. Make the selections shown below and click OK.

COM48 Properties 2K
Part Settings |
e
Restore Defaults
ok [cancel][ok]

Skip to step 34.

32. » In Win7 or 8, double-click on putty.exe. Make the settings shown below and then
click Open. Your COM port number will be the one you noted in Labl.

2 PuTTY Configuration

Category:

(=R Sezsion Basic options for your PUTTY session
Logging Specify the destination you want to connect to

=- Teminal Serial l Sesd
Keyboard erial line pes
Bel [comag |[115200 |
Features Connection type:

= Window (O)Raw O Telnet (O Rlogin () 5SH (&) Senal
n
.wpea@nce Load, save or delete a stored session
Behaviour
Translation Saved Sessions
Selection | |
Colours

= Connection
Data
Promgyr
Telnet
Rlogin

S5H
Serial Close window on exit:
O Mways O Never (8 Only on clean exit
About [Jpen l [Cancel

33. P Click the Resume button in CCS and watch the bits drop into place in your terminal
window. The Delay () in the loop causes this process to take about 30 seconds.

34. » Close your terminal window. Click Terminate in CCS to return to the CCS Edit
perspective and close the bitband project.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

Memory Protection Unit (MPU)

35. The LaunchPad board TivaWare examples include an mpu fault project. » Click Project
-> Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.
Note that this project is automatically copied into your workspace.

v+ Import CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CC5 Eclipse projects.

@ Select search-directory: CATI\TivaWare_C_Series-1.1\examples\boards\ek-tm4 c123 gxl\mpu_fault Browse...
() Select archive file:

Discovered projects:

[F] @ mpu_fault [CA\TTTivaWare_C_Series-1.1\examples\boards\ek-tm4cl23gd\mpu_faulticcs] Select All

Deselect All

i] |

Refresh

Copy projects into workspace

[] Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

Cancel

@ [Finsh |

“ 4

36. » Expand the project and double-click on mpu_fault. c for viewing.

Again, things should look pretty normal in the setup, so let’s look at where things are
different.

Find the function called MPUFaultHandler. This exception handler looks just like an
ISR. The main purpose of this code is to preserve the address of the problem that caused
the fault, as well as the status register.

» Open startup ccs.c and find where MPUFaultHandler has been placed in
the vector table. Close startup ccs.c.

8-24 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

37. » Inmpu_fault.c, findmain (). Using the memory map shown, the
MPURegionSet () calls will configure 6 different regions and parameters for the MPU.
The code following the final MPURegionSet () call triggers (or doesn’t trigger) the
fault conditions. Status messages are sent to the UART for display on the host.

MPURegionSet () uses the following parameters:

e Region number to set up

e Address of the region (as aligned by the flags)

e Flags

Flags are a set of parameters (OR’d together) that determine the attributes of the region
(size | execute permission | read/write permission | sub-region disable | enable/disable)

The size flag determines the size of a region and must be one of the following:

MPU_RGN_SIZE_32B
MPU_RGN_SIZE_64B
MPU_RGN_SIZE_128B
MPU_RGN_SIZE_256B
MPU_RGN_SIZE_512B
MPU_RGN_SIZE_1K
MPU_RGN_SIZE_2K
MPU_RGN_SIZE_4K
MPU_RGN_SIZE_8K
MPU_RGN_SIZE_16K
MPU_RGN_SIZE_32K
MPU_RGN_SIZE_64K
MPU_RGN_SIZE_128K
MPU_RGN_SIZE_256K

MPU_RGN_SIZE_512K
MPU_RGN_SIZE_1M
MPU_RGN_SIZE_2M
MPU_RGN_SIZE_4M
MPU_RGN_SIZE_8M
MPU_RGN_SIZE_16M
MPU_RGN_SIZE_32M
MPU_RGN_SIZE_64M
MPU_RGN_SIZE_128M
MPU_RGN_SIZE_256M
MPU_RGN_SIZE_512M
MPU_RGN_SIZE_1G
MPU_RGN_SIZE_2G
MPU_RGN_SIZE_4G

The execute permission flag must be one of the following:

MPU_RGN_PERM_EXEC enables the region for execution of code
MPU_RGN_PERM_NOEXEC disables the region for execution of code

The read/write access permissions are applied separately for the privileged and user
modes. The read/write access flags must be one of the following:

MPU_RGN_PERM_PRV_NO_USR_NO - no access in privileged or user mode
MPU_RGN_PERM_PRV_RW_USR_NO - privileged read/write, no user access
MPU_RGN_PERM_PRV_RW_USR_RO - privileged read/write, user read-only
MPU_RGN_PERM_PRV_RW_USR_RW - privileged read/write, user read/write
MPU_RGN_PERM_PRV_RO_USR_NO - privileged read-only, no user access
MPU_RGN_PERM_PRV_RO_USR_RO - privileged read-only, user read-only

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8-25

Lab 8: Memory and the MPU

38.

39.

Each region is automatically divided into 8 equally-sized sub-regions by the MPU. Sub-
regions can only be used in regions of size 256 bytes or larger. Any of these 8 sub-
regions can be disabled, allowing for creation of “holes” in a region which can be left
open, or overlaid by another region with different attributes. Any of the 8 sub-regions can
be disabled with a logical OR of any of the following flags:

MPU_SUB_RGN_DISABLE_0
MPU_SUB_RGN_DISABLE_1
MPU_SUB_RGN_DISABLE_2
MPU_SUB_RGN_DISABLE_3
MPU_SUB_RGN_DISABLE_4
MPU_SUB_RGN_DISABLE_5
MPU_SUB_RGN_DISABLE_6
MPU_SUB_RGN_DISABLE_7

Finally, the region can be initially enabled or disabled with one of the following flags:

MPU_RGN_ENABLE
MPU_RGN_DISABLE

» Start your terminal program as shown earlier. Click the Debug button to build and
download the program to the TM4C123GH6PM. You can ignore any compiler version
warnings that may appear. Click the Resume button to run the program.

The tests are as follows:

e Attempt to write to the flash. This should cause
a protection fault due to the fact that this region @
is read-only. If this fault occurs, the terminal
program will show OK.

e Attempt to read from the disabled section of
flash. If this fault occurs, the terminal program
will show OK. FAM write...

Success!

e Attempt to read from the read-only area of
RAM. If a fault does not occur, the terminal program will show OK.

e Attempt to write to the read-only area of RAM. If this fault occurs, the terminal
program will show OK.

40. » When you are done, close your terminal program. Click the Terminate button in CCS

to return to the CCS Edit perspective. Close the mpu_ fault project and minimize Code
Composer Studio.

You’re done.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Floating-Point Unit

Introduction

This chapter will introduce you to the Floating-Point Unit (FPU) on the LM4F series devices. In
the lab we will implement a floating-point sine wave calculator and profile the code to see how

many CPU cycles it takes to execute.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio
Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers ()
ADC12 '
Hibernation Module
USB
Memory and Security
(Floating-Point |
BoosterPacks and grLib
Synchronous Serial Interface
UART
uDMA
Sensor Hub
PWM

What is Floating-Point?...

D |
.]
!
3
3
A
\
A}
3
xt

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

9-1

Chapter Topics

Chapter Topics

Floating-Point Unit 9-1
CRAPICE TOPICS..oc.vv ettt ettt e et e et e e bt eeab e e eab e e eabaesabeeesbeessbaeesseesnbeesnseessseennseenens 9-2
What is Floating-Point nd IEEE-7547c.cccuooiiieeeeee ettt 9-3
FIOQHING-POIRNE URIL...........ooeeieieeiee ettt ettt ettt e e et ene e enae e 9-4
CMSIS DSP Library PerfOrMANCE.cccueevuieciiieeiieeiiieesieeeieeeaeesteestaesveesveesisaeanseessbaesnseeseseenssee e 9-6
LD 9: FPU ..ottt ettt bt et ekt R e n et a ekttt n ettt naeere e e 9-7

L0 10} 1< 15 4R SRRUTSPRSR 9-7
PIOCEAULIE ...ttt ettt st b e s bt e b ettt b saeebe e b ebt et etenbe e 9-8

9-2

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

What is Floating-Point and IEEE-7547?

What is Floating-Point and IEEE-7547?

What is Floating-Point?

¢ Floating-point is a way to represent real numbers on
computers

........

+ Half (16-bit) > i]]]I_

+ Single (32-bit) > i]]]]]]]_

+ Double (64-bit) > I]]II]]II]I—_
+ Quadruple (128-bit) > [TTTTTTTT 11T T ANAAANARAEEA . ENEEEEEN

What is IEEE-7547...

What is IEEE-7547

Bit 31 3029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
Symbol Sign (s) Exponent (e) Fraction (f)
\ J\)

Y Y
1 bit 8 bits 23 bits

Decimal Value = (-1)s (1+f) 2¢-bias

where: f=3[(b;)27] Vie (1,23)
bias = 127 for single precision floating-point

Symbol s e f
Example 0 1 0 0 0 01 101101000010000O000O0O0O0O0OO0OO0O
LYJ\ J\ J
Y Y
sign = (-1)° exponent = [10000110], = [134],, fraction = [0.110100001000000000000000],= [0.814453],,

=[1ho
Decimal Value = (-1)% x (1+f) x 2¢-bias
=[1140 X ([1]4o + [0.814453],0) x [2134127]
=[1. 814453],, x 128
= [232.249],,

FPU...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

Floating-Point Unit

Floating-Point Unit

Floating-Point Unit (FPU)
¢ The FPU provides floating-point RN RN
computation functionality that is compliant [J—] e
with the IEEE 754 standard ol S Cocpu L
¢ Enables conversions between fixed-point - DSk a
and floating-point data formats, and floating- E ;
point constant instructions - -
¢ The Cortex-M4F FPU fully supports single- Hx m
precision: m E : m
o Add o g - Bus Matrix I
o le S_RAM&
¢ Subtract o O Mo peripheral I/F]
+ Multiply TN NN W
¢ Divide
¢ Single cycle multiply and accumulate (MAC)
¢ Square root
Cas) (v (_vow) (C_vewee)(_venrJ(C_vevim (v (_vowm _)(_vior)
C o) (s) (wer (e (R (v) (e (v) (_vws)
) (_veor)(_veusn) _vsaar) vsm _)(_vsm) vsus) Cortex-M4F
Modes of Operation...
Modes of Operation
¢ There are three different modes of operation for the FPU:
KFUII-CompIiance mode - In Full-Compliance mode, the FPU
processes all operations according to the IEEE 754 standard in
hardware. No support code is required.
= Flush-to-Zero mode — A result that is very small, as described in the
IEEE 754 standard, where the destination precision is smaller in
magnitude than the minimum normal value before rounding, is
replaced with a zero.
= Default NaN (not a number) mode — In this mode, the result of any
arithmetic data processing operation that involves an input NaN, or
\that generates a NaN result, returns the default NaN. (0 /0 = NaN)
FPU Registers...

9-4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

Floating-Point Unit

FPU Registers

S0
S1
52
S3
¢ Sixteen 64-bit double-word 54 | 52|

registers, D0-D15 =
¢ Thirty-two 32-bit single-word =
registers, S0-S31

— D0 —

— D1 —

— D3 -

528

529
S30
531

L D14

D15+

Usage...

FPU Usage

¢ The FPU is disabled from reset. You must enable it* before you
can use any floating-point instructions. The processor must be in
privileged mode to read from and write to the Coprocessor Access
Control (CPAC) register.

¢ Exceptions: The FPU sets the cumulative exception status flag in
the FPSCR register as required for each instruction. The FPU does
not support user-mode traps.

¢ The processor can reduce the exception latency by using lazy
stacking*. This means that the processor reserves space on the
stack for the FPU state, but does not save that state information to
the stack.

* with a TivaWare API function call

CMSIS...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

CMSIS DSP Library Performance

CMSIS DSP Library Performance

* L
CMSIS’ DSP Library Performance
* - ARM® Cortex™ Microcontroller Software Interface Standard
¢ DSP Library Benchmark: Cortex M3 vs. Cortex M4 (SIMD + FPU)
¢ Fixed-point ~ 2x faster packed dota packed dota
¢ Floating-point ~ 10x faster
2 i S R — &
n n =] o]
~] © ~ o
[]]] !
)
o 3 g g 2 g & 2
o & - 0o o ¥ B &
-] o~ - o~ -] o~ [--] o~ ! B
| [. - I . N = — —
FIR q15 PID q15 IR q31 Matrix Mul Correlation
fixed point fixed point fixed point fixed paint floating point
Cycles: smaller numbers are better Cortex-M4
Source: ARM CMSIS Partner i World, Rei Keil
Lab...

9-6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

Lab 9: FPU

Lab 9: FPU

Objective

In this lab you will enable the FPU to run and profile floating-point code.

Lab 9: FPU

USB Emulation Connection

www.ti.com/launchpad
EK-TMACIZIGKL REV A

¢ Experiment with the FPU
¢ Profile floating-point code pe AU

/9 PAS PES RS R0 PO7 PAS ’\ \
N -.‘

ros ene B

Pra paz &

re @) wake
&

i ear o
3 TExXAs INSTRUMENTS
= S o

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit 9-7

Lab 9: FPU

Procedure

Import lab9

1. We have already created the 1ab9 project for you with main. c, a startup file and all
necessary project and build options set.

» Maximize Code Composer and click Project = Import Existing CCS Eclipse Project.
Make the settings shown below and click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

-

'+ Impart CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CC5 Eclipse projects.

| B

@) Select search-directory: CA\TM4C123G_LaunchPad_Workshop'lab@\project Browse...
() Select archive file: Browse...
Discovered projects:

[1ab9 [CATM4C123G_LaunchPad_Workshop\lab9\project] Select All

Deselect All

Refresh

[] Copy projects into workspace
[] Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

®

Finish Cancel

» Expand the project.

9-8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

Lab 9: FPU

Browse the Code

2. In order to save some time, we’re going to browse existing code rather than enter it line
by line. » Open main. c in the editor pane and copy/paste the code below into it. The
code is fairly simple. We’ll use the FPU to calculate a full sine wave cycle inside a 100
datapoint long array. This file is saved in your 1ab9/project folderasmain. txt.

#include <stdint.h>

#include <stdbool.h>
#include <math.h>

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/fpu.h"
#include "driverlib/sysctl.h"
#include "driverlib/rom.h"

#ifndef M_PI
#define M_PI 3.14159265358979323846
#tendif

#define SERIES_LENGTH 100
float gSeriesData[SERIES_LENGTH];

int32_t i32DataCount = 9;
int main(void)
float fRadians;

ROM_FPULazyStackingEnable();
ROM_FPUEnable();

ROM_SysCt1ClockSet(SYSCTL_SYSDIV 4 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ | SYSCTL_OSC_MAIN);
fRadians = ((2 * M_PI) / SERIES_LENGTH);

while(i32DataCount < SERIES_LENGTH)

¢ gSeriesData[i32DataCount] = sinf(fRadians * i32DataCount);
i32DataCount++;

}

while(1)

{

}

3. Atthetop ofmain.c, look first at the includes, because there are a couple of new ones:
e math.h—the code uses the sinf () function prototyped by this header file

e fpu.h —support for Floating Point Unit

4. Nextis an ifndef construct. Justin case M_PT is not already defined, this code will do
that for us.

5. Types and defines are next:
e SERIES LENGTH - this is the depth of our data buffer

e float gSeriesData[SERIES_ LENGTH] — an array of floats
SERIES_LENGTHlong

e i32dataCount — a counter for our computation loop

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit 9-9

Lab 9: FPU

6. Now we’ve reached main():
e We’ll need a variable of type float called fRadians to calculate sine
e Turn on Lazy Stacking (as covered in the presentation)
e Turn on the FPU (remember that from reset it is off)
e Set up the system clock for SOMHz
o A full sine wave cycle is 27 radians. Divide 27 by the depth of the array.

e Thewhile () loop will calculate the sine value for each of the 100 values of the
angle and place them in our data array

e An endless loop at the end

Build, Download and Run the Code

7. ® Click the Debug button to build and download the code to the TM4C123GH6PM flash
memory. When the process completes, P click the Resume button to run the code.

8. P Click the Suspend button to halt code execution. Note that execution was trapped in
the while (1) loop.

while (1)

9. » If your Memory Browser isn’t currently visible, Click View = Memory Browser on
the CCS menu bar. Enter gSeriesData in the address box and click Go. In the box
that says Hex 32 Bit — TI Style, click the down arrow and select 32 Bit Floating Point.
You will see the sine wave data in memory like the screen capture below:

g 3 =0
- $eépriet”
|gSeriesData v| [New Tab]

020000000 <Memary Rendering 1> 3

32 Bit Float v |
gSeriesData ~
0.06279052
0.1253332
0.1873813
0.2486899
0.309017
0.3681246
0.42577%3
0.4817537
0.5358269
0.5877852
0.8637424
0.6845472
0.7289687
0.7705133
O.209017
"""" w

9-10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

Lab 9: FPU

10. Is that a sine wave? It’s hard to see from numbers alone. We can fix that. On the CCS

menu bar, click Tools = Graph = Single Time. When the Graph Properties dialog
appears, make the selections show below and click OK.

Graph Properties

Property Value
= Data Properties
Acquisition Buffer Size 100
Dsp Data Type 32 bit floating point
Index Increment 1
0 _Value 0
Sampling Rate Hz 1
Start Address goeriesData
[= Display Properties
Axis Display true
Data Plot Style Line
Display Data Size 100
Grid Style Mo Grid
Magnitude Display Scale Linear
Time Display Unit sample
Use Dc Value For Graph [false

The graph below will appear at the bottom of your screen:

& console [Sinde Tme -0 53

4 B O SR S[RF R # - O
0 iIS +‘1U +‘15 +‘2U +‘25 +‘3U +‘35 1‘40 +<‘|5 _‘_,,:,%,.U/E +‘55 1;U +é5 1‘7U +‘75 +éU +é5 +“3U +“35
Profiling the Code
11. An interesting thing to know would be the amount of time it takes to calculate those 100

sine values.

» On the CCS menu bar, click View = Breakpoints. Look in the upper right area of the

CCS display for the Breakpoints tab.
Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit 9-11

Lab 9: FPU

12.

13.

14.

15.

16.

17.

18.

19.

» Remove any existing breakpoints by clicking Run = Remove All Breakpoints. In the
main.c, set a breakpoint by double-clicking in the gray area to the left of the line
containing:
fRadians =

((2 * M PI) / SERIES LENGTH);

frRadians = ((2 * M_PI) / SERIES_LENGTH);
while(i32DataCount < SERIES_LENGTH)

{

gseriesData[i32DataCount] = sinf(fRadians * i32DataCount);

i32DataCount++;

e

P Click the Restart button to restart the code frommain (), and then
click the Resume button to run to the breakpoint.

o
» Right-click in the Breakpoints pane and Select Breakpoint (Code —
Composer Studio) = Count event. Leave the Event to Count as Clock Cycles in the next
dialog and click OK.

» Set another Breakpoint on the line containing while (1) at the end of the code. This
will allow us to measure the number of clock cycles that occur between the two
breakpoints.

Note that the count is now 0 in the Breakpoints pane. » Click the Resume button to run
to the second breakpoint. When code execution reaches the breakpoint, execution will
stop and the cycle count will be updated. Our result is show below:

¢ X%R@# s @05

(4= Variables | 99" Expressions | 1b Registers | ®g Breakpoints 52 £
Identity Mame Condition Count Action
B CountEvent Count Event 34996
? main.c, line 27 { Breakpoint 0 Remain Halted
& main.c, line 36 | Breakpoint ()] Remain Halted

A cycle count of 34996 means that it took about 350 clock cycles to run each calculation
and update the i32dataCount variable (plus some looping overhead). Since the System
Clock is running at 50 MHz, each loop took about 7uS, and the entire 100 sample loop
required about 700 uS.

» Right-click in the Breakpoints pane and select Remove All, and then click Yes to
remove all of your breakpoints.

» Click the Terminate button to return to the CCS Edit perspective. » Right-click on
Lab9 in the Project Explorer pane, close the project and minimize CCS.

You’re done.

9-12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

BoosterPacks and grLib

Introduction

This chapter will take a look at the currently available BoosterPacks for the LaunchPad board.
We’ll take a closer look at the Kentec Display LCD TouchScreen BoosterPack and then dive into
the TivaWare graphics library.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio
Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers ‘
ADC12
Hibernation Module
USB
Memory and Security
Floating-Point
(BoosterPacks and grLib |
Synchronous Serial Interface
UART
uDMA
Sensor Hub
PWM

LaunchPad Boards...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 1

Chapter Topics

Chapter Topics

BoosterPacks and grLib 10-1
CRAPICE TOPICS..cc.vv ettt ettt et e ettt e s b e e e st e e s b e e esseesabeeenbeeesbeeeaseesabeesnseessseeanseesnseas 10-2
LaunchPad Boards and BOOSIETPACKSc..ccceeiuieiiiiiiiieciee ettt avaesvaeenseesnnees 10-3
KenTec TOUCRSCEEN TFT LCDcccoooouieeiiiiiie ettt eenbaesnbaesabaesnseeenneas 10-7
GFAPRICS LIDFATY ..ottt st e et e e sbe e et e e eabeeenseesnbeeenseesnseas 10-8
Lab 10: GFAPRICS LIDVATYoocevveivieeiie ettt ettt ettt e e sibeesabeestbeesabeesabeenasee e 10-11

ODJCCHIVE. .. e euteeuteeiieeeteetie it et et et e et e s et e bt e b e esaeeaeesaeesseanseenseanseesseesaeseenseenseensesneesseenseenseenseensennaenneens 10-11
PIOCEAULE ...ttt ettt st b et ettt st besbe bttt e e neeeaes 10-12

10-2 Getting Started With the Tiva C Series TM4C 123G LaunchPad Workshop - BoosterPacks & grLib

LaunchPad Boards and BoosterPacks

LaunchPad Boards and BoosterPacks

Tl LaunchPad Boards

MSP430 Tiva C Series C2000 Piccolo
$9.99US $12.99US $17.00US

BoosterPack Connectors...

BoosterPack Connectors

¢ Original Format (MSP430)
- VCC and Ground
14 GPIO
Emulator Reset and Test
Crystal inputs or 2 more GPIO

¢ XL Format (Tiva C Series/C2000) is a
superset of the original, adding
two rows of pins with:
USB Vgys and Ground
18 additional GPIO

Available Boosterpacks...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 3

LaunchPad Boards and BoosterPacks

Some of the Available BoosterPacks

Solar Energy RF Module w/
Harvesting LCD w
— UL Temperature
8x8 LED Matrix Sensor

Sub-1GHz RF
C5000 Audio

Universal
Energy Inductive
Charging
Wireless
Capacitive Touch

Harvesting
. g‘ TPL0401 SPI TPL0501 SPI

Digital Pot. Digital Pot.
Available Boosterpacks...

Capacitive
Board

Touch

Some of the Available BoosterPacks

OLED Displa

ZigBee Networking

Proto board

boosterpacks.

LCD Controller MOD Board Click Board
Development Package Adapter Adapter
Kentec LCD Display...
See http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/default.aspx for a list of TI

10-4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/default.aspx

LaunchPad Boards and BoosterPacks

Solar Energy
Harvesting: http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymb
et-enerchip-cc-solar-energy-harvesting-evaluation-kit-cbc-eval-10.aspx

Universal Energy Harvesting:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-
ep-universal-energy-harvesting-evaluation-kit-cbc-eval-09.aspx

Capacitive Touch:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/04/17/430boost 2d00 se

nsel.aspx

RF Module w/ LCD:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/07/13/golden-ic-rf-
module-with-lcd-boosterpack.aspx

Inductive Charging:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-
ep-universal-energy-harvesting-evaluation-kit-cbc-eval-11.aspx

Proto Board:
http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html

Olimex 8x8 LED Matrix:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/09/07/8x8-led-matrix-
boosterpack-from-olimex.aspx

Sub-1GHz Wireless:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/12/01/texas-instruments-
sub-1ghz-rf-wireless-boosterpack-430boost-cc110l.aspx

TPL0401 SPI Digital Potentiometer:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-
tpl0401-based-i2c-digital-potentiometer-tpl0401evm.aspx

TMP006 IR Temperature Sensor:
http://www.ti.com/tool/430boost-tmp006

C5000 Audio Capacitive Touch:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2012/03/27/texas-instruments-
¢5000-audio-capacitive-touch-boosterpack-430boost-c55audiol .aspx

TPLO0501 SPI Digital Potentiometer:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-
tpl0501-based-spi-digital-potentiometer-tpl0501evm.aspx

Proto Board:
http://store-ovhh2.mybigcommerce.com/ti-booster-packs/

LCD Controller Development Package:
http://www.epson.jp/device/semicon_e/product/lcd_controllers/index.htm

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 5

http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-cc-solar-energy-harvesting-evaluation-kit-cbc-eval-10.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-cc-solar-energy-harvesting-evaluation-kit-cbc-eval-10.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-09.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-09.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/04/17/430boost_2d00_sense1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/04/17/430boost_2d00_sense1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/07/13/golden-ic-rf-module-with-lcd-boosterpack.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/07/13/golden-ic-rf-module-with-lcd-boosterpack.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-11.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-11.aspx
http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/09/07/8x8-led-matrix-boosterpack-from-olimex.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/09/07/8x8-led-matrix-boosterpack-from-olimex.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/12/01/texas-instruments-sub-1ghz-rf-wireless-boosterpack-430boost-cc110l.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/12/01/texas-instruments-sub-1ghz-rf-wireless-boosterpack-430boost-cc110l.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0401-based-i2c-digital-potentiometer-tpl0401evm.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0401-based-i2c-digital-potentiometer-tpl0401evm.aspx
http://www.ti.com/tool/430boost-tmp006
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2012/03/27/texas-instruments-c5000-audio-capacitive-touch-boosterpack-430boost-c55audio1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2012/03/27/texas-instruments-c5000-audio-capacitive-touch-boosterpack-430boost-c55audio1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0501-based-spi-digital-potentiometer-tpl0501evm.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0501-based-spi-digital-potentiometer-tpl0501evm.aspx
http://store-ovhh2.mybigcommerce.com/ti-booster-packs/
http://www.epson.jp/device/semicon_e/product/lcd_controllers/index.htm

LaunchPad Boards and BoosterPacks

ZigBee Networking:
http://www.anaren.com/

MOD Board adapter:
https://www.olimex.com/dev/index.html

OLED Display:
http://www.kentecdisplay.com/plus/view.php?aid=74

Click Board Adapter:
http://www.mikroe.com/eng/categories/view/102/click-boards/

10-6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

http://www.anaren.com/
https://www.olimex.com/dev/index.html
http://www.kentecdisplay.com/plus/view.php?aid=74
http://www.mikroe.com/eng/categories/view/102/click-boards/

KenTec TouchSceen TFT LCD

KenTec TouchSceen TFT LCD

KenTec TouchScreen TFT LCD Display

¢ Part# EB-LM4F120-L35
¢ Designed for XL BoosterPack pinout

¢ 3.5” QVGA TFT 320x240x16 color LCD
with LED backlight

¢ Driver circuit and connector are
compatible with 4.3”, 57, 7” & 9”displays

¢ Resistive Touch Overlay
grLib Overview...

For more information go to: http://www.kentecdisplay.com/

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10-7

http://www.kentecdisplay.com/

Graphics Library

Graphics Library

Graphics Library Overview

The Tiva C Series Graphics Library provides graphics primitives and
widgets sets for creating graphical user interfaces on Tiva controlled
displays.

Note that Tiva devices do not have an LCD interface. The interface to smart
displays is done through serial or EPI ports.

The graphics library consists of three layers to interface your application to
the display:

Your Application Code*

y

Widget Layer

Graphics Primitives Layer
Display Driver Layer* :>

* = user written or modified

grLib Overview...

Graphics Library Overview

Theldesign of the graphics library is governed by the following
goals:

@

*
¢ The graphics library is easy to understand.
.

\

Components are written entirely in C except where absolutely not possible.
Your application can call any of the layers.

The components are reasonably efficient in terms of memory and processor
usage.

*

Components are as self-contained as possible.
Where possible, computations that can be performed at compile time are

*
\ done there instead of at run time. /

Display Driver...

10-8 Getting Started With the Tiva C Series TM4C 123G LaunchPad Workshop - BoosterPacks & grLib

Graphics Library

Display Driver

Low level interface to the display hardware

ﬁ)utines for display-dependent operations like: \

¢ Initialization

¢ Backlight control

¢ Contrast

¢ Translation of 24-bit RGB values to screen dependent color map

Drawing routines for the graphics library like:
¢ Flush
¢ Line drawing
¢ Pixel drawing
¢ Rectangle drawing
User-modified Hardware Dependent Code
¢ Connectivity of the smart display to the LM4F

¢ Changes to the existing code to match your
display (like color depth and size)

Graphics Primitives...

This document: http://www.ti.com/lit/an/spma039/spma039.pdf has suggestions for modifying
the display driver to connect to your display.

Graphics Primitives

Low level drawing support for:

KLines, circles, text and bitmap images -0
+ Support for off-screen buffering
¢ Foreground and background drawing contexts
Color is represented as a 24-bit RGB value (8-bits per color)
¢ ~150 pre-defined colors are provided
¢ 153 pre-defined fonts based on the Computer Modern typeface
QSupport for Asian and Cyrillic languages

'L R 44
AGEEEETETT
O«@LUOUYPR

Widgets...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10-9

http://www.ti.com/lit/an/spma039/spma039.pdf

Graphics Library

Widget Framework

- Widgets are graphic elements that provide user
control elements

- Widgets combine the graphical and touch screen
elements on-screen with a parent/child hierarchy so
that objects appear in front or behind each other
correctly

@nvas — a simple drawing surface with no user \

interaction

Checkbox — select/unselect
Container — a visual element to group on-screen widgets

Push Button — an on-screen button that can be pressed
to perform an action

Radio Button — selections that form a group; like low,
medium and high

Slider — vertical or horizontal to select a value from a
predefined range

@tBox — selection from a list of options /

TEXAS INSTRUMENTS TEXAS INSTRUMENTS

Special Utilities...

Special Utilities

Utilities to produce graphics library compatible data structures

ﬁasterize \
¢ Uses the FreeType font rendering package to convert your font into a graphic

library format.

¢ Supported fonts include: TrueType®, OpenType®, PostScript® Type 1 and
Windows® FNT.

Imi-button

¢ Creates custom shaped buttons using a script plug-in for GIMP. Produces
images for use by the pushbutton widget.

pnmtoc
¢ Converts a NetPBM image file into a graphics library compatible file.

* NehtPBM image formats can be produced by: GIMP, NetPBM, ImageMajik and
others.

mkstringtable
¢ Converts a comma separated file (.csv) into a table of strings usable by graphics
library for pull down menus.

Lab...

10 - 10 Getting Started With the Tiva C Series TM4C 123G LaunchPad Workshop - BoosterPacks & grLib

Lab 10: Graphics Library

Lab 10: Graphics Library
Objective

In this lab you will connect the KenTec display to your LaunchPad board. You will experiment
with the example code and then write a program using the graphics library.

Lab 10: Graphics Library

USB Emulation Connection

¢ Connect Kentec Display

¢ Experiment with demo
project

¢ Write graphics library code

Agenda ...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 11

Lab 10: Graphics Library

Procedure

Connect the KenTec Display to your LaunchPad Board

1. » Carefully connect the KenTec display to your LaunchPad board. Note the part
numbers on the front of the LCD display. Those part numbers should be at the end of the
LaunchPad board that has the two pushbuttons when oriented correctly. Make sure that
all the BoosterPack pins are correctly engaged into the connectors on the bottom of the
display. If the display doesn’t seem to be working, pull it out slightly. It may be
touching the power measurement jumper on the LaunchPad.

Import Project

2. We’re going to use the Kentec example project provided by the manufacturer.
» Maximize Code Composer and click Project = Import Existing CCS Eclipse Project.
Make the settings shown below and click Finish.

Make sure the Copy projects into workspace checkbox is not checked and P click
Finish.

w+ Import CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CCS Eclipse projects.

@ Select search-directory: C\TM4C123G_LaunchPad_Workshop\labl0\project Browse...

Y

() Select archive file: Browse...
Discovered projects:
& 1abl0 [CATM4C123G_LaunchPad_Workshop\labl0\project] Select All

Deselect All

Refresh

[] Copy projects into workspace
[] Automatically import referenced projects

Open the Rescurce Explorer and browse available example projects...

@ Finish |

Cancel

10 - 12 Getting Started With the Tiva C Series TM4C 123G LaunchPad Workshop - BoosterPacks & grLib

Lab 10: Graphics Library

3. P Expand the project in the Project Explorer pane. The two files
Kentec320x240x16 ssd2119 8bit.c and touch. c are the driver files for the
display and the touch overlay. » Open the files and take a look around. Some of these
files were derived from earlier examples, so you may see references to the
DK-LM3S9B96 board.

Kentec320x240x16 ssd2119 8bit.c contains the low level Display Driver
interface to the LCD hardware, including the pin mapping, contrast controls and simple
graphics primitives.

Build, Download and Run the Demo

4. P Make sure your board is connected to your computer, and then click the Debug button
to build and download the program to the TM4C123GH6PM device. The project should
build and link without any warnings or errors.

5. P Watch your LCD display and click the Resume button to run the demo program.
Using the + and — buttons on-screen, navigate through the eight screens. Make sure to try
out the checkboxes, push buttons, radio buttons and sliders. When you’re done
experimenting, click Terminate on the CCS menu bar to return to the CCS Edit
perspective.

Writing Our Own Code

6. The first task that our lab software will do is to display an image. So we need to create an
image in a format that the graphics library can understand. If you have not done so
already, download GIMP from www.gimp.org and install it on your PC. The steps below
will go through the process of clipping the photo below and displaying it on the LCD
display. If you prefer to use an existing image or photograph, or one taken from your
smartphone camera now, simply adapt the steps below.

7. P Make sure that this page of the workbook pdf is open for viewing and press PrtScn on
your keyboard. This will copy the screen to your clipboard. The dimensions of the photo
below approximate that of the 320x240 KenTec LCD.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 13

http://www.gimp.org/

Lab 10: Graphics Library

8.

10.

11.

12.

13.

14.

» Open GIMP (make sure it is version 2.8 or later) and click Edit = Paste. On the menu
bar, click Tools = Selection Tools = Rectangle Select. Select the image of the candy,
leaving a generous margin of white space around it.

» Click Image = Crop to Selection, then click Image = Zealous Crop. This will
automatically crop the image as closely as possible.

320x240 and click Scale. You may need to click the “chain” symbol to the

» Click Image = Scale Image, change the image size width/height to %
right of the pixel boxes to stop GIMP from preserving the wrong dimensions.

» Convert the image to indexed mode by clicking Image = Mode = Indexed. Select
Generate optimum palette and change the Maximum number of colors box to 16 (the
color depth of the LCD). Click Convert.

P Save the file by clicking File = Export... In the upper left box, name the image pic
and change the save folder to c: \TI\TivaWare C Series-1.1\tools\bin.

Select PNM image as the file type by clicking + Select File Type just above the Help
button. Click Export. When prompted, select Raw as the data formatting and click
Export. Close GIMP and select Close without Saving.

Now that we have a source image file in PNM format, we can convert it to something that
the graphics library can handle. We’ll use the pnmtoc (PNM to C array) conversion
utility to do the translation.

» Open a command prompt window. In Windows XP click Start = Run, then type cmd
in the window and press Enter. In Windows 7, click Start and then type cmd in the
Search dialog and press Enter.

The pnmtoc utility is in c: \TI\TivaWare C Series-1.1\tools\bin. Copy this
command to your clipboard: cd c:\TI\TivaWare C Series-1.1\tools\bin.
Right-click anywhere in the command window, and then Select Paste. Press Enter to
change the folder to that location.

» Finally, perform the conversion by typing pnmtoc -c pic.pnm > pic.c inthe
command window and hit Enter. When the process completes correctly, the cursor will
simply drop to a new line. » Close the command window.

» In CCS, make sure lab10 is & File Operation =
Active. Add the C file to the project,
by clicking Project—Add Files...
and navigating to the file:
c:\TI\TivaWare C Series-
1.1\tools\bin\pic.c Select
“Copy ﬁles,, and CliCk OK Configure Drag and Drop Settings...

|C?:I 0K] | Cancel

Select how files should be imported into the project:
@ Copy files
Link to files

Create link locations relative to: | PROJECT_LOC

10 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Lab 10: Graphics Library

Modify pic.c

15. » Open pic.c and add the following lines to the very top of the file:

#tinclude <stdint.h>
#tinclude <stdbool.h>
#include "grlib/grlib.h"

Your pic. c file should look something like this (your data will vary greatly):

#include <stdint.h>
#include <stdbool.h>
#include "grlib/grlib.h"
const unsigned char g pui8Image[]
{
IMAGE FMT 4BPP COMP,
96, 0,
64, 0,
15,
0x00, 0x02, 0x00,
0x18, Oxla, 0x19,
0x28, 0x2a, 0x28,
0x38, Ox3a, 0x38,
0x44, 0x46, 0x44,
0x54, 0x57, 0x55,
0x62, 0x65, 0x63,
0x72, 0x75, 0x73,
0x81, 0x84, 0x82,
0x93, 0x96, 0x94,
Oxa2, Oxa5, Oxa3,
0xb3, 0xb6, 0xb4,
Oxc4, Oxc7, 0xc5,
0xd7, Oxda, 0xd8,
Oxe8, Oxeb, Oxe9,
0xf4, 0xf8, Oxf5,
oxff, 0x07, 0x07, 0x07, 0x07,
0x07, 0x07, 0x07, 0x07, 0x07,
0x07, 0x07, 0x07, Oxfc, 0x07,
0x23, 0x77, 0x77, O0xe9, 0x77,
0x04, Oxde, Oxee, Oxee, Oxee,
0x2c, 0x03, Oxcf, 0x00, Oxee,
0xf0, 0x07, 0x07, 0x77, Ox2c,
Oxee, 0Oxa0, 0x07, 0x07, 0x77,
Oxe9, Oxee, 0x90, O0xfO0, 0x07,
0x4f, Oxee, 0Oxe9, Oxee, 0x90,
many, many more lines of this
0x77, Ox2c, 0x19, Oxfe, Oxee,
0x20, 0x07, 0x07, Oxcl, 0x77,
0x78, 0xf9, 0x07, 0x07, 0x77,
0x03, Oxee, Oxee, Oxee, Oxee,
0x05, Oxad, Oxee, Oxfe, Oxee,
0x00, 0x27, 0x9d, O0x0f, Oxed,
0x01, 0x00, 0x00, 0x28, 0x9a,
0x2f, 0x07, 0x07, 0x07, 0x07,
}i

0x07,
0x07,
0x07,
0x78,
0xe9,
Oxee,
0x03,
0x2c,
0x07,
0x07,

data ..

Oxef,
0x2c,
0x2d,
0xf9,
Oxfc,
Oxee,
Oxcc,
0x07,

0x07,
Oxff,
0x07,
0x70,
0x3c,
Oxee,
Oxcf,
0x04,
0x77,
0x07,

0x03,
0x05,
0x01,
0x10,
0x78,
Oxec,
0xa9,
0xcO,

0x07,
0x07,
0x07,
0x07,
Oxee,
Oxef,
Oxee,
0x03,
0x2c,
0x77,

Oxee,
0xdf,
0x8d,
0x07,
0x20,
0x40,
0x30,
0x07,

0x07,
0x07,
0x07,
0x07,
Oxal,
Oxee,
Oxee,
Oxcf,
0x03,
0x2c,

Oxee,
Oxee,
Oxee,
0x07,
0x07,
0x07,
0x07,
0x07,

0xff, 0x07, 0x07,
0x07, 0x07, 0x07,
0x07, 0x03, 0x77,
Oxcl, 0x77, Ox2c,
0x07, 0x07, 0x77,
Oxef, Oxfe, Oxal,
0x4f, Oxee, Oxe9,
Oxee, Oxee, Oxee,
Oxcf, Oxee, Oxee,
0x04, 0x03, Oxcf,
Oxee, Oxee, O0xfb,
Oxee, Oxee, Oxe9,
0x2f, Oxee, Oxee,
Oxc0, 0x77, O0x2f,
0x07, 0x77, 0x2f,
0x07, 0x77, O0x2f,
Ooxff, 0x07, 0x77,

16. » Save your changes and close the pic. c editor pane. If you’re having issues with this,
copy/paste the contents of pic.txt found in your in the lab10/project folder to your
pic.c file.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 15

Lab 10: Graphics Library

main.c

17.

18.

19.

To speed things up, we’re going to use the entire demo project as a template for our own
main () code. » On the CCS menu bar, click File 2 New = Source File. Make the
selections shown below and click Finish:

v+ Mew Source File l &l iz-]
Source File
Create a new source file, c
Source folder: labl0
Source file: main.c
Template: <MNones VH Configure...]
P
'\?,' [Finish] ’ Cancel]

Now that we’ve added main. c, we can’t also have grlib demo. c in the project
since it has amain () . P In the Project Explorer, right-click on grlib demo.c and
select Resource Configurations = Exclude from Build... Click the Select All button to
select both the Debug and Release configurations, and then click OK. In this manner we
can keep the old file in the project, but it will not be used during the build process. This is
a valuable technique when you are building multiple versions of a system that shares
much of the code between them.

» Openmain. c for editing. Copy/paste the following lines to the top:

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "grlib/grlib.h"

#include "Kentec320x240x16 ssd2119 8bit.h"

Pointer to the Image Array

20.

The declaration of the image array needs to be made, as well as the declaration of two
variables. The variables defined below are used for initializing the Context and Rect
structures. Context is a definition of the screen such as the clipping region, default
color and font. Rect is a simple structure for drawing rectangles. Look up these APIs in
the Graphics Library user’s guide.

» Add a line for spacing and add the following lines after the includes:

extern const uint8_t g pui8Image[];

tContext sContext;
tRectangle sRect;

10 - 16 Getting Started With the Tiva C Series TM4C 123G LaunchPad Workshop - BoosterPacks & grLib

Lab 10: Graphics Library

main()

21. The main () routine will be next. » Leave a blank line for spacing and enter these lines
of code after the lines above:

int main (void)
{
}

Initialization

22. P Set the clocking to run at 50 MHz using the PLL (400MHz + 2 + 4). Insert this line as
the first inside main():

SysCtlClockSet (SYSCTL_SYSDIV 4 | SYSCTL_USE_PLL | SYSCTL OSC_MAIN | SYSCTL XTAL 16MHZ);

» Initialize the display driver. Skip a line and insert this line after the last:

Kentec320x240x16_SSD2119Init();

» This next function initializes a drawing context, preparing it for use. The provided
display driver will be used for all subsequent graphics operations, and the default clipping
region will be set to the size of the LCD screen. Insert this line after the last:

GrContextInit (&sContext, &g sKentec320x240x16_ SSD2119);
23. » Let’s add a call to a function that will clear the screen. We’ll create that function in a
moment. Add the following line after the last one:

ClrScreen() ;

24. The following function will create a rectangle that covers the entire screen, set the fore-
ground color to black, and fill the rectangle by passing the structure sRect by reference.
The top left corner of the LCD display is the point (0,0) and the bottom right corner is
(319,239). » Add the following code after the final closing brace of the program in
main.c.

void ClrScreen()

{
sRect.il6XMin = 0;
sRect.il6YMin = 0;
sRect.il6XMax = 319;
sRect.iléYMax = 239;
GrContextForegroundSet (&sContext, ClrBlack);
GrRectFill(&sContext, &sRect);
GrFlush(&sContext);
}

25. P Declare the function at the top of your code right below your variable definitions:

void ClrScreen (void) ;

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 17

Lab 10: Graphics Library

Displaying the Image

26.

27.

28.

29.

30.

Display the image by passing the global image variable g pui8Image into
GrImageDraw (...) and place the image on the screen by locating the top-left corner
at (0,0) ...we’ll adjust this later if needed. » Leave a line for spacing, then insert this line
after the ClrScreen () callinmain () :

GrImageDraw (&sContext, g _pui8Image, 0, 0);

The function call below flushes any cached drawing operations. For display drivers that
draw into a local frame buffer before writing to the actual display, calling this function
will cause the display to be updated to match the contents of the local frame buffer.

» Insert this line after the last:

GrFlush (&sContext) ;

We will be stepping through a series of displays in this lab, so we want to leave each
display on the screen long enough to see it before it is erased. The delay below will give
you a chance to appreciate your work. » Leave a line for spacing, then insert this line
after the last:

SysCtlDelay (SysCtlClockGet()) ;

In previous labs we’ve simply passed a number to the SysCt1Delay () API call, but if
you were to change the CPU clock speed, your delay time would change.
SysCtlClockGet () will return the system clock speed and we can use that as our de-
lay basis. Obviously, you could have your delay be twice, half, 1/5th or some other mul-
tiple of this.

Before we go any further, we’d like to take the code for a test run. With that in mind
we’re going to add the final code pieces now, and insert later lab code in front of this.

LCD displays are not especially prone to burn in, but clearing the screen will mark a clear
break between one step in the code and the next. This performs the same function as step
24 and also flushes the cache. » Leave several lines for spacing and add this line below
the last:

ClrScreen() ;

» Add a while loop to the end of the code to stop execution. Leave a line for spacing,
then insert these line after the last:

while (1)
{
}

Don’t forget that you can auto-correct the indentation if needed.

Save your work.

10 - 18 Getting Started With the Tiva C Series TM4C 123G LaunchPad Workshop - BoosterPacks & grLib

Lab 10: Graphics Library

If you’re having issues, you can find this code in mainl . txt in the lab10 folder.
Your code should look like this:

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "grlib/grlib.h"

#tinclude "Kentec320x240x16 ssd2119 8bit.h"

extern const uint8_t g _pui8Image[];
tContext sContext;
tRectangle sRect;

void ClrScreen(void);

int main(void)
{
SysCtlClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL XTAL_16MHZ);

Kentec320x240x16_SSD2119Init();
GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);
ClrScreen();

GrImageDraw(&sContext, g_pui8Image, 0, 9);
GrFlush(&sContext);

SysCtlDelay(SysCtlClockGet());
// Later lab steps go between here

// and here
ClrScreen();
while(1)
{
}

}

void ClrScreen()
{
sRect.il6XMin = 0;
sRect.il6YMin = 0;
sRect.il6XMax = 319;
sRect.il6YMax = 239;
GrContextForegroundSet(&sContext, ClrBlack);
GrRectFill(&sContext, &sRect);
GrFlush(&sContext);

Build and Run the Code

31. Make sure Lab10 is the active project. ®» Compile and download your application by
clicking the Debug button. » Click the Resume button to run the program that was
downloaded to the flash memory of your TM4C123GH6PM. If your coding efforts were
successful, you should see your image appear on the LCD display for a few seconds, then
disappear.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 19

Lab 10: Graphics Library

» When you’re finished, click the Terminate button to return to the CCS Edit
perspective.

When you are including images in your projects, remember that they can be quite large in
terms of memory space. This might possibly require a larger flash device, and increase
your system cost.

10 - 20 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Lab 10: Graphics Library

Display Text On-Screen

32. Refer back to the code on page 10-20. In main. c in the area marked:
// Later lab steps go between here
// and here
» Insert the following function call to clear the screen and flush the buffer:

ClrScreen() ;

33. Next we’ll display the text. Display text starting at (x,y) with the no background color.
The third parameter (-1) simply tells the API function to send the entire string, rather than
having to count the characters.

GrContextForegroundSet (.. .) : Setthe foreground for the text to be red.
GrContextFontSet (.. .) : Set the font to be a max height of 30 pixels.
GrRectDraw (. . .) : Put a white border around the screen.

GrFlush(...) : And refresh the screen by matching the contents of the local frame
buffer.

Note the colors that are being used. If you’d like to try other colors, fonts or sizes, look in
the back of the Graphics Library User’s Guide.

» Add the following lines after the previous ones:

sRect.il6XMin = 1;

sRect.il6YMin = 1;

sRect.il6XMax = 318;

sRect.il6YMax = 238;

GrContextForegroundSet (&sContext, ClrRed);
GrContextFontSet(&sContext, &g sFontCmss30b);
GrStringDraw(&sContext, "Texas", -1, 110, 2, 0);
GrStringDraw(&sContext, "Instruments", -1, 80, 32, 9);
GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0);
GrStringDraw(&sContext, "Lab", -1, 135, 92, 0);
GrContextForegroundSet (&sContext, ClrWhite);
GrRectDraw(&sContext, &sRect);

GrFlush(&sContext);

34. » Add a delay so you can view your work.

SysCtlDelay (SysCtlClockGet()) ;

» Save your work.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 21

Lab 10: Graphics Library

If you’re having issues, you can find this code in main?2 . txt in the lab10/project
folder.

Your added code should look like this:

// Later lab steps go between here
ClrScreen();

sRect.il6XMin = 1;

sRect.il6YMin 1;

sRect.il6XMax 318;

sRect.il6YMax = 238;

GrContextForegroundSet (&sContext, ClrRed);
GrContextFontSet(&sContext, &g sFontCmss30b);
GrStringDraw(&sContext, "Texas", -1, 110, 2, 0);
GrStringDraw(&sContext, "Instruments", -1, 80, 32, 9);
GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0);
GrStringDraw(&sContext, "Lab", -1, 135, 92, 0);
GrContextForegroundSet (&sContext, ClrWhite);
GrRectDraw(&sContext, &sRect);

GrFlush(&sContext);

SysCtlDelay(SysCtlClockGet());

// and here

Build, Load and Test

35. » Build, load and run your code. If your changes are correct, you should see the image
again for a few seconds, followed by the on-screen text in a box for a few seconds. Then
the display will blank out. » Return to the CCS Edit perspective when you’re done.

10 - 22 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Lab 10: Graphics Library

Drawing Shapes

36. Let’s add a filled-in yellow circle. Make the foreground yellow and center the circle at
(80,182) with a radius of 50.

» Add a line for spacing and then add these lines after the SysCt1Delay () added in
step 35:

GrContextForegroundSet (&sContext, ClrYellow) ;
GrCircleFill (&sContext, 80, 182, 50);

37. Draw an empty green rectangle starting with the top left corner at (160,132) and finishing
at the bottom right corner at (312,232).

» Add a line for spacing and add the following lines after the last ones:

sRect.il6XMin = 160;
sRect.il6YMin = 132;
sRect.il6XMax = 312;
sRect.il6YMax = 232;

GrContextForegroundSet(&sContext, ClrGreen);
GrRectDraw(&sContext, &sRect);

38. Add a short delay to appreciate your work.
» Add a line for spacing and add the following line after the last ones:

SysCtlDelay (SysCtlClockGet()) ;

» Save your work.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 23

Lab 10: Graphics Library

If you’re having issues, you can find this code in main3. txt in the lab10/project
folder.

Your added code should look like this:

// Later lab steps go between here
ClrScreen();

sRect.il6XMin = 1;

sRect.il6YMin = 1;

sRect.il6XMax = 318;

sRect.iléYMax = 238;
GrContextForegroundSet(&sContext, ClrRed);
GrContextFontSet(&sContext, &g sFontCmss30b);
GrStringDraw(&sContext, "Texas", -1, 110, 2, 0);
GrStringDraw(&sContext, "Instruments", -1, 80, 32, 9);
GrStringDraw(&sContext, "Graphics", -1, 100, 62, 9);
GrStringDraw(&sContext, "Lab", -1, 135, 92, 0);
GrContextForegroundSet (&sContext, ClrWhite);
GrRectDraw(&sContext, &sRect);

GrFlush(&sContext);

SysCtlDelay(SysCtlClockGet());

GrContextForegroundSet (&sContext, ClrYellow);
GrCircleFill(&sContext, 80, 182, 50);

sRect.il16XMin 160;

sRect.il6YMin = 132;

sRect.il6XMax = 312;

sRect.iléYMax = 232;
GrContextForegroundSet(&sContext, ClrGreen);
GrRectDraw(&sContext, &sRect);

SysCtlDelay(SysCtlClockGet());

// and here

10 - 24 Getting Started With the Tiva C Series TM4C 123G LaunchPad Workshop - BoosterPacks & grLib

Lab 10: Graphics Library

For reference, the final code should look like this:

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "grlib/grlib.h"

#include "Kentec320x240x16_ssd2119_8bit.h"

extern const uint8_t g_pui8Image[];
tContext sContext;
tRectangle sRect;

void ClrScreen(void);

int main(void)

{

}

SysCt1ClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

Kentec320x240x16_SSD2119Init();
GrContextInit(&sContext, &g sKentec320x240x16_SSD2119);
ClrScreen();

GrImageDraw(&sContext, g_pui8Image, 0, 0);
GrFlush(&sContext);

SysCtlDelay(SysCtlClockGet());
// Later lab steps go between here

ClrScreen();

sRect.il6XMin = 1;

sRect.il6YMin = 1;

sRect.il6XMax = 318;

sRect.il6YMax = 238;
GrContextForegroundSet(&sContext, ClrRed);
GrContextFontSet(&sContext, &g_sFontCmss3@b);
GrStringDraw(&sContext, "Texas", -1, 110, 2, 9);
GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0);
GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0);
GrStringDraw(&sContext, "Lab", -1, 135, 92, @);
GrContextForegroundSet(&sContext, ClrWhite);
GrRectDraw(&sContext, &sRect);

GrFlush(&sContext);

SysCtlDelay(SysCtlClockGet());

GrContextForegroundSet(&sContext, ClrYellow);
GrCircleFill(&sContext, 80, 182, 50);

sRect.i16XMin = 160;

sRect.il6YMin = 132;

sRect.il6XMax = 312;

sRect.il6YMax = 232;
GrContextForegroundSet(&sContext, ClrGreen);
GrRectDraw(&sContext, &sRect);

SysCtlDelay(SysCtlClockGet());
// and here
ClrScreen();

while(1)

}

void ClrScreen()

{

sRect.il6XMin = 0;

sRect.il6YMin = @;

sRect.il6XMax = 319;

sRect.il6YMax = 239;
GrContextForegroundSet(&sContext, ClrBlack);
GrRectFill(&sContext, &sRect);
GrFlush(&sContext);

This is the code inmain3. txt.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 25

Lab 10: Graphics Library

Build, Load and Test

39. » Build, load and run your code to make sure that your changes work.

» Return to the CCS Edit perspective when you are done.

10 - 26 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Lab 10: Graphics Library

Widgets

40. Now let’s play with some widgets. In this case, we’ll create a screen with a title header
and a large rectangular button that will toggle the red LED on and off. Modifying the
existing code would be a little tedious, so we’ll create a new file.

41. » In the Project Explorer, right-click on main . ¢ and select Resource Configurations =
Exclude from Build... Click the Select All button to select both the Debug and Release
configurations, and then click OK.

42. » On the CCS menu bar, click File 2 New = Source File. Make the selections shown
below and click Finish:

I ~
we Mew Source File l = ihJ
Source File
Create a new source file, c
=1

Source folder: 1abl0 Browse...

Source file: MyWidget.q

Template: <Mone> VH Configure...]

@:‘ [Finish] ’ Cancel

. 4

43. » Add the following support files to the top of MyWidget. c:

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/interrupt.h”
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "grlib/grlib.h"
#include "grlib/widget.h"
#include "grlib/canvas.h"
#include "grlib/pushbutton.h"
#include "Kentec320x240x16_ssd2119 8bit.h"
#include "touch.h"

44. The next two lines provide names for structures needed to create the background canvas
and the button widget. » Add a line for spacing, then add these lines below the last:

extern tCanvasWidget g_sBackground;
extern tPushButtonWidget g _sPushBtn;

45. When the button widget is pressed, a handler called OnButtonPress() will toggle the
LED. » Add a line for spacing, then add this prototype below the last:

void OnButtonPress (tWidget *pWidget) ;

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 27

Lab 10: Graphics Library

46.

47.

48.

Widgets are arranged on the screen in a parent-child relationship, where the parent is in
the background. This relationship can extend multiple levels. In our example, we’re
going to have the background be the parent or root and the heading will be a child of the
background. The button will be a child of the heading. » Add a line for spacing and then
add the following two global variables (one for the background and one for the button)
below the last:

Canvas(g_sHeading, &g_sBackground, ©, &g_sPushBtn,
&g_sKentec320x240x16_SSD2119, 0, 0, 320, 23,
(CANVAS_STYLE_FILL | CANVAS_STYLE_OUTLINE | CANVAS_STYLE_TEXT),
ClrBlack, ClrWhite, ClrRed, g _psFontCm20, "LED Control"”, @, 0);

Canvas(g_sBackground, WIDGET_ROOT, ©, &g_sHeading,
&g_sKentec320x240x16_SSD2119, @, 23, 320, (240 - 23),
CANVAS_STYLE_FILL, ClrBlack, @, ©, 0, ©, 0, 0);

Rather than re-print the parameter list for these declarations, refer to the Graphics Library
User’s Guide. The short description is that there will be a black background. In front of
that is a white rectangle at the top of the screen with “LED Control” inside it.

Next up is the definition for the rectangular button we’re going to use. The button is
functionally in front of the heading, but physically located below it (refer to the picture in
step 50). It will be a red rectangle with a gray background and “Toggle red LED” inside
it. When pressed it will fill with white and the handler named OnButtonPress will be
called. » Add a line for spacing and then add the following code below the last:

RectangularButton(g_sPushBtn, &g_sHeading, 0, 0,
&g_sKentec320x240x16_SSD2119, 60, 60, 200, 40,
(PB_STYLE_OUTLINE | PB_STYLE_TEXT_OPAQUE | PB_STYLE_TEXT |
PB_STYLE_FILL), ClrGray, ClrWhite, ClrRed, ClrRed,
g_psFontCmss22b, "Toggle red LED", ©, ©, @, @, OnButtonPress);

The last detail before the actual code is a flag variable to indicate whether the LED is on
or off.

» Add a line for spacing and then add the following code below the last:
bool g RedLedOn = false;

When the button is pressed, a handler called OnButtonPress () will be called. This
handler uses the flag to switch between turning the red LED on or off.

» Add a line for spacing and then add the following code below the last:

void OnButtonPress (tWidget *pWidget)

{
g_RedLedOn = 'g_RedLedOn;

if (g_RedLedOn)
{

GPIOPinWrite (GPIO_PORTF_BASE, GPIO_PIN 1, 0x02);
}

else

{
GPIOPinWrite (GPIO_PORTF BASE, GPIO_PIN 1, 0x00);

}

10 - 28 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Lab 10: Graphics Library

49. Lastly is the main () routine. The steps are: initialize the clock, initialize the GPIO,
initialize the display, initialize the touchscreen, enable the touchscreen callback so that
the routine indicated in the button structure will be called when it is pressed, add the
background and paint it to the screen (parents first, followed by the children) and finally,
loop while the widget polls for a button press.

» Add a line for spacing and then add the following code below the last:
int main(void)

SysCtlClockSet (SYSCTL_SYSDIV_4|SYSCTL USE_PLL|SYSCTL OSC_MAIN|SYSCTL XTAL 16MHZ) ;

SysCtlPeripheralEnable (SYSCTL_PERIPH GPIOF) ;
GPIOPinTypeGPIOOutput (GPIO PORTF BASE, GPIO PIN 1|GPIO PIN 2|GPIO PIN 3);

GPIOPinWrite (GPIO_PORTF BASE, GPIO PIN 1|GPIO_PIN 2|GPIO_PIN 3, 0x00);
Kentec320x240x16_SSD2119Init() ;

TouchScreenInit () ;

TouchScreenCallbackSet (WidgetPointerMessage) ;

WidgetAdd (WIDGET_ROOT, (tWidget *)&g_sBackground) ;

WidgetPaint (WIDGET_ ROOT) ;

while (1)

{

WidgetMessageQueueProcess () ;

}

» Save your work.

If you’re having issues, you can find this code in MyWidget . txt in the lab10/project
folder.

Your code should look like the next page:

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 29

Lab 10: Graphics Library

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/interrupt.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "grlib/grlib.h"
#include "grlib/widget.h"
#include "grlib/canvas.h"
#include "grlib/pushbutton.h"
#include "Kentec320x240x16_ssd2119_8bit.h"
#include "touch.h"

extern tCanvasWidget g_sBackground;
extern tPushButtonWidget g_sPushBtn;

void OnButtonPress(tWidget *pWidget);

Canvas(g_sHeading, &g sBackground, 0, &g sPushBtn,
&g _sKentec320x240x16_SSD2119, 0, 0, 320, 23,
(CANVAS_STYLE_FILL | CANVAS_STYLE_OUTLINE | CANVAS_STYLE_TEXT),
ClrBlack, ClrWhite, ClrRed, g_psFontCm2@, "LED Control", @, 0);

Canvas(g_sBackground, WIDGET_ROOT, @, &g sHeading,
8g_sKentec320x240x16_SSD2119, 0, 23, 320, (240 - 23),
CANVAS_STYLE_FILL, ClrBlack, o, o, 0, 0, 0, 0);

RectangularButton(g_sPushBtn, &g sHeading, 0, O,
&g_sKentec320x240x16_SSD2119, 60, 60, 200, 40,
(PB_STYLE_OUTLINE | PB_STYLE_TEXT_OPAQUE | PB_STYLE_TEXT |
PB_STYLE_FILL), ClrGray, ClrWhite, ClrRed, ClrRed,
g_psFontCmss22b, "Toggle red LED", ©, ©, ©, O, OnButtonPress);

bool g_RedLedOn = false;

void OnButtonPress(tWidget *pWidget)

{
g_RedLedOn = !g RedLedOn;
if(g_RedLedOn)
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0x02);
}
else
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0x00);
}
}
int main(void)
{
SysCtlClockSet(SYSCTL_SYSDIV 4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_ 16MHZ);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO PORTF_BASE, GPIO_PIN 1|GPIO _PIN_2|GPIO_PIN 3);
GPIOPinWrite(GPIO PORTF_BASE, GPIO PIN 1|GPIO _PIN_2|GPIO_PIN 3, 0x00);
Kentec320x240x16_SSD2119Init();
TouchScreenInit();
TouchScreenCallbackSet (WidgetPointerMessage);
WidgetAdd (WIDGET_ROOT, (tWidget *)&g_sBackground);
WidgetPaint (WIDGET_ROOT);
while(1)
WidgetMessageQueueProcess();
}
}

10 - 30 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Lab 10: Graphics Library

Build, Load and Test

50. P Build, load and run your code to make sure that everything works. Press the
rectangular button and the red LED on the LaunchPad will light, press it again and it will
turn off.

2 s “Lounchifogi==

51. » Click the Terminate button to return to the CCS Edit perspective when you are done.
Close lab10 and minimize Code Composer Studio.

52. Disconnect the LaunchPad from the USB cable. Remove the Kentec display and put it
away. Replace the USB cable.

Homework ideas:

Change the red background of the button so that it stays on when the LED is lit

e Add more buttons to control the green and blue LEDs.
Use the Lab5 ADC code to display the measured temperature on the LCD in real
time.

e Use the RTC to display the time of day on screen.

e Use the Lab6 Hibernation code to make the device sleep, and the backlight go
off, after no screen touch for 10 seconds

e Use the Lab7 USB code to send data to the LCD and touch screen presses back to
the PC.

e Use the Lab9 sine wave code to create a program that displays the sine wave data
on the LCD screen.

You’re done.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 31

Lab 10: Graphics Library

10 - 32 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Synchronous Serial Interface

Introduction

This chapter will introduce you to the capabilities of the Synchronous Serial Interface (SSI) . The
lab uses an Olimex 8x8 LED BoosterPack to explore programming the SPI portion of the SSI. In
order to do the lab you will need to purchase and modify the BoosterPack.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio
Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers (LK
ADC12
Hibernation Module
USB
Memory and Security
Floating-Point
BoosterPacks and grLib
(Synchronous Serial Interface
UART
uDMA
Sensor Hub
PWM

Features...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11-1

Chapter Topics

Chapter Topics

Synchronous Serial Interface 11-1
CRAPICE TOPICS..cc.vv ettt ettt et e ettt e s b e e e st e e s b e e esseesabeeenbeeesbeeeaseesabeesnseessseeanseesnseas 11-2
Features and BIOCK DiG@FAM..................cccoooiiiiiiiiiiei ettt 11-3
Interrupts and UDMA OPEFALIONc..ccceeieuieeciiieiie et eeeeteeetee et e saeesbaesaaeabaeeseesbeeenseeenseas 11-4
SEIGNAT FOFIALS ...ttt et ettt ettt e e et e bt et ettt e st naeenae s 11-5
Lab 11: SPI Bus and the Olimex LED BOOStErPACKccoociiiiiieiiiiiie i 11-7

L0 10} 115 AR 11-7
PIOCEAULIE ...ttt ettt ettt bbbt ea ettt st b e s bt bt et e st e e nae b e 11-8

11-2

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Features and Block Diagram

Features and Block Diagram
TM4C123GH6PM SSI Features

Four SSI modules. Each with:
Freescale SPI, MICROWIRE or Tl Synchronous Serial interfaces
Master or Slave operation

Programmable bit clock rate and pre-scaler

Programmable data frame size from 4 to 16-bits

Separate Tx and Rx FIFOs (8 x16-bits) ‘
Interrupts and yDMA support

® 6 & 6 o o

Block Diagram ...

et Signal Pinout (n=0to 3) ...
Interrupt Control
—ssi—| -—L Fanry SSInClk: SSI Module n Clock
SSIMIS, .
SSRis SSiInFss: SSI Module n Frame Signal
SSIICR .
c : SSInRx: SSI Module n Receive
SSIT .
H— = SSInTx: SSI Module n Transmit
I SSRx
[sssR_| Transmitl [e—
™ mero SSIFss
s e —
Clock Prescaler
Clock Control
’W‘ SSICPSR
$S1 Baud Clock
Identification Registers
SSIPeriphiD0 ‘SSIPeriphiD4.
SSiPeriphiD1 ‘SSIPeriphiD5S
SSiPeriphiD2 ‘SSIPeriphiD6
SSIPeriphiD3 SSIPeriphiD7

Interrupts...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11-3

Interrupts and uDMA QOperation

Interrupts and yuDMA Operation

SSI Interrupts

Single interrupt per module, cleared automatically
Interrupt conditions:

Transmit FIFO service (when the transmit FIFO is half full or less)
Receive FIFO service (when the receive FIFO is half full or more)
Receive FIFO time-out

Receive FIFO overrun

End of transmission

Receive DMA transfer complete

Transmit DMA transfer complete

® 6 6 6 O 0 o

Interrupts on these conditions can be enabled individually

Your handler code must check to determine the source
of the SSI interrupt and clear the flag(s)

Operation...

SSI uDMA Operation

¢ Separate channels for Tx and Rx

¢ When enabled, the SSI will assert a DMA request on either channel
when the Rx or Tx FIFO can transfer data

¢ For Rx channel: A single transfer request is made when any data is in the
Rx FIFO. A burst transfer request is made when 4 or more items is in the Rx
FIFO.

¢ For Tx channel: A single transfer request is made when there is at least
one empty location in the Tx FIFO. A burst transfer request is made when 4
or more slots are empty.

1 = 2

Signal Formats...

11-4

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Signal Formats

Signal Formats

Freescale SPI Signal Formats

¢ Four wire interface. Full duplex.
¢ SSIFss acts as chip select

¢ Inactive state and clock phasing are programmable via the
SPO and SPH bits (SSI_FRF_MOTO_MODE_0-3 parameter)

¢ SPO = 0: SSICIk low when inactive. SPO = 1: high
¢ SPH = 0: Data is captured on 1st SSICIk transition. SPH = 1: 2nd

SPO = 0 Ssick :/ \ y"\ \;‘, [_,}_ \ y"_‘ﬁ :
SPH =0 ssiFss | /
. SSIRx —{ MSE!\1 X I I I I \ \ Lse \(‘Q_‘Fj
Slngle : 410 16 bits >
s8ITx — v amm— ey v |)
Transfer e L L C — S
SPO =0 ssek /L L L
SPH =1 SSiFss |
. ssIRx — Q f_MsB) i \ N I { tsB Ja
Slngle i 41016 bits. i >
Transfer s Awee f XL L L (e

Tl Signal Formats ...

Tl Synchronous Serial Signal Formats

¢ Three wire interface
¢ Devices are always slaves

¢ SSICIlk and SSIFss are forced low and SSITx is tri-stated
when the SSl is idle

ssok [T\ [\ L Ll
Single ssiFss | "
Transfer SSITX/SSIRX MSB IL LsB j——
< 410 16 bits

ssick [\ LV
Continuous SSlFss
Transfer oo cqm, MSB 53 —

4 to 16 bits »

A

Microwire Signal Formats...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11-5

Signal Formats

Microwire Signal Formats

¢ Four wire interface
¢ Similar to SPI, except transmission is half-duplex
¢ Master — Slave message passing technique

ssicic I\I\J’LW\I\I\JU\I\J“\I\JT\I\I\I\I\J%F\I\IL
4 i 1
Single i i s
g ssimx | fwsB_ O s .
Transfer SSiRx e N e o' o =
|| % 4toishbils i
| ouipmaaia‘ |
S AV AT A AT AVAUAYAVAVAUAVASAVAVAVAUAYAYAYRY AN
Continuous *™- = .
ssiTx | jLse), . fase T} T ss)
Transfer “ it conol >
SSIRx 0 fsa) iuss), msef_ OO 0C
R A
! ! output dal H |

Lab...

11-6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Lab 11: SPI Bus and the Olimex LED BoosterPack

Lab 11: SPI Bus and the Olimex LED BoosterPack
Objective

In this lab you will use the Olimex LED BoosterPack to explore the capabilities and
programming of the SPI bus on the SSI peripheral.

Lab 11 : SPI Bus and the Olimex LED Boosterpack

. USB Emulation Connection

I
o WY

,,,,,,, 0000
e0ee
eeoo
eeoo
eeoe
0500

¢ Carefully install pin-modified -
Olimex BoosterPack (LI

¢ Run faces program (SoftSSI)

¢ Carefully install proto-board

modified Olimex BoosterPack
¢ Create program to utilize SSI SPI

Agenda ...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11-7

Lab 11: SPI Bus and the Olimex LED BoosterPack

Procedure

Hardware

1. If you want to do this lab, you’re going to need a BoosterPack with a SPI connection. 1
chose the Olimex 8x8 LED BoosterPack:
(https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-
BOOSTERPACKY/).

This BoosterPack is also available from Mouser Electronics
(http://www.mouser.com/new/olimex/olimex LED8x8&/)

The LED BoosterPack is cheap and fun, but there are two issues with it out of the box.
The first is that it has male Molex pins rather than Molex female connectors. You can get
two of these
(http://www.mouser.com/ProductDetail/FCI/66951 -
010LF/?qs=sGAEpiMZZMs%252bGHIn7q6pmxAVkKtO
EC39jD0m1rF2xGE%3d) and solder them directly to the
male pins (let’s call this board 1). This way you can
import, build and run the “faces” program located at:

C:\TI\TivaWare C Series-
1.1\examples\boards\ek-tmd4cl23gxl-
boost-o0limex-8x8

This program is pretty cool but it has one little issue, which
brings us back to the second problem with the Olimex
BoosterPack. The pin-out on the Olimex BoosterPack does
not match with any of the SSI module pin-sets on the Tiva
C Series LaunchPad board (it actually matches an early version of the MSP430
LaunchPad).

So the author of the “faces” program did what any good engineer would do, they made it
work ... with a software SPI port (SoftSSI). The programming of SoftSSI is virtually the
same as programming the actual hardware, but for the purposes of this lab, that’s not
good enough.

2. We need to connect the pins on the Olimex BoosterPack to the female headers that will
mount on top of the LaunchPad board. Any small perf-board will do, but Joe’s Bytes
(' http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html) has a nice proto-
board that fits perfectly. I soldered the female headers on one side of the board in one
direction and the Olimex BoosterPack on the other side with a 90 degree turn.

» 4

P9I

58
ey C3
55
o6
X

3_“-941_3 T EEREEEE

11-8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/
http://www.mouser.com/new/olimex/olimexLED8x8/
http://www.mouser.com/ProductDetail/FCI/66951-010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtOEC39jD0m1rF2xGE%3d
http://www.mouser.com/ProductDetail/FCI/66951-010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtOEC39jD0m1rF2xGE%3d
http://www.mouser.com/ProductDetail/FCI/66951-010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtOEC39jD0m1rF2xGE%3d
http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html

Lab 11: SPI Bus and the Olimex LED BoosterPack

3. Comparing the Olimex BoosterPack schematic found
at https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-

BOOSTERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf to the

LaunchPad schematic, I came up with the following connections for the proto-board
(There are a number of possible solutions here). Bear in mind that the correct way to
number the BoosterPack pins is 1 to 10 from the top of the board to the bottom.

Olimex Olimex LaunchPad | LM4F120H5QR Pin

Header Function Header Pin Pin Name Function
Pin
J11-7 SR_SCK > J2-10 PA2 SSIOCLK
J1-6 SR_LATCH > J2-9 PA3 SSIOFss
J2-7 SR_DATA IN S J1-8 PAS SSI0Tx
J1-2 A IN S J2-3 PEO AIN3
J1-3 BUZ PIN1 S J1-9 PA6 GPIO
J1-4 BUZ PIN2 > J1-10 PA7 GPIO
J2-1 Ground S J2-1 Ground -
J1-1 Vce > J1-1 Vce -

4. While you’ve got the Olimex BoosterPack schematic out, take a look at the circuit.
You’ll see that the board is pretty simple; 16-bits of shift register, a Darlington seven
transistor array (for drive strength) plus one more single transistor to make 8 and the 8x8
LED array. In order for the LEDs to light properly, the upper byte of the 16-bit word
must be the bit-reversed version of the lower byte. That will be done in software.

Since this lab concerns the SPI port, we’re going to ignore the connections for the mic

and buzzer.

Once this board is done, let’s call it board 2.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

11-9

https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf

Lab 11: SPI Bus and the Olimex LED BoosterPack

Faces Code

5. If you have one of the Olimex BoosterPacks and have connected the female headers to it
(board 1), carefully connect it to your LaunchPad board. » In Code Composer, import
the faces project from c:\TI\TivaWare_C_Series-1.1\examples\boards\ek-
tmdcl123gx1l-boost-0limex-8x8 into your workspace.

6. P Build, load and run the project. Watch the LED array. Poke around in the code if you
like, but we’ll go into detail building Lab11 that uses the SSI peripheral instead of the
SoftSSI.

» When you’re done, click the Terminate button and close the faces project.

» Disconnect your LaunchPad board from the USB port and carefully remove the
Olimex BoosterPack.

11-10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Lab 11: SPI Bus and the Olimex LED BoosterPack

Import Lab11

7. 1If you have a proto-board modified Olimex BoosterPack (board 2), P carefully connect
it to the LaunchPad with the expansion pins towards the top of the LaunchPad as shown
below. You may need to bend the power measurement jumper out of the way slightly.
Reconnect your USB cable.

£6009000
h)&..@ . -8 .

»!.3
£

y W

o
=

8. P Maximize Code Composer. Import lab11 with the settings shown below.

Make sure the Copy projects into workspace checkbox is not checked and click Finish.

-

w» Import CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory te search for existing CC5S Eclipse projects.

| T

@ Select search-directory: C\TM4C123G_LaunchPad_Workshoptlabll\project
(") Select archive file: Browse...
Discovered projects:
&1 labll [CATM4C123G_LaunchPad_Workshopllabl1\project] Select All
Deselect All

Refresh

[] Copy projects into workspace
[] Autornatically import referenced projects

Open the Resource Explorer and browse available example projects...

Cancel

@ Finish |

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI/ 11-11

Lab 11: SPI Bus and the Olimex LED BoosterPack

9. P Expand the project and open main. c for editing. Place the following includes at the
top of the file:

#tinclude
#include
#include
#tinclude
#tinclude
#tinclude
#tinclude
#tinclude

<stdint.h>
<stdbool.h>
"inc/hw_memmap.h"
"inc/hw_ssi.h"
"inc/hw_types.h"
"driverlib/ssi.h"
"driverlib/gpio.h"
"driverlib/pin_map.h"

#include "driverlib/sysctl.h"

We’re going to need all the regular include files along with the ones that give us access to
the SSI peripheral.

10. » Skip a line for spacing and add the next three lines:

#tdefine NUM_SSI_DATA 8
const uint8_ t pui8DataTx[NUM_SSI DATA] =
{0x88, OxF8, OxF8, 0x88, 0x01, Ox1F, Ox1F, 0x01};

The “third” line is really part of the second one. This array of 8-bit numbers defines
which of the LEDs in the array will be on or off in the following fashion, where red is on
and the open circle is off.

{A7-0, B7-0, C7-0, D7-0, E7-0, F7-0, G7-0, H7-0}
TOP

=}

9000000 L
00000000 -
00000000 -
0000000 X
L S00] O00r
Q0000D D)~
Q000000 =
@OO00@OO0 »

|

11-12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Lab 11: SPI Bus and the Olimex LED BoosterPack

11. » Leave a line for spacing and add the following code. This code will take the 8-bit
number from the array above and bit-reverse it front to back .Then those 8-bits will be
concatenated (in the code that calls this function) with the original number to create a 16-
bit number that will be sent over the SPI port.

// Bit-wise reverses a number.
uints_t
Reverse(uint8 t ui8Number)

{

uint8_t ui8Index;
uint8_t ui8ReversedNumber = 0;
for(ui8Index=0; ui8Index<8; ui8Index++)

{

ui8ReversedNumber = ui8ReversedNumber << 1;
ui8ReversedNumber |= ((1 << ui8Index) & ui8Number) >> ui8Index;

}

return ui8ReversedNumber;

12. P Leave a line for spacing and add the template for main() below:

int main (void)
{
}

13. > Insert the next two lines as the first ones in main(). We’ll need these variables for
temporary data and index purposes.

uint32_t ui32Index;
uint32_t ui32Data;

14. » Leave a line for spacing and set the clock to SOMHz as we’ve done before:

SysCtlClockSet (SYSCTL_SYSDIV 4 | SYSCTL USE_PLL | SYSCTL OSC_MAIN | SYSCTL XTAL 16MHZ);

15. » Space down a line and add the next two lines. Since SSIO is on GPIO port A, we’ll
need to enable both peripherals:

SysCtlPeripheralEnable (SYSCTL_PERIPH SSIO) ;
SysCtlPeripheralEnable (SYSCTL_PERIPH GPIOA) ;

16. » Space down a line and add the following four lines. These will configure the muxing
and GPIO settings to bring the SSI functions out to the pins. Since the BoosterPack only
accepts data, we won’t program the receive pin (pin 4).

GPIOPinConfigure (GPIO PAZ SSIOCLK) ;
GPIOPinConfigure (GPIO PA3 SSIOFSS) ;
GPIOPinConfigure (GPIO PA5 SSIOTX);
GPIOPinTypeSSI (GPIO PORTA BASE,GPIO PIN 5|GPIO PIN 3|GPIO PIN 2);

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11-13

Lab 11: SPI Bus and the Olimex LED BoosterPack

17. Next we need to configure the SPI port on SSIO for the type of operation that we want.

Given that there are two bits (SPH — clock polarity and SPO — idle state), there are four
modes (0-3). P Leave a line for spacing and add the next two lines after the last. Then
double-click on SST FRF MOTO_MODE 0 and press F3 to see all four definitions in
ssi.h:

SSIConfigSetExpClk (SSI0_BASE, SysCtlClockGet () ,SSI_FRF_MOTO MODE 0,SSI_MODE_MASTER, 10000,16);
SSIEnable (SSI0 BASE);

18.

19.

20.

The API specifies the SSI module, the clock source (this is hard wired), the mode, master
or slave, the bit rate and the data width.

» The LED array has no latch, so the data must be continuously streamed in order for a
static image to appear. We’ll do that with a while() loop, so add a lines for spacing and
then add the while() loop below:

while (1)
{
}

We’re going to need to step through the data, sending each 16-bit word on at the time.
» Add the following for() construct inside the while() loop you just added:

for(ui32Index = ©; ui32Index < NUM_SSI_DATA; ui32Index++)
{

}

» Place the five lines below inside the for() construct you just added. Those lines have
these functions:

1) Create the 16-bit data word using the Reverse() function we added earlier

2) Place the data in the transmit FIFO using a blocking function (a non-blocking version
is also available)

3) Wait until the data has been transmitted

ui32Data = (Reverse(pui8DataTx[ui32Index]) << 8) + (1 << ui32Index);
SSIDataPut(SSI@ BASE, ui32Data);

while(SSIBusy(SSI@ BASE))

{

}

Admittedly, this isn’t the most efficient technique. It would be less wasteful of CPU
cycles to use the uDMA to perform these transfers, but we haven’t covered the uDMA
yet.

You might think about fixing the indentation too. » Save your work.

11-14

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Lab 11: SPI Bus and the Olimex LED BoosterPack

Build and Load

21. » Build and load the code. If you have errors, compare your main. c to the code below:

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"
#include "inc/hw_ssi.h"
#include "inc/hw_types.h"
#include "driverlib/ssi.h"
#include "driverlib/gpio.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"

#define NUM_SSI_DATA 8
const uint8 t pui8DataTx[NUM_SSI_DATA] =
{ox88, OxF8, OxF8, 0x88, 0x01, Ox1F, Ox1F, 0x01};

// Bit-wise reverses a number.
uints_t
Reverse(uint8_t ui8Number)
{
uint8_t ui8Index;
uint8_t ui8ReversedNumber = 0;
for(ui8Index=0; ui8Index<8; ui8Index++)
{
ui8ReversedNumber = ui8ReversedNumber << 1;
ui8ReversedNumber |= ((1 << ui8Index) & ui8Number) >> ui8Index;
¥

return ui8ReversedNumber;

}

int main(void)
{
uint32_t ui32Index;
uint32_t ui32Data;

SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

SysCtlPeripheralEnable (SYSCTL_PERIPH_SSIO);
SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOA);

GPIOPinConfigure(GPIO_PA2_SSIQCLK);
GPIOPinConfigure(GPIO_PA3_SSIOFSS);
GPIOPinConfigure(GPIO_PA5_SSIOTX);
GPIOPinTypeSSI(GPIO_PORTA_BASE,GPIO_PIN_5|GPIO_PIN_3|GPIO_PIN_2);

SSIConfigSetExpClk(SSI@_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE_@, SSI_MODE_MASTER, 10000, 16);
SSIEnable(SSIO_BASE);

while(1)
{
for(ui32Index = ©; ui32Index < NUM_SSI DATA; ui32Index++)
{
ui32Data = (Reverse(pui8DataTx[ui32Index]) << 8) + (1 << ui32Index);
SSIDataPut(SSIO_BASE, ui32Data);
while (SSIBusy(SSI® BASE))
{
}

If you’re still having problems you can find this code in the 1abl1/project folder as
main.txt.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11-15

Lab 11: SPI Bus and the Olimex LED BoosterPack

Run and Test
22. » Run the code by clicking the Resume button. You should see “TI” displayed on the

23.

24.
25.
26.

27.

LED array. If you like you can play with the data structure to draw something different.
Keep it clean.

If you have a SPI protocol analyzer, now would be a good time to dust it off and take a
look at the serial data stream. These analyzers can save weeks troubleshooting
communication problems. The screen captures on the next page were taken with a Saleae

Logic8 logic analyzer/communications analyzer made by Saleae LLC (www.saleae.com)
Beware of counterfeits!

When you’re done, P> click the Terminate button to return to the CCS Edit perspective.
» Right-click on lab11 in the Project Explorer pane and close the project.

» Disconnect your LaunchPad board from the USB port, carefully remove and store the
Olimex BoosterPack. Re-connect your LaunchPad.

» Minimize Code Composer Studio.

You’re done.

11-16

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

http://www.saleae.com/

Lab 11: SPI Bus and the Olimex LED BoosterPack

= TR

HALYTY5 - 0

IR RN

X0 0P 080 LD o 00 D0 o 200 AR JOKO TIXD

S 0. IPD. . 080

2.4

ULl

spzfjeuy 4

SJUBRINSEIY & § HIVIHS-0

11-17

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Lab 11: SPI Bus and the Olimex LED BoosterPack

11-18 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

UART

Introduction

This chapter will introduce you to the capabilities of the Universal Asynchronous
Receiver/Transmitter (UART). The lab uses the LaunchPad board and the Stellaris Virtual Serial
Port running over the debug USB port.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio
Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers :
ADC12
Hibernation Module
uUSB
Memory and Security
Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
uDMA
Sensor Hub
PWM

Features...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12-1

UART Features and Block Diagram

Chapter Topics

0 R 121

UART Features and BIOCK Di@QIram.............c.ououueui i 12-3

L= 1Y (ol @ o= 1 (o o R 12-4

UART INterrupts @Nnd FIFOS ... e e e e 12-5

UART “stdio” Functions and Other FEAtUIesSeeee oo 12-6

I T o T SRR 12-7

(0] o] [=Te3 111/ PSR TP PR 12-7

12-2

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

UART Features and Block Diagram

UART Features and Block Diagram

UART Features

¢ Separate 16x8 bit transmit and receive FIFOs

¢ Programmable baud rate generator

¢ Auto generation and stripping of start, stop, and
parity bits

¢ Line break generation and detection

¢ Programmable serial interface
¢ 5,6, 7, or 8 data bits
¢ even, odd, stick, or no parity bits
¢ 1 or 2 stop bits
¢ baud rate generation, from DC to processor clock/16

¢ Modem flow control on UART1 (RTS/CTS)
¢ IrDA and EIA-495 9-bit protocols
¢ uDMA support

Block Diagram...

Block Diagram

Pi0SC Clock control

System Closk] Saud Clock

DA Request DMA Control

UARTOMACTL

Intemupt Interrupt Control TxFIFO
1628

UARTRIS
Isentincation Regesters e

UARTRCEAIDO —t

UARTPCENDT

UARTPCENDZ Baud Rate [,
Generator

UARTRCEIIDS URRTOR, UARTERD
™ [UARTFBRD |

GARTRERgnID UARTFERD.

UARTPMphIDY Controvstatus

e — UARTRSRECR —

UARTFR Texs
UARTPerpniD3 P W L |
UARTPeriphiDd UARTCTL

UARTPeniphiDS UARTILPR
UARTLCTL
UARTLSS
UARTLTIM

UARTPErpnIDG

UARTPeriphiD7

UARTSSITADDR
UARTEBITAMASK
USRTPR

T

Basic Operation...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

12-3

Basic Operation

Basic Operation

Basic Operation

¢ Initialize the UART
¢ Enable the UART peripheral, e.g.

SysCtlPeripheralEnable (SYSCTL_PERIPH UARTO) ;
SysCtlPeripheralEnable (SYSCTL_PERIPH GPIOA) ;
¢ Set the Rx/Tx pins as UART pins

GPIOPinConfigure (GPIO_PAO_UORX) ;
GPIOPinConfigure (GPIO_PAl UOTX) ;
GPIOPinTypeUART (GPIO_PORTA BASE, GPIO_PIN 0 | GPIO_PIN 1);
¢ Configure the UART baud rate, data configuration
ROM _UARTConfigSetExpClk (UARTO_BASE, ROM_ SysCtlClockGet(), 115200,

UART_CONFIG_WLEN_8 | UART CONFIG_STOP ONE |
UART_CONFIG_PAR NONE)) ;

¢ Configure other UART features (e.g. interrupts, FIFO)
¢ Send/receive a character
Single register used for transmit/receive

+ Blocking/non-blocking functions in driverlib:
UARTCharPut (UARTO_BASE, ‘a’);
newchar = UARTCharGet (UARTO_BASE) ;
UARTCharPutNonBlocking (UARTO_BASE, ‘a’);
newchar = UARTCharGetNonBlocking (UARTO_BASE) ;

Interrupts...

12-4

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

UART Interrupts and FIFOs

UART Interrupts and FIFOs

L 4

L 2BR 2R 2R 2

L 2

*

UART Interrupts

Single interrupt per module, cleared automatically
Interrupt conditions:

Overrun error

Break error

Parity error

Framing error

Receive timeout — when FIFO is not empty and no further data is
received over a 32-bit period

Transmit — generated when no data present (if FIFO enabled, see next
slide)

Receive — generated when character is received (if FIFO enabled, see
next slide)

Interrupts on these conditions can be enabled individually

Your handler code must check to determine the source
of the UART interrupt and clear the flag(s)

FIFOs...

Using the UART FIFOs

Transmit FIFO Level
FIFO

Select

¢ Both FIFOs are accessed via the

UART Data register (UARTDR)
UART_FIFO_TX1_8

¢ After reset, the FIFOs are enabled*,

UART_FIFO_TX2_8 you can disable by resetting the FEN

bit in UARTLCRH, e.g.

UARTFIFODisable (UARTO_BASE) ;

UART_FIFO_TX4_8

¢ Trigger points for FIFO interrupts can

be set at 1/8, 1/4, 1/2,3/4, 7/8 full, e.g.

UARTFIFOLevelSet (UARTO_BASE,

UART_FIFO_TX6_8 UART FIFO TX4 8,

UART_FIFO_RX4_8);

UART_FIFO_TX7_8

* Note: the datasheet says FIFOs are disabled at reset

stdio Functions...

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

12-5

UART “stdio” Functions and Other Features

UART “stdio” Functions and Other Features

UART “stdio” Functions

¢ TivaWare “utils” folder contains functions for C stdio
console functions:

c:\TivaWare\utils\uartstdio.h
c:\TivaWare\utils\uartstdio.c

¢ Usage example:
UARTStdioInit (0); //use UARTO, 115200
UARTprintf (“Enter text: “);

& See uartstdio.n for other functions

¢ Notes:

¢ Use the provided interrupt handler varTstdioIntHandler ()
code in uartstdio.c

¢ Buffering is provided if you define UART_BUFFERED
symbol

¢ Receive buffer is 128 bytes
¢ Transmit buffer is 1024 bytes

Other UART Features...

Other UART Features

¢ Modem flow control on UART1 (RTS/CTS)
¢ IrDA serial IR (SIR) encoder/decoder

¢ External infrared transceiver required

¢ Supports half-duplex serial SIR interface

¢ Minimum of 10-ms delay required between transmit/receive, provided by software
¢ [ISA 7816 smartcard support

¢ UnTX signal used as a bit clock

¢ UnRx signal is half-duplex communication line

¢ GPIO pin used for smartcard reset, other signals provided by your system design
¢ LIN (Local Interconnect Network) support: master or slave

¢ pDMA support

¢ Single or burst transfers support

¢ UART interrupt handler handles DMA completion interrupt
¢ EIA-495 9-bit operation

¢ Multi-drop configuration: one master, multiple slaves

¢ Provides “address” bit (in place of parity bit)

¢ Slaves only respond to their address

Lab...

12-6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

Lab 12

Lab 12
Objective

In this lab you will send data through the UART. The UART is connected to the emulator’s virtual serial

port that runs over the debug USB cable.

Lab 12: UART

USB Emulation Connection

e o 1339 vl
@* 4 PB5 OND
™ £90 PDO

PES PD2

¢ |Initialize UART and echo characters =\
using polling e

¢ Use interrupts A

¢

i3 P eas pes

Ry LI
&

e

PF3 PB2 ©

TCK TWS 100 101 EXT 750 RAD -
£ @ -Rs [

i~ www.fi.com/launchpad

DEVICE »:
T, W EKTMACIZION REV A

oo n [o c

P83 P30 43

PG4 PFO -

PC5 RST *

PCs PB7 43

PC7 PBE ~§ ~

ros ene B

P07 PA3

Pra paz 4}

*3 TEXAS INSTRUMENTS 4 ¢
]

)

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

12-7

Lab 12

Procedure

Import Lab12

1. We have already created the lab12 project for you with a main.c file, a startup file, and all the
necessary project and build options set.

» Maximize Code Composer and click Project — Import Existing CCS Eclipse Project. Make the
settings shown below and click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

-

s+ Import CCS Eclipse Projects

Select Existing CCS Eclipse Project

Select a directory to search for existing CCS Eclipse projects,

@) Select search-directery: CATMAC123G_LaunchPad_Workshophlabl2\project Browse...
() Select archive file: Browse...
Discovered projects:

BT labl2 [CATWMC123G_LaunchPad_Workshoptlabl2\project] Select All

Deselect All

Refresh

[] Copy projects into workspace
[Autornatically import referenced projects

Open the Resource Explorer and browse available example projects...

S

Finish Cancel

»

2. » Expand the project by clicking on the + or “ next to lab12 in the Project Explorer pane. Double-
click on main.c to open it for review. The code looks like the next page:

12-8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

Lab 12

#include
#include
#include
#include
#include
#include
#include
#include

<stdint.h>
<stdbool.h>
"inc/hw_memmap.h"
"inc/hw_types.h"
"driverlib/gpio.h"
"driverlib/pin map.h"
"driverlib/sysctl.h"
"driverlib/uart.h"

int main (void) {

SysCtlClockSet (SYSCTL SYSDIV 4 | SYSCTL USE PLL | SYSCTL OSC_MAIN | SYSCTL XTAL 16MHZ);
SysCtlPeripheralEnable (SYSCTL_ PERIPH UARTO) ;

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOA);

GPIOPinConfigure (GPIO_PAO UORX) ;
GPIOPinConfigure (GPIO_PAl UOTX) ;
GPIOPinTypeUART (GPIO PORTA BASE, GPIO PIN 0 | GPIO PIN 1);
UARTConfigSetExpClk (UARTO BASE, SysCtlClockGet(),
(UART CONFIG WLEN 8 | UART CONFIG STOP ONE |

115200,
UART CONFIG PAR NONE));

UARTCharPut (UARTO BASE, 'E')
UARTCharPut (UARTO_BASE, 'n')
UARTCharPut (UARTO_BASE,)
UARTCharPut (UARTO BASE,)
UARTCharPut (UARTO BASE, 'r')
UARTCharPut (UARTO _BASE, ' ');
UARTCharPut (UARTO_BASE,)
UARTCharPut (UARTO BASE,)
UARTCharPut (UARTO BASE, 'x')
UARTCharPut (UARTO_BASE, 't')
UARTCharPut (UARTO_BASE, ':')
UARTCharPut (UARTO BASE, ' ')

while

{

(1)

if (UARTCharsAvail (UARTO BASE)) UARTCharPut (UARTO_ BASE, UARTCharGet (UARTO BASE));
}

In main(), notice the initialization sequence for using the UART:

e Set up the system clock

e Enable the UARTO and GPIOA peripherals (the UART pins are on GPIO Port A)
e Configure the pins for the receiver and transmitter using GPIOPinConfigure

o Initialize the parameters for the UART: 115200, 8-1-N

o Use simple “UARTCharPut()” calls to create a prompt.

e Aninfinite loop. In this loop, if there is a character in the receiver, it is read, and then written to
the transmitter. This echos what you type in the terminal window.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

12-9

Lab 12

Build, Download, and Run the UART Example Code

4. P Click the Debug button to build and download your
program to the TM4C123GH6PM flash memory.

We can communicate with the board through the UART,
which is connected as a virtual serial port through the
emulator USB connection. You can find the COM port
number for this serial port back in chapter one of this
workbook on page 18 or 19.

In WinXP, » open HyperTerminal by clicking Start 2>
Run..., then type hypertrm in the Open: box and click OK.
Pick any name you like for your connection and click OK. In
the next dialog box, change the Connect using: selection to
COM##, where ## is the COM port number you noted earlier
from Device Manager. Click OK. Make the selections
shown below and click OK.

COM48 Properties

Port Seﬂings|
-
Restore Defaults
[ok [camcel [ooy |

When the terminal window opens click the Resume button in CCS, then type some characters and you

should see the characters echoed into the terminal window.
Skip to step 8.

5. In Win7, » double-click on putty.exe. Make the B2 PuTTY Configuration Ed
settings shown below and then click Open. Your COM || categer:
. : . [=)- Sessi E; ions i PuTTY sessi
port number will be the one you noted earlier in Loagng ¢ opfons foryour Pu T ¥ oession
Tesmirad Specify the destination you want to connect to
chapter one. o Seraline Speed
- Bel com4s 115200
. Features Connection type
[=- Window () Raw () Telnet () Rlogin () SSH @ Serial
ggﬁzj:::l:e Load, save or delete a stored session
- Translation Saved Sessions
. . . - Selection
When the terminal window opens P> click the Resume - Colours Dt Setrcs =
: =)~ Connection
button in CCS, then type some characters and you e
should see the characters echoed into the terminal i
window. - Flogin
- 55H
- Serial Close window on exit
(O AMways () Never @ Only on clean exit
o
PuTTY Configuration =
Category:
E| Sgss\on Options cortrolling local senial lines
[L.Dgg\ng Select 3 serial line
Teminal
. Senial line to connect to COM48
- Features Configure the serial line
= Window Speed {baud) 115200
: Appearance
- Behaviour EREE s
Translation Stop bits 1
-~ Selection
© . Golous iy
=1 Connection Flow control _HI-
- Data
Prosgy
- Telnet
Rlogin
- 55H
- Serial
o

12-10

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

Lab 12

Using UART Interrupts

Instead of continually polling for characters, we’ll make some modifications to our code to allow the use of
interrupts to receive and transmit characters. In the first part of this lab, the only indication we had that our
code was running was to open the terminal window to type characters and see them echoed back. In this
part of the lab, we’ll add a visual indicator to show that we received and transmitted a character. So we’ll
need to add code similar to previous labs to blink the LED inside the interrupt handler.

6. First, let’s add the code in main() to enable the UART interrupts we want to handle. » Click on the
Terminate button to return to the CCS Edit perspective. We need to add two additional header files at
the top of the file:

#include "inc/hw_ints.h"
#include "driverlib/interrupt.h"

7. Now we need to add the code to enable processor interrupts, then enable the UART interrupt, and then
select which individual UART interrupts to enable. We will select receiver interrupts (RX) and
receiver timeout interrupts (RT). The receiver interrupt is generated when a single character has been
received (when FIFO is disabled) or when the specified FIFO level has been reached (when FIFO is
enabled). The receiver timeout interrupt is generated when a character has been received, and a second
character has not been received within a 32-bit period. » Add the following code just below
the UART ConfigSetExpCIk() function call:

IntMasterEnable () ;
IntEnable (INT_UARTO) ;
UARTIntEnable(UARTO_BASE, UART INT RX | UART_INT_RT);

8. We also need to initialize the GPIO peripheral and pin for the LED. » Just before the
function UARTConfigSetExpClk() is called, add these two lines:

SysCtlPeripheralEnable (SYSCTL PERIPH GPIOF);
GPIOPinTypeGPIOOutput (GPIO PORTF BASE, GPIO PIN 2);

9. » Finally, we can create an empty while(1) loop at the end of main by commenting out the line of
code that’s already there:

while (1)

{

//if (UARTCharsAvail (UARTO_BASE)) UARTCharPut (UARTO_BASE,UARTCharGet (UARTO_BASE)) ;
}

10. » Save the changes you made to main.c (but leave it open for making additional edits).

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12-11

Lab 12

11.

Now we need to write the UART interrupt handler. The interrupt handler needs to read the UART in-
terrupt status register to know which specific interrupt event(s) just occurred. This value is then used to
clear the interrupt status bits (we only enabled RX and RT interrupts, so those are the only possible
sources for the interrupt). The next step is to receive and transmit all the characters that have been re-
ceived. After each character is “echoed” to the terminal, the LED is blinked for about 1 millisecond. »
Insert this code below the include statements and above main():

void UARTIntHandler (void)

{

uint32_t uil32status;
ui32Status = UARTIntStatus (UARTO_BASE, true); //get interrupt status
UARTIntClear (UARTO_BASE, ui32Status); //clear the asserted interrupts

while (UARTCharsAvail (UARTO BASE)) //loop while there are chars
{
UARTCharPutNonBlocking (UARTO_BASE, UARTCharGetNonBlocking (UARTO_BASE)) ;
//echo character
GPIOPinWrite (GPIO_PORTF_BASE, GPIO_PIN 2, GPIO_PIN_2); //blink LED
SysCtlDelay (SysCtlClockGet () / (1000 * 3)); //delay ~1 msec
GPIOPinWrite (GPIO_PORTF_BASE, GPIO_PIN_Z, 0); //turn off LED

12. We’re almost done. We’ve added all the code we need. The final step is to insert the address of the

13.

UART interrupt handler into the interrupt vector table. » Open
the tm4c123ghépm_startup ccs. c file. Just below the prototype for _c_int00(void), add the
UART interrupt handler prototype:

extern void UARTIntHandler (void) ;

On about line 68, you’ll find the interrupt vector table entry for “UARTO Rx and Tx”. It’s just below
the entry for “GPIO Port E”. The default interrupt handler is named IntDefaultHandler. » Replace this
name with UARTIntHandler so the line looks like:

UARTIntHandler, // UARTO Rx and Tx

12-12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

Lab 12

14. Save your work. Your main.c code should look like this.

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

void UAR
{
uint
uil2
UART

whil
{

int main
SysC

SysC
SysC

SysC

IntE

{
//

}

UARTCharPut (UART@_BASE, 'E
UARTCharPut (UART@_BASE, 'n
UARTCharPut (UART@_BASE, 't'
UARTCharPut (UART@_BASE, 'e
UARTCharPut (UART@_BASE, 'r
UARTCharPut (UART@_BASE, '
UARTCharPut (UART@_BASE, 'T
UARTCharPut (UARTO_BASE, 'e'
UARTCharPut (UART@_BASE, 'x
UARTCharPut (UART@_BASE, 't
UARTCharPut (UART@_BASE, ':'
UARTCharPut (UART@_BASE, ' '

<stdint.h>

<stdbool.h>
"inc/hw_ints.h"
"inc/hw_memmap.h"
"inc/hw_types.h"
"driverlib/gpio.h"
"driverlib/interrupt.h"
"driverlib/pin_map.h"
"driverlib/sysctl.h"
"driverlib/uart.h"

TIntHandler(void)

32_t ui32Status;
Status = UARTIntStatus(UARTO_BASE, true); //get interrupt status
IntClear(UARTO_BASE, ui32Status); //clear the asserted interrupts

e(UARTCharsAvail (UARTO_BASE)) //loop while there are chars

UARTCharPutNonBlocking (UARTO_BASE, UARTCharGetNonBlocking(UARTO BASE)); //echo character
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2); //blink LED
SysCtlDelay(SysCtlClockGet() / (1000 * 3)); //delay ~1 msec
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0); //turn off LED

(void) {
t1ClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

tlPeripheralEnable(SYSCTL_PERIPH_UARTO);
tlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

GPIOPinConfigure(GPIO_PA®_UORX);
GPIOPinConfigure(GPIO_PAl_UOTX);
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_© | GPIO_PIN_ 1);

tlPeripheralEnable(SYSCTL_PERIPH_GPIOF); //enable GPIO port for LED

GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2); //enable pin for LED PF2

UARTConfigSetExpClk (UARTO_BASE, SysCtlClockGet(), 115200,

(UART_CONFIG_WLEN 8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));

IntMasterEnable(); //enable processor interrupts

nable(INT_UARTO); //enable the UART interrupt

UARTIntEnable (UARTO_BASE, UART_INT_RX | UART_INT_RT); //only enable RX and TX interrupts

while (1) //let interrupt handler do the UART echo function

if (UARTCharsAvail (UART@_BASE)) UARTCharPut(UART@_BASE, UARTCharGet(UARTO_ BASE));

Getting Started

With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12-13

Lab 12

15.
16.
17.

» Click the Debug button to build and download your program to the TM4C123GH6PM memory.
P If you’ve closed it, open Hyperterminal or puTTY, and configure it as before.

» Click the Resume button. Type some characters and you should see the characters echoed into the
terminal window. Note the LED.

P Close puTTY or HyperTerminal. Click the Terminate button to return to the CCS Edit perspective.
P Close the Lab12 project and minimize Code Composer Studio.

You’re done.

12-14

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

LDMA

Introduction

This chapter will introduce you to the micro DMA (uDMA) peripheral on Tiva C Series devices.
In the lab we’ll experiment with the uDMA transfers in memory and to/from the UART.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio
Introduction to TivaWare™ , Initialization and GPIO
Interrupts and the Timers [
ADC12
Hibernation Module
USB
Memory and Security
Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART
Sensor Hub
PWM

Features...

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA 13-1

Chapter Topics

Chapter Topics

pDMA 13-1
CRAPICE TOPICS..cc.vv ettt ettt et e ettt e s b e e e st e e s b e e esseesabeeenbeeesbeeeaseesabeesnseessseeanseesnseas 13-2
Features and TrANSTEr TYDESc.ccceeicuieeeie ettt et e e aae et e esseeeabeeenseeenreas 13-3
Block Diagram and Channel ASSIGRIMENLc.cccveviiiiioiiiieeieee ettt 13-4
Channel CORIGUIATIONc.ccoueiiiiiiii ettt ettt ettt ettt 13-5
LD 137 UDMA ..ottt ettt ea et ne e 13-7

L0 10} 115 AR 13-7
PIOCEAULIE ...ttt ettt ettt bbbt ea ettt st b e s bt bt et e st e e nae b e 13-8

13-2

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA

Features and Transfer Types

Features and Transfer Types

MDMA Features

¢ 32 channels

SRAM to SRAM , SRAM to peripheral and peripheral to
SRAM transfers (no Flash or ROM transfers are possible)

*

L 2

Basic, Auto (transfer completes even if request is removed),
Ping-Pong and Scatter-gather (via a task list)

Two priority levels

8, 16 and 32-bit data element sizes

Transfer sizes of 1 to 1024 elements (in binary steps)
CPU bus accesses outrank DMA controller

® 6 6 o o

Source and destination address increment sizes:
size of element, half-word, word, no increment

Interrupt on transfer completion (per channel)
Hardware and software triggers
Single and Burst requests

* 6 o o

Each channel can specify a minimum # of transfers before
relinquishing to a higher priority transfer.
Known as “Burst” or “Arbitration”

Transfer types...

Transfer Types

Basic
Single to Single
Single to Array
+ Array to Single
¢ Array to Array
Auto

¢ Same as Basic but the transfer completes even if the
request is removed
Ping-Pong
Single to Array (and vice-versa). Normally used to stream
data from a peripheral to memory. When the PING array is

full the uDMA switches to the PONG array, freeing the
PING array for use by the program.

Scatter-Gather

¢ Many Singles to an Array (and vice-versa). May be used to
read elements from a data stream or move objects in a
graphics memory frame.

Block diagram...

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA 13-3

Block Diagram and Channel Assignment

Block Diagram and Channel Assignment

MDMA Block Diagram

uDMA System Memory
DMA error Controller
CH Control Table
DMASTAT
Peripheral [2%=ls DMACEG DMASRCENDP
DMA Channel 0 | 4done | DMACTLEASE DDMMAADCSJ(;@'FE’LP
. DMAALTBASE
. DMAWAITSTAT .
. DMASWREQ .
Peripheral | "2*»| [DMAUSEBURSTSET . .
DMA Channel N-1 dd(’L DMAUSEBURSTCLR DMASRCENDP
DMAREQMASKSET | DMADSTENDP
DMAREQMASKCLR DMACHCTRL
3 DMAENASET
Nested DMAENACLR
Vectored | General request DMAALTSET
Interrupt Peripheral N DMAALTCLR Transfer Buffers
Controller done DMAPRIOSET Used by uDMA
(NVIC) DMAPRIOCLR
DMAERRCLR
i DMACHASGN
DMACHIS
ARM DMACHMAPR
Cortex-M4F
Channels...

MDMA Channels

¢ Each channel has 5 possible assignments made in the DMACHMAPN register

Enc. 0 1 2 3 4

Ch#| Peripheral |Type| Peripheral |Type| Peripheral |Type| Peripheral |Type| Peripheral |Type

0 |USBOEPTRX | SB |UART2RX SB | Software B |GPTimer4A B |Software B

1 |USBOEPT TX B |UART2TX SB | Software B |GPTimer 4B B |Software B

2 |USBOEP2RX | B |GPTimer3A B |Software B |Software B |Software B

3 |USBOEP2 TX B |GPTimer 3B B |Software B |Software B |Software B

4 |USBOEP3RX | B |GPTimer2a B |Software B |GPIOA B |Software B

5 |USBOEPS TX B |GPTimer25 B |Software B |GPIOB B |Software B

6 |Software B |GPTimer2A B |UARTS RX SB |GPIOC B |Software B

7 [Software B |GPTimer 28 B |UARTS TX SB |GPIOD B |Software B

8 |UARTORX SB |UARTI RX SB | Software B |GPTimer 5A B |Software B

9 |UARTOTX SB |UARTI TX SB | Software B |GPTimer 5B B |Software B

10 [SSI0RX SB [SSI1RX SB |UARTE RX SB | GPTimer 6A B |Software B S = Slngle
11 |SSi0TX SB [ssi1Tx SB |UART6 TX SB | GPTimer 68 B |Software B

12 [Software B |UART2RX SB |SSIZRX SB | GPTimer 7A B |Software B B = Burst
13 |Software B |UART2TX SB |SSI2TX SB | GPTimer 78 B |Software B

14 |ADCO S50 B |GPTimer2A B |SSIBRX SB |GPIOE B |Software B SB = Both
15 |ADCO SS1 B |GPTimer2B B [SSIBTX SB |GPIOF B |Software B

16 |ADCO 552 B |Software B |UART3RX SB | GPTimer 8A B |Software B

17 |ADCO 553 B |Software B |UART3 TX SB | GPTimer 8B B |Software B

18 |GPTimer 0A B |GPTimer 1A B |UART4RX SB |GFIOB B |Software B

19 |GPTimer 0B B |GPTimer 1B B |UART4 TX SB | Software B |Software B

20 |GPTimer 1A B |Software B |UART7RX SB | Software B |Software B

21 [GPTimer 18 B [Software B |UARTTTX SB [Software B |Software B

22 |UARTTRX SB [Software B |Software B |Software B |Software B

23 |UARTT TX SB |Software B |Software B |Software B |Software B

24 |SSI1RX SB |ADC1SS0 B |Software B |GPTimer 9A B |Software B

25 [SSI1TX SB |ADC1SS1 B |Software B |GPTimer 9B B |Software B

26 |Software B |ADCI SS2 B |Software B |GPTimer 10A B |Software B

27 [Software B |ADC1 SS3 B |Software B |GPTimer 108 B |Software B

28 |Software B |Software B |Software B |GPTimer 1A B |Software B

29 [Software B |Software B |Software B |GPTimer 118 B |Software B

30 |Software B |Software B |Software B |Software B |Software B . .
31 [Reserved B |Reserved B |Reserved B |Reserved B8 |Reserved 8 Conflguratlon...

13-4 Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA

Channel Configuration

Channel Configuration

Channel Configuration

¢ Channel control is done via a set of control structures in a table
¢ The table must be located on a 1024-byte boundary
¢ Each channel can have one or two control structures; a primary and an alternate
¢ The primary structure is for BASIC and AUTO transfers. Alternate is for Ping-Pong
and Scatter-gather
Control Structure Memory Map Channel Control Structure
Offset Channel Offset Description
0x0 0, Primary 0x000 Source End Pointer
0x10 1, Pimary 0x004 Destination End Pointer
- 0x008 Control Word
0x1F0 31, Primary 0x00C Unused
0x200 0, Alternate
0210 1, Alomato Control word contains:
Source and Dest data sizes
Ox:;FD 31 “Alternate Source and Dest addr increment size

of transfers before bus arbitration
Total elements to transfer
Useburst flag

Transfer mode

L R JER JER JER R 2

Lab...

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA 13-5

Channel Configuration

13-6 Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA

Lab 13: uDMA

Lab 13: uDMA

Objective

In this lab you will experiment with the uDMA, transferring arrays of data in memory and then

transferring data to and from the UART.

Lab 13: Transferring Data with the yDMA

USB Emulation Connection

L L1
e

" & Perform an array to array memory
transfer

¢ Transfer data to and from the UART

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA

13-7

Lab 13: uDMA

Procedure

Import Lab13

1. We have already created the lab13 project for you with main. c, a startup file and all
necessary project and build options set.

» Maximize Code Composer and click Project = Import Existing CCS Eclipse Project.
Make the settings shown below and click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

e

«« Import CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CCS Eclipse projects.

@) Select search-directory: C:\TM4C123G_LaunchPad_Workshop'labl3project Browse...
() Select archive file: Browse...
Discovered projects:

I labl3 [CATMAC123G_LaunchPad_Werkshop\labl3\project] Select All

Deselect All

Refresh

[7] Copy projects into workspace
[] Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

@ Finish]

Cancel

13-8

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA

Lab 13: uDMA

Browse the Code

2. In order to save some time, we’re going to browse this existing code rather than enter it
line by line. ®» Expand the project, open main. ¢ in the editor pane and we’ll get started.
If you accidentally make a change, this code is also in mainl. txt in the
lab13\project folder.

This code is a stripped-down version of the uDMA_demo example in
c:\TI\TivaWare_C_Serices-1.1\examples\boards\ek-tm4c123gx1 . To
make things a little simpler, the UART portion of the code has been removed.

At the top of the code you’ll find all the normal includes, and the addition of udma.h
since we’ll be using that peripheral.

3. Just under includes are the definitions for the source and destination buffers, two error
counter variables and a counter to track the number of transfers.

#define MEM_BUFFER_SIZE 1024
static uint32_t g_ui32SrcBuf[MEM_BUFFER_SIZE];
static uint32_t g_ui32DstBuf[MEM_BUFFER_SIZE];

static uint32_t g ui32DMAErrCount = 9;
static uint32_t g ui32BadISR = 9;

static uint32_t g _ui32MemXferCount = 0;

4. Below that, the phDMA control table is defined. Remember that the table must be aligned
to a 1024-byte boundary. The #pragma will do that for us. If you are using a different
IDE, this construct may be different. The table probably doesn’t need to be 1K in length,
but that’s fine for this example.

#pragma DATA_ALIGN(pui8ControlTable, 1024)
uint8_t pui8ControlTable[1024];

5. Below the control table definition is the library error handler that we’ve covered earlier.

Next is the uDMA error handler code. If the uDMA controller encounters a bus or memory
protection error as it attempts to perform a data transfer, it disables the tDMA channel that
caused the error and generates an interrupt on the uDMA error interrupt vector. The handler here
will clear the error and increment the error count.

void uDMAErrorHandler(void)
{
uint32_t ui32Status;
ui32Status = ROM_uDMAErrorStatusGet();
if(ui32Status)
{
ROM_uDMAErrorStatusClear();
g_Ui32DMAErrCount++;
}
}

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA 13-9

Lab 13: uDMA

6. Below the error handler is the uDMA interrupt handler. The interrupt that runs this
handler is triggered by the completion of the programmed transfer. The code first checks
to see if the uDMA channel is in stop mode. If it is, the transfer count is incremented, the
uDMA is set up for another transfer and the next transfer is triggered. If this interrupt was
triggered in error, the bad ISR variable will be incremented.

The last two lines inside the if () trigger the second and every subsequent uDMA
request.

void uDMAIntHandler(void)

{
uint32_t ui32Mode;

ui32Mode = ROM_uDMAChannelModeGet (UDMA_ CHANNEL_ SW);
if(ui32Mode == UDMA_MODE_STOP)
{

g_ui32MemXferCount++;

ROM_uDMAChannelTransferSet (UDMA_CHANNEL_SW, UDMA_MODE_AUTO,
g_ui32SrcBuf, g ui32DstBuf, MEM_BUFFER_SIZE);

ROM_uDMAChannelEnable (UDMA_CHANNEL_SW);
ROM_uDMAChannelRequest (UDMA_CHANNEL_ SW);

}

else

{
}

g ui32BadISR++;

13-10 Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA

Lab 13: uDMA

7. Next is the InitSWTransfer () function. This code initializes the uDMA software
channel to perform a memory to memory transfer. We’ll be triggering these transfers
from software, so we’ll use the software uDMA channel (UDMA_CHANNEL_SW).

The for () construct at the top initializes the source array with a simple pattern.
The next line enables the uDMA interrupt to the NVIC.

The next line disables the listed attributes of the software uDMA channel so that it’s in a
known state.

The ROM_uDMAChannelControlSet() API sets up the control parameters for the software
channel pDMA control structure. Notice that we’ll be using the primary (not the alternate set)
and that the element size and increment sizes are 32-bits. The arbitration count is 8.

The ROM_uDMAChannelTransferSet () API sets up the transfer parameters for the software
channel pDMA control structure. Again, this is for the primary set, auto mode (continue
transfer until completion even if request is removed ... common for software requests),
the source and destination buffer addresses and the size of the transfer.

Finally, the code enables the software channel and makes the first uDMA request.

void InitSWTransfer(void)
{
uint32_t ui32Idx;

for(ui32Idx = @; ui32Idx < MEM_BUFFER_SIZE; ui32Idx++)
{

}

ROM_IntEnable(INT_UDMA);

g ui32SrcBuf[ui32Idx] = ui32Idx;

ROM_uDMAChannelAttributeDisable (UDMA_CHANNEL_SW,
UDMA_ATTR_USEBURST | UDMA_ATTR_ALTSELECT |
(UDMA_ATTR_HIGH_PRIORITY |
UDMA_ATTR_REQMASK));

ROM_uDMAChannelControlSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,
UDMA SIZE 32 | UDMA_SRC_INC_32 | UDMA DST_INC_32 |
UDMA_ARB_8);

ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,
UDMA_MODE_AUTO, g ui32SrcBuf, g _ui32DstBuf,
MEM_BUFFER_SIZE);

ROM_uDMAChannelEnable (UDMA_CHANNEL_ SW);
ROM_uDMAChannelRequest (UDMA_CHANNEL_SW);

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA 13- 11

Lab 13: uDMA

8. Lastly, we’ll look at the code inmain().

Lazy stacking allows floating point to be used inside interrupt handlers, but uses
additional stack space. This isn’t strictly needed since we aren’t doing any
floating-point operations in the handler.

Set up the clock to SOMHz.
Enable the uDMA peripheral.

ROM_SysCt1lPeripheralSleepEnable() enables the clock to reach this peripheral
while the CPU is sleeping. This isn’t strictly required here, but if you forget it and put the
CPU to sleep, it will be horrible to track down the problem.

Then enable the uDMA error interrupt and then the uDMA itself.
Make sure the control channel base address is set to the one we created.

Call the InitSWTransfer() function and start the first transfer, then have the
CPU wait in the while(1) loop. In your actual code this would be where you’d
either sleep or do something else with those CPU cycles.

int main(void)

{

ROM_FPULazyStackingEnable();

ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |

SYSCTL_XTAL_16MHZ);

ROM_SysCtlPeripheralClockGating(true);

ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);

ROM_IntEnable(INT_UDMAERR);
ROM_uDMAEnable();

ROM_uDMAControlBaseSet(pui8ControlTable);

InitSWTransfer();

while(1)

{
}

13-12

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA

Lab 13: uDMA

Build, Download and Run the Code

9.

10.

11.

12.

13.

14.
15.

16.

17.

18

» Click the Debug button to build and download the code to the TM4C123GH6PM flash
memory.

» If the Memory Browser pane is not already visible, click View = Memory Browser to
open it. Move/resize the window if you have to. Pick g ui32SrcBuf from the pull-
down menu in the box below the Memory Browser tab. » Click the New Tab button, and
pick g ui32DstBuf from the pull-down menu. Note that both arrays are zeroed out.

» Click on the g ui32SrcBuf tab to view the source array.

» We want to see the contents of the source array before any transfers begin. Find the
line containing ROM_IntEnable(INT_UDMA); (about line 100) inside the
InitSWTransfer() function. Right-click on that line and select Run to Line.

» In the Memory Browser, note the initialized values in the source array. Check the
destination array to make sure it’s still clear.

» We want to see the results after the transfer is completed and the transfer count has
been incremented, but before the next transfer has begun. Find the line containing
ROM_uDMAChannelTransferSet() (about line 72) in the uDMAIntHandler function.

» Right-click on that line and select Run to Line.

Note that the contents of the destination array have changed.

» Add a watch expression on g_ui32MemXferCount, switch the Memory Browser to
the destination tab and repeat the Run to Line procedure on line 72.

You can do this a few times and watch the transfer count increment, but since the source
buffer never changes, the destination buffer will look the same after each transfer.

» Add watch expressions on g ui32BadISR and g_ui32DMAErrCount (lines 23 and 24).
» Click Resume. Wait a few moments and click the Suspend button. We saw over
200,000 transfers and 0 errors.

» Remove all of the watch expressions by right-clicking in the Expressions pane and
selecting Remove All 2 Yes. Close the Memory Browser pane.

» Click the Terminate button to return to the CCS Edit perspective.

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA 13-13

Lab 13: uDMA

Streaming Data To and From the UART using a Ping-Pong Buffer

In real-world applications, incoming or outgoing data doesn’t usually stop. If you are receiving
data from an ADC or sending/receiving data to/from a UART, the best way to make sure the data
always has a place to go to or from is to use a Ping-Pong buffer. Take a filtering application like
the one shown below:

et o e o) e e = =g

CPU

O
c
—

!

Here the DMA on the left is responsible for bringing data from the ADC into memory. When the
PING IN buffer is full, the DMA signals the CPU (with an interrupt) and switches its destination
to the PONG IN buffer (and vice versa). The CPU filters the frame of data from the PING IN
buffer, sends the result to the PING OUT buffer and triggers the DMA on the right to send it to
the DAC (and vice versa). This is a straight-forward Input — Process — Output technique. When
properly synchronized and timed, all three processes happen simultaneously and there is no
chance for a “skip” or “miss” of even a single bit a data, as long as the CPU is capable of
processing the buffer of data in the same amount of time that it takes to fill or empty the buffer
from/to the outside world.

This example will be a little simpler. We’ll have a single transmit buffer, since the data in it won’t
change. The transmit DMA will send that buffer to the UART transmit register continuously. The
UART will be configured in loopback mode so that data will be streaming back in continuously.
The receive DMA will stream the data received from the UART data receive register into a Ping-
Pong buffer that we can observe.

What makes this DMA programming interesting is that the primary and alternate modes must be
used in order for the DMA to switch Ping-Pong buffers automatically. Also, the DMA transfers
that point to the UART must not increment, otherwise they would write data into the wrong
location. At the same time, the DMA must increment through the Ping and Pong buffer to fill
them.

13- 14 Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA

Lab 13: uDMA

Code Changes

19. » Delete all the code in main. c. » Double-click on main2. txt in your Project
Explorer pane to open it for editing. » Copy the contents of main2.txt into your now
empty main.c. P Close main2.txt and save your work.

20. » Delete all the code in tm4c123gh6pm_startup_ccs.c. » Double-click on
tm4c123gh6pm_startup_ccs2.txt in your Project Explorer pane to open it for
editing. » Copy the contents of tm4c123gh6pm_startup_ccs2.txt into your now

empty tmdcl123gh6pm_startup_ccs.c. » Close
tm4c123gh6pm_startup_ccs2.txt and save your work.

Browse the Code

21. Starting at the top, notice the additional includes to support the UART. Just below them
are the definitions for the single Tx and two Rx Ping and Pong buffers. Then you’ll find
the uDMA error count and transfer count variables.

22. Next is the allocation for the uDMA control table. This table is read by the uDMA
peripheral hardware and must be aligned on a 1024-byte boundary.

23. Below the table allocation is the familiar library error routine and the same uDMA error
handler from the first part of this lab.

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA 13-15

Lab 13: uDMA

24. The heart of this code is the UART interrupt handler. This ISR is run when the receive
ping (primary) or pong (alternate) buffer is full or when the transmit buffer is empty.
Note the ui32Mode = lines that determine which event triggered the interrupt.

In the receive buffers the mode is verified to be stopped and the proper transfer count is
incremented. You’ll see in the initialization that both the primary and alternate
parameters are already set up. When the Ping side of the transfer causes an interrupt, the
uDMA is already processing the Pong side, so the TransferSet API resets the
parameters for the flowing Ping transfer. Note that the source is the UART data register.

The transmit transfer is a basic transfer and needs to be re-enabled each time it completes.
Note that the destination is the same UART data register.

void
UART1IntHandler(void)
{
uint32_t ui32Status;
uint32_t ui32Mode;
ui32Status = ROM_UARTIntStatus(UART1_BASE, 1);
ROM_UARTIntClear(UART1_BASE, ui32Status);

ui32Mode = ROM_uDMAChannelModeGet(UDMA_CHANNEL UARTIRX | UDMA_PRI_SELECT);

if(ui32Mode == UDMA_MODE_STOP)

{
g_ui32RxPingCount++;
ROM_uDMAChannelTransferSet (UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT,
UDMA_MODE_PINGPONG,
(void *)(UART1_BASE + UART_O_DR),
g_pui8RxPing, sizeof(g_pui8RxPing));
}

ui32Mode = ROM_uDMAChannelModeGet(UDMA_CHANNEL UARTIRX | UDMA_ALT_SELECT);

if(ui32Mode == UDMA_MODE_STOP)

{
g_ui32RxPongCount++;
ROM_uDMAChannelTransferSet (UDMA_CHANNEL_UARTIRX | UDMA_ALT_SELECT,
UDMA_MODE_PINGPONG,
(void *)(UART1_BASE + UART_O_DR),
g _pui8RxPong, sizeof(g_pui8RxPong));
}
if(!ROM_uDMAChannelIsEnabled (UDMA_CHANNEL_ UART1TX))
{

ROM_uDMAChannelTransferSet (UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
UDMA_MODE_BASIC, g pui8TxBuf,
(void *)(UART1_BASE + UART_O DR),
sizeof(g_pui8TxBuf));

ROM_uDMAChannelEnable (UDMA_CHANNEL_UART1TX);

13- 16 Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA

Lab 13: uDMA

25. The uDMA and UART must be initialized and the next function,
InitUART1Transfer() does that.

The for () loop at the beginning initializes the transmit buffer with some count data.

The next two lines enable UART1 and make sure that the clock to the peripheral will still
be available even if the CPU is sleeping. This last step isn’t strictly needed, but many
programs utilizing the DMA do sleep and if you forget this step, if will not be easy to
track down.

The next six lines configure the UART clock, the FIFO utilization, enable it, enable it to
use the DMA, set loopback mode and enable the interrupt.

Next up are the uDMA control and transfer programming steps.

ROM_uDMAChannelAttributeDisable() turns off all the indicated parameters to
assure the starting point.

The next two ROM_uDMAChannelControlSet () lines set up the control parameters for
the Ping (primary) and Pong (alternate) sets. Note that the transfer element size is 8-bits,
the source increment is none (since it should be pointing to the UART data register all the
time) and the destination increment is 8-bits.

The next two ROM_uDMAChannelTransferSet () lines program the transfer
parameters for both the Ping (primary) and Pong (alternate) sets. Note that the mode is
PINGPONG, the source is the UART data register and the destination is the appropriate
Ping or Pong buffer.

The next four lines set up the control and transfer parameters for the transmit channel.
Note that the destination is the UART data register and the source is the single transmit
buffer. The element transfer size is 8-bits, the source increment is 8-bits and the
destination increment is none.

In all of these setting the priority has been left as HIGH. It doesn’t make sense to
prioritize the transmit over the receive or vice versa.

The final two lines enable both uDMA transfers.

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA 13- 17

Lab 13: uDMA

void InitUART1Transfer(void)

{
uint32_t ui32Idx;

for(ui32Idx = @; ui32Idx < UART_TXBUF_SIZE; ui32Idx++)
{

}

ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1);
ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART1);

g pui8TxBuf[ui32Idx] = ui32Idx;

ROM_UARTConfigSetExpClk (UART1_BASE, ROM_SysCtlClockGet(), 115200,
UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE);

ROM_UARTFIFOLevelSet(UART1_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);

ROM_UARTEnable(UART1_BASE);
ROM_UARTDMAEnable (UARTL_BASE, UART DMA RX | UART_DMA TX);

HWREG(UART1_BASE + UART O CTL) |= UART_CTL_LBE;
ROM_IntEnable(INT UART1);

ROM_uDMAChannelAttributeDisable (UDMA CHANNEL UARTIRX,
UDMA_ATTR_ALTSELECT | UDMA_ATTR_USEBURST |
UDMA_ATTR_HIGH_PRIORITY |
UDMA_ATTR_REQMASK) ;

ROM_uDMAChannelControlSet (UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT,
UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_ 8 |
UDMA_ARB_4);

ROM_uDMAChannelControlSet (UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT,
UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 |
UDMA_ARB_4);

ROM_uDMAChannelTransferSet (UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT,
UDMA_MODE_PINGPONG,
(void *)(UART1_BASE + UART_O_DR),
g_pui8RxPing, sizeof(g_pui8RxPing));

ROM_uDMAChannelTransferSet (UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT,
UDMA_MODE_PINGPONG,
(void *)(UART1_BASE + UART_O_DR),
g_pui8RxPong, sizeof(g_pui8RxPong));

ROM_uDMAChannelAttributeDisable (UDMA_CHANNEL_UART1TX,
UDMA_ATTR_ALTSELECT |
UDMA_ATTR_HIGH_PRIORITY |
UDMA_ATTR_REQMASK) ;

ROM_uDMAChannelAttributeEnable (UDMA_CHANNEL_UART1TX, UDMA_ATTR_USEBURST);

ROM_uDMAChannelControlSet (UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE |
UDMA_ARB_4);

ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
UDMA_MODE_BASIC, g pui8TxBuf,
(void *)(UART1_BASE + UART_O_DR),
sizeof(g_pui8TxBuf));

ROM_uDMAChannelEnable (UDMA_CHANNEL UARTLRX);
ROM_uDMAChannelEnable (UDMA_CHANNEL UARTLTX);

13- 18 Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA

Lab 13: uDMA

26. Finally we’re in main().

Starting at the top we have the lazy stacking enable, which isn’t strictly necessary since
we’re not using the FPU in the handlers.

The clock is set up to SOMHz and the peripherals are allowed to be clocked during sleep
mode.

GPIO port F is enabled and set up for the LEDs. We’ll only be using the blue LED.
The next five lines set up the hardware for the UART on port A pins 0 and 1.

The five lines afterwards enable the uDMA clock, allow it to operate during sleep modes,
enable the error interrupt, enable the uDMA for operation and sets the base address for
the uDMA control table.

Then the initialization function is called for the transfers.

The while (1) loop simply blinks the blue LED while the transfers are happening to let
us know the code is alive.

int main(void)
{
volatile uint32_t ui32Loop;
ROM_FPULazyStackingEnable();
ROM_SysCt1ClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
SYSCTL_XTAL_16MHZ);
ROM_SysCtlPeripheralClockGating(true);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN 2);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UARTO);
GPIOPinConfigure(GPIO_PA®_UORX);
GPIOPinConfigure(GPIO_PAl_UOTX);
ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO PIN © | GPIO PIN_ 1);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);
ROM_IntEnable(INT_UDMAERR);
ROM_uDMAEnable();
ROM_uDMAControlBaseSet(ucControlTable);
InitUART1Transfer();
while(1)
{
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN 2);
SysCtlDelay(SysCtlClockGet() / 20 / 3);
GPIOPinWrite(GPIO_PORTF_BASE, GPIO _PIN_2, 0);
SysCtlDelay(SysCtlClockGet() / 20 / 3);
}
¥

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA 13- 19

Lab 13:

UDMA

Build, Load and Run

27.
28.

29.

30.

31.

32.

33.

34.

35.

» Click the Debug button to build and load the program.

In order to determine of the program is operating properly, we need to see the buffers.

» In the Memory Browser select g_pui8RxPing from the drop-down menu in the box
below the Memory Browser tab. The g_pui8RxPing, g_pui8RxPong and g_pui8TxBuf
buffers are all close together, so you should be able to see them in the same window.
Resize the browser if necessary. To see the 8-bit values better, in the drop-down menu for
the display format, choose 8-bit UnSigned Int.

Notice that the g_pui8TxBuf buffer is clear. » Set a breakpoint in the
InitUART1Transfer () function on the line containing
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1); . This is right after the
g_pui8RxTxBuf buffer is initialized with data. (Run to Line won’t work inside an ISR)

» Click the Resume button to run to the breakpoint. Note in the Memory Browser that
the g_pui8TxBuf buffer is now filled with data.

» Remove the breakpoint and set another in UART1IntHandler () on the line
containing ui32Status = (line 66). This breakpoint will trip when the first (Pong)
transfer completes

» Click the Resume button to run to the breakpoint. Note in the Memory Browser that
the g_pui8RxPing buffer is now filled with data. » Click Resume again and the
g_pui8RxPong buffer will fill.

» Add watch expressions for g ui32RxPingCount and g ui32RxPongCount (lines
29 and 30). » Add another watch expression for g ui32DMAErrCount (line 26).

» Change the properties of the breakpoint at line 66 so that its Action is Refresh All
Windows.

» Click Resume. The transfer counters should track and the error count should be zero.
You’ll also notice that the LED on the LaunchPad stops blinking. Since the CPU is
stopping at the breakpoint and transferring data to the PC, the next uDMA interrupt
occurs before any code can run in the while (1) loop. Consider that when using this
technique to debug.

The Memory browser isn’t very interesting since the g_pui8TxBuf buffer never changes.
Let’s fix that.

» Click the Suspend button and find the g_pui8TxBuf buffer portion of the
UART1IntHandler. » Add the line highlighted below at about line 96. This will
increment the first location in the g_pui8TxBu+ buffer.

if (!ROM_uDMAChannelIsEnabled (UDMA_CHANNEL_UART1TX))

{
- g pui8TXBuUf[@]++;
ROM_uDMAChannelTransferSet (UDMA CHANNEL UART1TX | UDMA PRI_SELECT,

UDMA_MODE_BASIC, g ucTxBuf,
(void *)(UART1_BASE + UART_O DR),
sizeof(g_ucTxBuf));

ROM_uDMAChannelEnable (UDMA_CHANNEL_UART1TX);

13-20

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA

Lab 13: uDMA

36. » Build and load. You may need to click the Go button in the Memory Browser again.
Click Resume to run the code. The first location in all three buffers should be
incrementing.

37. When you’re done, P click the Terminate button to return to the CCS Edit perspective.
Now that the CCS windows aren’t being updated, the blue LED will start blinking again.

38. P Right-click on lab13 in the Project Explorer pane and close the project.
39. » Minimize Composer Studio.

You’re done.

Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA 13- 21

Lab 13: uDMA

13- 22 Getting Started With the Tiva C Series TM4C123G LaunchPad - uDMA

Sensor Hub

Introduction

The Tiva™ Sensor Hub BoosterPack is an exciting new addition to TI’s MCU LaunchPad
ecosystem. It is a plug-in daughter board that allows developers to create products with up to nine

axes of motion tracking and multiple environmental sensing capabilities.

This BoosterPack is designed for TI’s new Tiva C Series TM4C123G LaunchPad, but it will also
work equally well with its predecessor, the Stellaris LM4F120XL LaunchPad. The BoosterPack
is hardware compatible with the existing MSP430 and C2000 LaunchPads too.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio
Introduction to TivaWare™ , Initialization and GPIO
Interrupts and the Timers [
ADC12
Hibernation Module
USB
Memory and Security
Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART
UDMA

PWM

Features...

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

14 -1

Chapter Topics

Chapter Topics

Sensor Hub 14-1
CRAPICE TOPICS..cc.vv ettt ettt et e ettt e s b e e e st e e s b e e esseesabeeenbeeesbeeeaseesabeesnseessseeanseesnseas 14-2
Kt FOATUTS ...ttt ettt ettt ettt ettt ettt e ne e 14-3
INAIVIAUAT SERSOFS ...ttt ettt ettt ene e 14-4
Orientation Kinematics and the DCM AIGOVItRIMcccccoviiiiiiiiiieiieieee e 14-7
ATF MOUSE EXAMPIE.............oooeeeeiieeieeei ettt ettt ettt ettt et e et e e s abeesaaeestbeensseessbeenssee e 14-8
Lab 14a: Air MOUSE EXAMPIEc.cccccocuiiiiiiiiiiiiit ettt 14-9

L0 10) 115 AU 14-9
PIOCEAULE ..ottt ettt 14-10
SEHSOT LIDFATY ...ttt ettt ettt ettt 14-14
SENSOT HUD EXAMPLES ...ttt 14-15
Lab 14D: Sensor LIDFAry USAE..............cccociuiiiiiiiiiiiieieie sttt ettt 14-17
10 0) 51015 A PSPPSR 14-17
PIOCEAUIE ...ttt sttt s a et e saeenes 14-18

14-2

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Kit Features

Kit Features

Features

il ——
LELE BT
v M s n -

=
Ee
-

B EEEEE e

BOOSTXL-SENSHUB .

Tiva™ Sensor Hub BoosterPack Evaluation Kit

Motion & environmental sensing
BoosterPack XL connectors

(compatible with earlier BoosterPack

connectors)
EM board connectors

(for TI's wireless RF evaluation kits)

2 buttons & 2 LEDs

Example applications for
each unique sensor

“Air” Mouse (PC HID) example
demonstrates sensor fusion

CCS, Keil, IAR, &
Mentor Embedded
IDEs supported

TivaWare DriverLib under
T1 BSD-style license

Runs on Tiva TM4C123G and
LM4F120 LaunchPads.

HW compatible with MSP430 &
C2000 LaunchPads

MSRP $49.99 USD

TMPO06...

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

14-3

Individual Sensors

Individual Sensors

TI TMPOO0G6 Infrared Temperature Sensor

RH
(EX s
e s N '

= = aéu L=]
WES WWME LR
u3 Cc3 L

*

® & o o

No contact temperature
measurement

-40C to 125C measurement
range

240uA supply current
2.2t0 7V supply
12C interface (address 0x41)

Host calculates observed
temperature

BMP180...

Bosch BMP180 Digital Pressure Sensor

RH Y1
(EX s
e s N '

—cit

WaEs W R

uy ¢ it
@

+m ucaw 2
a0
o g 20
.m; l | & |
=Rz W, @ 0

-500 to 9000m Mean Sea Level
(1100 to 300hPa)

Temperature sensing for
altitude compensation

1.8 — 3.6V supply

SuA supply current at
1 sample/sec

Very low noise

Multiple modes for
power/accuracy tradeoff

12C interface (address 0x77)
Host calculates altitude

MPU9150...

14 -4

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Individual Sensors

Invensense MPU-9150 9-axis Motion Sensor

ey
I s ¢

3-axis MEMS accelerometer
3-axis MEMS gyroscope
3-axis MEMS magnetometer

16-bit gyroscope and
accelerometer resolution

* & o o

»
-
3 -
-
-
»
-
-
»

L 4

13-bit magnetometer resolution
I12C interface (address 0x68)
¢ 2.3751t0 3.465V supply

e & mas @ms
0 @zyy" s c3 W 10‘13 ! » @
L S LLITTURE - | = ; : 47
@@ : i L w L8 F a0

af " l
oo ° ; +Muq;~+
o mm g

L)

€ v

L 4

MEMS = Micromechanical system

1ISL29023...

Intersil ISL29023 Ambient & Infrared Light Sensor

Rl .8 o

7. 16-bit resolution
. ﬂumm:" ”

50 & 60Hz flicker rejection
1.7 to 3.63V supply
12C interface (address 0x44)

HW (BoosterPack XL pin) and
SW Interrupts on light levels

PERRFININY
® 6 6 o o

B - Y-‘.‘
f Bs s h_. '

SHT21...

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14-5

Individual Sensors

Sensirion SHT21 Humidity & Ambient Temperature Sensor

T
v mm g

¢ 8/12-bit humidity resolution

¢ 12/14-bit temperature
resolution

2.1 to 3.6V supply
¢ 12C interface (address 0x40)

A o gy = ¢ Slots in board for air circulation
e & pEs Eme Ré
PP Uy oy B oe @0
L 33‘-;7_! LT - | c13 Y - 2 EI-:H FE o
@ = % < - E o ,»1 °d
o0 °; o+ Tl G e
o¢ am HAR ;
°e |

Q¢

PEVREININN
*

Orientation Kinematics

14-6 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Orientation Kinematics and the DCM Algorithm

Orientation Kinematics and the DCM Algorithm

Orientation Kinematics

¢ The Direct Cosine Matrix (DCM) algorithm combines multiple
axes of motion data into a single set of Euler angles for roll,
pitch and yaw. The final calculated position is :
¢ Less prone to drop-out
¢ Of higher accuracy than the best individual sensor
¢ The DCM algorithm calculates the orientation of a rigid body, in
respect to the rotation of the earth by using rotation matrices.
The rotation matrices are related to the Euler angles, which
describe the three consecutive
rotations needed to describe the \
orientation ,
DCM Algorithm...

¢ The three sensors used in the
algorithm are:

¢ 3 axis accelerometer (measures earth’s
gravity field minus acceleration)

¢ 3 axis magnetometer (measures earth’s
magnetic field)

¢ 3 axis gyroscope (measures angular
velocity)

/

DCM Algorithm

¢ The gyroscope is the primary sensor
¢ Unaffected by the gravitational or magnetic field
¢ Prone to drift
¢ The accelerometer is used as an orientation reference in
the X and Z axes
¢ Compensates for roll and pitch errors
¢ The magnetometer is used to calculate reference vector in the
Y axis
¢ Compensates for yaw errors X Roll
¢ Proportional feedback
removes the gyro’s
drift

Air Mouse Example...

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14-7

Air Mouse Example

Air Mouse Example

Air Mouse Example

¢ The Invensense MPU-9150 provides raw acceleration, angular
velocity and magnetic field measurements.

¢ All 9 axes are fused and filtered using a complimentary direct
cosine matrix or DCM algorithm into Euler angles for roll, pitch
and yaw.

¢ Roll and pitch are used to perform the mouse movements.

¢ Raw angular velocities and accelerations are used to interpret
gestures

¢ Angles are calculated 100 times per second

N - N_
Y 4
|}

1

Up/Down|

Tilt

)

2

Lab ...

14-8 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Lab 14a: Air Mouse Example

Lab 14a: Air Mouse Example

Objective

In this lab you will experiment with the Air Mouse example, programming the code into the

TM4C123G’s flash memory using the LM Flash Programmer.

Power

Switch -

UsSB
H/D/OTG—p _
Port ==

Lab 14a: Air Mouse

USB Emulation Port

Reset
Button

L ®® m
TOK TWS 100 101 EX7 770 RO

www.i.com/launchpad
P ECTMACRIGL REV A

831
®:

RIS 2
pr2 oxo B 1B
2R »

PF3 PB2

P83 P30
RI W

b e]
QN

¢ Program the airmouse.bin binary
into the MCU’s flash memory using
LM Flash Programmer

¢ Install the Sensor Hub BoosterPack
¢ Experiment with the Air Mouse example

PC4 PFO -
PC5 RST *4
pes pa7 4 ¢
PC7 PBE <} ~

Pos bre @ Y

P07 PAS ﬁ\ ‘

PFa PAZ 4R ©
#3 TEXAS INSTRUMENTS 5 @t
S o m~y aem O
R

W

oW W
RS RIO

Tiva" C Series
% <
launchPad o o™ ©

Sensor Library ...

To complete labs 14a and 14b you will need a BOOSTXL-SENSHUB Sensor Hub Boosterpack.
If you are attending a live workshop, the instructor will have several for attendees to use.

Otherwise you will need to purchase one: http://www.ti.com/tool/boostxI-senshub

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

14-9

http://www.ti.com/tool/boostxl-senshub

Lab 14a: Air Mouse Example

Procedure

Run the LM Flash Programmer and make the selection in the Quick

Set window shown below. If you have an older version of the LM Q’ ‘
Flash Programmer, use the LM4F120XL selection instead. [J

LM Flash Programmer
Remove the USB cable from the LaunchPad’s emulator port.

2. Carefully install the Sensor Hub BoosterPack onto the XL connectors of the LaunchPad
board. The buttons on the BoosterPack should be at the same end as the ones on the
LaunchPad. You may need to carefully bend the power measurement jumper out of the
way slightly.

Connect the USB cable from the emulation port to an open USB port on your computer.

LM Flash
Programrner

’
&8 LM Flash Programmer - Build 1543 = 2
Configuration lPrngram] Flash Utiities | Other Utiities Help
Quick Set
|TM4C 123G LaunchPad ~|
Interface

Port: [ITAG

SpEEd {HZ}: 2000000

ICDI (Eval Board) |

Clock Source

(s 16 MHz
" 2000000

Wi TEXAS INSTRUMENTS

Idle

14-10

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Lab 14a: Air Mouse Example

Click on the Program tab at the top. Click the Browse button and browse to:

C:\TI\TivaWare_C_Series-1.1\examples\boards\

ek-tm4c123gx1-boostxl-senshub\airmouse\ccs\Debug\ and seclect
airmouse.bin in the Select .bin file dialog box. Make sure to check the “Verify After
Program” and “Reset MCU After Program” checkboxes. Then click the Program button.

When the process completes, close the LM Flash Programmer.

E LM Flash Programmer - Build 1343

Configuration Pregram | Flash Utiities | Other Utilities

Select .bin file

Options

Erase Method:
{* Erase Entire Flash - (faster)
(" Erase Mecessary Pages - (slower)

[v Werify After Program
[v Reset MCU After Program

Program Address Offset: 0Ox |0

CRC32
Source CRC32 = Device CRC32 =

Calculate

Program

| C:\TITivaWare_C_Series-1. 1'examplesiboardsek-tm4c12 3gxd-boostd-se Browse

Hardware Reset

Idle

Wi TEXAS INSTRUMENTS

5. Open a browser window or a longer pdf or Word document on your desktop.

Unplug your USB cable from the LaunchPad’s emulation port, switch the power switch
to the DEVICE (left-most) position and connect the USB cable to the H/D/OTG port on

the side of the LaunchPad (see the earlier diagram).

Press the LaunchPad’s reset button to make sure that the code starts up properly.

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

14 - 11

Lab 14a: Air Mouse Example

Air Mouse Example

6.

10.

Your computer will detect the new USB device and install the standard mouse drivers. If
everything is working properly, the LEDs on the LaunchPad will be blinking quickly.

The proper way to hold the air mouse is with the USB cable to the right and the buttons
under your fingers. Although both sets of buttons will work, it’s easier to use the
LaunchPad buttons.

down and up. Roll left and right to mouse left and right. The

Gently pitch the LaunchPad forward and back to mouse \
left and right buttons should work normally.

’d

Tilt
From a resting position flat and level, a quick jerk up will
simulate ALT+TAB on your keyboard to show your open t
programs. Once “lifted”, a quick twist left or right will select
between the available windows. A quick jerk down will Up/Down

make the selection stick and release the ALT key. If you find
yourself “stuck”, press the ALT key on your keyboard to exit
the mode.

From flat and level, a spin about the Z (vertical) axis will Rotate
PAGE UP or PAGE DOWN.

From flat and level, a quick forward or back motion while
keeping the air mouse flat will zoom in and out.

%

14-12

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Lab 14a: Air Mouse Example

11. Explanation: For the air mouse example, the Invensense MPU-9150 provides raw
acceleration, angular velocity and magnetic field measurements. All 9 axes are fused and
filtered using a complimentary direct cosine matrix, or DCM, algorithm into Euler angles
for roll, pitch and yaw. Roll and pitch are used to perform the mouse movements. Raw
angular velocities and accelerations are used to interpret gestures.

12. When you’re done experimenting, remove the USB cable from the LaunchPad’s device
port, move the power switch back to the DEBUG (right-most) position and connect the
USB cable to the LaunchPad’s emulator port.

You’re done with Lab14a.

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14-13

Sensor Library

Sensor Library

TivaWare™ Sensor Library Contents

*
4

*

¢ Vector operations

Drivers for the I2C port and each sensor
Functions for manipulating the magnetometer
readings

DCM Algorithm

¢ comp_dcm.c/h reads the sensors and applies
the DCM algorithm to the data

4

¢ VectorAdd()

& VectorCrossProduct ()
& VectorDotProduct ()

@ VectorScale()

4

Sensor Library Usage...

The Sensor library is a consistent APl with this general flow for all sensors

It’s easy to leverage the library for custom I12C sensors

TivaWare™ Sensor Library Usage

<
For instance, to interface with the TMP006:
+ |Initialize I2C pins and I°C peripheral normally
< |Initialize the 12C driver 12CMinit()
¢ Initialize the TMP006 TMPOO06Init()
¢ Configure the TMP006 TMP006ReadModifyWrite()
¢ Read data from the TMP006 TMPO06DataRead()
¢ Convert data into temperature TMP0O6DataTemperatureGetFloat()
Examples...

14 - 14

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Sensor Hub Examples

Sensor Hub Examples

TivaWare™ Sensor Hub Examples

airmouse

¢ fuses motion data into mouse and keyboard events
compdcm_mpu9150

¢ basic data gathering from the MPU-9150
drivers

¢ for buttons and LEDs
humidity_sht21

¢ periodic measurements of humidity
light_isl29023

¢ uses measurements of ambient visible and IR light to control the “white” LED
pressure_bmp180

& periodic measurements of air pressure and temperature
temperature_tmp006

¢ periodic measurements of ambient and IR temperatures to calculate actual
object temperature

Lab...

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14-15

Sensor Hub Examples

14-16 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Lab 14b: Sensor Library Usage

Lab 14b: Sensor Library Usage

Objective

In this lab you will create a simple sensor application using the Intersil ISL.29023 light sensor and

the SensorHub library.

. s M K ¢
.

¢ Create a simple program to read the
data from the ISL29023 light sensor

¢ Display the results in Code Composer
¢ Try out GUI Composer

ST = USB Emulation Port

3 Texas INsTRU
-

Lab 14b: Sensor Library Usage

Reset
Button

Power ;
Switch —
oo .
USB
H/D/OTG— _ ®
POFt - wwwn.cnm/luunch:i:d S

W EKTMACRIGXL REV A

PF3 PB2 43 £

B3 P30 43
RI MW

PC4 PFO -

PCS5 RST *4)

PCE PB7 43

PC7 PBE <} ~

PO7 PAS ﬁ\ ‘

pre paz
MENTS s @ waxe
5

v

Tiva" C Series

launchPad ™°

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

14 -17

Lab 14b: Sensor Library Usage

Procedure

Import the Project
1. Maximize CCS.

2. On the CCS Menu bar, click Project = Import Existing CCS Eclipse Project. When the
Select Existing CCS Eclipse Project dialog appears, click the Browse button beside the
search-directory box. Navigate to C:\TI\TivaWare_C_Series-1.1\examples\
boards\ek-tm4c123gxl-boostxl-senshub\light_ 15129623 and click OK.
Click the Finish button. The project files will be copied into you workspace folder.

&% Import CCS Eclipse Projects [) S
Select Existing CCS Eclipse Project 4 ‘_.L
Select a directory to search for existing CCS Eclipse projects. / /
-
@ Select search-directory: CATN\TivaWare_C_Series-1,1\examples\boardsek-tmd c123gxl- boost- senshubhlight_isl29023
() Select archive file: Browse...
Discavered projects:
[& light_isI29023 [CATTivaWare_C_Series-1.1\examplesi\boardshek-tmdcl 23gul-booshd-senshub\light_is129023\ccs] Select Al
Deselect All
Copy projects into workspace
[] Automatically import referenced projects
Open the Resource Bxplorer and browse available example projects...
@

3.
expand the project.

In the Project Explorer pane, click the * beside the 1ight_ 15129023 project name to

«+ CCS Edit - Code Composer Studio

»

»

»

3

»

»

»

File Edit Wiew Mavigate Project Run 5
L=“j' - - #ﬁ: - {] -
L5 Project Explorer &3 0 & Y 7O

4 = light_isl29023

:j:f' Binaries

» [ai Includes

= Debug

= drivers

[= utils

light_isl29023_ccs.cmd
[£] light_isl20023.c

@ startup_ccs.c

|| macros.ini_initial

The main components of the project are 1ight_1s129023. c, which contains all of the

¢ code needed to run the program and startup_ccs.c, which contains the reset vector,
ISR vectors and system fault handlers.

14-18

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Lab 14b: Sensor Library Usage

4. In the Project Explorer pane, right-click on 1ight_is129023.c and select Copy.
Right-click again in the open space of the Project Explorer pane and select Paste. When
the Name Conflict dialog appears, accept the “Copy of light is129023.c” name
by clicking OK. This will preserve the existing file for later use, but you’ve created a
problem ... both files contain a main() and both are part of the project.

Fix this by right-clicking on the “Copy of light is129023.c” file, sclect Resource
Configurations and then Exclude from Build ... When the Exclude from build dialog
appears, click the Select All button and then click OK.

«# Exclude from build =] 24
Exclude object(s] frem build in the following configurations
Debug
Release
| SelectAll || Deselectall |
3
'x?;' [oK l ’ Cancel]
Note that the symbol for the file will have a “strike” E]’ Copy of light_isl29023.c
through it. : —

5. In the Project Explorer pane, right-click on startup_ccs.c and select Copy. Right-
click again in the open space of the Project Explorer pane and select Paste. When the
Name Conflict dialog appears, accept the “Copy of startup_ccs.c.c” name by
clicking OK.

Right-click on the “Copy of startup_ccs.c” file, select Resource Configurations
and then Exclude from Build ... When the Exclude from build dialog appears, click the
Select All button and then click OK.

6. Code Composer has been updated since this version of TivaWare was released, so you
will likely see a warning to this effect in the Problems pane. To correct this, right-click on
the light is129023 project in the Project Explorer and select Properties. In the upper-left,
click on General. Find the Compiler version box and change it to TI v5.1.1. Click OK.

w Advanced settings

Device endianness: Ilittle T‘

Compiler version: "I'IvS.l.l ! v] ’ Mare...

Effective compiler version: TIv511

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14-19

Lab 14b: Sensor Library Usage

Write the Code

7.

If we’re going to write a sensor application from a blank sheet of paper, we first need that
blank sheet. Double-click on 1ight is129023. c in the Project Explorer pane to open
the file for editing in the Editor pane. Click anywhere in the code, press Ctrl-A on your
keyboard to select all the code and then press your delete button. Viola, a blank sheet to
start from.

Let’s start from the top with the necessary includes. Copy the following lines from this
pdf file and insert them into the blank sheet you just created. In most pdf readers you can
select either a screen capture (arrow pointer) or text (cursor or I pointer). Use the text
selector for the best results.

#tinclude "stdint.h"

#tinclude "stdbool.h"

#include "inc/hw_memmap.h"
#include "inc/hw_ints.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h”
#include "driverlib/pin_map.h"
#tinclude "driverlib/rom.h"
#include "driverlib/sysctl.h"
#include "sensorlib/hw_is129023.h"
#include "sensorlib/i2cm_drv.h"
#tinclude "sensorlib/is129023.h"
t#tdefine DEBUG

In order, the purpose of each of these is:

stdint.h: assure that integer types are compatible with the 1999 C standard
stdbool. h: assure that Boolean types are compatible with the 1999 C standard
hw_memmap. h: define the memory map of the device

hw_ints.h: macros defining the interrupt assignments

hw_ints.h: macros for assisting debug of the driver library

gpio.h: definitions and macros for the general purpose I/O APIs
interrupt.h: prototypes for the interrupt controller driver

pin_map. h: the mapping of the peripherals to the pins

rom. h: macros to facilitate calling the functions in ROM

sysctl.h: prototypes for the system control driver

hw_1is129023.h: macros for accessing the Intersil light sensor

i2em_drv. h: prototypes for the I’C master driver

15129023. h: prototypes for the light sensor driver

DEBUG: See step 17

Leave a blank line for spacing and add the following five lines below the includes:

#tdefine ISL29023_I2C_ADDRESS ox44 // ISL29023 I2C address
tI2CMInstance g_sI2CInst; // I2C master driver structure
tISL29023 g _sISL29023Inst; // ISL29023 sensor driver structure
volatile unsigned long g_vui8DataFlag; // Data ready flag

volatile unsigned long g_vui8ErrorFlag; // Error flag

14 - 20

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Lab 14b: Sensor Library Usage

Handlers and Functions

10. Leave a blank line for spacing and add the following code below the last. This error
routine will be called if the driver library experiences an error. Run-time error checking is
fairly simple so that the impact to speed during runtime will be minimal, but accounting
for potential errors is good programming practice. This code will save the location of the
error, but only when the project is built with the DEBUG definition.

//***
#ifdef DEBUG

void

__error__(char *pcFilename, uint32_t ui32Line)

}
ttendif

//***

11. Leave a blank line for spacing and add the following code below the last. This is the
ISL29023 sensor callback function, which will be called at the end of the ISL.29023
sensor driver transaction. It is called from the I’C interrupt context that we’ll add shortly.
It assures that the I*C communication was successfully completed and sets the
appropriate flags.

//***
void
ISL29023AppCallback(void *pvCallbackData, uint fast8 t ui8Status
p

{

if(ui8Status == I2CM_STATUS_SUCCESS)

{

g _vui8DataFlag = 1;

}

g _vui8ErrorFlag = ui8Status;
}
//***

12. Leave a blank line for spacing and add the following code below the last. This handler
code will be called by the device’s interrupt controller when an I2C3 interrupt occurs. I°C
port 3 on the TM4C123G is the connection to the ISL29023.

//***
void
ISL29023I2CIntHandler(void)

{
I2CMIntHandler(&g_sI2CInst);

}

//***

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 21

Lab 14b: Sensor Library Usage

13. Leave a blank line for spacing and add the following code below the last. This is the
ISL29023 application error handler. If an error occurs, execution will trap here. Maybe
that isn’t what you’d like to happen in a production system.

//***
void
ISL29023AppErrorHandler(char *pcFilename, uint_fast32_t ui32Line)
{
while(1)
{
}
}

//***

14. Leave a blank line for spacing and add the following code below the last. This function
waits for the ISL29023 I°C transactions to complete. If an error occurs the error handler
will be called immediately.

//***
void
ISL29023AppI2CWait(char *pcFilename, uint_fast32_t ui32Line)
{

while((g_vui8DataFlag == ©) && (g_vui8ErrorFlag == 0))

{

}

if(g_vuiB8ErrorFlag)

{

ISL29023AppErrorHandler(pcFilename, ui32Line);

}

g_vui8DataFlag = 0;
}
//***

14 - 22 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Lab 14b: Sensor Library Usage

main()

15. Now let’s add main() to the file. After this we’ll fill in the run-time code. fAmbient is
a variable that holds the light reading from the sensor. ui8Mask holds a series of
parameters with which to program the ISL29023. Leave a blank line for spacing and add
the following code below the last.

//***
int
main(void)

float fAmbient;

uint8_t ui8Mask;

16. The first thing we want the processor to do after reset is to properly configure the clock.
The following API will set up the system clock at 40MHz using the PLL with the 16MHz
external crystal as a reference. After the line containing uint8_t ui8Mask; add a line
for spacing and then add the API below.

ROM_SysCt1ClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

Note the ROM_ preceding the API. The ROM on all Tiva C Series devices contains the
entire TivaWare™ peripheral driver library. Calling functions from ROM saves precious
Flash memory for the users’ functions.

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 23

Lab 14b: Sensor Library Usage

17. Next we need to enable I°C port 3 on the device. The pins are multiplexed with 4

functions per pin, so this programming is critical. TI has created a pin mux GUI to ease
this programming; you can find it at: http://www.ti.com/tool/Im4f pinmux . The last line
turns on the “master interrupt switch”, enabling interrupts on the processor.

Add a line for spacing under the last and add these seven lines to main().

ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
ROM_GPIOPinConfigure(GPIO_PDO_I2C3SCL);
ROM_GPIOPinConfigure(GPIO_PD1_I2C3SDA);
GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_©);
ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO PIN 1);

ROM_IntMasterEnable();

18. Now we’re ready to initialize I°C port 3. Add a line for spacing under the last and add the

next two lines tomain().

I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, OxFF, OxFF, ROM_SysCtlClockGet());

SysCtlDelay(SysCtlClockGet() / 3);

The parameters in the first line specify the I°C instance, the base address of the I°C
module, the uDMA Tx and Rx channels used (none) and the clock frequency used as the
I°C module input clock. The second line provides a 1000mS delay to allow for any
possible conflicts on the I°C bus to resolve.

19. Now it’s time to initialize the ISL29023. Add a line for spacing under the last and add

these lines to main().

ISL29023Init(&g_sISL29023Inst, &g sI2CInst,
ISL29023_T12C_ADDRESS,ISL29023AppCallback, &g sISL29023Inst);

ISL29023AppI2CWait(__FILE_ , _ LINE_);

The first API initializes the ISL29023 driver, preparing it for operation. It also asserts a
reset signal to the ISL29023 itself, to clear any previous configuration data.

The first parameter is a pointer to the ISL29023 instance data. The second is a pointer to
the I°C driver instance data. The third is the I’C address of the ISL29023 device. The
fourth is the function to be called when the initialization has completed (can be NULL if
a callback is not required). The last is a pointer that is passed to the callback function.

The second API simply waits for the I*C communication to complete. If an error occurs,
its location will be preserved.

14 -24

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

http://www.ti.com/tool/lm4f_pinmux

Lab 14b: Sensor Library Usage

20. The next lines configure the ISL.29023. The R-M-W API modifies the operation register
on the ISL29023. These parameters are defined in 1s129023. h. Skip a line for spacing
and add this code under the rest inside main().

ui8Mask = (ISL29023_CMD_I_OP_MODE_M);

ISL29023ReadModifyWrite (&g sISL29023Inst, ISL29023 O CMD_I, ~ui8Mask,
(ISL29023_CMD_I_OP_MODE_ALS_CONT),
ISL29023AppCallback, &g_sISL29023Inst);

ISL29023AppI2CWait(__FILE_ , _ LINE_);

Double-click on any of the parameters and press F3 to quickly see its definition. The
parameters passed in this configuration assure that the ISL.29023 is in operation mode
and continuous sampling mode.

Again, the wait is needed to insure the completion of the last communication before
starting the next.

while(1) Loop

21. Next we’ll add the code that continuously reads the light sensor. To do that we’ll need a
while(1) loop. Skip a line for spacing and add the following after the last code.

while(1)
{

}

22. Insert the following lines into the while (1) loop. The first line will read the data from
the sensor and the third will convert it into a floating point number stored in fAmbient.

This will occur as quickly as the I2C communication transactions will allow, based on the
wait APIs.

Note: We will be using breakpoints in this lab to slow the interaction. Without those
breakpoints we would likely be sampling the sensor far too quickly for it to perform
a proper conversion.

ISL29023DataRead(&g_sISL29023Inst, ISL29023AppCallback, &g _sISL29023Inst);
ISL29023AppI2CWait(_ FILE_ , _ LINE_);

ISL29023DatalLightVisibleGetFloat(&g_sISL29023Inst, &fAmbient);

23. Correct the indentation of your code if necessary.

Click the Save button on the CCS menu bar to save your work.Note that the =
asterisk on the tab will disappear when the saved version is current. =

Compare your code with the code on the next two pages. If you are having
problems, you can copy/paste this into Code Composer Studio.

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 25

Lab 14b: Sensor Library Usage

#include "stdint.h"

#include "stdbool.h"

#include "inc/hw_memmap.h"
#include "inc/hw_ints.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/rom.h"
#include "driverlib/sysctl.h"
#include "sensorlib/hw_is129023.h"
#include "sensorlib/i2cm_drv.h"
#include "sensorlib/is129023.h"
#tdefine DEBUG

#define ISL29023_I2C_ADDRESS ox44 // 1ISL29023 I2C address
tI2CMInstance g_sI2CInst; // I2C master driver structure
tISL29023 g sISL29023Inst; // ISL29023 sensor driver structure
volatile unsigned long g _vui8DataFlag; // Data ready flag

volatile unsigned long g vui8ErrorFlag; // Error flag

[[R EFE A KA A KA A A KA KA KA K KA KKK AR A A A KA KKK KR KKK ok oK Sk ok ok oK

¥gtg9023AppCa11back(void *pvCallbackData, uint_fast8 t ui8Status)
t if(ui8Status == I2CM_STATUS_SUCCESS)

t g vui8DataFlag = 1;

g_vuiSErrorFlag = ui8Status;
}

[[K EFAE A KA A KA A A KA KKK KKK KKK A A KA A KKK KK A A KA A KA AR KK KK K

[Rk ok sk ok sk kok sk ok sk ook ko kst sk ok sk sk ok stk ok ok ko kst ok ko skt sk koo skok ok ok k ok
void
ISL2902312CIntHandler(void)

{
I2CMIntHandler(&g_sI2CInst);

//***
//***
void
ISL29023AppErrorHandler(char *pcFilename, uint_fast32_t ui32Line)

while(1)

//***

[[X EFE A KA A KA A A KA KA KA KK KK KKK KA A KA AR H KKK A A HOK A AR K KK KKK

¥gtg9023AppIZCWait(char *pcFilename, uint_fast32_t ui32Line)

t while((g_vui8DataFlag == @) && (g_vui8ErrorFlag == 0))
{
if(g_vui8ErrorFlag)
t ISL29023AppErrorHandler(pcFilename, ui32Line);
}

g vui8DataFlag = 9;

[[K EFE A KA A KA A A KA KA KA KK KK KA KK KA KA KA A K KK KK A AR A A KA KA KKK KK K

14 - 26 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Lab 14b: Sensor Library Usage

[/R ks ok sk kok sk ok sk ok sk ko stk sk ok sk stk stk ok ok sk kst ok kol skt skl koo skok ok ko k ok
int
main(void)

float fAmbient;

uint8_t ui8Mask;
ROM_SysCt1ClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
ROM_GPIOPinConfigure(GPIO_PDO_I2C3SCL);
ROM_GPIOPinConfigure(GPIO_PD1_I2C3SDA);
GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN 0);
ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);
ROM_IntMasterEnable();
I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, OxFF, OxFF, ROM_SysCtlClockGet());
SysCtlDelay(SysCtlClockGet() / 3);
ISL29023Init(&g_sISL29023Inst, &g _sI2CInst,
ISL29023_I2C_ADDRESS,ISL29023AppCallback, &g sISL29023Inst);
ISL29023AppI2CWait(__FILE_, _ LINE_);
ui8Mask = (ISL29023 CMD_I _OP_MODE_M);
ISL29023ReadModifyWrite(&g_sISL29023Inst, ISL29023 0 _CMD_I, ~ui8Mask,
(ISL29023 CMD_I_OP_MODE_ALS_CONT),
ISL29023AppCallback, &g sISL29023Inst);
ISL29023AppI2CWait(_FILE_ , _ LINE_);
while(1)

ISL29023DataRead(&g_sISL29023Inst, ISL290@23AppCallback, &g sISL29023Inst);
ISL29023AppI2CWait(__FILE__, _ LINE_);

ISL29023DataLightVisibleGetFloat (&g _sISL29023Inst, &fAmbient);

If you’re having problems, this code can be found in the 1abl4/files folder.

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 27

Lab 14b: Sensor Library Usage

startup_ccs.c

24. The original light sensor project used several interrupts that we will not be using. We
need to eliminate them from the startup_ccs.c file. Double-click on
startup_ccs.c in the Project Explorer pane to open it for editing in the Editor pane

Find the external declarations around line 59. Comment out the first, third, fourth and
fifth as shown below.

//extern void IntGPIOe(void);

extern void ISL29023I2CIntHandler(void);
//extern void SysTickIntHandler(void);
//extern void UARTStdioIntHandler(void);
//extern void RGBBlinkIntHandler(void);

25. Page down to around line 77. The system exception and peripheral interrupt vectors start
here. Find IntDefaultHandler and double-click on it to select it. Then press Ctrl-C to
copy it to the clipboard. This handler is the one that is called when an unexpected
interrupt occurs. In a production environment, you might want to change the “trap”
behavior of this code.

Around line 91, find SysTickIntHandler. Double-click on it and press Ctrl-V to
replace it with IntDefaultHandler.

Do the same to:

IntGPIOe at about line 96,
UARTStdioIntHandler at about line 97and
RGBBlinkIntHandler at about line 197.

Save your work.

If you’re having problems, this code can be found in the 1ab14/files folder.

14 - 28 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Lab 14b: Sensor Library Usage

Build and Download your Project

26. Make sure that your LaunchPad/SensorHub combination is connected from a free USB
port on your PC to the emulation port on the LaunchPad. Cycle the power on the board
by moving the power switch from the DEBUG (right-most) position to the DEVICE (left-
most) position and back to the DEBUG (right-most) position.

27. Build and download the program to the flash memory of the TM4C123GH6PM #;g;
by clicking on the Debug button on the CCS menu bar.

Watch Expressions and Breakpoints

28. Click on the Expressions tab in the Watch and Expressions pane. If there are any
Expressions in the window, right click in the window and select Remove All.

29. Find fAmbient in the 1ight_is129023. c code pane (right after main) and double-
click on it to select it. Right-click on it and select Add Watch Expression ... Click OK to
leave the name as-is.

74 in'l.:] (%)= Variables | &7 Expressions 52 | iilf Registers

75 main(vodid)

76 Expression Type Value Address
77 float faAmbient; 69= FAmbient float 0.0 0:20000408
78 uintd_t uiBMask;]

i - ae Add new expressi

30. Page down to the end of 1ight_is129023. c and find the while (1) loop. Identify the
line of code that contains ISL29023DatalLightVisibleGetFloat (). Double-click in
the blue area just left of the line number to set a breakpoint on this line. You’ll see a blue
dot with a check mark appear. When code execution reaches this point, control will be
returned to CCS (before the line runs).

Remember that the current drivers do not support setting breakpoints while the code is
executing.

while (1)

1
I5L29023DataRead (&g _sISL29823Inst, ISL29823AppCallback, &g sISL29823Inst);
ISL20823AppI2CWait(FILE_ , LINE_ Y;

I5L29023DatalightVisibleGetFloat (&g sISL29823Inst, &fAmbient);

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14-29

Lab 14b: Sensor Library Usage

Run the Code

31. Click the Resume button L

or press F8 on your keyboard to run your code.
32. Since the breakpoint is set before the ISL29023DatalLightVisibleGetFloat() API

was run, fAmbient was not updated. Click the Resume button - or press F8 on your
keyboard repeatedly.

Continuously clicking the Resume button can get pretty tedious. We can
change the behavior of the breakpoint we set so that it doesn’t stay halted.
Right-click on the breakpoint symbol (it will now have a blue arrow on
it) and select Breakpoint Properties ...

On the row containing Action, click on the Remain Halted value. When the down-arrow
appears on the right, click on it. Select Refresh All Windows from the list and click OK.

¥ Properties for B =
Breakpoint Properties & Breakpoint Properties - v v
Properties Values
4 Hardware Configuration
> Type Breakpoint
4 Debugger Response
Condition
. Skip Count 0
Action Refresh All Windows -
4 Miscellaneous Contral Profiling
Group Disable a Group
Name Enable a Group
Execute Expression (GEL)
Read Data from File
Refrech All Windows
Remain Halted
Update View
\Write Data to File
This is what the IDE will do once the breakpoint has triggered and all logical conditions are [Eqit property
met too
s

33. Click the Resume button "* or press F8 on your keyboard to run your code. Now the

while(1) loop will run to the breakpoint, stop, update the fAmbient value in CCS and
re-start code execution. Based on how the code is written in the while (1) loop, this will
happen as quickly as possible (as soon as the I*C communication is finished, another will
begin). Note that every time the value changes, CCS will highlight it in yellow.

Pass your hand over the SensorHub or shine a bright light on it and watch the value of
fAmbient change.

Note the maximum value of fAmbient here:

14 - 30

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Lab 14b: Sensor Library Usage

GUI Composer

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Earlier in the workshop we used the CCS graphing feature to visulaize our data. TI
debuted a new feature in CCS version 5.3 called “GUI Composer”. Let’s use it to
visulaize the data from the light sensor.

Click the Suspend button to halt your program.

From the CCS menu bar, click View — GUI Composer. When you see the New Project
button, click it. Insert a name of your choice in the dialog and click OK

When the GUI Composer tab and workspace appears, click é e e
Instrumentation on the left

Find the AnalogGauge and drag it to the open design area. .

. . - €% AnalogGauge
Resize the gauge to make it as large as possible.

Make sure the Widget is selected (click on it) and click the Widget
tab on the far right. . Find the Title box and enter “Light Level” into Widget
it. Find the Maximum Value box and enter a value somewhat

greater that the maximum value of fAmbient you noted in step
32.

Binding

Click the Binding tab on the far right. In the Value box, enter fAmbient. Be careful
with the spelling and case.

Click the Resume button on the CCS menu bar. IJF

.\\\“\mmI””“”’///
» e M0 gy
Click the Run button in the GUI Composer pane. S Light Level

Pretty cool, huh?

S

o

Suspend the code and delete the breakpoint. Resume
the code. GUI Composer is capable of reading
memory locations in the background through the
emulotor hardware. Since fAmbient is a global
variable, we are assured that it has a memory location
and has not been optimized into a register.

Oog %Y

&
=

a &
> 2
7) 0“3‘

GUI Composer can be used inside of CCS or can be exported to run “stand-alone”
without starting CCS. The steps to do this can be found in the GUI Composer
documentation.

Minimize Code Composer Studio.

You’re done with Lab14b

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 31

Lab 14b: Sensor Library Usage

14 - 32 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

PWM

Introduction

Pulse width modulation or PWM is a method of digitally encoding analog signal levels. It is used
extensively in servo positioning, motor control, power supplies and lighting control.

Agenda

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Introduction to TivaWare™, Initialization and GPI1O

Interrupts and the Timers
ADC12
Hibernation Module
USB
Memory
Floating-Point
BoosterPacks and grLib
Synchronous Serial Interface
UART

HDMA 3 Tews s sl

~y e O

Sensor Hub

Features...

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

15-1

Chapter Topics

Chapter Topics

PWM 15-1
CRAPICE TOPICS..cc.vv ettt ettt et e ettt e s b e e e st e e s b e e esseesabeeenbeeesbeeeaseesabeesnseessseeanseesnseas 15-2
Pulse Width MOGUIGLIONcccccueeeiiiiiiiieiii ettt 15-3
TMACI23GHOPM PWMooooeeeeeeee e et 15-4
PWM GeRnerator FOATUFES.............cccccuuuiiiieiiieii ettt 15-5
BIOCK DIQGFAMS ...t ettt ettt ettt 15-6
LAD I5: PWM ..o e e e e et e 15-7

L0 10) 115 AU 15-7

N1 Ao J OFe)'s15 (o) FE SRS 15-8

) B2 A7 IR 15-9

o) 07721 (< J TSRS 15-11

165-2 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

Pulse Width Modulation

Pulse Width Modulation

Pulse Width Modulation

Pulse Width Modulation (PWM) is a method of digitally encoding
analog signal levels. High-resolution digital counters are used to
generate a square wave of a given frequency, and the duty cycle
of that square wave is modulated to encode the analog signal.

Typical applications for PWM are switching power supplies,
motor control, servo positioning and lighting control.

» ==

e =

TM4C123GH6PM PWM ...

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

15-3

TM4C123GH6PM PWM

TM4C123GH6PM PWM
TM4C123GH6PM PWM

The TM4C123GH6PM has two PWM modules

("Each PWM module consists of: N
¢ Four PWM generator blocks

¢ A control block which determines the polarity of the signals and
which signals are passed to the pins

- /
/Each PWM generator block produces: h
¢ Two independent output signals of the same frequency or
¢ A pair of complementary signals with dead-band generation
(for H-bridge circuit protection)
\’ Eight outputs total Y.

Module Features ...

15-4 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

PWM Generator Features

PWM Generator Features

PWM Generator Features

PWM Generator Features (cont)

>

>

L 2
*
L 2
*
L 2

*

Flexible output control block with:

ﬂead-band generator \

Produces two PWM signals with programmable dead-band delays
suitable for driving a half-H bridge

Can be bypassed, leaving input PWM signals unmodified

PWM output enable of each PWM signal

Optional output inversion of each PWM signal (polarity control)
Optional fault handling for each PWM signal

Synchronization of timers in the PWM generator blocks

Synchronization of timer/comparator updates across the PWM
generator blocks

Interrupt status summary of the PWM generator blocks

initiate an ADC sample sequence /

Block diagram ...

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

15-5

Block Diagrams

Block Diagrams
PWM Module Block Diagram

PWM Clock

> !
Triggers / Faults el ';chllA - PWM 0 »
= PWM pwmOE
- -
System Clock . | Generator 0 = PWM 1
® Control and pwmOtsult > gl
Status
PWMCTL
PWMSYNC - pwmiA —
PWMSTATUS - PWM = LN
- pum1E -
" | Generator 1 gl PWM EWM 3
pwmifault > T
Output
> P p
Interrupt -
> — _ Control
PWMINTEN > - T
g Interrupts SWMRIS o PWM pamIE’ Logic
-§ - | —]
Pwmisc | Generator 2 ot g PWM 5)
_ Triggers
Eam3A -
PWM B
[Lol — -
—® Output - PWM pumaE -
> >
PWMENABLE Generator3 | w WM gy
PWMINVERT o
PWMFAULT 4
PWMFAULTVAL
PWMENUPD

PWM Generator Block Diagram

r-—-——--—"—"—"~—-"—"~—-"~—-"~—"~—"\~-~"\~"~"—"—\"— ™ - - - = - I
| PWM Generator Block |
! I
Interrupts /
- :
"W Triggers | Interrupt and Fault |
: . Trigger Condition |
Ll Generator |
Digital Trigger(s)
| Control > - FWHMIFLTSRED | |t 2= Thggerie)
| - | PWMnINTEN PWMnFLTSRE1 | Faults)
! - PWMnRIS PWMnMINFLTPER | (l———————————
! — PWMnISC PWMnFLTSEN |
! PWMnFLTSTATO |
: PWMnFLTSTAT1 |
|
| Timer =2ero |
| load |
dir wmfault
| b e
| PWMnCOUNT :
| * |
| Dead-Band !
I > Signal pwmA ead-Band | "
| - - Generator pwm. -
| COI'I'I')ﬂrﬂ[O[S = Generator Ll
|
| cmphs - pwmB | [pwMaDBCTL pwmB
| - [PwMnGENA | | | pwmnoerIsE ’
BIWM Clock cmpB gl
PWMRCMPE B | PWMnGENB | PWMnDBFALL

Lab ...

15-6 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

Lab 15: PWM

Lab 15: PWM

Objective

In this lab you’ll use the PWM on the Tiva C Series device to control the position of a radio-
control (RC) type servo. This type of servo uses a 50-60Hz base frequency and then uses a 1-2mS
high level to control the position. There are both analog and digital radio control servos, but
which type you use does not affect the control signal being used.

Lab 15: PWM

USB Emulation Connection

TCK TWS 100 107 EXY 7X0 RXD

0BG 5
R:
www.fi.com/lounchpad RZ

2. J x
VCC ., et o

GND A.._"‘ & ")= PF3 P2 <% 4B |
o N 2, v ke R
e SIGNAL SN Z Poa oy |
\/ > #Cs RST 44 Y
PCE Pﬁ7“ ‘\
3 ¥ o oy
. - ! POS umﬂ‘\ ‘
¢ Configure the PWM outputs and *{
frequency ¥
¢ Add code to control a servo - ! WarCSeries -
° aunchPad ™°
¢ Connect the servo to the LaunchPad

¢ Test

To complete lab 15 you will need a radio-control type servo. These are easily obtainable online
for less than US$5.

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15-7

Lab 15: PWM

Servo Control

The servo-actuators or “servos” used in hobby applications require a control signal of between 50
and 60Hz with a 1 to 2mS positive signal to control the position as seen below. The 1 and 2mS
endpoints represent the limits of travel of the servo while 1.5mS represents the center position.

These oscilloscope captures were taken from a DSO Nano measuring the PWM output of this lab.

AUTO # 1VADivw ZmssDiv 55.1Hz UsB AUTO £ 1U-Div ZBBus-Div Freg

Tr Z.80U AVU6.48U AT 18.Zms S B33.BMP Tr 2.80U &V 6.48Y AT 1.58ms S @32.BMP

55Hz Control Signal 1.5mS Center Position

AUTO £ 1V/Div ZBBus-Div Fregq AUTO £ 1VDiv ZBBus-Div Fregq

e

£.800 AV6.48Y AT Z.88ms 3331‘. Ir £.88V AV6.480 AT 1.8ims 3 G30.BMP

2.0mS Limit Position 1.0mS Limit Position

15-8 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

Lab 15: PWM

Hardware

In order to run this lab you will need to acquire and modify an RC servo like the one
here: http://www.hobbyking.com/hobbyking/store/ 662 HXT900 9¢_1 6kg_12sec_Micro_Servo.html

If you are attending a live workshop, your instructor will have a modified servo that you can use.

Servos have a three pin connector on them that provides:

Vee — usually red
Ground — usually black or brown
Signal — usually white, yellow or orange

1. Re-order the pins in the
existing servo connector and
see if they make good enough
contact. To do this, pry the
little plastic tabs on the
connector gently upwards with
a knife and pull the wires out.
Reinsert them (with the correct .

. . . . ignal
orientation) and they will click Ground
into place. Vee

2. Connect the modified servo to
J3 pins 1 — 3 on your
LaunchPad as shown.

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15-9

http://www.hobbyking.com/hobbyking/store/__662__HXT900_9g_1_6kg_12sec_Micro_Servo.html

Lab 15: PWM

3. Referring to the schematic in your workbook, J3 pins 1-3 are as shown below:

Referring to the device UG, port D pin 0 (PDO0) has the following functions:

Pin Number Pin Name Pin Type | Buffer Type® [Description
PDO lle} TTL GPIO port D bit 0.
ATIN7 | Analog Analog-to-digital converter input 7.
I2C3SCL 110 oD 12C module 3 clock. Note that this signal has an active pull-up. The
corresponding port pin should not be configured as open drain.
MOPWMéE o TFEL Motion Control Module 0 PWM 6. This signal is controlled by
61 Module 0 PWM Generator 3.
M1PWMO o TTL Motion Control Module 1 PWM 0. This signal is controlled by
Module 1 PWM Generator 0.
SS11Clk l{e] TEL SS1 module 1 clock.
88I3Clk l[e} TTL 5S1 module 3 clock.
WT2CCPO o TTL 32/64-Bit Wide Timer 2 Capture/Compare/PWM 0.

We will configure the pin as M1PWMUO as described in the table. Any PWM output
would have been acceptable, but this one happened to be right next to the Vec and ground
pins on the BoosterPack connector.

If you were going to monitor and control multiple servos, a better option would be to
create your own BoosterPack proto board with standard connections for the servos.

15-10

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

Lab 15: PWM

Software

4. We have already created the lab15 project for you with an empty main. c, a startup file
and all necessary project and build options set.

» Maximize Code Composer and click Project = Import Existing CCS Eclipse Project.
Make the settings shown below and P click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

-

«#» Import CCS Eclipse Projects

Select Existing CCS Eclipse Project
Select a directory to search for existing CCS Eclipse projects.

| ok

1@ Select search-directory: C\TM4C123G_LaunchPad_WaorkshoplablS\project Browse...
() Select archive file: Browse...
Discovered projects:

T labl5 [CATMAC123G_LaunchPad_Workshop\labl5\project] Celect All

Deselect All

Refresh

[T] Copy projects into workspace
[7] Automatically import referenced projects

Open the Resource Explorer and browse available example projects...

Cancel

@ Finish |

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15-11

Lab 15: PWM

S.

It’s been quite a while since we configured our workspace and verified all the settings
that are needed to find the libraries, resolve the symbols and allow the compiler and
linker to work. We can check those now or you can skip to step 7.

» Right-click on lab15 in the Project Explorer and select Properties. Expand the
Resource category on the left and click on Linked Resources. Make sure that the symbol
TIVAWARE INSTALL is in the Path Variables list as shown below:

'+ Properties for lab15

type filter text

a4 Resource
Linked Resources
Rescurce Filters
General
4 Build
4 ARM Compiler
Processor Options
Optimizaticn
Debug Options
Include Options
MISRA-C:2004
> Advanced Options
> ARM Linker
Debug

Linked Resources

Path Variables | Linked Resources

Path variables specify locations in the file system, including other path variables with the sy
The locations of linked resources may be specified relative to these path variables.

Defined path variables for resource 'labl5"

(= CG_TOOL_ROOT
(= ECLIPSE_HOME

(== PARENT_LOC
[Z=PROJECT_LOC

Marne Value [
(= CCS_BASE_ROOT CA\ThceswSheos_basel,
(= CCS_INSTALL_ROOT CATNcesw5y

(= EXTERNAL_BUILD_ARTL..

(= TIVAWARE_INSTALL
(= WORKSPACE_LOC

CAThcesvShtools\ compiler\arm_5.0.4%
C\ThcesvSheclipsel,

C\Users'a01928954 Test3 workspace_v5_dy
CATMAC123G_LaunchPad_Workshophlabl5project
CATI\TivaWare_C_Series-1.0
Ci\Users'a01928954 Test3 workspace_v3_dy

This symbol was created when you imported vars. ini.

» On the left of the Build Properties window click on Build 2 ARM Compiler >
Include Options. Verify that $ { TIVAWARE INSTALL} is in the include search path as

shown below:

'+ Properties for labl15

type filter text
» Resource
General
a Build
4 ARM Compiler
Processor Options
Optimization
Debug Options
Include Options
MISRA-C:2004
> Advanced Options
» ARM Linker
Debug

@ Show advanced settings

Include Options

G e w

Configuration: |Debug [Active]

'] [Manage Configurations...]

Specify a preinclude file (--preinclude)

Add dir to #include search path (--include_path, -I)

"${CG_TOOL ROOTYinclude"

"SHTIVAWARE INSTALL}Y

89

m

& 2 85 ¥

[0K J l Cancel

15-12

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

Lab 15: PWM

7. » On the left of the Build Properties window click on Build > ARM Compiler ->
Advanced Options = Predefined Symbols. Verify the PART TM4C123GH6PM and
TARGET IS BLIZZARD RBI are listed in the Pre-defined NAME pane as show

below:
«+ Properties for lab15 Llﬂlﬂ—hJ
type filter text Predefined Symbols (=T =
4 Resource - [

Linked Resources

Configuration: | Debug [Active] V] ’Manage Configurations...]

Resource Filters

General
4 Build
a ARM Compiler
Processor Options
Optimization
Include Options
MISRA-C:2004
4 Advanced Options
Advanced Debug Opti
Language Options
Parser Preprocessing C
Predefined Symbols
Diagnostic Options
Runtime Model Optior
Advanced Optimizatio
Entry/Exit Hook Optior

Library Function Assur =
LRF T d +

Pre-define NAME (--define, -D) & e 8 5D
PART_TM4C123GHEPM

TARGET_I5 BLIZZARD_RB1

m

Undefine NAME (--undefine, -L) L= AR AR

m

@j Show advanced settings [oK J ’ Cancel

“

These names are required in order for the pin map to select the correct pins when
configured and to link to the correct ROM location for ROM-coded API’s. Click OK to
close the Properties window.

8. P Open main.c and add (or copy/paste) the following lines to the top of the file:

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdint.h>
<stdbool.h>
"inc/hw_memmap.h"
"inc/hw_types.h"
"driverlib/sysctl.h"
"driverlib/gpio.h"
"driverlib/debug.h"
"driverlib/pwm.h"
"driverlib/pin map.h"
"inc/hw_gpio.h"
"driverlib/rom.h"

We’ll use a 55Hz base frequency to control the servo. P Skip a line and add the
following definition right below the includes:

#define PWM FREQUENCY 55

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

15-13

Lab 15:

PWM

main()

10.

11.

12.

13.

14.

» Skip a line and enter the following lines after the error checking routine as a template
for main().

int main (void)

{
}

The following variables will be used to program the PWM. They are defined as “volatile”
to guarantee that the compiler will not eliminate them, regardless of the optimization set-
ting. The ui8 Adjust variable will allow us to adjust the position of the servo. 83 is the
center position to create a 1.5mS pulse from the PWM.

Here’s how we came up with 83 ... In the servo control code (covered shortly) we’re go-
ing to divide the PWM period by 1000. Since the programmed frequency is SSHZ and the
period is 18.2mS, dividing that by 1000 gives us a pulse resolution of 1.82uS. Multiply-
ing that by 83 gives us a pulse-width of 1.51mS. Other selections for the resolution, etc.
would be just as valid as long as they produced a 1.5mS pulse-width. Take care though to
be sure that your numbers will fit within the 16-bit registers.

P Insert these four lines as the first inmain () :

volatile uint32_ t ui32Load;
volatile uint32_ t ui32PWMClock;
volatile uint8 t ui8Adjust;
ui8Adjust = 83;

Let’s run the CPU at 40MHz. The PWM module is clocked by the system clock through
a divider, and that divider has a range of 2 to 64. By setting the divider to 64, it will run
the PWM clock at 625 kHz. Note that we’re using the ROM versions to reduce our code
size.

P Leave a line for spacing and add these lines after the previous ones inmain () .

ROM_SysCtlClockSet (SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL XTAL 16MHZ) ;
ROM_SysCt1PWMClockSet (SYSCTL_PWMDIV_64) ;

We need to enable the PWMI1 and GPIOD modules (for the PWM output on PD0) and
the GPIOF module (for the LaunchPad buttons on PFO and PF4).
» Skip a line and add the following lines of code after the last:

ROM SysCtlPeripheralEnable (SYSCTL PERIPH PWM1) ;
ROM SysCtlPeripheralEnable (SYSCTL_ PERIPH GPIOD) ;
ROM SysCtlPeripheralEnable (SYSCTL_ PERIPH GPIOF) ;

Port D pin 0 (PDO) must be configured as a PWM output pin for module 1, PWM genera-
tor 0 (check out the schematic).
» Skip a line and add the following lines of code after the last:

ROM_GPIOPinTypePWM (GPIO_PORTD BASE, GPIO_PIN 0);
ROM_GPIOPinConfigure (GPIO_PDO_M1PWMO) ;

15-14

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

Lab 15: PWM

15. Port F pin 0 and pin 4 are connected to the S2 and S1 switches on the LaunchPad. In or-
der for the state of the pins to be read in our code, the pins must be pulled up. (The
BUTTONSPOLL API could do this for us, but that API checks for individual button
presses rather than a button being held down). Pulling up a GPIO pin is normally pretty
straight-forward, but PFO is considered a critical peripheral since it can be configured to
be a NMI input. Since this is the case, we will have to unlock the GPIO commit control
register to make this change. This feature was mentioned in chapter 3 of the workshop.

The first three lines below unlock the GPIO commit control register, the fourth config-
ures PFO & 4 as inputs and the fifth configures the internal pull-up resistors on both pins.
The drive strength setting is merely a place keeper and has no function for an input.

» Skip a line and add these 5 lines after the last:

HWREG (GPIO_PORTF_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
HWREG (GPIO_] PORTF BASE + GPIO O_CR) |= 0x01;
HWREG (GPIO_] PORTF BASE + GPIO O_LOCK) = 0;

ROM GPIODlrModeSet(GPIO PORTF BASE, GPIO_PIN_4|GPIO_PIN_O, GPIO_DIR MODE IN);
ROM_GPIOPadConfigSet (GPIO_] PORTF BASE, GPIO PIN_4|GPIO_| PIN 0, GPIO STRENGTH 2MA, GPIO_PIN_TYPE_STD_WPU) ;

16. The PWM clock is SYSCLK/64 (set in step 12 above). Divide the PWM clock by the de-
sired frequency (55Hz) to determine the count to be loaded into the Load register. Then
subtract 1 since the counter down-counts to zero. Configure module 1 PWM generator 0
as a down-counter and load the count value.

» Skip a line and add these four lines after the last:

ui32PWMClock = SysCtlClockGet() / 64;

ui32Load = (ui32PWMClock / PWM_FREQUENCY) - 1;
PWMGenConfigure (PWM1_BASE, PWM GEN 0, PWM_GEN_MODE_DOWN) ;
PWMGenPeriodSet (PWM1_BASE, PWM GEN 0, ui32Load);

17. Now we can make the final PWM settings and enable it. The first line sets the pulse-
width. The PWM Load value is divided by 1000 (which determines the minimum resolu-
tion for the servo) and the multiplied by the adjusting value. These numbers could be
changed to provide more or less resolution. In lines two and three, PWM module 1, gen-
erator 0 needs to be enabled as an output and enabled to run.

» Skip a line and add these three lines after the last:

ROM_PWMPulseWidthSet (PWM1_BASE, PWM OUT_0, ui8Adjust * ui32Load / 1000);
ROM_PWMOutputState (PWM1_BASE, PWM OUT_0_BIT, true);
ROM_PWMGenEnable (PWM1_BASE, PWM GEN_0) ;

18. P Skip a line and add a while (1) loop just before the final closing brace. At this point
you can test-build your code. If you run it, the servo will move to its center position. If
you want to reposition the servo arm, now would be a good time.

while(1)
{
}

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15-15

Lab 15: PWM

Controlling the Servo

19. This code will read the PF4 pin to see if SW1 is pressed. No debouncing is needed since
we’re not looking for individual key pressed. Each time this code is run it will decrement
the adjust variable by one unless it reaches the lower 1mS limit. This number, like the
center and upper positions was determined by measuring the output of the PWM. The last
line loads the PWM pulse width register with the new value. This load is done
asynchronously to the output. In a more critical design you might want to consult the
databook concerning making this load differently.

» Add the following code inside the while (1) loop.

if (ROM_GPIOPinRead (GPIO_PORTF BASE,GPIO_PIN 4)==0x00)
{ ui8Adjust--;

if (ui8Adjust < 56)

{ ui8Adjust = 56;

I){OM_PWMPulseWidthSet(PWMl_BASE, PWM OUT 0, ui8Adjust * ui32Load / 1000) ;
}

20. The next code will read the PFO pin to see if SW2 is pressed to increment the pulse
width. The maximum limit is set to reach 2.0mS.
» Skip a line and add the following code after the last inside the while (1) loop.

if (ROM_GPIOPinRead (GPIO_PORTF BASE,GPIO_PIN 0)==0x00)
{ uiB8Adjust++;
if (ui8Adjust > 111)
{ ui8Adjust = 111;
I}ROM_PWMPulseWidthSet(PWMl_BASE, PWM OUT 0, ui8Adjust * ui32Load / 1000) ;

21. This final line determines the speed of the loop. If the servo moves too quickly or too
slowly for you, feel free to change the count to your liking.
» Skip a line and add the this line after the last inside the while (1) loop.

ROM SysCtlDelay (100000) ;

If your code looks strange, don’t forget that you can automatically correct the
indentation.

» Save your changes.

15-16 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

Lab 15: PWM

Your final code should look something like this:

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "driverlib/debug.h"
#include "driverlib/pwm.h"
#include "driverlib/pin_map.h"
#include "inc/hw_gpio.h"
#include "driverlib/rom.h"

#define PWM_FREQUENCY 55

int main(void)

{
volatile uint32_t ui32Load;
volatile uint32 t ui32PWMClock;
volatile uint8 t uiB8Adjust;
ui8Adjust = 83;

ROM_SysCtlClockSet (SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_ 16MHZ) ;
ROM_SysCt1PWMClockSet (SYSCTL_PWMDIV_64) ;

ROM_SysCtlPeripheralEnable (SYSCTL_PERIPH_PWM1) ;
ROMﬁSysCtheripheralEnable(SYSCTLfPERIPHiGPIOD);
ROM_SysCtlPeripheralEnable (SYSCTL_PERIPH GPIOF)

ROM_GPIOPinTypePWM(GPIO_PORTD_BASE, GPIO_PIN 0);
ROM_GPIOPinConfigure (GPIO_PDO_M1PWMO) ;

HWREG (GPIO_PORTF_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;

HWREG (GPIO_PORTF_BASE + GPIO_O_CR) |= 0x01;

HWREG (GPIO_PORTF_BASE + GPIO_O_LOCK) = 0;

ROM_GPIODirModeSet (GPIO_PORTF_BASE, GPIO_PIN_4|GPIO_PIN_ 0, GPIO_DIR_MODE_IN);

ROM_GPIOPadConfigSet (GPIO_PORTF BASE, GPIO_PIN_ 4|GPIO_PIN_0, GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_ WPU);

ui32PWMClock = SysCtlClockGet () / 64;

ui32Load = (ui32PWMClock / PWM_FREQUENCY) - 1;
PWMGenConfigure (PWM1 BASE, PWM GEN 0, PWM GEN MODE DOWN) ;
PWMGenPeriodSet (PWM1_BASE, PWM_GEN_0, ui32Load);

ROM_PWMPulseWidthSet (PWM1_BASE, PWM_OUT 0, ui8Adjust * ui32Load / 1000);
ROM_PWMOutputState (PWML_BASE, PWM OUT 0 BIT, true);

ROM_PWMGenEnable (PWM1_BASE, PWM GEN_O0) ;

while (1)
{

if (ROM_GPIOPinRead (GPIO_PORTF BASE,GPIO_PIN_4)==0x00)
{ ui8Adjust--;

if (ui8Adjust < 56)

{ ui8Adjust = 56;

;OMﬁPWMPulseWidthSet(PWMliBASE, PWM_OUT_0, ui8Adjust * ui32Load / 1000) ;
}

if (ROM_GPIOPinRead (GPIO_PORTF BASE,GPIO PIN 0)==0x00)
{ uiB8Adjust++;

if (uiBAdjust > 111)

{ ui8Adjust = 111;

;OMﬁPWMPulseWidthSet(PWMliBASE, PWM_OUT_0, ui8Adjust * ui32Load / 1000) ;
}

ROM_SysCtlDelay(100000) ;

If you’re having issues, you can find this code in your lab15 project folder as main. txt.

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15-17

Lab 15: PWM

Build and Run the Code

22. Make sure your LaunchPad is connected and that the servo is correctly
connected to J3 pins 1 - 3. Compile and download your application by #;z_-.ﬁl
clicking the Debug button.

23. Click the Resume button to run the program. If the servo was positioned off-
center it will immediately reposition itself to the center. Use the SW1 and I_IB
SW2 buttons on the LaunchPad to move the servo. Feel free to set
breakpoints and monitor the load and pulse width variables if you like.
Restarting the code will return the servo to center position.

24. When you’re finished, click the Terminate button to return to the Editing I:I
perspective, close the lab15 project and close Code Composer Studio.

Homework: You can use this same method to control LED brightness and/or

toggle rates. It can also control a motor using the appropriate drivers (R/C folks call these
Electronic Speed Controls or ESCs ... modern ones control brushless motors). The PWMs
can be configured to decode pulse widths and frequencies ... give this a try.

You’re done with Lab15 and the workshop

15-18 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

Lab 15: PWM

Thanks for Attending!

/ ¢ Make sure to take your LaunchPad boards,\
LCDs and workbooks with you

¢ Please leave the TTO flash drives, meters
and other instructor supplied hardware here

¢ Please fill out the email survey when it

arrives
\ ¢ Have safe trip home! /
i3 TEXAS
INSTRUMENTS

Presented by

Texas Instruments
Technical Training Organization

www.ti.com/training

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15-19

J9
CON-USB-MICROAB

[ee] [{e]

UL-A s
---------- \l ==ry -
_ NBAOTUORX VCP TXD} = PAO PBO 1PBO
l--'-.|;-| PAL PBL =
o PA2 PB2 -
N
v PA3 PB3 =
L PA4 PB4
PAS; IPB5
2 PA5 PB5 :
W IPB6
PAT7] pe pae PB7,
5 PA7 PB7
ittt leeakey bt plity 1551
NDEBUG PCOTCK/SWCLK! = 'PDQ,
DEBUG _PC1/TMSISWDIO; =i pco PDO 15D
IDEBUG PCITMS/SWDIO, 1p PC1 PD1
\DEBUG PC2/TDI S PC2 PD2 .
== JDEBUG PC3TDQ/SWO! = PC3 PD3 TPD3d
\DCA ————
L PC4 PD4[— I
PC6, S22 1PD6,
et PC6 PD6 5o
Ll pC7 PD7 P74
1551
=
PE2, \PE
- PE2 PF2 =
t PE3 PF3 1Pl
Yt PE4 PF4 :EE?
\PES PES PEA
TMAC123G
0 pan Rl
— nVWRy
ERAAALIN
min
0 VvV RI3
VVV
R3
c 330
——— Q1
ILED R >—— 5 DTC114EETIG
F BVBUS!
— D1 Q
- » R
% i
T V 4 By
330
C
o3 RGB_LED_0404_COMA
LED_ G >—— B DTCL14EETLG
E
R4
c 330
R Q2
LED B[>—— 5 DTCI114EETIG
E

1550 WY ———<] 5!
PDO, 1PB6,

J1 and J2 provide compatability with

Booster Packs designed for MSP430 Launchpad
J3 and J4 sit 100 mils inside J1 and J2 to provide
extended functions specific to this board.

IGRIC

L

ipes P! -
PBOANPEQ;

See the board user manual_for. (I:omplete table of pin mux functions
Bl

r
I

|
i

Lﬂu»\)—\|cﬁ.

P
PEZ

PB4 APEE]

PAS, DAA,}

[N
—‘OCD\IID.H&.A)\)'—\||—‘

PP ND

IPATAPA2]

CON_110_100 CON_110_100

F

g
N

o

33 J4
A1 e =
2l — __ NEE3 >
3 - p PR3 3
4 PRI A PCA 4
5 PD2APC5 5
6 1PD3PCE, 6
z PELANPCT, 7
8 PE2 PO 8
9 IPESAPDT 9
1 E PE. 10
S | L CON_110_100 CON_110_100
DESIGNER REVISION DATE TEXAS |NSTRUMENTS
DGT 0.3 2/20/2013 0 o
PROJECT Z] TVA MICROCONTROLLERS
Tiva TMAC123G LaunchPad 108 WILD BASIN ROAD, SUITE 350
DESCRIPTION AUSTIN TX, 78746
. . VWWW.L.com
Microcontroller, USB, Expansion, Buttons and LED
FILENAME PART NO. SHEET
EK-TM4C123GXL Rev A.sch EK-TM4C123GXL 1 OF3

L 45
r—=-—1
. 3.3Vy
cVBUS!
HL7 H23 +3.3V 400mA Regulator H22
us
TPS73633DRB
| * 8N outtt > i
2 EN NRE—- 838
ci4 GND PAD C18
B 0.01uF
T 1.0uF l_‘ T 3
. — b5
— — o X
- - (0] \
rVBUS!
L33V
R17
10k

OMIT this SVS Section for Tiva. Errata Fixed

(5]
<3 =
om
<
U% 2
— w
b
x|w
R
N =
o}
S,
Gl
=i

R28 H20
RESET 10k% . .
RESET %‘ H24 and H25 installed as a single 1x2
— | e header on 100 mil center with jumper
7 L <__] DARGETRST)
= | o L
OToF H21 H24 H25
T oM YA ey
= UL-B ;é‘ o
J_— 38 |RESET WARE |2 —1d — MA , 1 ‘%\,{)\
, - osct 3] M T - e oM
0sCo 37
© " VBAT
E%O 5= xosco)
25 GNDX VDDA
| e ok ok XOSC1 Vop L
D e e 3 VDD ig ics ic4 7L(:5 ice 7LC8 J»c7
‘ »—‘ ‘———‘ ‘— GNDA VDD (52 i i -
' 12 VDD T0.0luI;[0.1uF ro.om;[0.1uF ro.om;[LOUF
1 ca c2 7 e J_
T 10pF T 10pF ”:“ 39 1 GND vDDC |2 Tz EMclDRe! Q
55 1 GND vbDC 28 o
J_ J_ 32.768Khz i c10 i cu <L c12 L
v TWAC123G 0.1uF 01uF =
— — : : T 220k
- - = T T Taew]
H11 H12
H13 H10 ? IT
1l
1
DESIGNER REVISION DATE
DGT 03 2/20/2013 TEXAS®INSTRUMENTS
PROJECT Z] TVA MICROCONTROLLERS
Tiva Launchpad 108 WILD BASIN ROAD, SUITE 350
DESCRPTION AUSTIN TX, 78746
www.ti.com
Power Management
FILENAME PART NO. SHEET
EK-TM4C123GXL Rev A.sch EK-TM4C123GXL 2 OF 3

MCU_PWR
IDEBUGNCOM In-Circuit Debug Interface (ICDI)
=Ban EICDIVBS)
o B - A
17 45
_____________ 18 | o Pag 46 9
DEBUG _PCOTCK/SWCIKI 19 | 47 330
PA2 PB2
DEBUG, PCIUTMS/SWDION 20 {pa3 pp3 28
DEBUG_PC3/TDOISWG. 2L \ppa PB4 |28
Roesic ot 2 I pps pBS |2
""" > 2 {pag PB6|+—
TARGETRST,
Exes [o——1m 2 {pa7 PB7 |FA— —
- 52 1 pco poo 5L
33 5L pc1 PD1 |22
50 63
29 PC2 PDZF 0
15 PC3 PD3[———1#] ¢
—=2-PC4 PD4
15 44
S PD5 153 CIr T "
o PD6 5 {DEBUG PC3/TDOISWO, 0
R21 R22 L3 1pc7 PD7
10k 10k A
_____ —2PEO PFO -3~ e,
i i —1pPEL PF1 -2
hDCWS) —Pe2 PF2-30 DEBUG BCOTCK/SWELK! —
4ICDI_TDL, —g|PE3 PF3[=— —
IICDI_TDOI 60] PE4 PF4|—
=2 pES R
TMAC123G —
ng'ﬁ
R19
10k %
Tk [—
l C34 re=
«|» (&l}f +3.3V) ICDIJTAG
w2-B
38 [o | 32 p— o
— RESET WAKE -
. 4L osc1 A2 KCDLTK!
40
0SCo 37 —
§3° —34 Ix0sco VAT =33V IICDI_TMSI
& 3% 2
| —5] GNDX VDDA
Y5 —21xosc1 —
16MHz - voD | H — TC2050-DC-NL —
3 VDD 75 i c15 i c17 7L C19 L C20 7L c21 i c1
|D GNDA VDD |5 -0 -0 -
' 2|0 VDD T0.0luI;[0.1uF ro.om;[0.1uF ro.om;[LOUF
s c26 27 | 3D 1
10pF T 10pF gg GND VDDC ég J_
GND VDDC m,
c23 c24 i c2 i
L L TMAC123G T 0.1uF co
= = = | R YN
— - DESIGNER REVISION DATE
= DGT 03 212012013 - TEXAS INSTRUMENTS
PROJECT
Tiva TM4AC123G LaunchPad TVA MICROCONTROLLERS
108 WILD BASIN ROAD, SUITE 350
DESCRIPTION AUSTINTX, 78746
In Circuit Debug Interface Wi com
FILENAME PART NO. SHEET

EK-TM4C123GXL Rev A.sch

EK-TM4C123GXL

3 OF 3

	TM4C123GXL-LaunchPad-00
	Important Notice
	Revision History
	Mailing Address

	Table of Contents

	TM4C123GXL-LaunchPad-01
	Introduction
	Chapter Topics
	TI Processor Portfolio and Tiva C Series Roadmap
	Tiva™ TM4C123G Series Overview
	TM4C123GH6PM Specifics
	LaunchPad Board
	Lab1: Hardware and Software Set Up
	Objective
	Procedure
	Hardware
	Download and Install Code Composer Studio (
	Install TivaWare™ for C Series (Complete) (
	Install LM Flash Programmer (
	Download and Install Workshop Lab Files (
	Download Workshop Workbook (
	Terminal Program (
	Windows-side USB Examples (
	Download and Install GIMP (
	LaunchPad Board Schematic
	Helpful Documents and Sites
	Kit Contents
	Initial Board Set-Up
	QuickStart Application

	TM4C123GXL-LaunchPad-02
	Code Composer Studio
	Chapter Topics
	Tiva C Series Development Tools
	TI Software and Ecosystem
	Code Composer Studio Functional Overview
	Target Configuration and Emulators
	Projects and Workspaces
	Creating a New Project and Adding Files
	Portable Projects
	Path and Build Variables
	Build Configurations
	Licensing and Pricing
	Lab2: Code Composer Studio
	Objective

	Lab 2 Procedure
	Folder Structure for the Labs
	Create a New CCS Project
	Add Path and Build Variables
	Add files to your project
	Build, Load, Run
	Perspectives
	Terminate the debug session.

	VARS.INI – An Easier Way to Add Variables
	Using VARS.INI – Conclusion

	LM Flash Programmer
	Optional: Creating a bin File for the Flash Programmer

	TM4C123GXL-LaunchPad-03
	TivaWare™, Initialization and GPIO
	Chapter Topics
	TivaWare
	Clocking
	GPIO
	Lab 3: Initialization and GPIO
	Objective
	Procedure
	Create lab3 Project
	Header Files
	main() Function
	Clock Setup
	SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);
	GPIO Configuration
	The base addresses of the GPIO ports listed in the User Guide are shown below. Note that they are all within the memory map’s peripheral section shown in module 1. APB refers to the Advanced Peripheral Bus, while AHB refers to the Advanced High-Perfor...
	while() Loop
	Startup Code
	Set the Build Options
	Compile, Download and Run the Code
	Examine the Tiva C Series Pin Masking Feature

	TM4C123GXL-LaunchPad-04
	Interrupts and the Timers
	Chapter Topics
	Cortex-M4 NVIC
	Cortex-M4 Interrupt Handing and Vectors
	General Purpose Timer Module
	Lab 4: Interrupts and the Timer
	Objective
	Procedure
	Import Lab4 Project
	Header Files
	main()
	Clock Setup
	GPIO Configuration
	Timer Configuration
	Calculate Delay
	ui32Period = (SysCtlClockGet() / 10) / 2; TimerLoadSet(TIMER0_BASE, TIMER_A, ui32Period -1);
	Interrupt Enable
	Timer Enable
	while(1) Loop
	Timer Interrupt Handler
	Startup Code
	Pre-defined Name
	Compile, Download and Run The Code
	Exceptions

	TM4C123GXL-LaunchPad-05
	ADC12
	Chapter Topics
	ADC12
	Sample Sequencers
	Lab 5: ADC12
	Objective
	Procedure
	Import lab5 Project
	Header Files
	main()
	Inside the while(1) Loop
	Build and Run the Code
	Breakpoint

	Hardware averaging
	Calling APIs from ROM
	Build, Download and Run Your Code

	TM4C123GXL-LaunchPad-06
	Hibernation Module
	Chapter Topics
	Low Power Modes
	Lab 6: Low Power Modes
	Objective
	Procedure
	Import lab6
	Limitations
	Header Files
	main()
	Clock Setup
	GPIO Configuration
	Hibernate Configuration
	SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE); HibernateEnableExpClk(SysCtlClockGet()); HibernateGPIORetentionEnable(); SysCtlDelay(64000000); HibernateWakeSet(HIBERNATE_WAKE_PIN); GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_3, 0x00);
	Hibernate Request
	► Click the Save button to save your work. Your code should look something like the next page:
	Build, Download and Run the VDD3ON (no RTC) Code
	Measure the Current
	Wake Up on RTC

	TM4C123GXL-LaunchPad-07
	USB
	Chapter Topics
	USB Basics
	TM4C123GH6PM USB
	USB Hardware and Library
	Lab 7: USB
	Objective
	Procedure
	Example Code
	Import The Project
	Build, Download and Run The Code
	Digging Deeper
	Watch the Buffers

	TM4C123GXL-LaunchPad-08
	Memory
	Chapter Topics
	Internal Memory
	Flash
	EEPROM
	SRAM
	Bit-Banding
	Memory Protection Unit
	Priority Levels
	Securing Your IP
	Lab 8: Memory and the MPU
	Objective
	Procedure
	Import lab8
	Writing to Flash
	Build, Download and Run the Flash Programming Code
	Reading and Writing EEPROM
	Build, Download and Run the EEPROM Programming Code
	Further EEPROM Information
	Bit-Banding
	Memory Protection Unit (MPU)

	TM4C123GXL-LaunchPad-09
	Floating-Point Unit
	Chapter Topics
	What is Floating-Point and IEEE-754?
	Floating-Point Unit
	CMSIS DSP Library Performance
	Lab 9: FPU
	Objective
	Procedure
	Import lab9
	Browse the Code
	Build, Download and Run the Code
	Profiling the Code

	TM4C123GXL-LaunchPad-10
	BoosterPacks and grLib
	Chapter Topics
	LaunchPad Boards and BoosterPacks
	KenTec TouchSceen TFT LCD
	Graphics Library
	Lab 10: Graphics Library
	Objective
	Procedure
	Connect the KenTec Display to your LaunchPad Board
	Import Project
	Build, Download and Run the Demo
	Writing Our Own Code
	Modify pic.c
	main.c
	Pointer to the Image Array
	main()
	Displaying the Image
	Build and Run the Code
	Display Text On-Screen
	Build, Load and Test
	Drawing Shapes
	Build, Load and Test
	Widgets
	Build, Load and Test

	TM4C123GXL-LaunchPad-11
	Synchronous Serial Interface
	Chapter Topics
	Features and Block Diagram
	Interrupts and µDMA Operation
	Signal Formats
	Lab 11: SPI Bus and the Olimex LED BoosterPack
	Objective
	Procedure
	Hardware
	Faces Code
	Import Lab11
	Build and Load
	Run and Test

	TM4C123GXL-LaunchPad-12
	UART
	UART Features and Block Diagram
	Basic Operation
	UART Interrupts and FIFOs
	UART “stdio” Functions and Other Features
	Lab 12
	Objective
	Procedure
	Import Lab12
	Build, Download, and Run the UART Example Code
	Using UART Interrupts

	TM4C123GXL-LaunchPad-13
	µDMA
	Chapter Topics
	Features and Transfer Types
	Block Diagram and Channel Assignment
	Channel Configuration
	Lab 13: µDMA
	Objective
	Procedure
	Import Lab13
	Browse the Code
	Build, Download and Run the Code
	Streaming Data To and From the UART using a Ping-Pong Buffer
	Code Changes
	Browse the Code
	Build, Load and Run

	TM4C123GXL-LaunchPad-14
	Sensor Hub
	Chapter Topics
	Kit Features
	Individual Sensors
	Orientation Kinematics and the DCM Algorithm
	Air Mouse Example
	Lab 14a: Air Mouse Example
	Objective
	Procedure
	LM Flash Programmer
	Air Mouse Example

	Sensor Library
	Sensor Hub Examples
	Lab 14b: Sensor Library Usage
	Objective
	Procedure
	Import the Project
	Write the Code
	Handlers and Functions
	main()
	while(1) Loop
	startup_ccs.c
	Build and Download your Project
	Watch Expressions and Breakpoints
	Run the Code
	GUI Composer

	TM4C123GXL-LaunchPad-15
	PWM
	Chapter Topics
	Pulse Width Modulation
	TM4C123GH6PM PWM
	PWM Generator Features
	Block Diagrams
	Lab 15: PWM
	Objective
	Servo Control
	Hardware
	Software
	main()
	Controlling the Servo
	Build and Run the Code

	Z-EK-TM4C123GXL Rev A Schematic

