

Getting Started with the Tiva™
TM4C123G LaunchPad Workshop

Student Guide and Lab Manual

Revision 1.22
November 2013

Technical Training
Organization

Important Notice

ii Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop

Important Notice
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright 2013 Texas Instruments Incorporated

Revision History
May 2013 – Revision 1.00 Initial release
May 2013 – Revision 1.01 errata
May 2013 – Revision 1.02 errata
May 2013 – Revision 1.03 errata
June 2013 – Revision 1.04 errata
July 2013 – Revision 1.10 Added Sensor Hub chapter
July 2013 – Revision 1.11 errata
August 2013 – Revision 1.12 Added security slide and errata
August 2013 – Revision 1.20 Added PWM chapter, updated labs to TivaWare 1.1, errata
October 2013 – Revision 1.21 CCS 5.5 and TivaWare 1.1 additional changes
November 2013 – Revision 1.22 minor errate

Mailing Address
Texas Instruments
Training Technical Organization
6550 Chase Oaks Blvd
Building 2
Plano, TX 75023

 Table of Contents

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - iii

Table of Contents

Introduction to the ARM® Cortex™-M4F and Peripherals ……………… 1-1

Code Composer Studio ……………………………………………………… 2-1

 Hints and Tips …………………………………………………………... 2-34

Introduction to TivaWare™, Initialization and GPIO ……………………. 3-1

Interrupts and the Timers ………………………………………………….. 4-1

ADC12 ………………………………………………………………………... 5-1

Hibernation Module ………………………………………………………… 6-1

USB …………………………………………………………………………... 7-1

Memory ………………………………………………………………………. 8-1

Floating-Point ………………………………………………………………... 9-1

BoosterPacks and Graphics Library ……………………………………….

Synchronous Serial Interface ……………………………………………….

UART …………………………………………………………………………

µDMA ………………………………………………………………………...

Sensor Hub .…………………………………………………………………...

PWM .……………………………………………..…………………………...

10-1

11-1

12-1

13-1

14-1

15-1

LaunchPad Board Schematics ………………………………………………

Appendix

Table of Contents

iv Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1 - 1

Introduction

Introduction
This chapter will introduce you to the basics of the Cortex-M4F and the Tiva™ C Series
peripherals. The lab will step you through setting up the hardware and software required for the
rest of the workshop.

Agenda

Portfolio ...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

The Wiki page for this workshop is located here:

http://www.ti.com/TM4C123G-Launchpad-Workshop

http://www.ti.com/TM4C123G-Launchpad-Workshop

Chapter Topics

1 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Chapter Topics
Introduction ..1-1

Chapter Topics ...1-2

TI Processor Portfolio and Tiva C Series Roadmap ..1-3

Tiva™ TM4C123G Series Overview..1-4

TM4C123GH6PM Specifics ...1-5

LaunchPad Board ..1-8
Lab1: Hardware and Software Set Up ...1-9

Objective..1-9
Procedure ...1-10

 TI Processor Portfolio and Tiva C Series Roadmap

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1 - 3

TI Processor Portfolio and Tiva C Series Roadmap

TI Embedded Processing Portfolio

TM4C123G MCU ...

Tiva™ TM4C123G Series Overview

1 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Tiva™ TM4C123G Series Overview

Tiva™ TM4C123G Microcontroller

Low power consumption
As low as 370 µA/MHz
500µs wakeup from low-power modes
RTC currents as low as 1.7µA
 Internal and external power control

Core and FPU ...

M4 Core and Floating-Point Unit

 32-bit ARM® Cortex™-M4 core
 Thumb2 16/32-bit code: 26% less memory & 25 % faster than pure 32-bit
 System clock frequency up to 80 MHz
 100 DMIPS @ 80MHz
 Flexible clocking system

 Internal precision oscillator
 External main oscillator with PLL support
 Internal low frequency oscillator
 Real-time-clock through Hibernation module

 Saturated math for signal processing
 Atomic bit manipulation. Read-Modify-Write using bit-banding
 Single Cycle multiply and hardware divider
 Unaligned data access for more efficient memory usage
 IEEE754 compliant single-precision floating-point unit
 JTW and Serial Wire Debug debugger access

 ETM (Embedded Trace Macrocell) available through Keil and IAR emulators

Memory ...

 TM4C123GH6PM Specifics

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1 - 5

TM4C123GH6PM Specifics

TM4C123GH6PM Memory

256KB Flash memory
 Single-cycle to 40MHz
 Pre-fetch buffer and speculative branch improves

performance above 40 MHz

32KB single-cycle SRAM with bit-banding
Internal ROM loaded with TivaWare software

 Peripheral Driver Library
 Boot Loader
 Advanced Encryption Standard (AES) cryptography

tables
 Cyclic Redundancy Check (CRC) error

detection functionality

2KB EEPROM (fast, saves board space)
 Wear-leveled 500K program/erase cycles
 Thirty-two 16-word blocks
 Can be bulk or block erased
 10 year data retention
 4 clock cycle read time

Peripherals ...

0x00000000 Flash

0x01000000 ROM

0x20000000 SRAM

0x22000000 Bit-banded SRAM

0x40000000 Peripherals & EEPROM

0x42000000 Bit-banded Peripherals

0xE0000000 Instrumentation, ETM, etc.

TM4C123GH6PM Peripherals
Battery-backed Hibernation Module

 Internal and external power control (through external voltage regulator)
 Separate real-time clock (RTC) and power source
 VDD3ON mode retains GPIO states and settings
 Wake on RTC or Wake pin
 Sixteen 32-bit words of battery backed memory
 5 µA Hibernate current with GPIO retention. 1.7 µA without

Serial Connectivity
 USB 2.0 (OTG/Host/Device)
 8 - UART with IrDA, 9-bit and ISO7816 support
 6 - I2C
 4 - SPI, Microwire or TI synchronous serial interfaces
 2 - CAN

More ...

TM4C123GH6PM Specifics

1 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

TM4C123GH6PM Peripherals
Two 1MSPS 12-bit SAR ADCs

 Twelve shared inputs
 Single ended and differential measurement
 Internal temperature sensor
 4 programmable sample sequencers
 Flexible trigger control: SW, Timers, Analog comparators, GPIO
 VDDA/GNDA voltage reference
 Optional hardware averaging
 3 analog and 16 digital comparators
 µDMA enabled

0 - 43 GPIO
 Any GPIO can be an external edge or level triggered

interrupt
 Can initiate an ADC sample sequence or µDMA transfer

directly
 Toggle rate up to the CPU clock speed on the Advanced

High-Performance Bus
 5-V-tolerant in input configuration

(except for PB0/1 and USB data pins when configured as GPIO)
 Programmable Drive Strength (2, 4, 8 mA or 8 mA with slew rate control)
 Programmable weak pull-up, pull-down, and open drain

More ...

TM4C123GH6PM Peripherals
Memory Protection Unit (MPU)

 Generates a Memory Management Fault on incorrect access to region

Timers
 2 Watchdog timers with separate clocks
 SysTick timer. 24-bit high speed RTOS and other timer
 Six 32-bit and Six 64-bit general purpose timers
 PWM and CCP modes
 Daisy chaining
 User enabled stalling on CPU Halt flag from debugger for all timers

32 channel µDMA
 Basic, Ping-pong and scatter-gather modes
 Two priority levels
 8,16 and 32-bit data sizes
 Interrupt enabled

More...

 TM4C123GH6PM Specifics

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1 - 7

TM4C123GH6PM Peripherals
Nested-Vectored Interrupt Controller (NVIC)

 7 exceptions and 71 interrupts with 8 programmable priority levels
 Tail-chaining and other low-latency features
 Deterministic: always 12 cycles or 6 with tail-chaining
 Automatic system save and restore

Two Motion Control modules. Each with:
 8 high-resolution PWM outputs (4 pairs)
 H-bridge dead-band generators and hardware polarity control
 Fault input for low-latency shutdown
 Quadrature Encoder Inputs (QEI)
 Synchronization in and between the modules

Board...

LaunchPad Board

1 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

LaunchPad Board

Tiva™ EK-TM4C123GXL LaunchPad

 ARM® Cortex™-M4F
64-pin 80MHz TM4C123GH6PM

 On-board USB ICDI
(In-Circuit Debug Interface)

 Micro AB USB port
 Device/ICDI power switch
 BoosterPack XL pinout also supports

legacy BoosterPack pinout
 2 user pushbuttons

(SW2 is connected to the WAKE pin)
 Reset button
 3 user LEDs (1 tri-color device)
 Current measurement test points
 16MHz Main Oscillator crystal
 32kHz Real Time Clock crystal
 3.3V regulator
 Support for multiple IDEs:

Lab...

 Lab1: Hardware and Software Set Up

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1 - 9

Lab1: Hardware and Software Set Up

Objective
The objective of this lab exercise is to download and install Code Composer Studio, as well as
download the various other support documents and software to be used with this workshop. Then
we’ll review the contents of the evaluation kit and verify its operation with the pre-loaded
quickstart demo program. These development tools will be used throughout the remaining lab
exercises in this workshop.

Lab 1: Hardware and Software Setup

 Install the software
 Review the kit contents
 Connect the hardware
 Test the QuickStart application

USB Emulation Connection

Agenda ...

Lab1: Hardware and Software Set Up

1 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Procedure

Hardware
1. You will need the following hardware:

• A 32 or 64-bit Windows XP, Windows7 or 8 laptop with 2G or more of free hard

drive space. 1G of RAM should be considered a minimum … more is better.
Apple laptops running any of the above OS’s are acceptable. Linux laptops are
not recommended.

• Wi-Fi is highly desirable
• If you are working the labs from home, a second monitor will make the process

much easier. If you are attending a live workshop, you are welcome to bring one.
• If you are attending a live workshop, please bring a set of earphones or ear-

buds.
• If you are attending a live workshop, you will receive an evaluation board;

otherwise you need to purchase one.
• If you are attending a live workshop, a digital multi-meter will be provided;

otherwise you need to purchase one to complete lab 6.
• If you are attending a live workshop, you will receive a second A-male to micro-

B-male USB cable. Otherwise, you will need to provide your own to complete
Lab 7.

• If you are attending a live workshop, you will receive a Kentec 3.5” TFT LCD
Touch Screen BoosterPack (Part# EB-LM4F120-L35). Otherwise, you will
need to provide your own to complete lab 10.

• Modified Olimex 8x8 LED array Boosterpacks SensorHubs and modified
R/C servos will be available to borrow during the live workshop. Otherwise you
will need to purchase and modify as covered in labs 11, 14 and 15.

As you complete each of the following steps, check the box in the title to assure that
you have done everything in order.

http://www.ti.com/tool/ek-tm4c123gxl
http://www.harborfreight.com/catalogsearch/result?q=multimeter
http://www.newark.com/kentec-electronics/eb-lm4f120-l35/exp-board-lcd-boosterpack-stellaris/dp/48W2063?in_merch=Popular%20Products
http://www.newark.com/kentec-electronics/eb-lm4f120-l35/exp-board-lcd-boosterpack-stellaris/dp/48W2063?in_merch=Popular%20Products
http://www.mouser.com/new/olimex/olimexLED8x8/
http://www.ti.com/tool/boostxl-senshub
http://www.hobbyking.com/hobbyking/store/__662__HXT900_9g_1_6kg_12sec_Micro_Servo.html

 Lab1: Hardware and Software Set Up

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1 - 11

Download and Install Code Composer Studio
2. ► Download and start the latest version of Code Composer Studio (CCS) 5.x web

installer from http://processors.wiki.ti.com/index.php/Download_CCS (do not download
any beta versions). Bear in mind that the web installer will require Internet access until it
completes. If the web installer version is unavailable or you can’t get it to work,
download, unzip and run the offline version. The offline download will be much larger
than the installed size of CCS since it includes all the possible supported hardware.

This version of the workshop was constructed using CCS version 5.5. Your version may
be later. For this and the next few steps, you will need a my.TI account (you will be
prompted to create one or log into your existing account).

Note that the “free” license of CCS will operate with full functionality for free while
connected to a Tiva™ C Series evaluation board.

3. If you downloaded the offline file, ► launch the ccs_setup_5.xxxxx.exe file in

the folder created when you unzipped the download.

4. ► Accept the Software License Agreement and click Next.

http://processors.wiki.ti.com/index.php/Download_CCS

Lab1: Hardware and Software Set Up

1 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

5. Unless you have a specific reason to install CCS in another location, ► accept the default
installation folder and ► click Next. If you have another version of CCS and you want to
keep it, we recommend that you install this version into a different folder.

6. ► Select “Custom” for the Setup type and click Next.

 Lab1: Hardware and Software Set Up

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1 - 13

7. In the next dialog, ► select the processors that your CCS installation will support. You
must select “Tiva C Series ARM MCUs” in order to run the labs in this workshop. You
can select other architectures, but the installation time and size will increase.
► Click Next.

8. In the Component dialog, keep the default selections and ► click Next.

Lab1: Hardware and Software Set Up

1 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

9. In the Emulators dialog, ► uncheck the Blackhawk and Spectrum Digital emulators,
unless you plan on using either of these. ► Click Next.

10. When you reach the final installation dialog, ► click Next. The web installer process
should take 15 - 30 minutes, depending on the speed of your connection. The offline
installation should take 10 to 15 minutes. When the installation is complete, uncheck the
“Launch Code Composer Studio v5” checkbox and then ► click Finish.

 Lab1: Hardware and Software Set Up

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1 - 15

11. There are several additional tools that require installation during the CCS install process.
Click “Yes” or “OK” to proceed when these appear.

Lab1: Hardware and Software Set Up

1 - 16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Install TivaWare™ for C Series (Complete)
12. ► Download and install the latest full version of TivaWare

from: http://www.ti.com/tool/sw-tm4c . The filename is SW-TM4C-x.x.exe . This
workshop was built using version 1.1. Your version may be a later one. If at all possible,
please install TivaWare into the default C:\TI\TivaWare_C_Series-x.x folder.

Install LM Flash Programmer

13. ► Download, unzip and install the latest LM Flash Programmer
(LMFLASHPROGRAMMER) from http://www.ti.com/tool/lmflashprogrammer .

Download and Install Workshop Lab Files
14. ► Download and install the lab installation file from the workshop materials section of

the Wiki site below. The file will install your lab files in:
C:\Tiva_TM4C123G_LaunchPad.
http://www.ti.com/TM4C123G-Launchpad-Workshop

Download Workshop Workbook
15. ► Download a copy of the workbook pdf file from the workshop materials section of the

Wiki site below to your desktop. It will be handy for copying and pasting code.

http://www.ti.com/TM4C123G-Launchpad-Workshop

Terminal Program

16. If you are running WindowsXP, you can use HyperTerminal as your terminal program.
Windows7 does not have a terminal program built-in, but there are many third-party
alternatives. The instructions in the labs utilize HyperTerminal and PuTTY. You can
download PuTTY from the address below.

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

Windows-side USB Examples
17. ► Download and install the Windows-side USB examples from this site:

www.ti.com/sw-usb-win

Download and Install GIMP
18. We will need a graphics manipulation tool capable of handling PNM formatted images.

GIMP can do that. ► Download and install GIMP from here: www.gimp.org

http://www.ti.com/tool/sw-tm4c
http://www.ti.com/tool/lmflashprogrammer
http://www.ti.com/TM4C123G-Launchpad-Workshop
http://www.ti.com/TM4C123G-Launchpad-Workshop
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://www.ti.com/sw-usb-win
http://www.gimp.org/

 Lab1: Hardware and Software Set Up

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1 - 17

LaunchPad Board Schematic
19. For your reference, the schematic is included at the end of this workbook.

Helpful Documents and Sites

20. There are many helpful documents that you should have, but at a minimum you should
have the following documents at your fingertips.

With TivaWare™ installed, look in C:\TI\TivaWare_C_Series-1.1\docs and
you’ll find:

Peripheral Driver User’s Guide (SW-DRL-UG-x.x.pdf)

USB Library User’s Guide (SW-USBL-UG-x.x.pdf)

Graphics Library User’s Guide (SW-GRL-UG-x.x.pdf)

LaunchPad Firmware User’s Guide (SW-EK-TM4C123GXL-UG-x.x.pdf)

21. Go to: http://www.ti.com/lit/gpn/tm4c123gh6pm and download the TM4C123GH6PM

Microcontroller Data Sheet. Tiva™ C Series data sheets are actually the complete user’s
guide to the device, so expect a large document.

22. If you are migrating from an earlier Stellaris design, you will find this document

ful: http://www.ti.com/litv/pdf/spma050a

23. Download the ARM Optimizing C/C++ Compilers User Guide
from http://www.ti.com/lit/pdf/spnu151 (SPNU151). Of particular interest are the sizes
for all the different data types in table 6-2. You may see the use of “TMS470” here …
that is the TI product number for its ARM devices.

24. You will find a “Hints” section at the end of chapter 2. This information will be handy if
you run into problems during the labs.

You can find additional information at these websites:

 Main page: www.ti.com/launchpad

Tiva C Series TM4C123G LaunchPad: http://www.ti.com/tool/ek-tm4c123gxl

TM4C123GH6PM folder: http://www.ti.com/product/tm4c123gh6pm

BoosterPack webpage: www.ti.com/boosterpack

LaunchPad Wiki: www.ti.com/launchpadwiki

http://www.ti.com/lit/gpn/tm4c123gh6pm
http://www.ti.com/litv/pdf/spma050a
http://www.ti.com/lit/pdf/spnu151
http://www.ti.com/launchpad
http://www.ti.com/tool/ek-tm4c123gxl
http://www.ti.com/product/tm4c123gh6pm
http://www.ti.com/boosterpack
http://www.ti.com/launchpadwiki

Lab1: Hardware and Software Set Up

1 - 18 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Kit Contents
25. ► Open up your kit

You should find the following in your box:

• The TM4C123GXL LaunchPad Board
• USB cable (A-male to micro-B-male)
• README First card
• If you are in a live workshop, you should find a 2nd USB cable

Initial Board Set-Up
26. Connecting the board and installing the drivers

The TM4C123GXL LaunchPad Board ICDI USB port (marked DEBUG and
shown in the picture below) is a composite USB port and consists of three con-
nections:

Stellaris ICDI JTAG/SWD Interface - debugger connection
Stellaris ICDI DFU Device - firmware update connection
Stellaris Virtual Serial Port - a serial data connection

Using the included USB cable, ► connect
the USB emulation connector on your evalu-
ation board (marked DEBUG) to a free USB
port on your PC. A PC’s USB port is capable
of sourcing up to 500 mA for each attached
device, which is sufficient for the evaluation
board. If connecting the board through a
USB hub, it must be a powered hub.

The drivers should install automatically. If
they do not, the steps to install them will be
covered shortly.

 Lab1: Hardware and Software Set Up

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1 - 19

QuickStart Application

Your LaunchPad Board came preprogrammed with a quickstart application. Once you
have powered the board, this application runs automatically. You probably already no-
ticed it running as you installed the drivers.

27. Make sure that the power switch in the upper left hand cor-
ner of your board is in the right-hand DEBUG position as
shown:

28. The software on the TM4C123GH6PM uses the timers as
pulse-width modulators (PWMs) to vary the intensity of all
three colors on the RGB LED (red, green, and blue) individually. By doing so,
your eye will perceive many different colors created by combining those primary
colors.

The two pushbuttons at the bottom of your board are marked SW1 (the left one)
and SW2 (the right one). ► Press or press and hold SW1to move towards the red-
end of the color spectrum. ► Press or press and hold SW2 to move towards the
violet-end of the color spectrum.

If no button is pressed for 5 seconds, the software returns to automatically chang-
ing the color display.

29. ► Press and hold both SW1 and SW2 for 3 seconds to enter hibernate mode. In
this mode the last color will blink on the LEDs for ½ second every 3 seconds. Be-
tween the blinks, the device is in the VDD3ON hibernate mode with the real-
time-clock (RTC) running. ► Pressing SW2 at any time will wake the device and
return to automatically changing the color display.

30. We can communicate with the board through the UART. The UART is connected
as a virtual serial port through the emulator USB connection.

The following steps will show how to open a connection to the board using
HyperTerminal (in WinXP) and PuTTY (in Windows 7 or 8).

Lab1: Hardware and Software Set Up

1 - 20 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

31. We need to find the COM port number of the Stellaris Virtual Serial Port in the
Device Manager. Skip to step 32 if you are using Windows 7 or 8.

Windows XP:

A. ► Click on the Windows Start button. ► Right-click on My Computer and se-
lect Properties from the drop-down menu.

B. In the System Properties window, ► click the Hardware tab.

C. ► Click the Device Manager button.

The Device Manager window displays a list of hardware devices installed on your
computer and allows you to set the properties for each device. If you see any of
the three devices listed in step 26 in the “Other” category, it means that the driver
for those devices is not installed. Run step 37, and then return to here.

► Expand the Ports heading and write number for the Stellaris Virtual Serial Port
here: COM_____

 Lab1: Hardware and Software Set Up

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1 - 21

32. Windows 7 or 8:

A. ► Click on the Windows Start button. ► Right-click on Computer and select

Properties from the drop-down menu.

B. ► Click on Device Manager on the left of the dialog.

The Device Manager window displays a list of hardware devices installed on your
computer and allows you to set the properties for each device. If you see any of
the three devices listed in step 26 in the “Other” category, it means that the driver
for those devices is not installed. Run step 37, and then return to here.

► Expand the Ports heading and write number for the Stellaris Virtual Serial Port
here: COM_____

Lab1: Hardware and Software Set Up

1 - 22 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

33. In WinXP, open HyperTerminal by ► clicking Start Run…, then type
hypertrm in the Open: box and click OK. Pick any name you like for your
connection and click OK. In the next dialog box, change the Connect using:
selection to COM##, where ## is the COM port number you noted earlier. Click
OK. Make the selections shown below and click OK.

When the terminal window opens, press Enter once and the LaunchPad board will
respond with a > indicating that communication is open. Skip to step 31.

34. In Win7 or 8, ► double-click on putty.exe. Make the settings shown below
and then click Open. Your COM port number will be the one you noted earlier

When the terminal window opens, press Enter once and the LaunchPad board will
respond with a > indicating that communication is open.

 Lab1: Hardware and Software Set Up

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction 1 - 23

35. You can communicate by ► typing the following commands and pressing enter:

help: will generate a list of commands and information

hib: will place the device into hibernation mode. Pressing SW2 will wake the
device.

rand: will start a pseudo-random sequence of colors

intensity: adjust the LED brightness between 0 to 100 percent. For instance
intensity 100 will change the LED to maximum brightness.

rgb: follow with a 6 hex character value to set the intensity of all three LEDs.
For instance: rgb FF0000 lights the red LED, rgb 00FF00 lights the blue LED and
rgb 0000FF lights the green LED.

36. ► Close your terminal program.

 You’re done.

37. Run this step only if your device drivers did not install properly.

► Obtain the ICDI drivers from your instructor or download the zip file
from http://www.ti.com/tool/stellaris_icdi_drivers. ► Unzip the file to a folder on
your desktop. ► Back in the Device Manager, right-click on each of the “Other”
devices (one at the time) and select Update Driver. In the following dialogs point
the wizard to the folder on your desktop with the unzipped files.

If the process seems to take longer than it should, the wizard is likely searching
on-line. Turn off your wireless or disconnect your network cable to prevent this.

► Make sure all three devices listed in step 26 are properly installed.

http://www.ti.com/tool/stellaris_icdi_drivers

Lab1: Hardware and Software Set Up

1 - 24 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Introduction

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 1

Code Composer Studio

Introduction
This chapter will introduce you to the basics of Code Composer Studio. In the lab, we will
explore some Code Composer features.

Agenda

IDEs...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

Chapter Topics

2 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Chapter Topics
Code Composer Studio ..2-1

Chapter Topics ...2-2

Tiva C Series Development Tools ..2-3

TI Software and Ecosystem ..2-4

Code Composer Studio Functional Overview ..2-5

Target Configuration and Emulators ...2-6
Projects and Workspaces ...2-7

Creating a New Project and Adding Files ...2-8

Portable Projects ...2-9

Path and Build Variables ...2-10

Build Configurations ..2-11

Licensing and Pricing ..2-12
Lab2: Code Composer Studio ..2-13

Objective..2-13

Lab 2 Procedure ..2-14
Add Path and Build Variables ...2-18
Add files to your project ..2-20
Build, Load, Run ...2-24
Perspectives ...2-26
VARS.INI – An Easier Way to Add Variables ..2-28

LM Flash Programmer ..2-30

Optional: Creating a bin File for the Flash Programmer ...2-32

Hints and Tips ..2-33

 Tiva C Series Development Tools

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 3

Tiva C Series Development Tools
Development Tools for Tiva C Series MCUs

Eval Kit
License

30-day full
function.

Upgradeable

32KB code size
limited.

Upgradeable

32KB code size
limited.

Upgradeable

Full function.
Onboard

emulation limited

Compiler GNU C/C++ IAR C/C++ RealView C/C++ TI C/C++

Debugger /
IDE gdb / Eclipse

C-SPY /
Embedded
Workbench

µVision CCS/Eclipse-
based suite

Full Upgrade

99 USD
personal
edition /

2800 USD
full support

2700 USD
MDK-Basic (256

KB) = €2000
(2895 USD)

445 USD

JTAG
Debugger J-Link, 299 USD U-Link, 199 USD XDS100, 79 USD

TI SW Ecosystem …

TI Software and Ecosystem

2 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

TI Software and Ecosystem

• High-level OS support and
TI-RTOS

• OS Independent support and
TI-Wares software packages

Run-Time Software Development
Tools

• TI Design Network: off-the-shelf
software, tools and services

• Forums & Wikis

• In-person and online training

Support &
Community

• CCStudio™ Integrated
Development Environment (IDE)
and other IDEs

• Optimizing compilers

• Design Kits & Evaluation Modules

TI Software and Tools Ecosystem

Run-Time Software …

TI Wares: minimizes programming
complexity w/ optimized drivers & OS
independent support for TI solutions

• Low-level driver libraries
• Peripheral programming interface
• Tool-chain agnostic C code
• Available today

TI-RTOS: provides an optimized real-
time kernel at no charge that works with TI

Wares
• Real-time kernel (SYSBIOS) + optimized

for TI devices:
• Scheduling

• Memory management
• Utilities

• Foundational software packages (TI
Wares)

• Libraries and examples
• TI RTOS available today

SYSBIOS + TI Wares

SDK
Software Development Kit

TI-RTOS

+ • File systems
• Network stack
• USB

Run-Time Software

CCS Functional Overview …

 Code Composer Studio Functional Overview

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 5

Code Composer Studio Functional Overview
Code Composer Studio Functional Overview

Compiler

Assembler Linker

.c

.asm .obj

.asm

Edit Debug

Simulator

Emulator/
LaunchPad

Target
Config

File

 Integrated Development Environment (IDE) based on Eclipse
 Contains all development tools – compilers, assembler, linker,

debugger, BIOS and includes one target – the Simulator
 GEL files initialize the debugger so that it understands where

memory, peripherals, etc. are

Standard
Runtime
Libraries

.lib

.mapUser.cmd

SYS/BIOS
Libraries

SYS/BIOS
Config
(.cfg) Bios.cmd

.out

.ccxml

Stand-Alone
Emulator

Target Board

.

.

.

.gel

Target configuration and Emulators…

Target Configuration and Emulators

2 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Target Configuration and Emulators

Target Configuration and Emulators
 The Target Configuration File specifies:

• Connection to the target (Simulator or Emulator type)
• Target device
• GEL file (if applicable) for hardware setup

 Emulator (Connection) Options
• Built-in and external emulators from TI, Blackhawk,

Spectrum Digital and others
• XDS100v1/v2, 200, 510, 560, 560v2

Projects and Workspaces …

 Projects and Workspaces

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 7

Projects and Workspaces
Projects and Workspaces (viewed in CCS)

WORKSPACE

PROJECT
Source

Projects and Workspaces …

Projects and Workspaces

 PROJECT folder contains:
• Build and tool settings (for use

in managed MAKE projects)
• Files can be linked to or

reside in the project folder
• Deleting a linked file within the

Project Explorer only deletes
the link

Workspace
• Project 1
• Project 2
• Project 3
• Settings/preferences

Project
• Source Files
• Header Files
• Library Files
• Build/tool settings

Source Files
• Code and Data

Header Files
• Declarations

Library Files
• Code and Data

Link

Link

Link

Link

 WORKSPACE folder contains:
• IDE settings and preferences
• Projects can reside in the workspace

folder or be linked from elsewhere
• When importing projects into the

workspace, linking is recommended
• Deleting a project within the Project

Explorer only deletes the link

Creating a New Project …

Creating a New Project and Adding Files

2 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Creating a New Project and Adding Files

Creating a New Project
File New CCS Project

(in Edit perspective…)

 Project Location
• Default = workspace
• Manual = anywhere you like

 Project templates
• Empty
• Empty but with a main.c
• Assembly only
• BIOS
• others

 Connection
• If target is specified, user can

choose “connection” (i.e. the
target configuration file)

Adding Files to a Project …

Adding Files to a Project
 Users can ADD (copy or link) files into their project

• SOURCE files are typically COPIED
• LIBRARY files are typically LINKED (referenced)

1 Right-click on project and select: 2 Select file(s) to add to the project:

3 Select “Copy” or “Link” COPY
• Copies file from original location

to project folder (two copies)

 LINK
• References (points to) source

file in the original folder
• Can select a “reference” point –

typically PROJECT_LOC

Making a Project Portable …

 Portable Projects

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 9

Portable Projects

Portable Projects
 Why make your projects “portable”?

• Simplifies project sharing
• You can easily re-locate your projects
• Allow simple changes to link to new releases of software libraries

Copied files are not a problem (they
move with the project folder)
Linked files may be an issue. They
are located outside the project
folder via a:

• absolute path, or
• relative path

This is the Path Variable
for a relative path. This
can be specified for every
linked file.

Path and Build Variables …

Path and Build Variables

2 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Path and Build Variables

Path Variables and Build Variables
 Path Variables

• Used by CCS (Eclipse) to store the base path for relative linked files
• Example: PROJECT_LOC is set to the path of your project, say

c:/Tiva_LaunchPad_Workshop/lab2/project

• Used as a reference point for relative paths, e.g.
${PROJECT_LOC}/../files/main.c

 Build Variables
• Used by CCS (Eclipse) to store base path for build libraries or files
• Example: CG_TOOL_ROOT is set to the path for the code

generation tools (compiler/linker)
• Used to find #include .h files, or object libraries, e.g.

${CG_TOOL_ROOT}/include or ${CG_TOOL_ROOT}/lib

 How are these variables defined?
• The variables in these examples are automatically defined

when you create a new project (PROJECT_LOC) and when you
install CCS with the build tools (CG_TOOL_ROOT)

• What about TivaWare or additional software libraries? You can define
some new variables yourself

Adding Variables …

Adding Variables
 Why are we doing this?

• We could use PROJECT_LOC for all linked resources or PROJECT_ROOT as
the base for build variables

• It is “almost” portable, BUT if you move or copy your project, you have
to put it at the same “level” in the file system

• Defining a link and build variable for TivaWare location gives us a relative
path that does NOT depend on location of the project (much more portable)

• Also, if we install a new version of TivaWare, we only need to change these
variables – which is much easier than creating new relative links

 How to add Path and Build Variables
• Project → Properties, expand the Resource category, click on

Linked Resources. You will see a tab for Path Variables, click New
to add a new path variable

• Project → Properties, click on Build category, click on the Variables tab,
Click New to add a new build variable

• In the lab, we’ll add a path variable and build variable TIVAWARE_INSTALL
to be the path of the latest TivaWare release

 Note:
• This method defines the variables as part of the project (finer control)
• You can also define variables as part of your workspace (do it once)

Build Configurations …

 Build Configurations

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 11

Build Configurations

Build Configurations
 Code Composer has two pre-defined BUILD CONFIGURATIONS:

• Debug (symbols, no optimization) – great for LOGICAL debug
• Release (no symbols, optimization) – great for PERFORMANCE

 Users can create their own custom build configurations
• Right-click on the project and select Properties
• Then click “Processor Options” or any other category:

CCS Licensing and Pricing …

Licensing and Pricing

2 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Licensing and Pricing

CCSv5 Licensing and Pricing
 Licensing

• Wide variety of options (node locked, floating, time based)
• All versions (full, DSK, free tools) use the same image
• Updates readily available online

 Pricing
• Includes FREE options noted below
• Annual subscription - $99 ($159 for floating license)

* recommended option: purchase Development Kit, use XDS100v1-2, & Free CCSv5
** $495 includes DVD, $445 is download only

Item Description Price Annual
Platinum Eval Tools Full tools with 90 day limit (all EMU) FREE
Platinum Bundle XDS100 use (EVM or simulator) FREE *
Platinum Node Lock Full tools tied to a machine $495/$445 ** $99
Platinum Floating Full tools shared across machines $795 $159
MSP430 Code-Limited MSP430 (16KB code limit) FREE

CCS FYI …

CCSv5 – For More Information

http://processors.wiki.ti.com/index.php/Category:CCS_Training Lab …

 Lab2: Code Composer Studio

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 13

Lab2: Code Composer Studio

Objective
In this lab, we’ll create a project that contains two source files, main.c and
tm4c123gh6pm_startup_ccs.c, which contain the code to blink an LED on your
LaunchPad board. The purpose of this lab is to practice creating projects and getting to know the
look and feel of Code Composer Studio. In later labs we’ll examine the code in more detail. So
far now, don’t worry about the C code we’ll be using in this lab.

Lab 2: Code Composer Studio

 Create a new project
 Experiment with some CCS features
 Use the LM Flash Programmer

Agenda ...

USB Emulation Connection

Lab 2 Procedure

2 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Lab 2 Procedure

Folder Structure for the Labs
1. Browse the directory structure for the workshop labs

► Using Windows Explorer, locate the following folder:

C:\TM4C123G_LaunchPad_Workshop

In this folder, you will find all the lab folders for the workshop. If you don’t see this folder on
your c:\ drive, check to make sure you have installed the workshop lab files. Expand
the \lab2 folder and you’ll notice that there are two sub-folders \files and \project.
The \files folder will sometimes contain additional files for your reference. The \project
folder will contain your project settings and files for both the projects that you create and the
projects we created that you will import. It will also contain solution files saved as text files. You
will be able to see these files in the Project Explorer and easily cut/paste the contents into your
files if and when necessary.

Note: When you create a project, you have a choice to use the “default location” which is the
CCS workspace or to select another location. In this workshop, we will not be using the
workspace for the project files; rather, we’ll use the folder where you installed the lab
files, C:\TM4C123G_LaunchPad_Workshop.

The workspace will only contain CCS settings, and links to the projects we create or
import.

 Lab 2 Procedure

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 15

Create a New CCS Project
2. Create a new project

► Launch CCS. When the “Select a workspace” dialog appears, ► browse to your My
Documents folder:

(In WinXP) C:\Documents and Settings\<user>\My Documents

(In Win7 or 8) C:\Users\<user>\My Documents

Obviously, replace <user> with your own username. The name and location for your workspace
isn’t critical, but we suggest that you use MyWorkspaceTM4C123G. Do not check the “Use this
as the default and do not ask again” checkbox. If at some point you accidentally check this box, it
can be changed in CCS.

► Click OK.

3. Select a CCS License

If you haven’t already licensed Code Composer, you may be asked to do so in the next few
installation steps. You can do this step manually from the CCS Help menu.

► Click on Help → Code Composer Studio Licensing Information.

► Select the “Upgrade” tab, and then select the “Free” license. As long as your PC is connected
to the LaunchPad board, CCS will have full functionality, free of charge.

4. Close TI Resource Explorer and/or Grace

When the “TI Resource Explorer” and/or “Grace” windows appear, close these windows using
the “X” on the tab. At this time, these tools support other processor families, e.g. MSP430.

Lab 2 Procedure

2 - 16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

5. Create a New Project

To create a new project, ► select Project → New CCS Project:

► For the project name, type lab2

► Uncheck the box “Use default location” and click the Browse…
button. Navigate to:
C:\TM4C123G_LaunchPad_Workshop\lab2\project

and click OK.

► Select Device family: ARM, for Variant,
type 123G in the filter text field, then select
Tiva TM4C123GH6PM
in the drop-down box (typing 123G
narrows the list making it easier to find the
exact part on the Tiva LaunchPad board.

► For Connection: choose Stellaris In-
Circuit Debug Interface . This is the built-
in emulator on the LaunchPad board.

► In the Project templates and examples
box, choose Empty Project and then click
Finish.

 Lab 2 Procedure

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 17

6. Review the CCS Editing GUI

Note the names of the Code Composer GUI panes above.

► In the Project Explorer pane on your desktop, click the symbol next to lab2, Includes
and targetConfigs to expand the project. Your project should look like the above.

7. You probably noticed that the New Project wizard added a startup file called

tm4c123gh6pm_startup_ccs.c into the project automatically. We’ll look more
closely at the contents of this file later.

Project Explorer
pane

Editor
pane

Problems
pane

Console
pane

Lab 2 Procedure

2 - 18 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Add Path and Build Variables
If you recall in the presentation, the path and build variables are used for:

• Path variable – when you ADD (link) a file to your project, you can specify a “relative to”
path. The default is PROJECT_LOC which means that your linked resource (like a .lib
file) will be linked relative to your project directory.

• Build variable – used for items such as the search path for include files associated with a
library – i.e. it is used when you build your project.

Variables can either have a PROJECT scope (that they only work for this project) or a
WORKSPACE scope (that they work across all projects in the workspace).

In the next step, we need to add (link) a library file and then add a search path for include files.
First, we’ll add these variables MANUALLY as PROJECT variables. Later, we will show you a
quick and easy way to add these variables into your WORKSPACE so that any project in your
workspace can use the variables.

8. Adding a Path Variable

To add a path variable, ► Right-click on your project and select
Properties. ► Expand the Resource list in the upper left-hand
corner as shown and click on Linked Resources:

You will see two tabs on the right side – Path
Variables and Linked Resources:

In the Path Variables tab, notice that PROJECT_LOC is listed and will display as the default path
variable for linked resources in your project.

We want to add a New variable to specify exactly where you installed TivaWare.

► Click New

► When the New Variable
dialog appears,
type TIVAWARE_INSTALL
for the name.

► For the Location, click
the Folder… button and
navigate to your TivaWare
installation. Click on the
folder name and then click
OK.

► Click OK. You should see your new path variable listed in the Path Variables list.

 Lab 2 Procedure

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 19

9. Adding a Build Variable

Now let’s add a build variable that we will use in the include search path for the INCLUDE files
associated with the TivaWare driver libraries.

► Click on Build and then the Variables tab:

► Click the Add button. When the Define a New
Build Variable dialog appears,
insert TIVAWARE_INSTALL into the Variables
name box.

► Check the “Apply to all
configurations” checkbox

► Change the Type to Directory and
browse to your Tivaware installation
folder.

► Click OK.

► Click OK again to save and close
the Build Properties window.

Lab 2 Procedure

2 - 20 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Add files to your project
We need to add main.c to the project. We also need to add the TivaWare driverlib.lib
object library. The C file should be copied to the project, the driverlib file should be linked.

10. Add (copy) the C file
► Select Project → Add Files… ► Navigate to the folder:

C:\TM4C123G_LaunchPad_Workshop\lab2\files

Select main.c and click Open.

Then select Copy Files and click OK.

 Lab 2 Procedure

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 21

11. Link the TivaWare driverlib.lib file to your project
► Select Project-Add Files… Navigate to:

C:\TI\TivaWare_C_Series-1.1\driverlib\ccs\Debug\driverlib.lib

 … and ► click Open. The File Operation dialog will open …

Use the TIVAWARE_INSTALL path variable you created earlier. This means that the LINK
(or reference to the library) file will be RELATIVE to the location of the TivaWare
installation. If you hand this project to someone else, they can install the project anywhere in
the file system and this link will still work. If you choose PROJECT_LOC, you would get a
path that is relative to the location of your project and it would require the project to be
installed at the same “level” in the directory structure. Another advantage of this approach is
that if you wanted to link to a new version, say TivaWare_C_Series-1.2, all you have
to do is modify the variable to the new folder name.

► Make the selections shown and click OK.

Your project should now look something like the screen capture below. Note
the symbol for driverlib.lib denotes a linked file.

Lab 2 Procedure

2 - 22 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

12. Add the INCLUDE search paths for the header files

► Open main.c by double-clicking on the
filename in the Project Explorer pane of CCS.
You should see “?” warnings in the left
margin which indicate “unresolved
inclusion”. Hover your cursor over the
question mark to see the helpful message.

Until now, you haven’t told the project where
to find these header files.

► Right-click on your lab2 project in the Project Explorer
pane and select Properties.

► Click on Build → ARM Compiler → Include Options (as
shown):

► In the lower-right panel, click the “+” sign next to Add
dir to #include search path

and add the following path using the build variable you created earlier. Place the variable name
inside braces, after the $ as shown:

${TIVAWARE_INSTALL}

► Click OK.

► Click OK again, and now you should see those “?” in main.c disappear after a moment.

Problem solved.

 Lab 2 Procedure

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 23

13. Examine your Project files using Windows Explorer

► Using Windows Explorer, locate your lab2 project folder:
C:\TM4C123G_LaunchPad_Workshop\lab2\project

Do you see main.c? It should be there because you copied it there. Do you see
the driverlib.lib file? This file should NOT be there because it’s only linked in your
project. Notice the other folders in the \project folder – these contain your CCS project-
specific settings. Close Windows Explorer.

14. Examine the properties of your new project

► In CCS, right-click on your project and select Properties. Click on each of the sections below:

Resource: This will show you the path of your current project and the resolved path if it is linked
into the workspace. Click on “Linked Resources” and both tabs associated with this.

What is the PROJECT_LOC path? _____________________________________

Are there any linked resources? If so, what file(s)? ____________________________

General: shows the main project settings. Notice you can change almost every field here AFTER
the project was created.

Build → ARM Compiler: These are the basic compiler settings along with every compiler
setting for your project.

Other: feel free to click on a few more settings, but don’t change any of them.

► Click Cancel.

Lab 2 Procedure

2 - 24 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Build, Load, Run
15. Build your project and fix any errors

► Assure that your LaunchPad is connected to your laptop. Build and load your
project to the TM4C123GH6PM flash memory by clicking the Debug button . If you
ever want to build the project without loading it, click the HAMMER (Build)
button.

► Fix any errors that occur. For the
present you can ignore any warnings. If
you encounter the error shown, your board
is disconnected, your power switch is in the
wrong position or your drivers are
incorrectly installed.

The program counter will run to main() and stop as shown:

16. Getting to know the CCS Debug GUI

Note the names of the Code Composer panes above. There are two pre-defined perspectives
in Code Composer; CCS Edit and CCS Debug. ► Click and drag the tabs (at the arrow
above) to the left so you can see both. Perspectives are only a “view” of the available data …
you can edit your code here without changing perspectives. And you can modify these or
create as many additional perspectives as you like. More on that in a moment.

Debug Pane Watch & Expressions Panes

Code/Editor Pane

Console and Problems Panes

 Lab 2 Procedure

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 25

17. Run your program.

► Click the Resume button or press the F8 key on your keyboard:

The tri-color LED on your target board should blink showing the three colors in sequence. If not,
attempt to solve the problem yourself for a few minutes, and then ask your instructor for help.

To stop your program running, ► click the Suspend button:

If the code stops with a “No source available …” indication, click on the main.c tab. Most of
the time in the while() loop is spent inside the delay function. That source file is not linked
into this project.

18. Set a Breakpoint

In the code window in the middle of your screen, double-click in the blue area to the left of the
line number of the GPIOPinWrite() instruction. This will set a breakpoint (it will look like

this:). Click the Resume button to restart the code. The program will stop at the
breakpoint and you will see an arrow on the left of the line number, indicating that the program
counter has stopped on this line of code. Note that the current ICDI driver does not support
adding or removing breakpoints while the processor is running. Click the Resume button a
few times or press the F8 key to run the code. Observe the LED on the LaunchPad board as you
do this.

19. View/Watch memory and variables.

► Click on the Expressions tab in the Watch and Expressions pane.

► Double-click on the ui8LED variable anywhere in main().

► Right-click on ui8LED and select:

► Click OK. Right-click on ui8LED in the Expressions pane, and select Number Format
Hex. Note the value of ui8LED.

Of course, the ui8LED variable is located in SRAM. You can see the address in the expressions
view. But let’s go see it in memory.

► Select View → Memory Browser:

► Type &ui8LED into the memory window to display
ui8LED in memory:

Lab 2 Procedure

2 - 26 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

20. View Registers

► Select View → Registers and notice that you can see the contents of all of the registers in your
target’s architecture. This is very handy for debugging purposes.

► Click on the arrow on the left to expand the register view. Note that non-system peripherals
that have not been enabled cannot be read. In this project you can view Core Registers,
GPIO_PORTA (where the UART pins are), GPIO_PORTF (where the LEDs and pushbuttons are
located), HIB, FLASH_CTRL, SYSCTL and NVIC.

Perspectives
CCS perspectives are quite flexible. You can customize the perspective(s) and save them as your
own custom views if you like. It’s easy to resize, maximize, open different views, close views,
and occasionally, you might wonder “How do I get things back to normal?”

21. Let’s move some windows around and then reset the perspective.

► Right-click on the Console window tab and select “Detached”. You can now move this
window around wherever you want. ► Right click again and select “Detached” to re-attach it.

In the editing pane, ► double-click on the tab
showing main.c:

Notice that the editor window maximizes to full screen.
Double-click on the tab again to restore it.

► Move some windows around on your desktop by clicking-and-holding on the tabs.

Whenever you get lost or some windows seem to have disappeared in either the CCS Edit, CCS
Debug or your own perspectives, you can restore the window arrangement back to the default.

► Find and click the Restore button on the left or right of your display. If you want to reset
the view to the factory default you can also choose Window → Reset Perspective:

NOTE: Do not use the perspective tabs to move back and forth between perspectives.
Clicking the CCS Debug tab only changes the view; it does not connect to the device,
download the code or start a debug session. Likewise, clicking the CCS Edit tab does
not terminate a debug session.

Only use the Debug and Terminate buttons to move between perspectives in this
workshop.

 Lab 2 Procedure

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 27

22. Remove all breakpoints

► Click Run Remove All Breakpoints from the menu bar or double-click on the breakpoint
symbol in the editor pane. Again, breakpoints can only be removed when the processor is not
running.

Terminate the debug session.
► Click the red Terminate button to terminate the debug session and return to the
CCS Edit perspective.

Lab 2 Procedure

2 - 28 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

VARS.INI – An Easier Way to Add Variables
Recall that earlier in the lab you created two variables – a path variable and a build variable. They
were the SAME variable set to the SAME path, but used in two different ways – one was
for linking files into your project and the other was used for include search paths during the build.

The variables you created earlier were available on a project level. So, if you had two projects
open in your workspace, the other project would NOT be able to use the variables that you
created.

Now, we’ll show you how to add these variables almost automatically to your WORKSPACE so
that ANY project in the workspace can use them.

23. Using vars.ini to set workspace path and build variables.

First, let’s look at a new file called vars.ini. ► Select File Open File and browse to:

C:\TM4C123G_LaunchPad_Workshop\vars.ini

► Click Open

You’ll find the single TIVAWARE_INSTALL variable listed inside the file:

Before we import this file into the workspace, let’s see where these variables are stored.

► Select Window Preferences. When the dialogue
appears, ► type “linked” into the filter field as shown –
then click on Linked Resources:

This displays all of your WORKSPACE level path
variables. We set these variables at the PROJECT level
before. We’re now ready to set them at the WORKSPACE
level so that all projects in our workspace can use the same
variables.

You could simply add the variable here manually, but
importing them from vars.ini is simpler and will set
BOTH variables at the same time.

► Type “build” into the filter area and click on Build
Variables as shown:

This is where you can set WORKSPACE level build
variables. Again, you could just add the variable now manually, but vars.ini will do this for
us.

Both the Linked Resources and Build Variables areas for your workspace were BLANK –
containing no workspace variables at all. That’s about to change…

► Click Cancel.

 Lab 2 Procedure

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 29

Let’s import the file vars.ini and see what happens….

► Select File Import, then expand
the CCS category, click on Build
Variables (as shown):

► Click Next and browse to the location of vars.ini:
C:\TM4C123G_LaunchPad_Workshop\vars.ini

► Click Open, then click Finish. ► Then select Window Preferences and locate your
WORKSPACE path variable and your build variable. Did they show up? It should have

imported the variable listed into both the path and build variable areas (as shown):

► Click OK. Minimize Code Composer.

Using VARS.INI – Conclusion
Now, ANY project in your workspace (like all the future labs in this workshop) can use these
variables without any more importing. They are part of your workspace. Also, if you export a
project and hand it to a friend, these workspace variables will NOT be included in the project.
That’s pretty handy. Why? Your friend may have a DIFFERENT install location for the tools. So,
if they use the same WORKSPACE VARIABLE names, but different paths, their builds will
work just fine. You now have a completely and totally PORTABLE PROJECT.

Note: If you change workspaces, you will have to re-import vars.ini to set these
variables again. If your tools installation changes, you’ll have to
edit vars.ini and re-import. So be careful.

LM Flash Programmer

2 - 30 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

LM Flash Programmer
LM Flash Programmer is a standalone programming GUI that allows you to program the flash of
a Tiva C Series device through multiple ports. Creating the files required for this is a separate
build step in Code Composer that it shown on the next page. If you have not done so already,
install the LM Flash Programmer onto your PC.

Make sure that Code Composer Studio is not actively running code in the CCS Debug
perspective… otherwise CCS and the Flash Programmer may conflict for control of the USB
port.

24. Open LM Flash Programmer

There should be a shortcut to the LM Flash Programmer on your desktop,
double-click it to open the tool. If the shortcut does not appear, go to Start
All Programs Texas Instruments Stellaris LM Flash Programmer and
click on LM Flash Programmer.

Your evaluation board should currently be programmed with the lab2 application and it should be
running. If the User LED isn’t blinking, press the RESET button on the board.
We’re going to program the original application back into the TM4C123GH6PM flash memory.

► Click the Configuration tab. Select the TM4C123G LaunchPad from the Quick Set pull-down
menu under the Configuration tab. If TM4C123G LaunchPad does not appear, select
LM4F120 LaunchPad from the list.

See the user’s guide for information on how to manually configure the tool for targets that are not
evaluation boards.

 LM Flash Programmer

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 31

25. Click the Program Tab, then click the Browse button and navigate to:
c:\TI\TivaWare_C_Series-1.1\examples\boards\ek-tm4c123gxl\
qs-rgb\ccs\Debug\qs-rgb.bin

and ► click Open. You may find that clicking on the symbol rather than the file name is
easier to navigate.

qs-rgb is the application that was programmed into the flash memory of the
TM4C123GH6PM when you removed it from the box.

Note that there are applications here which have been built with each supported IDE.

► Make sure that the following checkboxes are selected:

26. Program

► Click the Program button. You should see the programming and verification status at the
bottom of the window. After these steps are complete, the quickstart application should be
running on your LaunchPad.

27. Close the LM Flash Programmer

Optional: Creating a bin File for the Flash Programmer

2 - 32 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

Optional: Creating a bin File for the Flash Programmer
If you want to create a .bin file for use by the stand-alone programmer in any of the labs in this
workshop or in your own project, use these steps below.

Remember that the project will have to be open before you can change its properties.

28. Set Post-Build step to call “tiobj2bin” utility

► In CCS Project Explorer, right-click on your project and select Properties. On the left, click
Build and then the Steps tab. Paste the following commands into the Post-build steps Command
box.

Note: The following four “lines” should be entered as a single line in the Command
box. To make it easier, we included a text file that you can copy-paste.
Navigate to C:\TM4C123G_LaunchPad_Workshop\postbuild.txt to
find the complete command line.

"${CCS_INSTALL_ROOT}/utils/tiobj2bin/tiobj2bin"
"${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.bin"
"${CG_TOOL_ROOT}/bin/armofd" "${CG_TOOL_ROOT}/bin/armhex"
"${CCS_INSTALL_ROOT}/utils/tiobj2bin/mkhex4bin"

29. Rebuild your project

This post-build step will run after your project builds and the .bin file will be in
the C:\TM4C123G_LaunchPad_Workshop\labx\project\debug folder. You can
access this .bin in the CCS Project Explorer in your project by expanding the Debug folder.

If you try to re-build and you receive a message “gmake: Nothing to be done for
‘all’.”, this indicates that no files have changed in your project since the last time you
built it. You can force the project to build by first right-clicking the project and then select
Clean Project. Now you should be able to re-build your project which will run the post-build
step to create the .bin file.

30. If you opened lab2 to perform these steps, close it now.

 You’re done.

 Optional: Creating a bin File for the Flash Programmer

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio 2 - 33

Hints and Tips
There are several issues and errors that users commonly run into during the class. Here are a
few and their solutions:

1. Header files can’t be found

When you create the main.c file and include the header files, CCS doesn’t know the
path to those files and will tell you so by placing a question mark left of those lines.
After you change the Compiler and Linker options, these question marks should go
away and CCS should find the files during the build. If CCS reports that your header
files can’t be found, check the following:

a. Under the Project Properties click Resource on the left. Make sure that your
project is located
in: C:\TM4C123G_LaunchPad_Workshop\labx\project.
If you located it in the labx folder it is possible to adjust the Include and File
Search paths. If you located the project in the workspace, your best bet is to
remake the project.

b. Review the steps above and assure that your path and build variables are set
properly.

2. Unresolved symbols

This is usually the result of step 1b above or you are using a copy of the startup_ccs.c
file that includes the ISR name used in the Interrupts lab. You’ll have to remove the
extern declaration and change the timer ISR link back to the default.

3. Frequency out of range

This usually means that CCS tried to connect to the evaluation board and couldn’t.
This can be the result of the USB drivers or a hardware issue:

a. Unplug and re-plug the board from your USB port to refresh the drivers.

b. Open your Device Manager and verify that the drivers are correctly installed.

c. Assure that your emulator cable is connected to the DEBUG microUSB port,
not the DEVICE port, and make sure the PWR SELECT switch is set to the
rightmost DEBUG position.

4. Error loading dll file

This can happen in Windows7 when attempting to connect to the evaluation board.
This is a Win7 driver installation issue and can be resolved by copying the files:
FTCJTAG.dll and ftd2xx.dll to:

C:\CCS5.x\ccsv5\ccs_base\DebugServer\drivers

and

C:\Windows\System32

Download these files from http://www.ti.com/tool/lm_ftdi_driver .

http://www.ti.com/tool/lm_ftdi_driver

Optional: Creating a bin File for the Flash Programmer

2 - 34 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Code Composer Studio

5. Program run tools disappear in the Debug perspective

The tools aren’t part of the perspective, but part of the Debug window. Somehow you
closed the window. Click View Debug from the menu bar or click the Restore
button.

6. CCS doesn’t prompt for a workspace on startup

You checked the “don’t ask anymore” checkbox. You can switch workspaces by
clicking File Switch workspace … or you can do the following: In CCS, click
Window Preferences. Now click the + next to General, Startup and Shutdown, and
then click Workspaces. Check the “Prompt for workspace on startup” checkbox and
click OK.

7. The windows have changed in the CCS Edit or Debug perspective from the
default and you want them back

On the CCS menu bar, click Window Reset Perspective … and then click Yes.

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3 - 1

TivaWare™, Initialization and GPIO

Introduction
This chapter will introduce you to TivaWare, the initialization of the device and the operation of
the GPIO. The lab exercise uses TivaWare API functions to set up the clock, and to configure and
write to the GPIO port.

Agenda

TivaWare...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

Chapter Topics

3 - 2 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Chapter Topics
TivaWare™, Initialization and GPIO ..3-1

Chapter Topics ...3-2

TivaWare ..3-3

Clocking ...3-4

GPIO ..3-6

Lab 3: Initialization and GPIO ..3-9
Objective..3-9
Procedure ...3-10

 TivaWare

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3 - 3

TivaWare

Peripheral Driver Library
 High-level API interface to complete peripheral set
 License & royalty free use for TI Cortex-M parts
 Available as object library and as source code
 Programmed into the on-chip ROM

TivaWare™ for C Series Features

Graphics Library
 Graphics primitive and widgets
 153 fonts plus Asian and Cyrillic
 Graphics utility tools

USB Stacks and Examples
 USB Device and Embedded Host compliant
 Device, Host, OTG and Windows-side examples
 Free VID/PID sharing program

Ethernet
 lwip and uip stacks with 1588 PTP modifications
 Extensive examples

Extras
 Wireless protocols
 IQ math examples
 Bootloaders
 Windows side applications

ISP Options...

Sensor Library
 An interrupt driven I2C master driver for

handling I2C transfers
 A set of drivers for I2C connected sensors
 A set of routines for common sensor operations
 Three layers: Transport, Sensor and

Processing

In System Programming Options

Tiva Serial Flash Loader
 Small piece of code that allows programming of the flash without the need for a

debugger interface.
 All Tiva C Series MCUs ship with the loader in flash
 UART or SSI interface option
 The LM Flash Programmer interfaces with the serial flash loader
 See application note SPMA029

Tiva Boot Loader
 Preloaded in ROM or can be programmed at the beginning of flash to act as an

application loader
 Can also be used as an update mechanism for an application running on a Tiva

microcontroller.
 Interface via UART (default), I2C, SSI, Ethernet, USB (DFU H/D)
 Included in the Tiva Peripheral Driver Library with full applications examples

Fundamental Clocks...

Clocking

3 - 4 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Clocking

Fundamental Clock Sources

Precision Internal Oscillator (PIOSC)
 16 MHz ± 3%

Main Oscillator (MOSC) using…
 An external single-ended clock source
 An external crystal

Internal 30 kHz Oscillator
 30 kHz ± 50%
 Intended for use during Deep-Sleep power-saving modes

Hibernation Module Clock Source
 32,768Hz crystal
 Intended to provide the system with a real-time clock source

SysClk Sources...

System (CPU) Clock Sources
The CPU can be driven by any of the fundamental clocks …
 Internal 16 MHz
 Main
 Internal 30 kHz
 External Real-Time
- Plus -
 The internal PLL (400 MHz)
 The internal 16MHz oscillator divided by four (4MHz ± 3%)

Clock Source Drive PLL? Used as SysClk?
Internal 16MHz Yes Yes
Internal 16Mhz/4 No Yes
Main Oscillator Yes Yes
Internal 30 kHz No Yes
Hibernation Module No Yes
PLL - Yes

Clock Tree...

 Clocking

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3 - 5

Tiva C Series Clock Tree

driverLib API SysCtlClockSet() selects: SYSDIV divider setting
 OSC or PLL
 Main or Internal oscillator
 Crystal frequency GPIO...

GPIO

3 - 6 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

GPIO

General Purpose IO

 Any GPIO can be an interrupt:
 Edge-triggered on rising, falling or both
 Level-sensitive on high or low values

 Can directly initiate an ADC sample sequence or µDMA transfer
 Toggle rate up to the CPU clock speed on the Advanced

High-Performance Bus. ½ CPU clock speed on the Standard.
 5V tolerant in input configuration
 Programmable Drive Strength (2, 4, 8mA or 8mA with slew rate

control)
 Programmable weak pull-up, pull-down, and open drain
 Pin state can be retained during Hibernation mode

Pin Mux Utility...

Pin Mux Utility

Masking...

 Allows the user to graphically configure the device pin-out
 Generates source and header files for use with any of the supported IDE’s

http://www.ti.com/tool/tm4c_pinmux

http://www.ti.com/tool/tm4c_pinmux

http://www.ti.com/tool/tm4c_pinmux

 GPIO

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3 - 7

0 0 1 0 0 1 1 0 0 0000…

GPIO Address Masking

The register we want to change is GPIO Port D (0x4005.8000)
Current contents of the register is: 0 0 0 1 1 1 0 1

Instead of writing to GPIO Port D directly, write to
0x4005.8098. Bits 9:2 (shown here) become a bit-mask

for the value you write.

0 0 1 1 1 0 1 1

1 1 1 0 1 0 1 1

Only the bits marked as “1” in the bit-mask are
changed.

GPIO Port D (0x4005.8000)

The value we will write is 0xEB:
Write Value (0xEB)

New value in GPIO Port D (note
that only the red bits were written)

Each GPIO port has a base address. You can write an 8-bit value directly to this base
address and all eight pins are modified. If you want to modify specific bits, you can use a
bit-mask to indicate which bits are to be modified. This is done in hardware by mapping
each GPIO port to 256 addresses. Bits 9:2 of the address bus are used as the bit mask.

GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_5|GPIO_PIN_2|GPIO_PIN_1, 0xEB);
Note: you specify base address, bit mask, and value to write.

The GIPOPinWrite() function determines the correct address for the mask.
GPIOLOCK ...

The masking technique used on Tiva C Series GPIO is similar to the “bit-banding” technique
used in memory. To aid in the efficiency of software, the GPIO ports allow for the modification
of individual bits in the GPIO Data (GPIODATA) register by using bits [9:2] of the address bus
as a mask. In this manner, software can modify individual GPIO pins in a single, atomic read-
modify-write (RMW) instruction without affecting the state of the other pins. This method is
more efficient than the conventional method of performing a RMW operation to set or clear an
individual GPIO pin. To implement this feature, the GPIODATA register covers 256 locations in
the memory map.

.

GPIO

3 - 8 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Critical Function GPIO Protection
 Six pins on the device are protected against accidental

programming:
• PC3,2,1 & 0: JTAG/SWD
• PD7 & PF0: NMI

 Any write to the following registers for these pins will not be
stored unless the GPIOLOCK register has been unlocked:
• GPIO Alternate Function Select register
• GPIO Pull Up or Pull Down select registers
• GPIO Digital Enable register

 The following sequence will unlock the GPIOLOCK register for
PF0 using direct register programming:

HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
HWREG(GPIO_PORTF_BASE + GPIO_O_CR) |= 0x01;
HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = 0;

 Reading the GPIOLOCK register returns it to lock status

Lab...

 Lab 3: Initialization and GPIO

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3 - 9

Lab 3: Initialization and GPIO

Objective
In this lab we’ll learn how to initialize the clock system and the GPIO peripheral using TivaWare.
We’ll then use the GPIO output to blink an LED on the evaluation board.

Lab 3: Initialization and GPIO

 Configure the system clock
 Enable and configure GPIO
 Use a software delay to toggle an LED

on the evaluation board

Agenda ...

USB Emulation Connection

Lab 3: Initialization and GPIO

3 - 10 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Procedure

Create lab3 Project

1. ► Maximize Code Composer. On the CCS menu bar select File New CCS Project.
Make the selections shown below. Make sure to uncheck the “Use default location”
checkbox and select the correct path to the project folder as shown. In the variant box,
just type “123G” to narrow the results in the right-hand box. In the Project templates and
examples window, select Empty Project (with main.c). Click Finish.

When the wizard completes, click the next to lab3 in the Project Explorer pane to
expand the project. Note that Code Composer has automatically added a mostly empty
main.c file to your project as well as the startup file.

Note: We placed a file called main.txt in the lab3/project folder which contains
the final code for the lab. If you run into trouble, you can refer to this file.

 Lab 3: Initialization and GPIO

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3 - 11

Header Files
2. ► Delete the current contents of main.c.

TivaWare™ is written using the ISO/IEC 9899:1999 (or C99) C programming standards
along with the Hungarian standard for naming variables. The C99 C programming
conventions make better use of available hardware, including the IEE754 floating point
unit. To keep everything looking the same, we’re going to use those guidelines.

► Type (or cut/paste from the pdf file) the following lines into main.c to include the
header files needed to access the TivaWare APIs as well as a variable definition:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"

uint8_t ui8PinData=2;

The use of the < > restricts the search path to only the specified path. Using the " "
causes the search to start in the project directory. For includes like the two standard ones,
you want to assure that you’re accessing the original, standard files … not one’s that may
have been modified.

stdint.h: Variable definitions for the C99 standard

stdbool.int: Boolean definitions for the C99 standard

hw_memmap.h : Macros defining the memory map of the Tiva C Series device. This
includes defines such as peripheral base address locations such as GPIO_PORTF_BASE.

hw_types.h : Defines common types and macros

sysctl.h : Defines and macros for System Control API of DriverLib. This includes
API functions such as SysCtlClockSet and SysCtlClockGet.

gpio.h : Defines and macros for GPIO API of DriverLib. This includes API functions
such as GPIOPinTypePWM and GPIOPinWrite.

uint8_t ui8PinData=2; : Creates an integer variable called ui8PinData and
initializes it to 2. This will be used to cycle through the three LEDs, lighting them one at
a time. Note that the C99 type is an 8-bit unsigned integer and that the variable name
reflects this.

You will see question marks to the left of the include lines in main.c displayed in the
edit pane, telling us that the include files can’t be found. We’ll fix this later.

Lab 3: Initialization and GPIO

3 - 12 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

main() Function
3. Let’s drop in a template for our main function.

► Leave a line for spacing and add this code after the previous declarations:

int main(void)

{

}

If you type this in, notice that the editor will automatically add the closing brace when
you add the opening one. Why wasn’t this thought of sooner?

 Lab 3: Initialization and GPIO

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3 - 13

Clock Setup
4. Configure the system clock to run using a 16MHz crystal on the main oscillator, driving

the 400MHz PLL. The 400MHz PLL oscillates at only that frequency, but can be driven
by crystals or oscillators running between 5 and 25MHz. There is a default /2 divider in
the clock path and we are specifying another /5, which totals 10. That means the System
Clock will be 40MHz.

► Enter this single line of code inside main():

SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

The diagram below is an abbreviated drawing of the clock tree to emphasize the System
Clock path and choices. Note the darkened path.

The diagram below is an excerpt from the LaunchPad board schematic. Note that the
crystal attached to the main oscillator inputs is 16MHz, while the crystal attached to the
real-time clock (RTC) inputs is 32,768Hz.

Lab 3: Initialization and GPIO

3 - 14 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

GPIO Configuration
5. Before calling any peripheral specific driverLib function, we must enable the clock

for that peripheral. If you fail to do this, it will result in a Fault ISR (address fault).This is
a common mistake for new Tiva C Series users. The second statement below configures
the three GPIO pins connected to the LEDs as outputs. The excerpt below of the
LaunchPad board schematic shows GPIO pins PF1, PF2 and PF3 are connected to the
LEDs.

► Leave a line for spacing, then enter these two lines of code inside main() after the
line in the previous step.

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

The base addresses of the GPIO ports listed in the User Guide are shown below. Note
that they are all within the memory map’s peripheral section shown in module 1. APB
refers to the Advanced Peripheral Bus, while AHB refers to the Advanced High-
Performance Bus. The AHB offers better back-to-back performance than the APB bus.
GPIO ports accessed through the AHB can toggle every clock cycle vs. once every two
cycles for ports on the APB. In power sensitive applications, the APB would be a better
choice than the AHB. In our labs, GPIO_PORTF_BASE is 0x40025000.

GPIO Port A (APB): 0x4000.4000
GPIO Port A (AHB): 0x4005.8000
GPIO Port B (APB): 0x4000.5000
GPIO Port B (AHB): 0x4005.9000
GPIO Port C (APB): 0x4000.6000
GPIO Port C (AHB): 0x4005.A000
GPIO Port D (APB): 0x4000.7000
GPIO Port D (AHB): 0x4005.B000
GPIO Port E (APB): 0x4002.4000
GPIO Port E (AHB): 0x4005.C000
GPIO Port F (APB): 0x4002.5000
GPIO Port F (AHB): 0x4005.D000

 Lab 3: Initialization and GPIO

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3 - 15

while() Loop
6. Finally, create a while(1) loop to send a “1” and “0” to the selected GPIO pin, with an

equal delay between the two.

SysCtlDelay() is a loop timer provided in TivaWare. The count parameter is the loop
count, not the actual delay in clock cycles. Each loop is 3 CPU cycles.

To write to the GPIO pin, use the GPIO API function call GPIOPinWrite. Make sure
to read and understand how the GPIOPinWrite function is used in the datasheet. The
third data argument is not simply a 1 or 0, but represents the entire 8-bit data port. The
second argument is a bit-packed mask of the data being written.

In our example below, we are writing the value in the ui8PinData variable to all three
GPIO pins that are connected to the LEDs. Only those three pins will be written to based
on the bit mask specified. The final instruction cycles through the LEDs by making
ui8PinData equal to 2, 4, 8, 2, 4, 8 and so on. Note that the values sent to the pins match
their positions; a “one” in the bit two position can only reach the bit two pin on the port.

Now might be a good time to look at the Datasheet for your Tiva C Series device. Check
out the GPIO chapter to understand the unique way the GPIO data register is designed
and the advantages of this approach.

► Leave a line for spacing, and then add this code after the code in the previous step.

while(1)
{
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, ui8PinData);
SysCtlDelay(2000000);
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);
SysCtlDelay(2000000);
if(ui8PinData==8) {ui8PinData=2;} else {ui8PinData=ui8PinData*2;}
}

 If you find that the indentation of your code doesn’t look quite right, ► select all of your
code by clicking CTRL-A and then right-click on the selected code. Select Source
Correct Indentation. Notice the other great stuff under the Source and Surround With
selections.

Lab 3: Initialization and GPIO

3 - 16 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

7. ► Click the Save button to save your work. Your code should look something like this:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"

uint8_t ui8PinData=2;

int main(void)
{
 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

 while(1)
 {
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1| GPIO_PIN_2| GPIO_PIN_3, ui8PinData);
 SysCtlDelay(2000000);
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);
 SysCtlDelay(2000000);
 if(ui8PinData==8) {ui8PinData=2;} else {ui8PinData=ui8PinData*2;}
 }
}

If you’re having problems, you can cut/paste this code into main.c or you can cut/paste
from the main.txt file in your Project Explorer pane.

If you were to try building this code now (please don’t), it would fail. Note the question
marks next to the include statements … CCS has no idea where those files are located …
we still need to set our build options.

__

NOTE: There is a delay of 3 to 6 clock cycles between enabling a peripheral and being
able to use it. In most cases, the amount of time required by the API coding itself
prevents any issues, but there are situations where you may be able to cause a system
fault by attempting to access the peripheral before it becomes available.

A good programming habit is to interleave your peripheral enable statements as follows:

Enable ADC
Enable GPIO
Config ADC
Config GPIO

This interleaving will prevent any possible system faults without incorporating software
delays.

__

 Lab 3: Initialization and GPIO

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3 - 17

Startup Code
8. In addition to the main file you have created, you will also need a startup file specific to

the tool chain you are using. This file contains the vector table, startup routines to copy
initialized data to RAM and clear the bss section, and default fault ISRs. The New Project
wizard automatically added a copy of this file into the project for us.

► Double-click on tm4c123gh6pm_startup_ccs.c in your Project Explorer pane
and take a look around. Don’t make any changes at this time. Close the file.

Set the Build Options
9. ► Right-click on Lab3 in the Project Explorer pane and select Properties.

Click Include Options under ARM Compiler. In the bottom, include
search path pane, click the Add button and add the following search path:

${TIVAWARE_INSTALL}

Remember that those are braces, not parentheses. This is the path we created earlier by
using the vars.ini file in the lab2 project. Since those paths are defined at the
workspace level, we can simply use it again here.

► Click OK.

After a moment, CCS will refresh the project and you should see the question marks dis-
appear from the include lines in main.c.

Lab 3: Initialization and GPIO

3 - 18 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

10. Add the Driver Library File

The driverlib.lib file needs to be in the lab3 project. In lab2 we added a link to this
file. You can see it under your lab2 project in the Project Explorer pane. Can it be as
simple as dragging it over? Let’s try it.

► Click and hold driverlib.lib under the lab2 project in the Project Explorer
pane. ► Drag it onto the lab3 project and release7. You should now see the file under
lab3.

The file that was linked to lab2 is now linked to lab3. That was even easier.

11. It can be easy to get confused and mistakenly build or work on the wrong project or file.
To reduce that possibility, ► right-click on lab2 and select Close Project. This will
collapse the project and close any open files you have from the project. You can open it
again at any time. ► Click on the lab3 project name to make sure the project is active. It
will say lab3 [Active – Debug]. This tells you that the lab3 project is active and
that the build configuration is debug.

12. Stack Considerations

► Test build the lab3 to check for errors by clicking the Build (Hammer)
button. Note that a warning appears in the Problems pane in the lower right
of CCS. This error; “creating .stack section with default size of 0x800…”
tells us that the stack size was not specified. We can eliminate this warning
by specifying the stack size(s).

► Right-click on the lab3 project in the Project Explorer pane and select Properties. Expand
Build ARM Linker and click on Basic Options. Find the Heap size and Set C system
stack size boxes as shown below.

► Enter 0 for the Heap size and 100 for the C system stack size and click OK. We won’t be
using the heap in these labs and our need for a C stack is very limited. Failure to monitor
the size of your stack(s) can result in significant amount of memory being wasted. Test
build again to make sure the warning no longer appears.

 These settings will be made for you in the rest of the labs.

 Lab 3: Initialization and GPIO

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3 - 19

Compile, Download and Run the Code

13. ► Compile and download your application by clicking the Debug button on
the menu bar. If you are prompted to save changes, do so. If you have any
issues, correct them, and then click the Debug button again (see the hints
page in section 2). After a successful build, the CCS Debug perspective will appear.

► Click the Resume button to run the program that was downloaded to the
flash memory of your device. You should see the LEDs flashing. If you want
to edit the code to change the delay timing or which LEDs that are flashing,
go ahead.

If you suspend the code and get the message “No source available for …”, simply close
that editor tab. The source code for that function is not present in our project. It is only
present as a library file.

► Click on the Terminate button to return to the CCS Edit perspective.

Lab 3: Initialization and GPIO

3 - 20 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Examine the Tiva C Series Pin Masking Feature

14. Let’s change the code so that all three LEDs are on all the time. Make the following
changes:

► Find the line containing uint8_t ui8PinData=2; and change it to
uint8_t ui8PinData=14; That’s 8+4+2=14, meaning all three LEDs will light.

► Find the line containing if(ui8PinData … and comment it out by
adding // to the start of the line.

► Click the Save button to save your changes.

15. ► Compile and download your application by clicking the Debug button on the menu
bar. ► Click the Resume button to run the code. With all three LEDs being lit at the
same time, you should see them flashing an almost white color.

16. Now let’s use the pin masking feature to light the LEDs one at the time. Remember that
we don’t have to go back to the CCS Edit perspective to edit the code. We can do it right
here. In the code window, look at the first line containing GPIOPinWrite(). The pin
mask here is GPIO_PIN_1| GPIO_PIN_2| GPIO_PIN_3, meaning that all three of
these bit positions, corresponding to the positions of the LED will be sent to the GPIO
port. ► Change the bit mask to GPIO_PIN_1. The line should look like this:

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, ui8PinData);

17. ► Compile and download your application by clicking the Debug button on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to flash: _________

► Click the Resume button. If you predicted red, you were correct.

18. In the code window, ► change the first GPIOPinWrite() line to:

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, ui8PinData);

19. ► Compile and download your application by clicking the Debug button on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to flash: _________

► Click the Resume button. If you predicted blue, you were correct.

20. In the code window, ► change the first GPIOPinWrite() line to:

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, ui8PinData);

 Lab 3: Initialization and GPIO

Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization 3 - 21

21. ► Compile and download your application by clicking the Debug button on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to flash: _________

► Click the Resume button. If you predicted green, you were correct.

22. Let’s change the code back to the original set up: Make the following changes:

► Find the line containing uint8_t ui8PinData=14; and change it back to
uint8_t ui8PinData=2;

► Find the line containing if(ui8PinData … and uncomment it

► Find the line containing the first GPIOPinWrite() and change it back to:

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1| GPIO_PIN_2| GPIO_PIN_3, ui8PinData);

23. ► Compile and download your application by clicking the Debug button on the menu
bar. When prompted to save your work, click OK. When you are asked if you want to
terminate the debug sessions, click Yes. Click the Resume button and verify that the code
works like it did before.

24. ► Click on the Terminate button to return to the CCS Edit perspec-
tive. ► Minimize Code Composer Studio.

Homework idea: Look at the use of the ButtonsPoll() API call in the qs-rgb.c
file in the quickstart application (qs-rgb) folder. Write code to use that API function to
turn the LEDs on and off using the pushbuttons.

 You’re done.

Lab 3: Initialization and GPIO

3 - 22 Getting Started With the Tiva TM4C123G LaunchPad Workshop - Initialization

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4 - 1

Interrupts and the Timers

Introduction
This chapter will introduce you to the use of interrupts on the ARM® Cortex-M4® and the general
purpose timer module (GPTM). The lab will use the timer to generate interrupts. We will write a
timer interrupt service routine (ISR) that will blink the LED.

Agenda

NVIC...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

Chapter Topics

4 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Chapter Topics
Interrupts and the Timers ...4-1

Chapter Topics ...4-2

Cortex-M4 NVIC ..4-3

Cortex-M4 Interrupt Handing and Vectors ..4-7

General Purpose Timer Module ..4-9

Lab 4: Interrupts and the Timer ...4-11
Objective..4-11
Procedure ...4-12

 Cortex-M4 NVIC

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4 - 3

Cortex-M4 NVIC
Nested Vectored Interrupt Controller (NVIC)
 Handles exceptions and interrupts
 8 programmable priority levels, priority grouping
 7 exceptions and 71 Interrupts
 Automatic state saving and restoring
 Automatic reading of the vector table entry
 Pre-emptive/Nested Interrupts
 Tail-chaining
 Deterministic: always 12 cycles or 6 with tail-chaining

t

Motor control ISRs (e.g. PWM, ADC)

Communication ISRs (e.g. CAN)

Main application (foreground)

Tail Chaining...

Cortex-M4 NVIC

4 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

PUSH POPISR 1 POP ISR 2

PUSH ISR 1 POPISR 2

12
Cycles

IRQ1

IRQ2

Typical processor

Cortex-M4
Interrupt handling in

HW 6
Cycles

12
Cycles

Interrupt Latency - Tail Chaining

Highest
Priority

Tail-chaining

Pre-emption …

PUSH

In the above example, two interrupts occur simultaneously.

In most processors, interrupt handling is fairly simple and each interrupt will start a
PUSH PROCESSOR STATE – RUN ISR – POP PROCESSOR STATE process. Since IRQ1 was
higher priority, the NVIC causes the CPU to run it first. When the interrupt handler (ISR) for the
first interrupt is complete, the NVIC sees a second interrupt pending, and runs that ISR. This is
quite wasteful since the middle POP and PUSH are moving the exact same processor state back
and forth to stack memory. If the interrupt handler could have seen that a second interrupt was
pending, it could have “tail-chained” into the next ISR, saving power and cycles.

The Tiva C Series NVIC does exactly this. It takes only 12 cycles to PUSH and POP the
processor state. When the NVIC sees a pending ISR during the execution of the current one, it
will “tail-chain” the execution using just 6 cycles to complete the process.

If you are depending on interrupts to be run quickly, the Tiva C Series devices offer a huge
advantage here.

 Cortex-M4 NVIC

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4 - 5

Interrupt Latency – Pre-emption

ISR 1 ISR 2

ISR 1 POP ISR 2

1-
12

Cycles

IRQ1

IRQ2

Cortex-M4

6
Cycles

Highest
Priority

POP

12
Cycles

Typical processor

Late arrival...

PUSHPOP POP

In this example, the processor was in the process of popping the processor status from the stack
for the first ISR when a second ISR occurred.

In most processors, the interrupt controller would complete the process before starting the entire
PUSH-ISR-POP process over again, wasting precious cycles and power doing so.

The Tiva C Series NVIC is able to stop the POP process, return the stack pointer to the proper
location and “tail-chain” into the next ISR with only 6 cycles.

Again, this is a huge advantage for interrupt handling on Tiva C Series devices.

Cortex-M4 NVIC

4 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

ISR 2

Interrupt Latency – Late Arrival

IRQ1

IRQ2

ISR 2ISR 1

PUSH POPCortex-M4

Highest
Priority

12
Cycles

6
Cycles

ISR 1

Typical processor

Interrupt handling...

PUSH POPPUSH PUSH POP

In this example, a higher priority interrupt has arrived just after a lower priority one.

In most processors, the interrupt controller is smart enough to recognize the late arrival of a
higher priority interrupt and restart the interrupt procedure accordingly.

The Stellaris NVIC takes this one step further. The PUSH is the same process regardless of the
ISR, so the Stellaris NVIC simply changes the fetched ISR. In between the ISRs, “tail chaining”
is done to save cycles.

Once more, Stellaris devices handle interrupts with lower latency.

 Cortex-M4 Interrupt Handing and Vectors

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4 - 7

Cortex-M4 Interrupt Handing and Vectors

Interrupt handling is automatic. No instruction overhead.

Entry
 Automatically pushes registers R0–R3, R12, LR, PSR, and PC onto the

stack
 In parallel, ISR is pre-fetched on the instruction bus. ISR ready to start

executing as soon as stack PUSH complete

Exit
 Processor state is automatically restored from the stack
 In parallel, interrupted instruction is pre-fetched ready for execution

upon completion of stack POP

Exception types...

Cortex-M4® Interrupt Handling

Cortex-M4® Exception Types
Vector

Number
Exception

Type
Priority Vector

address
Descriptions

1 Reset -3 0x04 Reset
2 NMI -2 0x08 Non-Maskable Interrupt
3 Hard Fault -1 0x0C Error during exception processing
4 Memory

Management
Fault

Programmable 0x10 MPU violation

5 Bus Fault Programmable 0x14 Bus error (Prefetch or data abort)
6 Usage Fault Programmable 0x18 Exceptions due to program errors

7-10 Reserved - 0x1C - 0x28
11 SVCall Programmable 0x2C SVC instruction
12 Debug Monitor Programmable 0x30 Exception for debug
13 Reserved - 0x34
14 PendSV Programmable 0x38
15 SysTick Programmable 0x3C System Tick Timer

16 and above Interrupts Programmable 0x40 External interrupts (Peripherals)

Vector Table...

Cortex-M4 Interrupt Handing and Vectors

4 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Cortex-M4® Vector Table

 After reset, vector table is located at
address 0

 Each entry contains the address of the
function to be executed

 The value in address 0x00 is used as
starting address of the Main Stack
Pointer (MSP)

 Vector table can be relocated by writing
to the VTABLE register
(must be aligned on a 1KB boundary)

 Open startup_ccs.c to see vector table
coding

GPTM...

 General Purpose Timer Module

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4 - 9

General Purpose Timer Module

General Purpose Timer Module

 Six 16/32-bit and Six 32/64-bit general purpose timers
 Twelve 16/32-bit and Twelve 32/64-bit capture/compare/PWM pins

Timer modes:
• One-shot
• Periodic
• Input edge count or time capture with 16-bit prescaler
• PWM generation (separated only)
• Real-Time Clock (concatenated only)

Count up or down

Simple PWM (no deadband generation)

Support for timer synchronization, daisy-chains, and stalling
during debugging

May trigger ADC samples or DMA transfers

Lab...

General Purpose Timer Module

4 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

 Lab 4: Interrupts and the Timer

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4 - 11

Lab 4: Interrupts and the Timer

Objective
In this lab we’ll set up the timer to generate interrupts, and then write the code that responds to
the interrupt … flashing the LED. We’ll also experiment with generating a system level
exception, by attempting to configure a peripheral before it’s been enabled.

Lab 4: Interrupts and the GP Timer

 Enable and configure the Timer
 Enable and configure Interrupts
 Write the ISR code and test
 Generate an exception

Agenda ...

USB Emulation Connection

Lab 4: Interrupts and the Timer

4 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Procedure

Import Lab4 Project
1. We have already created the Lab4 project for you with an empty main.c, a startup file

and all necessary project and build options set.

► Maximize Code Composer and click Project Import Existing CCS Eclipse Project.
Make the settings show below and click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

 ► Close the lab3 project by right-clicking on lab3 in the Project Explorer pane and

selecting Close Project.

 Lab 4: Interrupts and the Timer

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4 - 13

Header Files

2. ► Expand the lab by clicking the to the left of lab4 in the Project Explorer pane.
Open main.c for editing by double-clicking on it.

► Type (or copy/paste) the following seven lines into main.c to include the header files
needed to access the TivaWare APIs :

#include <stdint.h>
#include <stdbool.h>
#include "inc/tm4c123gh6pm.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/interrupt.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"

Several new include headers are needed to support the hardware we’ll be using in this
code:

tm4c123gh6pm.h: Definitions for the interrupt and register assignments on the Tiva C
Series device on the LaunchPad board

interrupt.h : Defines and macros for NVIC Controller (Interrupt) API of
driverLib. This includes API functions such as IntEnable and
IntPrioritySet.

timer.h : Defines and macros for Timer API of driverLib. This includes API
functions such as TimerConfigure and TimerLoadSet.

Note that there are no question marks shown in the editor pane beside your include
statements. The paths have already been set up for you in the imported project.

Lab 4: Interrupts and the Timer

4 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

main()
3. We’re going to compute our timer delays using the variable ui32Period. Create main()

along with an unsigned 32-bit integer (that’s why the variable is called ui32Period) for
this computation.

► Leave a line for spacing and type (or cut/paste) the following after the previous lines:

int main(void)
{
 uint32_t ui32Period;
}

Clock Setup
4. Configure the system clock to run at 40MHz (like in lab3) with the following call.

► Leave a blank line for spacing and enter this line of code inside main():

SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

GPIO Configuration
5. Like the previous lab, we need to enable the GPIO peripheral and configure the pins

connected to the LEDs as outputs.

► Leave a line for spacing and add these lines after the last ones:

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

Timer Configuration
6. Again, before calling any peripheral specific driverLib function we must enable the

clock to that peripheral. If you fail to do this, it will result in a Fault ISR (address fault).

The second statement configures Timer 0 as a 32-bit timer in periodic mode. Note that
when Timer 0 is configured as a 32-bit timer, it combines the two 16-bit timers Timer 0A
and Timer 0B. See the General Purpose Timer chapter of the device datasheet for more
information. TIMER0_BASE is the start of the timer registers for Timer0 in, you guessed
it, the peripheral section of the memory map.

► Add a line for spacing and type the following lines of code after the previous ones:

SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);
TimerConfigure(TIMER0_BASE, TIMER_CFG_PERIODIC);

 Lab 4: Interrupts and the Timer

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4 - 15

Calculate Delay
7. To toggle a GPIO at 10Hz and a 50% duty cycle, you need to generate an interrupt at ½

of the desired period. First, calculate the number of clock cycles required for a 10Hz
period by calling SysCtlClockGet() and dividing it by your desired frequency.
Then divide that by two, since we want a count that is ½ of that for the interrupt.

This calculated period is then loaded into the Timer’s Interval Load register using the
TimerLoadSet function of the driverLib Timer API. Note that you have to subtract
one from the timer period since the interrupt fires at the zero count.

► Add a line for spacing and add the following lines of code after the previous ones:

ui32Period = (SysCtlClockGet() / 10) / 2;
TimerLoadSet(TIMER0_BASE, TIMER_A, ui32Period -1);

Interrupt Enable
8. Next, we have to enable the interrupt … not only in the timer module, but also in the

NVIC (the Nested Vector Interrupt Controller, the Cortex M4’s interrupt controller).
IntMasterEnable() is the master interrupt enable API for all interrupts.
IntEnable enables the specific vector associated with Timer0A. TimerIntEnable,
enables a specific event within the timer to generate an interrupt. In this case we are
enabling an interrupt to be generated on a timeout of Timer 0A.

► Add a line for spacing and type the next three lines of code after the previous ones:

IntEnable(INT_TIMER0A);
TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);
IntMasterEnable();

Timer Enable
9. Finally we can enable the timer. This will start the timer and interrupts will begin

triggering on the timeouts.

► Add a line for spacing and type the following line of code after the previous ones:

TimerEnable(TIMER0_BASE, TIMER_A);

while(1) Loop
10. The main loop of the code is simply an empty while(1) loop since the toggling of the

GPIO will happen in the interrupt service routine.

► Add a line for spacing and add the following lines of code after the previous ones:

while(1)
{
}

Lab 4: Interrupts and the Timer

4 - 16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Timer Interrupt Handler
11. Since this application is interrupt driven, we must add an interrupt handler or ISR for the

Timer. In the interrupt handler, we must first clear the interrupt source and then toggle
the GPIO pin based on the current state. Just in case your last program left any of the
LEDs on, the first GPIOPinWrite() call turns off all three LEDs. Writing a 4 to pin 2
lights the blue LED.

► Add a line for spacing and add the following lines of code after the final closing brace
of main().

void Timer0IntHandler(void)

{
 // Clear the timer interrupt
 TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

 // Read the current state of the GPIO pin and
 // write back the opposite state

if(GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_2))
 {
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0);
 }

 else
 {
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 4);
 }
}

► If your indentation looks wrong, select all the code by pressing Ctrl-A, right-click on
the selected code and pick Source Correct Indentation.

 Lab 4: Interrupts and the Timer

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4 - 17

12. ► Click the Save button to save your work.

Your code should look something like this:

#include <stdint.h>
#include <stdbool.h>
#include "inc/tm4c123gh6pm.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/interrupt.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"

int main(void)
{
 uint32_t ui32Period;

 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);
 TimerConfigure(TIMER0_BASE, TIMER_CFG_PERIODIC);

 ui32Period = (SysCtlClockGet() / 10) / 2;
 TimerLoadSet(TIMER0_BASE, TIMER_A, ui32Period -1);

 IntEnable(INT_TIMER0A);
 TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);
 IntMasterEnable();

 TimerEnable(TIMER0_BASE, TIMER_A);

 while(1)
 {
 }
}

void Timer0IntHandler(void)
{
 // Clear the timer interrupt
 TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

 // Read the current state of the GPIO pin and
 // write back the opposite state
 if(GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_2))
 {
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0);
 }
 else
 {
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 4);
 }
}

If you’re having problems, this code is contained in main.txt in your project folder.

Lab 4: Interrupts and the Timer

4 - 18 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Startup Code

13. ► Open tm4c123gh6pm_startup_ccs.c for editing. This file contains the vector
table that we discussed during the presentation.

► Open the file and look for the Timer 0 subtimer A vector.

When that timer interrupt occurs, the NVIC will look in this vector location for the
address of the ISR (interrupt service routine). That address is where the next code fetch
will happen.

► You need to carefully find the appropriate vector position and replace
IntDefaultHandler with the name of your Interrupt handler (We suggest that you
copy/paste this). In this case you will add Timer0IntHandler to the position with the
comment “Timer 0 subtimer A” as shown below:

You also need to declare this function at the top of this file as external. This is necessary
for the compiler to resolve this symbol.

► Find the line containing:

extern void _c_int00(void);

► and add:

extern void Timer0IntHandler(void);

right below it as shown below:

By the way, the IntDefaultHandler handler will catch any “unintentional”
interrupts that may occur. Since this handler is also a while(1) loop, you might want
to consider changing it for your production system.

► Click the Save button.

 Lab 4: Interrupts and the Timer

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4 - 19

Pre-defined Name
14. In order for the compiler to find the correct interrupt mapping it needs to know exactly

which part is being used. We do that through a build option called a pre-defined name.

► Right-click on lab4 in your Project Explorer and select Properties.

► Under Build ARM Compiler Advanced Options Predefined Symbols, and
assure that PART_TM4C123GH6PM is listed as shown below. If it isn’t, click
the add button for top pane and add PART_TM4C123GH6PM as the pre-
define NAME as shown below.

This property, along with the others that we’ve already seen, will already be set in the
remaining labs in this workshop

► Click OK.

Lab 4: Interrupts and the Timer

4 - 20 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Compile, Download and Run The Code
15. ► Click the Debug button on the menu bar to compile and download your

application. If you have any issues, correct them, and then click the Debug
button again. (You were careful about that interrupt vector placement,
weren’t you?) After a successful build, the CCS Debug perspective will
appear.

► Click the Resume button to run the program that was downloaded to the
flash memory of your device. The blue LED should be flashing quickly on
your LaunchPad board.

When you’re done, ► click the Terminate button to return to the Editing
perspective.

Exceptions
16. ► Find the line of code that enables the GPIO peripheral and comment it out as shown

below:

Now our code will be accessing the peripheral without the peripheral clock being
enabled. This should generate an exception.

17. ► Compile and download your application by clicking the Debug button on the menu
bar. Save your changes when you’re prompted. ► Click the Resume button to run the
program. What?! The program seems to run just fine doesn’t it? The blue LED is
flashing. The problem is that we enabled the peripheral in our earlier run of the code …
and we never disabled it or power cycled the part.

18. ► Click the Terminate button to return to the editing perspective. ► Cycle the power on
the board using the power switch. This will return the peripheral registers to their default
power-up states.

The code with the enable line commented out is now running, but note that the blue LED
isn’t flashing now.

19. ► Compile and download your application by clicking the Debug button on the menu
bar, then click the Resume button to run the program. Again, the blue LED should not be
blinking.

 Lab 4: Interrupts and the Timer

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers 4 - 21

20. ► Click the Suspend button to stop execution. You should see that
execution has trapped inside the FaultISR() interrupt routine. All of
the exception ISRs trap in while(1) loops in the provided code. That
probably isn’t the behavior you want in your production code.

21. ► Back in main.c, uncomment the line enabling the GPIO port. ► Compile, download
and run your code to make sure everything works properly. When you’re done, ► click
the Terminate button to return to the Editing perspective

22. ► Close the lab4 project. Minimize CCS.

Homework Idea: Investigate the Pulse-Width Modulation capabilities of the general
purpose timer. Program the timer to blink the LED faster than your eye can see, usually
above 30Hz and use the pulse width to vary the apparent intensity. Write a loop to make
the intensity vary periodically.

 You’re done.

Lab 4: Interrupts and the Timer

4 - 22 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Interrupts & Timers

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5 - 1

ADC12

Introduction
This chapter will introduce you to the use of the analog to digital conversion (ADC) peripheral on
the TM4C123GH6PM. The lab will use the ADC and the sequencer to sample the on-chip
temperature sensor.

Agenda

ADC...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

Chapter Topics

5 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Chapter Topics
ADC12 ...5-1

Chapter Topics ...5-2

ADC12 ...5-3

Sample Sequencers...5-4

Lab 5: ADC12 ..5-5
Objective..5-5
Procedure ...5-6

Hardware averaging ..5-16

Calling APIs from ROM ...5-17

 ADC12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5 - 3

ADC12

Analog-to-Digital Converter

 Tiva TM4C MCUs feature two ADC modules
(ADC0 and ADC1) that can be used to
convert continuous analog voltages to
discrete digital values

 Each ADC module has 12-bit resolution
 Each ADC module operates independently

and can:
• Execute different sample sequences
• Sample any of the shared analog input

channels
• Generate interrupts & triggers

ADC
VIN VOUT

Input
Channels

Triggers

Interrupts/
Triggers

Interrupts/
Triggers

12

V I
N

V O
U

T

000
001

011
010

100
101

t

t
ADC1

ADC0

Features...

TM4C123GH6PM ADC Features

 Two 12-bit 1MSPS ADCs
 12 shared analog input channels
 Single ended & differential input

configurations
 On-chip temperature sensor
 Maximum sample rate of one million

samples/second (1MSPS).
 Fixed references (VDDA/GNDA) due to

pin-count limitations
 4 programmable sample conversion

sequencers per ADC
 Separate analog power & ground pins

 Flexible trigger control
• Controller/ software
• Timers
• Analog comparators
• GPIO

 2x to 64x hardware averaging
 8 Digital comparators / per ADC
 2 Analog comparators
 Optional phase shift in sample time,

between ADC modules …
programmable from 22.5 ° to 337.5°

ADC
VIN VOUT

Sequencers...

Sample Sequencers

5 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Sample Sequencers

ADC Sample Sequencers

 Tiva TM4C ADC’s collect and sample data using programmable sequencers.
 Each sample sequence is a fully programmable series of consecutive (back-to-back)

samples that allows the ADC module to collect data from multiple input sources without
having to be re-configured.

 Each ADC module has 4 sample sequencers that control sampling and data capture.
 All sample sequencers are identical except for the number of samples they can capture

and the depth of their FIFO.
 To configure a sample sequencer, the following information is required:

• Input source for each sample
• Mode (single-ended, or differential) for each sample
• Interrupt generation on sample completion for each sample
• Indicator for the last sample in the sequence

 Each sample sequencer can transfer data
independently through a dedicated μDMA channel.

Sequencer Number of
Samples Depth of FIFO

SS 3 1 1
SS 2 4 4
SS 1 4 4
SS 0 8 8

Lab...

 Lab 5: ADC12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5 - 5

Lab 5: ADC12

Objective
In this lab we’ll use the ADC12 and sample sequencers to measure the data from the on-chip
temperature sensor. We’ll use Code Composer to display the changing values.

Lab 5: ADC12

 Enable and configure ADC and
sequencer

 Measure and display values from
internal temperature sensor

 Add hardware averaging
 Use ROM peripheral driver library

calls and note size difference

Agenda ...

USB Emulation Connection

Lab 5: ADC12

5 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Procedure

Import lab5 Project
1. We have already created the lab5 project for you with an empty main.c, a startup file

and all necessary project and build options set.

► Maximize Code Composer and click Project Import Existing CCS Eclipse Project.
Make the settings shown below and click Finish. Make sure that the “Copy projects
into workspace” checkbox is unchecked.

Header Files
2. ► Delete the current contents of main.c. Add the following lines into main.c to

include the header files needed to access the TivaWare APIs:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/adc.h"

adc.h: definitions for using the ADC driver

 Lab 5: ADC12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5 - 7

main()

3. ► Set up the main() routine by adding the three lines below:

int main(void)
{
}

4. The following definition will create an array that will be used for storing the data read
from the ADC FIFO. It must be as large as the FIFO for the sequencer in use. We will be
using sequencer 1 which has a FIFO depth of 4. If another sequencer was used with a
smaller or deeper FIFO, then the array size would have to be changed. For instance, se-
quencer 0 has a depth of 8.

► Add the following line of code as your first line of code inside main() :

uint32_t ui32ADC0Value[4];

5. We’ll need some variables for calculating the temperature from the sensor data. The first
variable is for storing the average of the temperature. The remaining variables are used to
store the temperature values for Celsius and Fahrenheit. All are declared as 'volatile' so
that each variable cannot be optimized out by the compiler and will be available to the
'Expression' or 'Local' window(s) at run-time.

► Add these lines after that last line:

volatile uint32_t ui32TempAvg;
volatile uint32_t ui32TempValueC;
volatile uint32_t ui32TempValueF;

6. Set up the system clock again to run at 40MHz. ► Add a line for spacing and add this
line after the last ones:

SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

7. Let’s enable the ADC0 peripheral next. ► Add a line for spacing and add this line after
the last one:

SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

8. For this lab, we’ll simply allow the ADC12 to run at its default rate of 1Msps.
Reprogramming the sampling rate is left as an exercise for the student.

Now, we can configure the ADC sequencer. We want to use ADC0, sample sequencer 1,
we want the processor to trigger the sequence and we want to use the highest priority.

► Add a line for spacing and add this line of code:

ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);

Lab 5: ADC12

5 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

9. Next we need to configure all four steps in the ADC sequencer. Configure steps 0 - 2 on
sequencer 1 to sample the temperature sensor (ADC_CTL_TS). In this example, our
code will average all four samples of temperature sensor data on sequencer 1 to calculate
the temperature, so all four sequencer steps will measure the temperature sensor. For
more information on the ADC sequencers and steps, reference the device specific
datasheet.

► Add the following three lines after the last:

ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_TS);
ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_TS);
ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_TS);

10. The final sequencer step requires a couple of extra settings. Sample the temperature
sensor (ADC_CTL_TS) and configure the interrupt flag (ADC_CTL_IE) to be set
when the sample is done. Tell the ADC logic that this is the last conversion on sequencer
1 (ADC_CTL_END).

► Add this line directly after the last ones:

ADCSequenceStepConfigure(ADC0_BASE,1,3,ADC_CTL_TS|ADC_CTL_IE|ADC_CTL_END);

11. Now we can enable ADC sequencer 1.

► Add this line directly after the last one:

ADCSequenceEnable(ADC0_BASE, 1);

12. Still within main(), add a while loop to the bottom of your code.

► Add a line for spacing and enter these three lines of code:

while(1)
{
}

13. ► Save your work.

As a sanity-check, click on the Build button. If you are having issues,
check the code on the next page:

 Lab 5: ADC12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5 - 9

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/adc.h"

int main(void)
{
 uint32_t ui32ADC0Value[4];
 volatile uint32_t ui32TempAvg;
 volatile uint32_t ui32TempValueC;
 volatile uint32_t ui32TempValueF;

 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

 ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE,1,3,ADC_CTL_TS|ADC_CTL_IE|ADC_CTL_END);
 ADCSequenceEnable(ADC0_BASE, 1);

 while(1)
 {
 }
}

When you build this code, you will get a warning “ui32ADC0Value was
declared but never referenced”. Ignore this warning for now, we’ll add
the code to use this array later.

Inside the while(1) Loop
Inside the while(1) we’re going to read the value of the temperature sensor and
calculate the temperature endlessly.

14. The indication that the ADC conversion process is complete will be the ADC interrupt
status flag. It’s always good programming practice to make sure that the flag is cleared
before writing code that depends on it.

► Add the following line as your first line of code inside the while(1) loop:

ADCIntClear(ADC0_BASE, 1);

Lab 5: ADC12

5 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

15. Now we can trigger the ADC conversion with software. ADC conversions can be
triggered by many other sources.

► Add the following line directly after the last:

ADCProcessorTrigger(ADC0_BASE, 1);

16. We need to wait for the conversion to complete. Obviously, a better way to do this would
be to use an interrupt, rather than waste CPU cycles waiting, but that exercise is left for
the student.

► Add a line for spacing and add the following three lines of code:

while(!ADCIntStatus(ADC0_BASE, 1, false))
{
}

17. When code execution exits the loop in the previous step, we know that the conversion is
complete and that we can read the ADC value from the ADC Sample Sequencer 1 FIFO.
The function we’ll be using copies data from the specified sample sequencer output FIFO
to a buffer in memory. The number of samples available in the hardware FIFO are copied
into the buffer, which must be large enough to hold that many samples. This will only
return the samples that are presently available, which might not be the entire sample
sequence if you attempt to access the FIFO before the conversion is complete.

► Add a line for spacing and add the following line after the last:

ADCSequenceDataGet(ADC0_BASE, 1, ui32ADC0Value);

18. Calculate the average of the temperature sensor data. We’re going to cover floating-point
operations later, so this math will be fixed-point.

The addition of 2 is for rounding. Since 2/4 = 1/2 = 0.5, 1.5 will be rounded to 2.0 with
the addition of 0.5. In the case of 1.0, when 0.5 is added to yield 1.5, this will be rounded
back down to 1.0 due to the rules of integer math.

► Add this line directly after the last:

ui32TempAvg = (ui32ADC0Value[0] + ui32ADC0Value[1] + ui32ADC0Value[2] + ui32ADC0Value[3] + 2)/4;

 Lab 5: ADC12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5 - 11

19. Now that we have the averaged reading from the temperature sensor, we can calculate the
Celsius value of the temperature. The equation below is shown in the TM4C123GH6PM
datasheet. Division is performed last to avoid truncation due to integer math rules. A later
lab will cover floating point operations.

TEMP = 147.5 – ((75 * (VREFP – VREFN) * ADCVALUE) / 4096)

We need to multiply everything by 10 to stay within the precision needed. The divide by
10 at the end is needed to get the right answer. VREFP – VREFN is Vdd or 3.3 volts.
We’ll multiply it by 10, and then 75 to get 2475.

► Enter the following line of code directly after the last:

ui32TempValueC = (1475 - ((2475 * ui32TempAvg)) / 4096)/10;

20. Once you have the Celsius temperature, calculating the Fahrenheit temperature is easy.
Wait to perform the division operation until the end to avoid truncation.

The conversion from Celsius to Fahrenheit is F = (C * 9)/5 +32. Adjusting that a little
gives: F = ((C * 9) + 160) / 5

► Enter the following line of code directly after the last:

ui32TempValueF = ((ui32TempValueC * 9) + 160) / 5;

Lab 5: ADC12

5 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

21. ► Save your work and compare it with our code below:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/adc.h"

int main(void)
{
 uint32_t ui32ADC0Value[4];
 volatile uint32_t ui32TempAvg;
 volatile uint32_t ui32TempValueC;
 volatile uint32_t ui32TempValueF;

 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

 ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE,1,3,ADC_CTL_TS|ADC_CTL_IE|ADC_CTL_END);
 ADCSequenceEnable(ADC0_BASE, 1);

 while(1)
 {
 ADCIntClear(ADC0_BASE, 1);
 ADCProcessorTrigger(ADC0_BASE, 1);

 while(!ADCIntStatus(ADC0_BASE, 1, false))
 {
 }

 ADCSequenceDataGet(ADC0_BASE, 1, ui32ADC0Value);
 ui32TempAvg = (ui32ADC0Value[0] + ui32ADC0Value[1] + ui32ADC0Value[2] + ui32ADC0Value[3] + 2)/4;
 ui32TempValueC = (1475 - ((2475 * ui32TempAvg)) / 4096)/10;
 ui32TempValueF = ((ui32TempValueC * 9) + 160) / 5;
 }
}

You can also find this code in main1.txt in your project folder.

 Lab 5: ADC12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5 - 13

Build and Run the Code
22. ► Compile and download your application by clicking the Debug button on the menu

bar. If you have any issues, correct them, and then click the Debug button again. After a
successful build, the CCS Debug perspective will appear.

23. ► Click on the Expressions tab (upper right). Remove all expressions (if there are any)
from the Expressions pane by right-clicking inside the pane and selecting Remove All.

► Find the ui32ADC0Value, ui32TempAvg, ui32TempValueC and ui32TempValueF
variables in the last four lines of code. Double-click on each variable to highlight it, then
right-click on it, select Add Watch Expression and then click OK. Do this for all four
variables, one at the time.

Lab 5: ADC12

5 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Breakpoint
Let’s set up the debugger so that it will update our watch windows each time the code
runs. Since there’s no line of code after the calculations are completed, we’ll choose the
one right before them and display the result of the last calculation.

24. ► Set a breakpoint on the first
line of code in the while(1)
loop by double-clicking in the
blue area left of the line
number.

25. ► Right-click on the breakpoint symbol and select Breakpoint Properties …
Find the Action line and click on the Remain Halted value.

► Click on the down-arrow that appears on the right and select Refresh All
Windows from the list. ► Click OK.

 Lab 5: ADC12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5 - 15

26. ► Click the Resume button to run the program. If the Watch window does
not immediately start updating, click the Suspend button and then the
Resume button.

You should see the measured value of ui32TempAvg changing up and down slightly.
Changed values from the previous measurement are highlighted in yellow. Use your
finger (rub it briskly on your pants), then touch the TM4C123GH6PM device on the
LaunchPad board to warm it. Press your fingers against a cold drink, then touch the
device to cool it. You should quickly see the results on the display.

Bear in mind that the temperature sensor is not calibrated, so the values displayed are not
exact. That’s okay for this experiment, since we’re only looking for changes in the
measurements.

► Note the range over which ui32TempAvg is changing (not the rate of change, the
amount). We can reduce the amount by using hardware averaging in the ADC.

Hardware averaging

5 - 16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Hardware averaging
27. ► Click the Terminate button to return to the CCS Edit perspective.

28. ► Find the ADC initialization section of your code as shown below:

Right after the SysCtlPeripheralEnable() API, ► add the following line:

ADCHardwareOversampleConfigure(ADC0_BASE, 64);

Your code will look like this:

The last parameter in the API call is the number of samples to be averaged. This number
can be 2, 4, 8, 16, 32 or 64. Our selection means that each sample in the ADC FIFO will
be the result of 64 measurements being averaged together. We will then average four of
those samples together in our code for a total of 256.

29. ► Build and download the code to your LaunchPad board. You may need to replace the
breakpoint as shown in step 24 if you cheated and loaded the solution. Run the program
and observe the ui32TempAvg variable in the Expressions window. You should notice
that the range over which it is changing is much smaller than before.

This code is saved in main2.txt in your project folder.

 Calling APIs from ROM

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5 - 17

Calling APIs from ROM
30. Before we make any changes, let’s see how large the code section is for

our existing project.

► Click the Terminate button to return to the CCS Edit perspective.

► In the Project Explorer, expand the Debug folder under the lab5 project. Double-click
on lab5.map.

31. When you click the build button, CCS compiles and assembles your source files into
relocatable object files (.obj). Then, in a multi-pass process, the linker creates an output
file (.out) using the device’s memory map as defined in the linker command (.cmd)
file along with any library (.lib) files.. The build process also creates a map file (.map)
that explains how large the sections of the program are (.text = code) and where they
were placed in the memory map.

► In the lab5.map file, find the SECTION ALLOCATION MAP and look for .text
like shown below:

The length of our .text section is 5e4h. ► Check yours and write it here: ________

32. Remember that the Tiva C Series device on-board ROM contains the Peripheral Driver
Library. Rather than adding those library calls to our flash memory, we can call them
from ROM. This will reduce the code size of our program in flash memory. In order to do
so, we need to add support for the ROM in our code.

► In main.c, add the following include statement as the last ones in your list of
includes at the top of your code:

#define TARGET_IS_BLIZZARD_RB1
#include "driverlib/rom.h"

Blizzard is the internal TI product name for the device family on your LaunchPad. This
symbol will give the libraries access to the proper API’s in ROM.

► Save your work.

Calling APIs from ROM

5 - 18 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

33. ► Now add ROM_ to the beginning of every DriverLib call as shown below in main.c:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "driverlib/adc.h"
#define TARGET_IS_BLIZZARD_RB1
#include "driverlib/rom.h"

int main(void)
{
 uint32_t ui32ADC0Value[4];
 volatile uint32_t ui32TempAvg;
 volatile uint32_t ui32TempValueC;
 volatile uint32_t ui32TempValueF;

 ROM_SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
 ROM_ADCHardwareOversampleConfigure(ADC0_BASE, 64);

 ROM_ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);
 ROM_ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_TS);
 ROM_ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_TS);
 ROM_ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_TS);
 ROM_ADCSequenceStepConfigure(ADC0_BASE,1,3,ADC_CTL_TS|ADC_CTL_IE|ADC_CTL_END);
 ROM_ADCSequenceEnable(ADC0_BASE, 1);

 while(1)
 {
 ROM_ADCIntClear(ADC0_BASE, 1);
 ROM_ADCProcessorTrigger(ADC0_BASE, 1);

 while(!ROM_ADCIntStatus(ADC0_BASE, 1, false))
 {
 }

 ROM_ADCSequenceDataGet(ADC0_BASE, 1, ui32ADC0Value);
 ui32TempAvg = (ui32ADC0Value[0] + ui32ADC0Value[1] + ui32ADC0Value[2] + ui32ADC0Value[3] + 2)/4;
 ui32TempValueC = (1475 - ((2475 * ui32TempAvg)) / 4096)/10;
 ui32TempValueF = ((ui32TempValueC * 9) + 160) / 5;
 }
}

If you’re having issues, this code is saved in your lab folder as main3.txt.

 Calling APIs from ROM

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12 5 - 19

Build, Download and Run Your Code
34. ► Since you changed the instruction that the breakpoint was set on, the breakpoint has

likely disappeared. Remove the indicated “breakpoint” if there is one by double-clicking
on it. Add it back using the steps shown earlier.

35. ► Click the Debug button to build and download your code to the TM4C123GH6PM
flash memory. When the process is complete, click the Resume button to run your code.
When you’re sure that everything is working correctly, click the Terminate button to
return to the CCS Edit perspective.

36. Check the SECTION ALLOCATION MAP in lab5.map. Our results are shown below:

The original length of our .text section was 5e4h. The new size is 3d4h. That’s 35%
smaller than before.

Write your results here: ________

37. When you’re finished, close the lab5 project and minimize Code Composer Studio.

 You’re done.

Calling APIs from ROM

5 - 20 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - ADC12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6 - 1

Hibernation Module

Introduction
In this chapter we’ll take a look at the hibernation module and the low power modes of the Tiva C
Series device. The lab will show you how to place the device in sleep mode and you’ll measure
the current draw as well.

Agenda

Key Features...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

Chapter Topics

6 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

Chapter Topics
Hibernation Module ...6-1

Chapter Topics ...6-2

Low Power Modes..6-3

Lab 6: Low Power Modes ..6-5
Objective..6-5
Procedure ...6-6

 Low Power Modes

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6 - 3

Low Power Modes

Key Features

 Real Time Clock is a 32-bit seconds
counter with a 15-bit sub seconds
counter & add-in trim capability

 Dedicated pin for waking using an
external signal

 RTC operational and hibernation
memory valid as long as VBAT is valid

 GPIO pins state retention provided
during VDD3ON mode

 Two mechanisms for power control
• System Power Control for CPU

and other on-board hardware
• On-chip Power Control for CPU

only

 Low-battery detection, signaling, and
interrupt generation, with optional
wake on low battery

 32,768 Hz external crystal or an
external oscillator clock source

 16 32-bit words of battery-backed
memory are provided for you to save
the processor state to during
hibernation

 Programmable interrupts for RTC
match, external wake, and low
battery events.

Low Power Modes...

Power Modes

 Run mode
 Sleep mode stops the

processor clock
• 2 SysClk wakeup time

 Deep Sleep mode stops the
system clock and switches
off the PLL and Flash
• 1.25 – 350 µS wakeup time

 Hibernate mode with only
hibernate module powered
(VDD3ON, RTC and no RTC)
• ~500µS wakeup time TBD

Power Mode Comparison...

1.05

Low Power Modes

6 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

Power Mode Comparison
Mode →

Run Mode Sleep Mode Deep Sleep
Mode

Hibernation
(VDD3ON)

Hibernation
(RTC)

Hibernation
(no RTC)

Parameter ↓

IDD 32 mA 10 mA 1.05 mA 5 μA 1.7 μA 1.6 μA

VDD 3.3 V 3.3 V 3.3 V 3.3 V 0 V 0 V

VBAT N.A. N.A. N.A. 3 V 3 V 3 V

System Clock40 MHz with PLL40 MHz with PLL 30 kHz Off Off Off

Core
Powered On Powered On Powered On Off Off Off

Clocked Not Clocked Not Clocked Not Clocked Not Clocked Not Clocked

Peripherals All On All Off All Off All Off All Off All Off

Code while{1} N.A. N.A. N.A. N.A. N.A.

LaunchPad Considerations ...Box denotes power modes available on LaunchPad board

LaunchPad Considerations

 The low-cost LaunchPad board does not have a battery holder
 VDD and VBAT are wired together on the board

(this disables battery-only powered low-power modes)
 Device current is measured between test points H24 and H25

Lab ...

 Lab 6: Low Power Modes

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6 - 5

Lab 6: Low Power Modes

Objective
In this lab we’ll use the hibernation module to place the device in a low power state. Then we’ll
wake up from both the wake-up pin and the Real-Time Clock (RTC). We’ll also measure the
current draw to see the effects of the different power modes.

Lab 6: Low Power Modes

 Place device in low power modes
 Wake from pin
 Wake from RTC
 Measure current
 No battery holder on board

Agenda ...

USB Emulation Connection Power
Measurement

Jumper

Lab 6: Low Power Modes

6 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

Procedure

Import lab6
1. We have already created the lab6 project for you with an empty main.c, a startup file

and all necessary project and build options set.

► Maximize Code Composer and click Project Import Existing CCS Eclipse Project.

Make the settings shown below and ► click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

 Lab 6: Low Power Modes

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6 - 7

Limitations
In order to keep the cost of the LaunchPad board ultra-low, the battery holder was
omitted, and VBATT is connected to the 3.3V supply voltage. We will be evaluating the
following power modes and wake events:

• Run
• Hibernate (VDD3ON)
• Wake from pin (no RTC)
• Wake from RTC

Header Files
2. ► Expand lab6. Open main.c for editing and delete the current contents. Copy/paste

the following lines into main.c to include the header files needed to access the
TivaWare APIs :

#include <stdint.h>
#include <stdbool.h>
#include "utils/ustdlib.h"
#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h"
#include "driverlib/debug.h"
#include "driverlib/hibernate.h"
#include "driverlib/gpio.h"

main()

3. ► Skip a line and add this main() template after the error function:

int main(void)
{

}

Clock Setup
4. Configure the system clock to 40MHz again.

► Add this line as the first line of code in main():

SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

Lab 6: Low Power Modes

6 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

GPIO Configuration
5. We’re going the use the green LED (2=red=pin1, 4=blue=pin2 and 8=green=pin3) as an

indicator that the device is in hibernation (off for hibernate and on for wake).

► Add a line for spacing and add these lines of code after the last:

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x08);

Hibernate Configuration

6. We want to set the wake condition to the wake pin. Take a look at the board schematics
and see how the WAKE pin is connected to user pushbutton 2 (SW2) on the LaunchPad
board.

The code below has the following functions:

Line 1: enable the hibernation module
Line 2: defines the clock supplied to the hibernation module
Line 3: Calling this function enables the GPIO pin state to be maintained during hiberna-

tion and remain active even when waking from hibernation.
Line 4: delay 4 seconds for you to observe the LED
Line 5: set the wake condition to the wake pin
Line 6: turn off the green LED before the device goes to sleep

► Add a line for spacing and add these lines after the last ones in main():

SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);
HibernateEnableExpClk(SysCtlClockGet());
HibernateGPIORetentionEnable();
SysCtlDelay(64000000);
HibernateWakeSet(HIBERNATE_WAKE_PIN);
GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_3, 0x00);

 Lab 6: Low Power Modes

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6 - 9

Hibernate Request

7. Finally we need to go into hibernation mode. The HibernateRequest()function re-
quests the Hibernation module to disable the external regulator, removing power from the
processor and all peripherals. The Hibernation module remains powered from the battery
or auxiliary power supply. If the battery voltage is low (or off) or if interrupts are current-
ly being serviced, the switch to hibernation mode may be delayed. If the battery voltage
is not present, the switch will never occur.

The while(1) loop acts as a trap while any pending peripheral activities shut down (or
other conditions exist).

► Add a line for spacing and add these lines after the last ones in main():

HibernateRequest();
while(1)
{
}

► Click the Save button to save your work. Your code should look something like the
next page:

Lab 6: Low Power Modes

6 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

#include <stdint.h>
#include <stdbool.h>
#include "utils/ustdlib.h"
#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h"
#include "driverlib/debug.h"
#include "driverlib/hibernate.h"
#include "driverlib/gpio.h"

int main(void)
{
 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x08);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);
 HibernateEnableExpClk(SysCtlClockGet());
 HibernateGPIORetentionEnable();
 SysCtlDelay(64000000);
 HibernateWakeSet(HIBERNATE_WAKE_PIN);
 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_3, 0x00);

 HibernateRequest();
 while(1)
 {
 }
}

This code is saved in the lab6 project folder as main1.txt. Don’t forget that you can
auto-correct the indentations.

 Lab 6: Low Power Modes

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6 - 11

Build, Download and Run the VDD3ON (no RTC) Code
8. ► Compile and download your application by clicking the Debug button on

the menu bar. If you have any issues, correct them, and then click the Debug
button again. After a successful build, the CCS Debug perspective will
appear.

9. ► Delete any existing watch expressions by right-clicking in the Expressions pane and
clicking Remove All, then click Yes.

10. ► Click the Resume button. After about 4 seconds the green LED on the
LaunchPad board will go out, indicating that the Tiva device has gone into
hibernation.

► Press the SW2 button located at the lower right
corner of the LaunchPad board. The processor will
wake up and start the code again, lighting the green
LED.

Note that this wakeup process is the same as
powering up. We will not be using the battery-backed
memory in this lab, but that feature is essential to
applications that need to know how they “woke up”.
Your code can save/restore the processor state to that
memory. When your code starts, you can determine
that the processor woke from hibernation and restore
the processor state from the battery-backed memory.

11. ► Click the Terminate button to return to the CCS Edit perspective. If you
see a “Error connecting to the target” warning in the Console pane of CCS,
it’s caused by the device hibernating and unpowered … disconnected from
the emulator.

Lab 6: Low Power Modes

6 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

12. Now that we know the code is running properly, we can take some current measurements.
Before we do, let’s comment out the line of code that lights the green LED so that the
LED current won’t be part of our measurement.

► In main.c, comment out the line of code shown below:

 ► Save your work.

13. ► Press and hold SW2 on the LaunchPad board (to make sure it is
awake), then compile and download your application by clicking the Debug
button on the menu bar. When the Resume button appears in the Debug
pane, you can release SW2.

► Press the Terminate button to return to the CCS Edit perspective. When
you do this a reset signal is sent to the LaunchPad, which runs the code in
Flash memory.

Measure the Current
14. ► Switch off the Launchpad’s power by moving

the power switch to the DEVICE position.

15. ► Remove the jumper located on the LaunchPad
board near the DEVICE USB port and put it
somewhere for safekeeping.

► Connect your Digital Multi-Meter (DMM) test
leads to the pins with the positive lead nearest the
DEVICE USB port. Double check the lead
connections on the meter. Switch the meter to
measure DC current above 20mA.

16. ► Watch the meter display and move the power
switch back to the DEBUG position. During the
first four seconds the TM4C123GH6PM is in Run
mode (in the software delay loop).

► Record this reading in the first row of the chart below.

17. After four seconds the device goes into the VDD3ON hibernate mode (no RTC).

► Switch your DMM to measure 10uA and record your reading in the second row of the
chart below.

 Lab 6: Low Power Modes

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6 - 13

18. ► Switch your DMM to measure DC current above 20mA. The equivalent series
resistance (ESR) of the DMM in low current settings can be too high to allow the Tiva
device enough current to run.

Mode Workbook Step Your Reading Our Reading

Run (40MHz)

16

mA

21.9 mA

VDD3ON
(no RTC)

17

µA

6.7 µA

VDD3ON
(RTC)

26

µA

6.9 µA

Wake Up on RTC
Now let’s change the code to enable the device to wake on either the RTC or the WAKE
pin. We’ll program the RTC to wake the device after 5 seconds.

19. ► Move the power switch to the DEBUG position.

20. ► In main.c, find this line of code:

HibernateWakeSet(HIBERNATE_WAKE_PIN);

Right above that line of code, ► enter the three lines below. These lines configure the
RTC wake-up parameters; reset the RTC to 0, turn the RTC on and set the wake up time
for 5 seconds in the future.

HibernateRTCSet(0);
HibernateRTCEnable();
HibernateRTCMatchSet(0,5);

21. We also need to change the wake-up parameter from just the wake-up pin to add the
RTC.

► Find:

HibernateWakeSet(HIBERNATE_WAKE_PIN);

► and change it to:

HibernateWakeSet(HIBERNATE_WAKE_PIN | HIBERNATE_WAKE_RTC);

Lab 6: Low Power Modes

6 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

22. ► Uncomment the line of code that turns on the green LED, as shown below:

► Save your changes.

Double-check your code. If you fail to specify a wakeup parameter it will be very
difficult to wake your part back up. Your code should look like this:

#include <stdint.h>
#include <stdbool.h>
#include "utils/ustdlib.h"
#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h"
#include "driverlib/debug.h"
#include "driverlib/hibernate.h"
#include "driverlib/gpio.h"

int main(void)
{
 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x08);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);
 HibernateEnableExpClk(SysCtlClockGet());
 HibernateGPIORetentionEnable();
 SysCtlDelay(64000000);
 HibernateRTCSet(0);
 HibernateRTCEnable();
 HibernateRTCMatchSet(0,5);
 HibernateWakeSet(HIBERNATE_WAKE_PIN | HIBERNATE_WAKE_RTC);
 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_3, 0x00);

 HibernateRequest();
 while(1)
 {
 }
}

If you’re having problems, this code is saved as main2.txt in your project folder.

 Lab 6: Low Power Modes

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module 6 - 15

23. ► Press and hold the SW2 button on your evaluation board to assure the
TM4C123GH6PM is awake. ► Compile and download your application by clicking the
Debug button on the menu bar.

CCS can’t talk to the device while it’s hibernating (or off). If you accidentally do this,
you’ll see the following when CCS attempts to communicate:

If this happens, press and hold the SW2 button and click Retry. Release the SW2 button
when the debug controls appear in CCS.

24. ► Press the Terminate button to return to the CCS Edit perspective. When the Debugger
terminates, it sends a reset signal to the TM4C123GH6PM. You should see the green
LED turn on for 4 seconds, then off for about 5 seconds, then repeat. The real-time-clock
(RTC) is waking the device up from hibernate mode after 5 seconds. Also note that you
can wake the device with SW2 at any time.

25. ► Watch the meter display and press SW2. During the first four seconds the
TM4C123GH6PM is in Run mode (in the software delay loop). The reading may be a
little higher than it was before in Run mode since the LED is lit.

26. ► When the green LED goes off, quickly switch the DMM to measure 10uA and record
your reading in the last row of the chart in step 18. Again, the equivalent series resistance
on most DMMs will be too high in the lowest current mode to allow the device to go
back to run mode.

Lab 6: Low Power Modes

6 - 16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - Hibernation Module

27. ► Switch off the Launchpad’s power by moving the power switch to the DEVICE
position.

28. ► Disconnect and turn off your DMM and replace the jumper on the power measurement
pins.

29. ► To make things easier for you during the next lab, use the LM Flash Programmer to
reprogram the qs-rgb bin file into the device (as shown in lab2).

Don’t forget to hold SW2 down as you launch the LM Flash Programmer and while the
programming process completes.

30. ► Close the lab6 project and minimize Code Composer Studio.

Homework Idea: Experiment with the RTC to create a time-of-day clock that requires
the lowest possible power.

 You’re done.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB 7 - 1

USB

Introduction
This chapter will introduce you to the basics of USB and the implementation of a USB port on
Tiva C Series devices. In the lab you will experiment with sending data back and forth across a
bulk transfer-mode USB connection.

Agenda

USB Basics...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

Chapter Topics

7 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

Chapter Topics
USB ..7-1

Chapter Topics ...7-2

USB Basics ...7-3

TM4C123GH6PM USB ...7-4

USB Hardware and Library ...7-5

Lab 7: USB...7-7
Objective..7-7
Procedure ...7-8

 USB Basics

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB 7 - 3

USB Basics

USB Basics
Multiple connector sizes
4 pins – power, ground and 2 data lines

(5th pin ID for USB 2.0 connectors)

Configuration connects power 1st, then data
Standards:

 USB 1.1
• Defines Host (master) and Device (slave)
• Speeds to 12Mbits/sec
• Devices can consume 500mA (100mA for startup)

 USB 2.0
• Speeds to 480Mbits/sec
• OTG addendum

 USB 3.0
• Speeds to 4.8Gbits/sec
• New connector(s)
• Separate transmit/receive data lines

USB Basics...

USB Basics

USB Device … most USB products are slaves
USB Host … usually a PC, but can be embedded
USB OTG … On-The-Go

 Dynamic switching between host and device roles
 Two connected OTG ports undergo host negotiation

Host polls each Device at power up. Information from Device
includes:
 Device Descriptor (Manufacturer & Product ID so Host can find

driver)
 Configuration Descriptor (Power consumption and Interface

descriptors)
 Endpoint Descriptors (Transfer type, speed, etc)
 Process is called Enumeration … allows Plug-and-Play

TM4C123GH6PM USB...

TM4C123GH6PM USB

7 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

TM4C123GH6PM USB

TM4C123GH6PM USB
 USB 2.0 full speed (12 Mbps) and low speed (1.5 Mbps)

operation
 On-the-go (OTG), Host and Device functions
 Integrated PHY
 Transfer types: Control, Interrupt, Bulk and Isochronous
 Device Firmware Update (DFU) device in ROM

Tiva collaterals
 Texas Instruments is a member of the

USB Implementers Forum.
 Tiva is approved to use the

USB logo
 Vendor/Product ID sharing

http://www.ti.com/lit/pdf/spml001

FREE
Vendor ID/
Product ID

sharing program

Block Diagram...

 Sublicense application: http://www.ti.com/lit/pdf/spml001

http://www.ti.com/lit/pdf/spml001

 USB Hardware and Library

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB 7 - 5

USB Hardware and Library

USB Peripheral Block Diagram

Integrated USB Controller and PHY with up to 16 Endpoints
 1 dedicated control IN endpoint and 1 dedicated control OUT endpoint
 Up to 7 configurable IN endpoints and 7 configurable OUT endpoints
 4 KB dedicated endpoint memory (not part of device SRAM)
 Separate DMA channels (up to three IN Endpoints and three OUT Endpoints)
 1 endpoint may be defined for double-buffered 1023-bytes isochronous packet size

EP0 – 15
Control

USBLib...

TivaWare™ USBLib
 License-free & royalty-free drivers, stack and

example applications for Tiva MCUs
 USBLib supports Host/Device and OTG
 Builds on DriverLib API

• Adds framework for generic Host and Device
functionality

• Includes implementations of common USB
classes

 Layered structure
 Drivers and .inf files included where appropriate
 Tiva MCUs have passed USB Device and

Embedded Host compliance testing

• Device Examples
• HID Keyboard
• HID Mouse
• CDC Serial
• Mass Storage
• Generic Bulk
• Audio
• Device Firmware Upgrade
• Oscilloscope

• Windows INF for supported
devices

• Points to base Windows
drivers

• Sets config string
• Sets PID/VID
• Precompiled DLL saves

development time
• Device framework integrated into

USBLib

Abstraction Levels...

USB Hardware and Library

7 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

USB DriverLib API

USB Host Controller API/USB Device API

Host Class Driver/Device Class Driver
APIs

Host Class/ Device
Class APIs

Application 4

Implements
its own USB

protocol using
Driverlib.

(Third party
USB stack)

Application 3

Uses existing
API for generic

host/device
operation.

Uses DriverLib
for features not

covered by
these APIs.

(Custom
Classes)

Application 2

Passes key info to
the Driver API.

Driver API handles
all lower level

functions for the
chosen class.
(Custom HID

device)

Application 1

Passes simplified
data to a higher

level API.
(Custom HID

mouse)

USB API Abstraction Levels

Level of customization

Le
ve

l o
f

ab
st

ra
ct

io
n

LOW HIGH

HIGH

LOW

Lab...

 Lab 7: USB

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB 7 - 7

Lab 7: USB

Objective
In this lab you will experiment with sending data back and forth across a bulk transfer-mode USB
connection.

Lab 7: USB

 Run usb_bulk_example code
and windows side app

 Inspect stack setup
 Observe data on device

Agenda ...

USB Device
Connection

USB Emulation Connection

Lab 7: USB

7 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

Procedure

Example Code
There are four types of transfer/endpoint types in the USB specification: Control transfers
(for command and status operations), Interrupt transfers (to quickly get the attention of
the host), Isochronous transfers (continuous and periodic transfers of data) and Bulk
transfers (to transfer large, bursty data).

Before we start poking around in the code, let’s take the usb_bulk_example for a
test drive. We’ll be using a Windows host command line application to transfer strings
over the USB connection to the LaunchPad board. The program there will change upper-
case to lower-case and vice-versa, then transfer the data back to the host.

Import The Project
1. The usb_bulk_example project is one of the TivaWare examples. When you import

the project, note that it will be automatically copied into your workspace, preserving the
original files. If you want to access these project files through Windows Explorer, the
files you are working on are in your workspace folder, not the TivaWare folder. If you
delete the project in CCS, the imported project will still be in your workspace unless you
tell the dialog to delete the files from the disk.

► Click Project Import Existing CCS Eclipse Project.

Make the settings shown below and click ► Finish

 Lab 7: USB

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB 7 - 9

Build, Download and Run The Code
2. Make sure your evaluation board’s USB DEBUG port is connected to your

PC and that the usb_dev_bulk project is active. Build and download
your application by clicking the Debug button on the menu bar (make sure
your device is awake by pressing SW2 if you are still running code from the
hibernate lab). If you see a warning that the project was created with an earlier compiler
version, you can ignore it.

3. ► Click the Terminate button, and when CCS returns to the CCS Edit
perspective, unplug the USB cable from the LaunchPad’s DEBUG port.
Move the PWR SELECT switch on the board to the DEVICE position
(nearest the outside of the board). Plug your USB cable into the USB
DEVICE connector on the side of the LaunchPad board. The green LED in
the emulator section of the LaunchPad should be lit, verifying that the board is powered.

4. In a few moments, your computer will detect that a generic bulk device has been
plugged into the USB port. ► If necessary, install the driver for this device from:

C:\TI\TivaWare_C_Series-1.1\windows_drivers

Lab 7: USB

7 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

5. Make sure that you installed the StellarisWare Windows-side USB examples
from www.ti.com/sw-usb-win as shown in module one. In Windows, ► click Start All
Programs Texas Instruments Stellaris USB Examples USB Bulk Example.

The window below will appear:

6. ► Type something in the window and press Enter. For instance “TI” as shown below:

The host application will send the two ASCII bytes representing “TI” over the USB port
to the LaunchPad board. The code there will change uppercase to lowercase, blink the
LED and echo the transmission. Then the host application will display the returned string.
Feel free to experiment. Now that we’re assured that our data is traveling across the
DEVICE USB port, we can look into the code a little more.

http://www.ti.com/sw-usb-win

 Lab 7: USB

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB 7 - 11

Digging Deeper
7. ► Type EXIT to terminate the USB Bulk Example program on your PC.

► Connect your other USB cable from your PC to the DEBUG USB port the on the
LaunchPad and move the PWR SELECT switch on the board to the DEBUG position.
The green LED in the emulator section of the LaunchPad should be lit, verifying that the
board is powered. You should now have both ports connected to your PC.

8. ► In Code Composer Studio, if usb_dev_bulk.c is not already open, expand the
usb_dev_bulk project in the Project Explorer pane and double-click on
usb_dev_bulk.c to open it for editing.

The program is made up of five sections:

SysTickIntHandler – an ISR that handles interrupts from the SysTick timer to
keep track of “time”.

EchoNewDataToHost – a routine that takes the received data from a buffer, flips the
case and sends it to the USB port for transmission.

TxHandler – an ISR that will report when the USB transmit process is complete.

RxHandler – an ISR that handles the interaction with the incoming data, then calls the
EchoNewDataHost routine.

main() – primarily initialization, but a while loop keeps an eye on the number of bytes
transferred

Note the UARTprintf() APIs sprinkled throughout the code. This technique “instru-
ments” the code, allowing us to monitor its status via a serial port.

Lab 7: USB

7 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

Watching the Instrumentation

9. As shown earlier in module 1, ► start your terminal program and connect it to the
Stellaris Virtual Serial Port. Arrange the terminal window so that it takes up no more than
a quarter of your screen and position it in the upper left of your screen.

10. ► Resize CCS so that it takes up the lower half of your screen. ► Click the Debug
button to build and download the code and reconnect to your LaunchPad. ► Run the
code by clicking the Resume button.

11. ► Start the USB Bulk Example Windows application as shown in step 5. Place the
window in the upper right corner of your screen. This would be much easier with
multiple screens, wouldn’t it?

12. ► Note the status on your terminal display and type something, like
TEXAS INSTRUMENTS into the USB Bulk Example Windows application and press
Enter. Note that the terminal program will display

 Lab 7: USB

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB 7 - 13

13. ► Click the Suspend button in CCS to halt the program.

To summarize, we’re sending bulk data across the DEVICE USB connection. At the
same time we are performing emulation control and sending UART serial data across the
DEBUG USB connection.

If you get things out of sync here and find that the USB Bulk Example won’t run,
remember that it must be started after the usb_dev_bulk code on the LaunchPad is
running.

Watch the Buffers
14. ► Remove all expressions (if there are any) from the Expressions pane by right-clicking

inside the pane and selecting Remove All.

15. ► At about line 548 in
usb_dev_bulk.c, find the code
shown to the right:

► One at the time, highlight g_sTxBuffer and g_sRxBuffer and add them as
watch expressions by right-clicking on them, selecting Add Watch Expression … and
then OK (by the way, we could have watched the buffers in the Memory Browser, but
this method is more elegant).

Lab 7: USB

7 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

16. ► Expand both buffers as shown below:

The arrows above point out the memory addresses of the buffers as well as the contents.
Note that the Expressions window only shows the first 10 bytes in the buffer.

The usb_dev_bulk.c code uses both buffers as “circular” buffers … rather than
clearing out the buffer each time data is received. The code just appends the new data
after the previous data in the buffer. When the end of the buffer is reached, the code starts
again from the beginning. You can use the Memory Browser to view the rest of the
buffers, if you like.

17. ► Resize the code window in the Debug Perspective so you can see a few lines of code.
Around line 336 in usb_dev_bulk.c, find the line containing if(ulEvent . This
is the first line in the TxHandler ISR. At this point the buffers hold the last received
and transmitted values. ► Double-click in the gray area to the left on the line number to
set a breakpoint. Resize the windows again so you can see the entire Expressions pane.

► Right-click on the breakpoint and select Breakpoint Properties … Click on the Action
property value Remain Halted and change it to Update View. Click OK.

18. ► Click the Core Reset button to reset the device.

Make sure your buffers are expanded in the Expressions pane and ► click
the Resume button to run the code. The previous contents of the buffers shown in the
Expressions pane will be erased when the code runs for the first time.

► Resize CCS back to the bottom half of your screen.

 Lab 7: USB

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB 7 - 15

19. ► Restart your USB Bulk example Windows application so that it can reconnect with the
device.

20. ► Since the Expressions view will only display 10 characters, type something short into
the USB Bulk Example window like “TI”.

21. ► When the code reaches the breakpoint, the Expressions pane will update with the
contents of the buffer. Try typing “IS” and “AWESOME”. Notice that the “E” is the 11th
character and will not be displayed in the Expressions pane.

22. ► When you’re done, close the USB Bulk Example and Terminal program windows.

► Click the Terminate button in CCS to return to the CCS Edit perspective.

► Close the usb_dev_bulk project in the Project Explorer pane.

► Minimize Code Composer Studio.

23. ► Disconnect and store the USB cable connected to the DEVICE USB port.

 You’re done.

Lab 7: USB

7 - 16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - USB

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8 - 1

Memory

Introduction
In this chapter we will take a look at some memory issues:

• How to write to FLASH in-system.
• How to read/write from EEPROM.
• How to use bit-banding.
• How to configure the Memory Protection Unit (MPU) and deal with faults.

Agenda

Memory Control...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

Chapter Topics

8 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Chapter Topics
Memory ...8-1

Chapter Topics ...8-2

Internal Memory ..8-3

Flash ..8-4

EEPROM ...8-5

SRAM ...8-6
Bit-Banding ..8-7

Memory Protection Unit ..8-8

Priority Levels ..8-9

Securing Your IP ..8-10

Lab 8: Memory and the MPU ..8-11
Objective..8-11
Procedure ...8-12

 Internal Memory

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8 - 3

Internal Memory

Flash, SRAM and ROM Control

Memory Blocks and
Control Logic for:
 SRAM
 ROM
 Flash

EEPROM Control...

EEPROM Control

 EEPROM Block and Control Logic
 EEPROM block is connected to the

AHB (Advanced High Performance
Bus)

Flash Features...

Flash

8 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Flash

Flash
 256KB / 40MHz starting at 0x00000000
 Organized in 1KB independently erasable blocks
 Code fetches and data access occur over separate buses
 Below 40MHz, Flash access is single cycle
 Above 40MHz, the prefetch buffer fetches two 32-bit words/cycle.

No wait states for sequential code.
 Branch speculation avoids wait state on some branches
 Programmable write and execution protection available
 Simple programming interface

0x00000000 Flash

0x01000000 ROM

0x20000000 SRAM

0x22000000 Bit-banded SRAM

0x40000000 Peripherals & EEPROM

0x42000000 Bit-banded Peripherals

0xE0000000 Instrumentation, ETM, etc. EEPROM...

 EEPROM

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8 - 5

EEPROM

EEPROM
 2KB of memory starting at 0x400AF000 in Peripheral space
 Accessible as 512 32-bit words
 32 blocks of 16 words (64 bytes) with access protection per block
 Built-in wear leveling with endurance of 500K writes
 Lock protection option for the whole peripheral as well as per

block using 32-bit to 96-bit codes
 Interrupt support for write completion to avoid polling
 Random and sequential read/write access (4 cycles max/word)

0x00000000 Flash

0x01000000 ROM

0x20000000 SRAM

0x22000000 Bit-banded SRAM

0x40000000 Peripherals & EEPROM

0x42000000 Bit-banded Peripherals

0xE0000000 Instrumentation, ETM, etc. SRAM...

SRAM

8 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

SRAM

SRAM
 32KB / 80MHz starting at 0x20000000
 Bit banded to 0x22000000
 Can hold code or data

0x00000000 Flash

0x01000000 ROM

0x20000000 SRAM

0x22000000 Bit-banded SRAM

0x40000000 Peripherals & EEPROM

0x42000000 Bit-banded Peripherals

0xE0000000 Instrumentation, ETM, etc. Bit-Banding...

 Bit-Banding

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8 - 7

Bit-Banding

Bit-Banding
 Reduces the number of read-modify-write operations
 SRAM and Peripheral space use address aliases to access

individual bits in a single, atomic operation
 SRAM starts at base address 0x20000000

Bit-banded SRAM starts at base address 0x2200000
 Peripheral space starts at base address 0x40000000

Bit-banded peripheral space starts at base address 0x42000000

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 0x20) + (bit number * 4)

For example, bit-7 at address 0x20002000 is:

0x20002000 + (0x2000 * 0x20) + (7 * 4) = 0x2204001C

MPU...

Memory Protection Unit

8 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Memory Protection Unit

Memory Protection Unit (MPU)
 Defines 8 separate memory regions plus a background region

accessible only from privileged mode
 Regions of 256 bytes or more are divided into 8 equal-sized

sub-regions
 MPU definitions for all regions include:

• Location
• Size
• Access permissions
• Memory attributes

 Accessing a prohibited region causes a memory management
fault

Privilege Levels...

 Priority Levels

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8 - 9

Priority Levels

Cortex M4 Privilege Levels
 Privilege levels offer additional protection for software,

particularly operating systems

 Unprivileged : software has …
• Limited access to the Priority Mask register
• No access to the system timer, NVIC, or system control block
• Possibly restricted access to memory or peripherals (FPU, MPU, etc)

 Privileged: software has …
• use of all the instructions and has access to all resources

 ISRs operate in privileged mode
 Thread code operates in unprivileged mode unless the level is

changed via the Thread Mode Privilege Level (TMPL) bit in the
CONTROL register

Lab...

Securing Your IP

8 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Securing Your IP

Securing Your IP
 Flash memory can be protected (per 2KB memory block).

Prohibited access attempts will generate a bus fault.

 The JTAG and SWD ports can be disabled. DBG0 = 0 and DBG1 =
1 (in BOOTCFG register) for debug to be available. The user should
be careful to provide a mechanism, for instance via the bootloader of
enabling the ports since this is permanent.

 There is a set of steps in the UG for recovering a “locked”
microcontroller, but this will result in the mass erase of flash
memory.

 Lab 8: Memory and the MPU

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8 - 11

Lab 8: Memory and the MPU

Objective
In this lab you will

• write to FLASH in-system.
• read/write EEPROM.
• Experiment with using the MPU
• Experiment with bit-banding

Lab 8: Memory and the MPU

 Create code to write to Flash
 Create code to read/write EEPROM
 Experiment with MPU and

bit-banding

Agenda ...

USB Emulation Connection

Lab 8: Memory and the MPU

8 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Procedure

Import lab8

1. We have already created the lab8 project for you with an empty main.c, a startup file
and all necessary project and build options set.

► Maximize Code Composer and click Project Import Existing CCS Eclipse Project.

Make the settings shown below and ► click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

2. ► Expand the project by clicking the next to lab8 in the Project Explorer pane.
Double-click on main.c to open it for editing.

 Lab 8: Memory and the MPU

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8 - 13

3. Let’s start out with a straightforward set of starter code. ► Copy the code below and
paste it into your empty main.c file.

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"

int main(void)
{
 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);
 SysCtlDelay(20000000);

 while(1)
 {
 }
}

You should already know what this code does, but a quick review won’t hurt. The
included header files support all the usual stuff including GPIO. Inside main(), we
configure the clock speed to 40MHz, set the pins connected to the LEDs as outputs and
then make sure all three LEDs are off. Next is a two second (approximately) delay
followed by a while(1) trap.

► Save your work.

If you’re having problems, this code is in your lab8/project folder as main1.txt.

Writing to Flash
4. We need to find a writable block of flash memory. Right now, that would be flash

memory that won’t be holding the program we’ll be executing. ► Under Project on the
menu bar, click Build All. This will build the project without attempting to download it to
the TM4C123GH6PM memory.

5. As we’ve seen before, CCS creates a map file of the program during the build process.
► Look in the Debug folder of lab8 in the Project Explorer pane and double-click
on lab8.map to open it.

Lab 8: Memory and the MPU

8 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

6. ► Find the MEMORY CONFIGURATION and SEGMENT ALLOCATION MAP
sections as shown below:

From the map file we can see that the amount of flash memory used is 0x07a8 in length
that starts at 0x0. That means that pretty much anywhere in flash located at an address
greater than 0x1000 (for this program) is writable. Let’s play it safe and pick the block
starting at 0x10000. Remember that flash memory is erasable in 1K blocks. Close
lab8.map.

7. ► Back in main.c, add the following include to the end of the include statements to
add support for flash APIs:

#include "driverlib/flash.h"

8. ► At the top of main(), enter the following four lines to add buffers for read and write
data and to initialize the write data:

 uint32_t pui32Data[2];
 uint32_t pui32Read[2];
 pui32Data[0] = 0x12345678;
 pui32Data[1] = 0x56789abc;

 Lab 8: Memory and the MPU

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8 - 15

9. ► Just above the while(1) loop at the end of main(), add these four lines of code:

 FlashErase(0x10000);
 FlashProgram(pui32Data, 0x10000, sizeof(pui32Data));
 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x02);
 SysCtlDelay(20000000);

Line:

1: Erases the block of flash we identified earlier.

2: Programs the data array we created, to the start of the block, of the length of the array.

3: Lights the red LED to indicate success.

4: Delays about two seconds before the program traps in the while(1) loop.

10. Your code should look like the code below. If you’re having issues, this code is located in
the lab8/project folder as main2.txt.

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/flash.h"

int main(void)
{
 uint32_t pui32Data[2];
 uint32_t pui32Read[2];
 pui32Data[0] = 0x12345678;
 pui32Data[1] = 0x56789abc;

 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);
 SysCtlDelay(20000000);

 FlashErase(0x10000);
 FlashProgram(pui32Data, 0x10000, sizeof(pui32Data));
 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x02);
 SysCtlDelay(20000000);

 while(1)
 {
 }
}

Lab 8: Memory and the MPU

8 - 16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Build, Download and Run the Flash Programming Code
11. ► Click the Debug button to build and download your program to the TM4C123GH6PM

memory. Ignore the warning about variable pui32Read not being referenced (we’ll use
it later). When the process is complete, ► set a breakpoint on the line containing the
FlashProgram() API function call.

12. ► Click the Resume button to run the code. Execution will quickly stop at the
breakpoint. ► On the CCS menu bar, click View Memory Browser. In the provided
entry window, enter 0x10000 as shown below and click Go:

Erased flash should read as all ones, since programming flash memory only writes zeros.
Because of this, writing to un-erased flash memory will produce unpredictable results.

13. ► Click the Resume button to run the code. The last line of code before the while(1)
loop will light the red LED. ► Click the Suspend button. Your Memory Browser will
update, displaying your successful write to flash memory.

 Lab 8: Memory and the MPU

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8 - 17

14. ► Remove the breakpoint.

15. ► Click the Terminate button to stop debugging and return to the CCS Edit perspective.

Bear in mind that if you repeat this exercise, the values you just programmed in flash will
remain there until that flash block is erased.

Reading and Writing EEPROM
16. ► Back in main.c, add the following line to the end of the include statements to add

support for EEPROM APIs:

#include "driverlib/eeprom.h"

17. ► Just above the while(1) loop, enter the following seven lines of code:

 SysCtlPeripheralEnable(SYSCTL_PERIPH_EEPROM0);
 EEPROMInit();
 EEPROMMassErase();
 EEPROMRead(pui32Read, 0x0, sizeof(pui32Read));
 EEPROMProgram(pui32Data, 0x0, sizeof(pui32Data));
 EEPROMRead(pui32Read, 0x0, sizeof(pui32Read));
 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x04);

Line:

1: Turns on the EEPROM peripheral.

2: Performs a recovery if power failed during a previous write operation.

3: Erases the entire EEPROM. This isn’t strictly necessary because, unlike flash,
EEPROM does not need to be erased before it is programmed. But this will allow
us to see the result of our programming more easily in the lab.

4: Reads the erased values into pulRead (offset address)

5: Programs the data array, to the beginning of EEPROM, of the length of the array.

6: Reads that data into array pulRead.

7: Turns off the red LED and turns on the blue LED.

Lab 8: Memory and the MPU

8 - 18 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

18. ► Save your work.

Your code should look like the code below. If you’re having issues, this code is located in
the lab8/project folder as main3.txt.

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/flash.h"
#include "driverlib/eeprom.h"

int main(void)
{
 uint32_t pui32Data[2];
 uint32_t pui32Read[2];
 pui32Data[0] = 0x12345678;
 pui32Data[1] = 0x56789abc;

 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);
 SysCtlDelay(20000000);

 FlashErase(0x10000);
 FlashProgram(pui32Data, 0x10000, sizeof(pui32Data));
 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x02);
 SysCtlDelay(20000000);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_EEPROM0);
 EEPROMInit();
 EEPROMMassErase();
 EEPROMRead(pui32Read, 0x0, sizeof(pui32Read));
 EEPROMProgram(pui32Data, 0x0, sizeof(pui32Data));
 EEPROMRead(pui32Read, 0x0, sizeof(pui32Read));
 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x04);

 while(1)
 {
 }
}

 Lab 8: Memory and the MPU

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8 - 19

Build, Download and Run the EEPROM Programming Code
19. ► Click the Debug button to build and download your program to the TM4C123GH6PM

memory. Code Composer does not currently have a browser for viewing EEPROM
memory located in the peripheral area. The code we’ve written will let us read the values
and display them as array values.

20. ► Click on the Variables tab and expand both of the arrays by clicking the + next to
them. ► Right-click on the first variable’s row and select Number Format Hex. Do
this for all four variables.

21. ► Set a breakpoint on the line containing EEPROMProgram(). We want to verify the
previous contents of the EEPROM. ► Click the Resume button to run to the breakpoint.

22. Since we included the EEPROMMassErase() in the code, the values read from
memory should be all Fs as shown below:

23. ► Click the Resume button to run the code from the breakpoint. When the blue LED on

the board lights, click the Suspend button. The values read from memory should now be
the same as those in the write array:

Lab 8: Memory and the MPU

8 - 20 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Further EEPROM Information
24. EEPROM is unlocked at power-up. Your locking scheme, if you choose to use one, can

be simple or complex. You can lock the entire EEPROM or individual blocks. You can
enable reading without a password and writing with one if you desire. You can also hide
blocks of EEPROM, making them invisible to further accesses.

25. EEPROM reads and writes are multi-cycle instructions. The ones used in the lab code are
“blocking calls”, meaning that program execution will stall until the operation is
complete. There are also “non-blocking” calls that do not stall program execution. When
using those calls you should either poll the EEPROM or enable an interrupt scheme to
assure the operation completes properly.

26. ► Remove your breakpoint, click Terminate to return to the CCS Edit perspective and
close the lab8 project.

 Lab 8: Memory and the MPU

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8 - 21

Bit-Banding
27. The LaunchPad board TivaWare examples include a bit-banding project. ► Click Project
 Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.
The example project will be copied to your workspace folder.

28. ► Double-click on bitband.c to open it for viewing. Page down until you reach
main(). You should recognize most of the setup code, but note that the UART is also
configured. We’ll be able to watch the code run via UARTprintf() statements that
send data to a terminal program running on your laptop. Also note that this example uses
ROM API function calls.

Lab 8: Memory and the MPU

8 - 22 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

29. ► Continue paging down until you find the
for(ui32Idx=0;ui32Idx<32;ui32Idx++) loop. This 32-step loop will write
0xdecafbad into memory bit by bit using bit-banding. This will be done using the
HWREGBITW() macro.

► Right-click on HWREGBITW() and select Open Declaration.

The HWREGBITW(x,b) macro is an alias from:

HWREG(((uint32_t)(x) & 0xF0000000) | 0x02000000 |

(((uint32_t)(x) & 0x000FFFFF) << 5) | ((b) << 2))

 which is C code for:

bit-band alias = bit-band base + (byte offset * 0x20) + (bit number * 4)

This is the calculation for the bit-banded address of bit b of location x. HWREG is a
macro that programs a hardware register (or memory location) with a value.

The loop in bitband.c reads the bits from 0xdecafbad and programs them into the
calculated bit- band addresses of g_ui32Value. Throughout the loop the program
transfers the value in g_ui32Value to the UART for viewing on the host. Once all bits
have been written to g_ui32Value, the variable is read directly (all 32 bits) to make
sure the value is 0xdecafbad. There is another loop that reads the bits individually to
make sure that they can be read back using bit-banding

30. ► Click the Debug button to build and download the program to the TM4C123GH6PM.

 Lab 8: Memory and the MPU

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8 - 23

31. ► If you are using Windows 7 or 8, skip to step 33. In WinXP, open HyperTerminal by
clicking Start Run…, then type hypertrm in the Open: box and click OK. Pick any
name you like for your connection and click OK. In the next dialog box, change the
Connect using: selection to COM##, where ## is the COM port number you noted in
Lab1. Click OK. Make the selections shown below and click OK.

Skip to step 34.

32. ► In Win7 or 8, double-click on putty.exe. Make the settings shown below and then
click Open. Your COM port number will be the one you noted in Lab1.

33. ► Click the Resume button in CCS and watch the bits drop into place in your terminal
window. The Delay() in the loop causes this process to take about 30 seconds.

34. ► Close your terminal window. Click Terminate in CCS to return to the CCS Edit
perspective and close the bitband project.

Lab 8: Memory and the MPU

8 - 24 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Memory Protection Unit (MPU)
35. The LaunchPad board TivaWare examples include an mpu fault project. ► Click Project
 Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.
Note that this project is automatically copied into your workspace.

36. ► Expand the project and double-click on mpu_fault.c for viewing.

Again, things should look pretty normal in the setup, so let’s look at where things are
different.

Find the function called MPUFaultHandler. This exception handler looks just like an
ISR. The main purpose of this code is to preserve the address of the problem that caused
the fault, as well as the status register.

► Open startup_ccs.c and find where MPUFaultHandler has been placed in
the vector table. Close startup_ccs.c.

 Lab 8: Memory and the MPU

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory 8 - 25

37. ► In mpu_fault.c, find main(). Using the memory map shown, the
MPURegionSet() calls will configure 6 different regions and parameters for the MPU.
The code following the final MPURegionSet() call triggers (or doesn’t trigger) the
fault conditions. Status messages are sent to the UART for display on the host.

MPURegionSet() uses the following parameters:

• Region number to set up

• Address of the region (as aligned by the flags)

• Flags

Flags are a set of parameters (OR’d together) that determine the attributes of the region
(size | execute permission | read/write permission | sub-region disable | enable/disable)

The size flag determines the size of a region and must be one of the following:

MPU_RGN_SIZE_32B
MPU_RGN_SIZE_64B
MPU_RGN_SIZE_128B
MPU_RGN_SIZE_256B
MPU_RGN_SIZE_512B
MPU_RGN_SIZE_1K
MPU_RGN_SIZE_2K
MPU_RGN_SIZE_4K
MPU_RGN_SIZE_8K
MPU_RGN_SIZE_16K
MPU_RGN_SIZE_32K
MPU_RGN_SIZE_64K
MPU_RGN_SIZE_128K
MPU_RGN_SIZE_256K

MPU_RGN_SIZE_512K
MPU_RGN_SIZE_1M
MPU_RGN_SIZE_2M
MPU_RGN_SIZE_4M
MPU_RGN_SIZE_8M
MPU_RGN_SIZE_16M
MPU_RGN_SIZE_32M
MPU_RGN_SIZE_64M
MPU_RGN_SIZE_128M
MPU_RGN_SIZE_256M
MPU_RGN_SIZE_512M
MPU_RGN_SIZE_1G
MPU_RGN_SIZE_2G
MPU_RGN_SIZE_4G

The execute permission flag must be one of the following:

MPU_RGN_PERM_EXEC enables the region for execution of code
MPU_RGN_PERM_NOEXEC disables the region for execution of code

The read/write access permissions are applied separately for the privileged and user
modes. The read/write access flags must be one of the following:

MPU_RGN_PERM_PRV_NO_USR_NO - no access in privileged or user mode
MPU_RGN_PERM_PRV_RW_USR_NO - privileged read/write, no user access
MPU_RGN_PERM_PRV_RW_USR_RO - privileged read/write, user read-only
MPU_RGN_PERM_PRV_RW_USR_RW - privileged read/write, user read/write
MPU_RGN_PERM_PRV_RO_USR_NO - privileged read-only, no user access
MPU_RGN_PERM_PRV_RO_USR_RO - privileged read-only, user read-only

Lab 8: Memory and the MPU

8 - 26 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Memory

Each region is automatically divided into 8 equally-sized sub-regions by the MPU. Sub-
regions can only be used in regions of size 256 bytes or larger. Any of these 8 sub-
regions can be disabled, allowing for creation of “holes” in a region which can be left
open, or overlaid by another region with different attributes. Any of the 8 sub-regions can
be disabled with a logical OR of any of the following flags:

MPU_SUB_RGN_DISABLE_0
MPU_SUB_RGN_DISABLE_1
MPU_SUB_RGN_DISABLE_2
MPU_SUB_RGN_DISABLE_3
MPU_SUB_RGN_DISABLE_4
MPU_SUB_RGN_DISABLE_5
MPU_SUB_RGN_DISABLE_6
MPU_SUB_RGN_DISABLE_7

Finally, the region can be initially enabled or disabled with one of the following flags:

MPU_RGN_ENABLE
MPU_RGN_DISABLE

38. ► Start your terminal program as shown earlier. Click the Debug button to build and
download the program to the TM4C123GH6PM. You can ignore any compiler version
warnings that may appear. Click the Resume button to run the program.

39. The tests are as follows:

• Attempt to write to the flash. This should cause
a protection fault due to the fact that this region
is read-only. If this fault occurs, the terminal
program will show OK.

• Attempt to read from the disabled section of
flash. If this fault occurs, the terminal program
will show OK.

• Attempt to read from the read-only area of
RAM. If a fault does not occur, the terminal program will show OK.

• Attempt to write to the read-only area of RAM. If this fault occurs, the terminal
program will show OK.

40. ► When you are done, close your terminal program. Click the Terminate button in CCS
to return to the CCS Edit perspective. Close the mpu_fault project and minimize Code
Composer Studio.

 You’re done.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit 9 - 1

Floating-Point Unit

Introduction
This chapter will introduce you to the Floating-Point Unit (FPU) on the LM4F series devices. In
the lab we will implement a floating-point sine wave calculator and profile the code to see how
many CPU cycles it takes to execute.

Agenda

What is Floating-Point?...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

Chapter Topics

9 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

Chapter Topics
Floating-Point Unit ...9-1

Chapter Topics ...9-2

What is Floating-Point and IEEE-754? ...9-3

Floating-Point Unit ..9-4

CMSIS DSP Library Performance ...9-6

Lab 9: FPU ..9-7
Objective..9-7
Procedure ...9-8

 What is Floating-Point and IEEE-754?

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit 9 - 3

What is Floating-Point and IEEE-754?

What is Floating-Point?

 Floating-point is a way to represent real numbers on
computers

 IEEE floating-point formats:

 Half (16-bit)

 Single (32-bit)

 Double (64-bit)

 Quadruple (128-bit)

What is IEEE-754?...

What is IEEE-754?

FPU...

exponent = [10000110]2 = [134]10 fraction = [0.110100001000000000000000]2 = [0.814453]10sign = (-1)0

= [1]10

Decimal Value = (-1)s x (1+f) x 2e-bias

= [1]10 x ([1]10 + [0.814453]10) x [2134-127]10

= [1. 814453]10 x 128
= [232.249]10

Symbol s e f
Example 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 X
Symbol Sign (s) Exponent (e) Fraction (f)

8 bits 23 bits1 bit

Decimal Value = (-1)s (1+f) 2e-bias

where: f = ∑[(b-i)2-i] ∀ i ϵ (1,23)
bias = 127 for single precision floating-point

Floating-Point Unit

9 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

Floating-Point Unit

Floating-Point Unit (FPU)

 The FPU provides floating-point
computation functionality that is compliant
with the IEEE 754 standard

 Enables conversions between fixed-point
and floating-point data formats, and floating-
point constant instructions

 The Cortex-M4F FPU fully supports single-
precision:
 Add
 Subtract
 Multiply
 Divide
 Single cycle multiply and accumulate (MAC)
 Square root

Modes of Operation...

Modes of Operation
 There are three different modes of operation for the FPU:

 Full-Compliance mode – In Full-Compliance mode, the FPU
processes all operations according to the IEEE 754 standard in
hardware. No support code is required.

 Flush-to-Zero mode – A result that is very small, as described in the
IEEE 754 standard, where the destination precision is smaller in
magnitude than the minimum normal value before rounding, is
replaced with a zero.

 Default NaN (not a number) mode – In this mode, the result of any
arithmetic data processing operation that involves an input NaN, or
that generates a NaN result, returns the default NaN. (0 / 0 = NaN)

FPU Registers...

 Floating-Point Unit

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit 9 - 5

FPU Registers

 Sixteen 64-bit double-word
registers, D0-D15

 Thirty-two 32-bit single-word
registers, S0-S31

Usage...

FPU Usage
 The FPU is disabled from reset. You must enable it* before you

can use any floating-point instructions. The processor must be in
privileged mode to read from and write to the Coprocessor Access
Control (CPAC) register.

 Exceptions: The FPU sets the cumulative exception status flag in
the FPSCR register as required for each instruction. The FPU does
not support user-mode traps.

 The processor can reduce the exception latency by using lazy
stacking*. This means that the processor reserves space on the
stack for the FPU state, but does not save that state information to
the stack.

CMSIS...
* with a TivaWare API function call

CMSIS DSP Library Performance

9 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

CMSIS DSP Library Performance

CMSIS* DSP Library Performance

Source: ARM CMSIS Partner Meeting Embedded World, Reinhard Keil

 DSP Library Benchmark: Cortex M3 vs. Cortex M4 (SIMD + FPU)
 Fixed-point ~ 2x faster
 Floating-point ~ 10x faster

* - ARM® Cortex™ Microcontroller Software Interface Standard

Lab...

 Lab 9: FPU

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit 9 - 7

Lab 9: FPU

Objective
In this lab you will enable the FPU to run and profile floating-point code.

Lab 9: FPU

 Experiment with the FPU
 Profile floating-point code

Agenda ...

USB Emulation Connection

Lab 9: FPU

9 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

Procedure

Import lab9
1. We have already created the lab9 project for you with main.c, a startup file and all

necessary project and build options set.

► Maximize Code Composer and click Project Import Existing CCS Eclipse Project.
Make the settings shown below and click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

► Expand the project.

 Lab 9: FPU

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit 9 - 9

Browse the Code
2. In order to save some time, we’re going to browse existing code rather than enter it line

by line. ► Open main.c in the editor pane and copy/paste the code below into it. The
code is fairly simple. We’ll use the FPU to calculate a full sine wave cycle inside a 100
datapoint long array. This file is saved in your lab9/project folder as main.txt.

#include <stdint.h>
#include <stdbool.h>
#include <math.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/fpu.h"
#include "driverlib/sysctl.h"
#include "driverlib/rom.h"

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

#define SERIES_LENGTH 100
float gSeriesData[SERIES_LENGTH];

int32_t i32DataCount = 0;

int main(void)
{
 float fRadians;

 ROM_FPULazyStackingEnable();
 ROM_FPUEnable();

 ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ | SYSCTL_OSC_MAIN);

 fRadians = ((2 * M_PI) / SERIES_LENGTH);

 while(i32DataCount < SERIES_LENGTH)
 {
 gSeriesData[i32DataCount] = sinf(fRadians * i32DataCount);
 i32DataCount++;
 }

 while(1)
 {
 }
}

3. At the top of main.c, look first at the includes, because there are a couple of new ones:

• math.h – the code uses the sinf() function prototyped by this header file

• fpu.h – support for Floating Point Unit
4. Next is an ifndef construct. Just in case M_PI is not already defined, this code will do

that for us.

5. Types and defines are next:

• SERIES_LENGTH – this is the depth of our data buffer

• float gSeriesData[SERIES_LENGTH] – an array of floats
SERIES_LENGTH long

• i32dataCount – a counter for our computation loop

Lab 9: FPU

9 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

6. Now we’ve reached main():

• We’ll need a variable of type float called fRadians to calculate sine

• Turn on Lazy Stacking (as covered in the presentation)

• Turn on the FPU (remember that from reset it is off)

• Set up the system clock for 50MHz

• A full sine wave cycle is 2π radians. Divide 2π by the depth of the array.

• The while() loop will calculate the sine value for each of the 100 values of the
angle and place them in our data array

• An endless loop at the end

Build, Download and Run the Code
7. ► Click the Debug button to build and download the code to the TM4C123GH6PM flash

memory. When the process completes, ► click the Resume button to run the code.

8. ► Click the Suspend button to halt code execution. Note that execution was trapped in
the while(1) loop.

9. ► If your Memory Browser isn’t currently visible, Click View Memory Browser on

the CCS menu bar. Enter gSeriesData in the address box and click Go. In the box
that says Hex 32 Bit – TI Style, click the down arrow and select 32 Bit Floating Point.
You will see the sine wave data in memory like the screen capture below:

 Lab 9: FPU

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit 9 - 11

10. Is that a sine wave? It’s hard to see from numbers alone. We can fix that. On the CCS
menu bar, click Tools Graph Single Time. When the Graph Properties dialog
appears, make the selections show below and click OK.

The graph below will appear at the bottom of your screen:

Profiling the Code
11. An interesting thing to know would be the amount of time it takes to calculate those 100

sine values.

► On the CCS menu bar, click View Breakpoints. Look in the upper right area of the
CCS display for the Breakpoints tab.

Lab 9: FPU

9 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop- Floating Point Unit

12. ► Remove any existing breakpoints by clicking Run Remove All Breakpoints. In the
main.c, set a breakpoint by double-clicking in the gray area to the left of the line
containing:

fRadians = ((2 * M_PI) / SERIES_LENGTH);

13. ► Click the Restart button to restart the code from main(), and then

click the Resume button to run to the breakpoint.

14. ► Right-click in the Breakpoints pane and Select Breakpoint (Code
Composer Studio) Count event. Leave the Event to Count as Clock Cycles in the next
dialog and click OK.

15. ► Set another Breakpoint on the line containing while(1) at the end of the code. This
will allow us to measure the number of clock cycles that occur between the two
breakpoints.

16. Note that the count is now 0 in the Breakpoints pane. ► Click the Resume button to run
to the second breakpoint. When code execution reaches the breakpoint, execution will
stop and the cycle count will be updated. Our result is show below:

17. A cycle count of 34996 means that it took about 350 clock cycles to run each calculation

and update the i32dataCount variable (plus some looping overhead). Since the System
Clock is running at 50 MHz, each loop took about 7µS, and the entire 100 sample loop
required about 700 µS.

18. ► Right-click in the Breakpoints pane and select Remove All, and then click Yes to
remove all of your breakpoints.

19. ► Click the Terminate button to return to the CCS Edit perspective. ► Right-click on
Lab9 in the Project Explorer pane, close the project and minimize CCS.

 You’re done.

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 1

BoosterPacks and grLib

Introduction
This chapter will take a look at the currently available BoosterPacks for the LaunchPad board.
We’ll take a closer look at the Kentec Display LCD TouchScreen BoosterPack and then dive into
the TivaWare graphics library.

Agenda

LaunchPad Boards...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

Chapter Topics

10 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Chapter Topics
BoosterPacks and grLib ...10-1

Chapter Topics ...10-2

LaunchPad Boards and BoosterPacks ...10-3

KenTec TouchSceen TFT LCD ..10-7

Graphics Library ...10-8

Lab 10: Graphics Library .. 10-11
Objective.. 10-11
Procedure ... 10-12

 LaunchPad Boards and BoosterPacks

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 3

LaunchPad Boards and BoosterPacks

TI LaunchPad Boards

MSP430
$9.99US

C2000 Piccolo
$17.00US

BoosterPack Connectors...

Tiva C Series
$12.99US

BoosterPack Connectors

 Original Format (MSP430)
• VCC and Ground
• 14 GPIO
• Emulator Reset and Test
• Crystal inputs or 2 more GPIO

 XL Format (Tiva C Series/C2000) is a
superset of the original, adding
two rows of pins with:
• USB VBUS and Ground
• 18 additional GPIO

Available Boosterpacks...

LaunchPad Boards and BoosterPacks

10 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Some of the Available BoosterPacks

TMP006 IR
Temperature

Sensor

C5000 Audio
Capacitive Touch

Olimex
8x8 LED Matrix

Sub-1GHz RF
Wireless

TPL0501 SPI
Digital Pot.

TPL0401 SPI
Digital Pot.

RF Module w/
LCD

Inductive
Charging

Solar Energy
Harvesting

Universal
Energy

Harvesting

Capacitive
Touch

Proto
Board

Available Boosterpacks...

Some of the Available BoosterPacks

Proto board ZigBee Networking OLED Display

LCD Controller
Development Package

Click Board
Adapter

MOD Board
Adapter

Kentec LCD Display...

See http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/default.aspx for a list of TI
boosterpacks.

http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/default.aspx

 LaunchPad Boards and BoosterPacks

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 5

Solar Energy
Harvesting: http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymb
et-enerchip-cc-solar-energy-harvesting-evaluation-kit-cbc-eval-10.aspx

Universal Energy Harvesting:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-
ep-universal-energy-harvesting-evaluation-kit-cbc-eval-09.aspx

Capacitive Touch:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/04/17/430boost_2d00_se
nse1.aspx

RF Module w/ LCD:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/07/13/golden-ic-rf-
module-with-lcd-boosterpack.aspx

Inductive Charging:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-
ep-universal-energy-harvesting-evaluation-kit-cbc-eval-11.aspx

Proto Board:
http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html

Olimex 8x8 LED Matrix:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/09/07/8x8-led-matrix-
boosterpack-from-olimex.aspx

Sub-1GHz Wireless:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/12/01/texas-instruments-
sub-1ghz-rf-wireless-boosterpack-430boost-cc110l.aspx

TPL0401 SPI Digital Potentiometer:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-
tpl0401-based-i2c-digital-potentiometer-tpl0401evm.aspx

TMP006 IR Temperature Sensor:
http://www.ti.com/tool/430boost-tmp006

C5000 Audio Capacitive Touch:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2012/03/27/texas-instruments-
c5000-audio-capacitive-touch-boosterpack-430boost-c55audio1.aspx

TPL0501 SPI Digital Potentiometer:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-
tpl0501-based-spi-digital-potentiometer-tpl0501evm.aspx

Proto Board:
http://store-ovhh2.mybigcommerce.com/ti-booster-packs/

LCD Controller Development Package:
http://www.epson.jp/device/semicon_e/product/lcd_controllers/index.htm

http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-cc-solar-energy-harvesting-evaluation-kit-cbc-eval-10.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-cc-solar-energy-harvesting-evaluation-kit-cbc-eval-10.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-09.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-09.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/04/17/430boost_2d00_sense1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/04/17/430boost_2d00_sense1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/07/13/golden-ic-rf-module-with-lcd-boosterpack.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/07/13/golden-ic-rf-module-with-lcd-boosterpack.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-11.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-11.aspx
http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/09/07/8x8-led-matrix-boosterpack-from-olimex.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/09/07/8x8-led-matrix-boosterpack-from-olimex.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/12/01/texas-instruments-sub-1ghz-rf-wireless-boosterpack-430boost-cc110l.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/12/01/texas-instruments-sub-1ghz-rf-wireless-boosterpack-430boost-cc110l.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0401-based-i2c-digital-potentiometer-tpl0401evm.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0401-based-i2c-digital-potentiometer-tpl0401evm.aspx
http://www.ti.com/tool/430boost-tmp006
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2012/03/27/texas-instruments-c5000-audio-capacitive-touch-boosterpack-430boost-c55audio1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2012/03/27/texas-instruments-c5000-audio-capacitive-touch-boosterpack-430boost-c55audio1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0501-based-spi-digital-potentiometer-tpl0501evm.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0501-based-spi-digital-potentiometer-tpl0501evm.aspx
http://store-ovhh2.mybigcommerce.com/ti-booster-packs/
http://www.epson.jp/device/semicon_e/product/lcd_controllers/index.htm

LaunchPad Boards and BoosterPacks

10 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

ZigBee Networking:
http://www.anaren.com/

MOD Board adapter:
https://www.olimex.com/dev/index.html

OLED Display:
http://www.kentecdisplay.com/plus/view.php?aid=74

Click Board Adapter:
http://www.mikroe.com/eng/categories/view/102/click-boards/

http://www.anaren.com/
https://www.olimex.com/dev/index.html
http://www.kentecdisplay.com/plus/view.php?aid=74
http://www.mikroe.com/eng/categories/view/102/click-boards/

 KenTec TouchSceen TFT LCD

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 7

KenTec TouchSceen TFT LCD

KenTec TouchScreen TFT LCD Display

 Part# EB-LM4F120-L35
 Designed for XL BoosterPack pinout
 3.5” QVGA TFT 320x240x16 color LCD

with LED backlight
 Driver circuit and connector are

compatible with 4.3”, 5”, 7” & 9”displays
 Resistive Touch Overlay

grLib Overview...

For more information go to: http://www.kentecdisplay.com/

http://www.kentecdisplay.com/

Graphics Library

10 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Graphics Library

Graphics Library Overview
The Tiva C Series Graphics Library provides graphics primitives and
widgets sets for creating graphical user interfaces on Tiva controlled
displays.
Note that Tiva devices do not have an LCD interface. The interface to smart
displays is done through serial or EPI ports.
The graphics library consists of three layers to interface your application to
the display:

Display Driver Layer*
Graphics Primitives Layer

Widget Layer

Your Application Code*

* = user written or modified
grLib Overview...

Graphics Library Overview

The design of the graphics library is governed by the following
goals:

 Components are written entirely in C except where absolutely not possible.
 Your application can call any of the layers.
 The graphics library is easy to understand.
 The components are reasonably efficient in terms of memory and processor

usage.
 Components are as self-contained as possible.
 Where possible, computations that can be performed at compile time are

done there instead of at run time.

Display Driver...

 Graphics Library

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 9

Display Driver

Routines for display-dependent operations like:
 Initialization
 Backlight control
 Contrast
 Translation of 24-bit RGB values to screen dependent color map

Drawing routines for the graphics library like:
 Flush
 Line drawing
 Pixel drawing
 Rectangle drawing

User-modified Hardware Dependent Code
 Connectivity of the smart display to the LM4F
 Changes to the existing code to match your

display (like color depth and size)

Low level interface to the display hardware

Graphics Primitives...

This document: http://www.ti.com/lit/an/spma039/spma039.pdf has suggestions for modifying
the display driver to connect to your display.

Graphics Primitives
Low level drawing support for:

 Lines, circles, text and bitmap images
 Support for off-screen buffering
 Foreground and background drawing contexts
 Color is represented as a 24-bit RGB value (8-bits per color)

 ~150 pre-defined colors are provided

 153 pre-defined fonts based on the Computer Modern typeface
 Support for Asian and Cyrillic languages

Widgets...

http://www.ti.com/lit/an/spma039/spma039.pdf

Graphics Library

10 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Widget Framework
- Widgets are graphic elements that provide user
control elements
- Widgets combine the graphical and touch screen
elements on-screen with a parent/child hierarchy so
that objects appear in front or behind each other
correctly

Canvas – a simple drawing surface with no user
interaction

Checkbox – select/unselect
Container – a visual element to group on-screen widgets
Push Button – an on-screen button that can be pressed

to perform an action
Radio Button – selections that form a group; like low,

medium and high
Slider – vertical or horizontal to select a value from a

predefined range
ListBox – selection from a list of options

Special Utilities...

Special Utilities
Utilities to produce graphics library compatible data structures

ftrasterize
 Uses the FreeType font rendering package to convert your font into a graphic

library format.
 Supported fonts include: TrueType®, OpenType®, PostScript® Type 1 and

Windows® FNT.

lmi-button
 Creates custom shaped buttons using a script plug-in for GIMP. Produces

images for use by the pushbutton widget.

pnmtoc
 Converts a NetPBM image file into a graphics library compatible file.
 NetPBM image formats can be produced by: GIMP, NetPBM, ImageMajik and

others.

mkstringtable
 Converts a comma separated file (.csv) into a table of strings usable by graphics

library for pull down menus.

Lab...

 Lab 10: Graphics Library

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 11

Lab 10: Graphics Library

Objective
In this lab you will connect the KenTec display to your LaunchPad board. You will experiment
with the example code and then write a program using the graphics library.

Lab 10: Graphics Library

 Connect Kentec Display
 Experiment with demo

project
 Write graphics library code

USB Emulation Connection

Agenda ...

Lab 10: Graphics Library

10 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Procedure

Connect the KenTec Display to your LaunchPad Board
1. ► Carefully connect the KenTec display to your LaunchPad board. Note the part

numbers on the front of the LCD display. Those part numbers should be at the end of the
LaunchPad board that has the two pushbuttons when oriented correctly. Make sure that
all the BoosterPack pins are correctly engaged into the connectors on the bottom of the
display. If the display doesn’t seem to be working, pull it out slightly. It may be
touching the power measurement jumper on the LaunchPad.

Import Project
2. We’re going to use the Kentec example project provided by the manufacturer.

► Maximize Code Composer and click Project Import Existing CCS Eclipse Project.
Make the settings shown below and click Finish.

Make sure the Copy projects into workspace checkbox is not checked and ► click
Finish.

 Lab 10: Graphics Library

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 13

3. ► Expand the project in the Project Explorer pane. The two files
Kentec320x240x16_ssd2119_8bit.c and touch.c are the driver files for the
display and the touch overlay. ► Open the files and take a look around. Some of these
files were derived from earlier examples, so you may see references to the
DK-LM3S9B96 board.

Kentec320x240x16_ssd2119_8bit.c contains the low level Display Driver
interface to the LCD hardware, including the pin mapping, contrast controls and simple
graphics primitives.

Build, Download and Run the Demo
4. ► Make sure your board is connected to your computer, and then click the Debug button

to build and download the program to the TM4C123GH6PM device. The project should
build and link without any warnings or errors.

5. ► Watch your LCD display and click the Resume button to run the demo program.
Using the + and – buttons on-screen, navigate through the eight screens. Make sure to try
out the checkboxes, push buttons, radio buttons and sliders. When you’re done
experimenting, click Terminate on the CCS menu bar to return to the CCS Edit
perspective.

Writing Our Own Code
6. The first task that our lab software will do is to display an image. So we need to create an

image in a format that the graphics library can understand. If you have not done so
already, download GIMP from www.gimp.org and install it on your PC. The steps below
will go through the process of clipping the photo below and displaying it on the LCD
display. If you prefer to use an existing image or photograph, or one taken from your
smartphone camera now, simply adapt the steps below.

7. ► Make sure that this page of the workbook pdf is open for viewing and press PrtScn on
your keyboard. This will copy the screen to your clipboard. The dimensions of the photo
below approximate that of the 320x240 KenTec LCD.

http://www.gimp.org/

Lab 10: Graphics Library

10 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

8. ► Open GIMP (make sure it is version 2.8 or later) and click Edit Paste. On the menu

bar, click Tools Selection Tools Rectangle Select. Select the image of the candy,
leaving a generous margin of white space around it.

9. ► Click Image Crop to Selection, then click Image Zealous Crop. This will
automatically crop the image as closely as possible.

10. ► Click Image Scale Image, change the image size width/height to
320x240 and click Scale. You may need to click the “chain” symbol to the
right of the pixel boxes to stop GIMP from preserving the wrong dimensions.

11. ► Convert the image to indexed mode by clicking Image Mode Indexed. Select
Generate optimum palette and change the Maximum number of colors box to 16 (the
color depth of the LCD). Click Convert.

12. ► Save the file by clicking File Export… In the upper left box, name the image pic
and change the save folder to c:\TI\TivaWare_C_Series-1.1\tools\bin.

Select PNM image as the file type by clicking + Select File Type just above the Help
button. Click Export. When prompted, select Raw as the data formatting and click
Export. Close GIMP and select Close without Saving.

13. Now that we have a source image file in PNM format, we can convert it to something that
the graphics library can handle. We’ll use the pnmtoc (PNM to C array) conversion
utility to do the translation.

► Open a command prompt window. In Windows XP click Start Run, then type cmd
in the window and press Enter. In Windows 7, click Start and then type cmd in the
Search dialog and press Enter.

 The pnmtoc utility is in c:\TI\TivaWare_C_Series-1.1\tools\bin. Copy this
command to your clipboard: cd c:\TI\TivaWare_C_Series-1.1\tools\bin .
Right-click anywhere in the command window, and then Select Paste. Press Enter to
change the folder to that location.

► Finally, perform the conversion by typing pnmtoc –c pic.pnm > pic.c in the
command window and hit Enter. When the process completes correctly, the cursor will
simply drop to a new line. ► Close the command window.

14. ► In CCS, make sure lab10 is
Active. Add the C file to the project,
by clicking Project→Add Files…
and navigating to the file:
c:\TI\TivaWare_C_Series-
1.1\tools\bin\pic.c Select
“Copy files” and click OK.

 Lab 10: Graphics Library

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 15

Modify pic.c
15. ► Open pic.c and add the following lines to the very top of the file:

#include <stdint.h>
#include <stdbool.h>
#include "grlib/grlib.h"

Your pic.c file should look something like this (your data will vary greatly):

#include <stdint.h>
#include <stdbool.h>
#include "grlib/grlib.h"

const unsigned char g_pui8Image[] =
{
 IMAGE_FMT_4BPP_COMP,
 96, 0,
 64, 0,

 15,
 0x00, 0x02, 0x00,
 0x18, 0x1a, 0x19,
 0x28, 0x2a, 0x28,
 0x38, 0x3a, 0x38,
 0x44, 0x46, 0x44,
 0x54, 0x57, 0x55,
 0x62, 0x65, 0x63,
 0x72, 0x75, 0x73,
 0x81, 0x84, 0x82,
 0x93, 0x96, 0x94,
 0xa2, 0xa5, 0xa3,
 0xb3, 0xb6, 0xb4,
 0xc4, 0xc7, 0xc5,
 0xd7, 0xda, 0xd8,
 0xe8, 0xeb, 0xe9,
 0xf4, 0xf8, 0xf5,

 0xff, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0xff, 0x07, 0x07,
 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0xff, 0x07, 0x07, 0x07, 0x07, 0x07,
 0x07, 0x07, 0x07, 0xfc, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x03, 0x77,
 0x23, 0x77, 0x77, 0xe9, 0x77, 0x78, 0x70, 0x07, 0x07, 0xc1, 0x77, 0x2c,
 0x04, 0xde, 0xee, 0xee, 0xee, 0xe9, 0x3c, 0xee, 0xa1, 0x07, 0x07, 0x77,
 0x2c, 0x03, 0xcf, 0x00, 0xee, 0xee, 0xee, 0xef, 0xee, 0xef, 0xfe, 0xa0,
 0xf0, 0x07, 0x07, 0x77, 0x2c, 0x03, 0xcf, 0xee, 0xee, 0x4f, 0xee, 0xe9,
 0xee, 0xa0, 0x07, 0x07, 0x77, 0x2c, 0x04, 0x03, 0xcf, 0xee, 0xee, 0xee,
 0xe9, 0xee, 0x90, 0xf0, 0x07, 0x07, 0x77, 0x2c, 0x03, 0xcf, 0xee, 0xee,
 0x4f, 0xee, 0xe9, 0xee, 0x90, 0x07, 0x07, 0x77, 0x2c, 0x04, 0x03, 0xcf,

 many, many more lines of this data …

 0x77, 0x2c, 0x19, 0xfe, 0xee, 0xef, 0x03, 0xee, 0xee, 0xee, 0xee, 0xfb,
 0x20, 0x07, 0x07, 0xc1, 0x77, 0x2c, 0x05, 0xdf, 0xee, 0xee, 0xee, 0xe9,
 0x78, 0xf9, 0x07, 0x07, 0x77, 0x2d, 0x01, 0x8d, 0xee, 0x2f, 0xee, 0xee,
 0x03, 0xee, 0xee, 0xee, 0xee, 0xf9, 0x10, 0x07, 0x07, 0xc0, 0x77, 0x2f,
 0x05, 0xad, 0xee, 0xfe, 0xee, 0xfc, 0x78, 0x20, 0x07, 0x07, 0x77, 0x2f,
 0x00, 0x27, 0x9d, 0x0f, 0xed, 0xee, 0xec, 0x40, 0x07, 0x07, 0x77, 0x2f,
 0x01, 0x00, 0x00, 0x28, 0x9a, 0xcc, 0xa9, 0x30, 0x07, 0xff, 0x07, 0x77,
 0x2f, 0x07, 0x07, 0x07, 0x07, 0x07, 0xc0, 0x07, 0x07,
};

16. ► Save your changes and close the pic.c editor pane. If you’re having issues with this,
copy/paste the contents of pic.txt found in your in the lab10/project folder to your
pic.c file.

Lab 10: Graphics Library

10 - 16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

main.c
17. To speed things up, we’re going to use the entire demo project as a template for our own

main() code. ► On the CCS menu bar, click File New Source File. Make the
selections shown below and click Finish:

18. Now that we’ve added main.c, we can’t also have grlib_demo.c in the project
since it has a main().► In the Project Explorer, right-click on grlib_demo.c and
select Resource Configurations Exclude from Build… Click the Select All button to
select both the Debug and Release configurations, and then click OK. In this manner we
can keep the old file in the project, but it will not be used during the build process. This is
a valuable technique when you are building multiple versions of a system that shares
much of the code between them.

19. ► Open main.c for editing. Copy/paste the following lines to the top:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "grlib/grlib.h"
#include "Kentec320x240x16_ssd2119_8bit.h"

Pointer to the Image Array
20. The declaration of the image array needs to be made, as well as the declaration of two

variables. The variables defined below are used for initializing the Context and Rect
structures. Context is a definition of the screen such as the clipping region, default
color and font. Rect is a simple structure for drawing rectangles. Look up these APIs in
the Graphics Library user’s guide.

► Add a line for spacing and add the following lines after the includes:

extern const uint8_t g_pui8Image[];
tContext sContext;
tRectangle sRect;

 Lab 10: Graphics Library

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 17

main()

21. The main() routine will be next. ► Leave a blank line for spacing and enter these lines
of code after the lines above:

int main(void)
{
}

Initialization
22. ► Set the clocking to run at 50 MHz using the PLL (400MHz ÷ 2 ÷ 4). Insert this line as

the first inside main():

SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

► Initialize the display driver. Skip a line and insert this line after the last:

 Kentec320x240x16_SSD2119Init();

► This next function initializes a drawing context, preparing it for use. The provided
display driver will be used for all subsequent graphics operations, and the default clipping
region will be set to the size of the LCD screen. Insert this line after the last:

GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

23. ► Let’s add a call to a function that will clear the screen. We’ll create that function in a

moment. Add the following line after the last one:

ClrScreen();

24. The following function will create a rectangle that covers the entire screen, set the fore-
ground color to black, and fill the rectangle by passing the structure sRect by reference.
The top left corner of the LCD display is the point (0,0) and the bottom right corner is
(319,239). ► Add the following code after the final closing brace of the program in
main.c.

void ClrScreen()
{
 sRect.i16XMin = 0;
 sRect.i16YMin = 0;
 sRect.i16XMax = 319;
 sRect.i16YMax = 239;
 GrContextForegroundSet(&sContext, ClrBlack);
 GrRectFill(&sContext, &sRect);
 GrFlush(&sContext);
}

25. ► Declare the function at the top of your code right below your variable definitions:

void ClrScreen(void);

Lab 10: Graphics Library

10 - 18 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Displaying the Image
26. Display the image by passing the global image variable g_pui8Image into

GrImageDraw(...) and place the image on the screen by locating the top-left corner
at (0,0) …we’ll adjust this later if needed. ► Leave a line for spacing, then insert this line
after the ClrScreen() call in main():

GrImageDraw(&sContext, g_pui8Image, 0, 0);

27. The function call below flushes any cached drawing operations. For display drivers that
draw into a local frame buffer before writing to the actual display, calling this function
will cause the display to be updated to match the contents of the local frame buffer.
► Insert this line after the last:

GrFlush(&sContext);

28. We will be stepping through a series of displays in this lab, so we want to leave each
display on the screen long enough to see it before it is erased. The delay below will give
you a chance to appreciate your work. ► Leave a line for spacing, then insert this line
after the last:

SysCtlDelay(SysCtlClockGet());

In previous labs we’ve simply passed a number to the SysCtlDelay() API call, but if
you were to change the CPU clock speed, your delay time would change.
SysCtlClockGet() will return the system clock speed and we can use that as our de-
lay basis. Obviously, you could have your delay be twice, half, 1/5th or some other mul-
tiple of this.

29. Before we go any further, we’d like to take the code for a test run. With that in mind
we’re going to add the final code pieces now, and insert later lab code in front of this.

LCD displays are not especially prone to burn in, but clearing the screen will mark a clear
break between one step in the code and the next. This performs the same function as step
24 and also flushes the cache. ► Leave several lines for spacing and add this line below
the last:

ClrScreen();

30. ► Add a while loop to the end of the code to stop execution. Leave a line for spacing,
then insert these line after the last:

while(1)
{
}

Don’t forget that you can auto-correct the indentation if needed.

Save your work.

 Lab 10: Graphics Library

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 19

If you’re having issues, you can find this code in main1.txt in the lab10 folder.
Your code should look like this:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "grlib/grlib.h"
#include "Kentec320x240x16_ssd2119_8bit.h"

extern const uint8_t g_pui8Image[];
tContext sContext;
tRectangle sRect;

void ClrScreen(void);

int main(void)
{
 SysCtlClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

 Kentec320x240x16_SSD2119Init();
 GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);
 ClrScreen();

 GrImageDraw(&sContext, g_pui8Image, 0, 0);
 GrFlush(&sContext);

 SysCtlDelay(SysCtlClockGet());
 // Later lab steps go between here

 // and here
 ClrScreen();
 while(1)
 {
 }
}

void ClrScreen()
{
 sRect.i16XMin = 0;
 sRect.i16YMin = 0;
 sRect.i16XMax = 319;
 sRect.i16YMax = 239;
 GrContextForegroundSet(&sContext, ClrBlack);
 GrRectFill(&sContext, &sRect);
 GrFlush(&sContext);
}

Build and Run the Code
31. Make sure Lab10 is the active project. ► Compile and download your application by

clicking the Debug button. ► Click the Resume button to run the program that was
downloaded to the flash memory of your TM4C123GH6PM. If your coding efforts were
successful, you should see your image appear on the LCD display for a few seconds, then
disappear.

Lab 10: Graphics Library

10 - 20 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

► When you’re finished, click the Terminate button to return to the CCS Edit
perspective.

When you are including images in your projects, remember that they can be quite large in
terms of memory space. This might possibly require a larger flash device, and increase
your system cost.

 Lab 10: Graphics Library

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 21

Display Text On-Screen
32. Refer back to the code on page 10-20. In main.c in the area marked:

// Later lab steps go between here

// and here

► Insert the following function call to clear the screen and flush the buffer:

ClrScreen();

33. Next we’ll display the text. Display text starting at (x,y) with the no background color.
The third parameter (-1) simply tells the API function to send the entire string, rather than
having to count the characters.

GrContextForegroundSet(...): Set the foreground for the text to be red.

GrContextFontSet(...): Set the font to be a max height of 30 pixels.

GrRectDraw(...): Put a white border around the screen.

GrFlush(...): And refresh the screen by matching the contents of the local frame
buffer.
Note the colors that are being used. If you’d like to try other colors, fonts or sizes, look in
the back of the Graphics Library User’s Guide.

► Add the following lines after the previous ones:

 sRect.i16XMin = 1;
 sRect.i16YMin = 1;
 sRect.i16XMax = 318;
 sRect.i16YMax = 238;
 GrContextForegroundSet(&sContext, ClrRed);
 GrContextFontSet(&sContext, &g_sFontCmss30b);
 GrStringDraw(&sContext, "Texas", -1, 110, 2, 0);
 GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0);
 GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0);
 GrStringDraw(&sContext, "Lab", -1, 135, 92, 0);
 GrContextForegroundSet(&sContext, ClrWhite);
 GrRectDraw(&sContext, &sRect);
 GrFlush(&sContext);

34. ► Add a delay so you can view your work.

SysCtlDelay(SysCtlClockGet());

► Save your work.

Lab 10: Graphics Library

10 - 22 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

If you’re having issues, you can find this code in main2.txt in the lab10/project
folder.

Your added code should look like this:
 // Later lab steps go between here

 ClrScreen();

 sRect.i16XMin = 1;
 sRect.i16YMin = 1;
 sRect.i16XMax = 318;
 sRect.i16YMax = 238;
 GrContextForegroundSet(&sContext, ClrRed);
 GrContextFontSet(&sContext, &g_sFontCmss30b);
 GrStringDraw(&sContext, "Texas", -1, 110, 2, 0);
 GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0);
 GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0);
 GrStringDraw(&sContext, "Lab", -1, 135, 92, 0);
 GrContextForegroundSet(&sContext, ClrWhite);
 GrRectDraw(&sContext, &sRect);
 GrFlush(&sContext);

 SysCtlDelay(SysCtlClockGet());

 // and here

Build, Load and Test
35. ► Build, load and run your code. If your changes are correct, you should see the image

again for a few seconds, followed by the on-screen text in a box for a few seconds. Then
the display will blank out. ► Return to the CCS Edit perspective when you’re done.

 Lab 10: Graphics Library

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 23

Drawing Shapes
36. Let’s add a filled-in yellow circle. Make the foreground yellow and center the circle at

(80,182) with a radius of 50.

► Add a line for spacing and then add these lines after the SysCtlDelay() added in
step 35:

GrContextForegroundSet(&sContext, ClrYellow);
GrCircleFill(&sContext, 80, 182, 50);

37. Draw an empty green rectangle starting with the top left corner at (160,132) and finishing
at the bottom right corner at (312,232).

► Add a line for spacing and add the following lines after the last ones:

 sRect.i16XMin = 160;
 sRect.i16YMin = 132;
 sRect.i16XMax = 312;
 sRect.i16YMax = 232;

GrContextForegroundSet(&sContext, ClrGreen);
 GrRectDraw(&sContext, &sRect);

38. Add a short delay to appreciate your work.

► Add a line for spacing and add the following line after the last ones:

SysCtlDelay(SysCtlClockGet());

► Save your work.

Lab 10: Graphics Library

10 - 24 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

If you’re having issues, you can find this code in main3.txt in the lab10/project
folder.

Your added code should look like this:

 // Later lab steps go between here

 ClrScreen();

 sRect.i16XMin = 1;
 sRect.i16YMin = 1;
 sRect.i16XMax = 318;
 sRect.i16YMax = 238;
 GrContextForegroundSet(&sContext, ClrRed);
 GrContextFontSet(&sContext, &g_sFontCmss30b);
 GrStringDraw(&sContext, "Texas", -1, 110, 2, 0);
 GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0);
 GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0);
 GrStringDraw(&sContext, "Lab", -1, 135, 92, 0);
 GrContextForegroundSet(&sContext, ClrWhite);
 GrRectDraw(&sContext, &sRect);
 GrFlush(&sContext);

 SysCtlDelay(SysCtlClockGet());

 GrContextForegroundSet(&sContext, ClrYellow);
 GrCircleFill(&sContext, 80, 182, 50);

 sRect.i16XMin = 160;
 sRect.i16YMin = 132;
 sRect.i16XMax = 312;
 sRect.i16YMax = 232;
 GrContextForegroundSet(&sContext, ClrGreen);
 GrRectDraw(&sContext, &sRect);

 SysCtlDelay(SysCtlClockGet());

 // and here

 Lab 10: Graphics Library

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 25

For reference, the final code should look like this:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/debug.h"
#include "driverlib/sysctl.h"
#include "grlib/grlib.h"
#include "Kentec320x240x16_ssd2119_8bit.h"

extern const uint8_t g_pui8Image[];
tContext sContext;
tRectangle sRect;

void ClrScreen(void);

int main(void)
{
 SysCtlClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

 Kentec320x240x16_SSD2119Init();
 GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);
 ClrScreen();

 GrImageDraw(&sContext, g_pui8Image, 0, 0);
 GrFlush(&sContext);

 SysCtlDelay(SysCtlClockGet());
 // Later lab steps go between here

 ClrScreen();

 sRect.i16XMin = 1;
 sRect.i16YMin = 1;
 sRect.i16XMax = 318;
 sRect.i16YMax = 238;
 GrContextForegroundSet(&sContext, ClrRed);
 GrContextFontSet(&sContext, &g_sFontCmss30b);
 GrStringDraw(&sContext, "Texas", -1, 110, 2, 0);
 GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0);
 GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0);
 GrStringDraw(&sContext, "Lab", -1, 135, 92, 0);
 GrContextForegroundSet(&sContext, ClrWhite);
 GrRectDraw(&sContext, &sRect);
 GrFlush(&sContext);

 SysCtlDelay(SysCtlClockGet());

 GrContextForegroundSet(&sContext, ClrYellow);
 GrCircleFill(&sContext, 80, 182, 50);

 sRect.i16XMin = 160;
 sRect.i16YMin = 132;
 sRect.i16XMax = 312;
 sRect.i16YMax = 232;
 GrContextForegroundSet(&sContext, ClrGreen);
 GrRectDraw(&sContext, &sRect);

 SysCtlDelay(SysCtlClockGet());

 // and here
 ClrScreen();
 while(1)
 {
 }
}

void ClrScreen()
{
 sRect.i16XMin = 0;
 sRect.i16YMin = 0;
 sRect.i16XMax = 319;
 sRect.i16YMax = 239;
 GrContextForegroundSet(&sContext, ClrBlack);
 GrRectFill(&sContext, &sRect);
 GrFlush(&sContext);
}

This is the code in main3.txt.

Lab 10: Graphics Library

10 - 26 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Build, Load and Test
39. ► Build, load and run your code to make sure that your changes work.

► Return to the CCS Edit perspective when you are done.

 Lab 10: Graphics Library

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 27

Widgets
40. Now let’s play with some widgets. In this case, we’ll create a screen with a title header

and a large rectangular button that will toggle the red LED on and off. Modifying the
existing code would be a little tedious, so we’ll create a new file.

41. ► In the Project Explorer, right-click on main.c and select Resource Configurations
Exclude from Build… Click the Select All button to select both the Debug and Release
configurations, and then click OK.

42. ► On the CCS menu bar, click File New Source File. Make the selections shown
below and click Finish:

43. ► Add the following support files to the top of MyWidget.c:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/interrupt.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "grlib/grlib.h"
#include "grlib/widget.h"
#include "grlib/canvas.h"
#include "grlib/pushbutton.h"
#include "Kentec320x240x16_ssd2119_8bit.h"
#include "touch.h"

44. The next two lines provide names for structures needed to create the background canvas
and the button widget. ► Add a line for spacing, then add these lines below the last:

extern tCanvasWidget g_sBackground;
extern tPushButtonWidget g_sPushBtn;

45. When the button widget is pressed, a handler called OnButtonPress() will toggle the
LED. ► Add a line for spacing, then add this prototype below the last:

void OnButtonPress(tWidget *pWidget);

Lab 10: Graphics Library

10 - 28 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

46. Widgets are arranged on the screen in a parent-child relationship, where the parent is in
the background. This relationship can extend multiple levels. In our example, we’re
going to have the background be the parent or root and the heading will be a child of the
background. The button will be a child of the heading. ► Add a line for spacing and then
add the following two global variables (one for the background and one for the button)
below the last:

Canvas(g_sHeading, &g_sBackground, 0, &g_sPushBtn,
 &g_sKentec320x240x16_SSD2119, 0, 0, 320, 23,
 (CANVAS_STYLE_FILL | CANVAS_STYLE_OUTLINE | CANVAS_STYLE_TEXT),
 ClrBlack, ClrWhite, ClrRed, g_psFontCm20, "LED Control", 0, 0);

Canvas(g_sBackground, WIDGET_ROOT, 0, &g_sHeading,

&g_sKentec320x240x16_SSD2119, 0, 23, 320, (240 - 23),
CANVAS_STYLE_FILL, ClrBlack, 0, 0, 0, 0, 0, 0);

Rather than re-print the parameter list for these declarations, refer to the Graphics Library
User’s Guide. The short description is that there will be a black background. In front of
that is a white rectangle at the top of the screen with “LED Control” inside it.

47. Next up is the definition for the rectangular button we’re going to use. The button is
functionally in front of the heading, but physically located below it (refer to the picture in
step 50). It will be a red rectangle with a gray background and “Toggle red LED” inside
it. When pressed it will fill with white and the handler named OnButtonPress will be
called. ► Add a line for spacing and then add the following code below the last:

RectangularButton(g_sPushBtn, &g_sHeading, 0, 0,
 &g_sKentec320x240x16_SSD2119, 60, 60, 200, 40,
 (PB_STYLE_OUTLINE | PB_STYLE_TEXT_OPAQUE | PB_STYLE_TEXT |

 PB_STYLE_FILL), ClrGray, ClrWhite, ClrRed, ClrRed,
 g_psFontCmss22b, "Toggle red LED", 0, 0, 0, 0, OnButtonPress);

The last detail before the actual code is a flag variable to indicate whether the LED is on
or off.

► Add a line for spacing and then add the following code below the last:

bool g_RedLedOn = false;

48. When the button is pressed, a handler called OnButtonPress() will be called. This
handler uses the flag to switch between turning the red LED on or off.

► Add a line for spacing and then add the following code below the last:

void OnButtonPress(tWidget *pWidget)
{
 g_RedLedOn = !g_RedLedOn;

 if(g_RedLedOn)
 {
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0x02);
 }
 else
 {
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0x00);
 }
}

 Lab 10: Graphics Library

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 29

49. Lastly is the main() routine. The steps are: initialize the clock, initialize the GPIO,
initialize the display, initialize the touchscreen, enable the touchscreen callback so that
the routine indicated in the button structure will be called when it is pressed, add the
background and paint it to the screen (parents first, followed by the children) and finally,
loop while the widget polls for a button press.

► Add a line for spacing and then add the following code below the last:

int main(void)
{

 SysCtlClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);

 Kentec320x240x16_SSD2119Init();

 TouchScreenInit();

 TouchScreenCallbackSet(WidgetPointerMessage);

 WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sBackground);

 WidgetPaint(WIDGET_ROOT);

 while(1)
 {
 WidgetMessageQueueProcess();
 }
}

► Save your work.

If you’re having issues, you can find this code in MyWidget.txt in the lab10/project
folder.

Your code should look like the next page:

Lab 10: Graphics Library

10 - 30 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/interrupt.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "grlib/grlib.h"
#include "grlib/widget.h"
#include "grlib/canvas.h"
#include "grlib/pushbutton.h"
#include "Kentec320x240x16_ssd2119_8bit.h"
#include "touch.h"

extern tCanvasWidget g_sBackground;
extern tPushButtonWidget g_sPushBtn;

void OnButtonPress(tWidget *pWidget);

Canvas(g_sHeading, &g_sBackground, 0, &g_sPushBtn,
 &g_sKentec320x240x16_SSD2119, 0, 0, 320, 23,
 (CANVAS_STYLE_FILL | CANVAS_STYLE_OUTLINE | CANVAS_STYLE_TEXT),
 ClrBlack, ClrWhite, ClrRed, g_psFontCm20, "LED Control", 0, 0);

Canvas(g_sBackground, WIDGET_ROOT, 0, &g_sHeading,
 &g_sKentec320x240x16_SSD2119, 0, 23, 320, (240 - 23),
 CANVAS_STYLE_FILL, ClrBlack, 0, 0, 0, 0, 0, 0);

RectangularButton(g_sPushBtn, &g_sHeading, 0, 0,
 &g_sKentec320x240x16_SSD2119, 60, 60, 200, 40,
 (PB_STYLE_OUTLINE | PB_STYLE_TEXT_OPAQUE | PB_STYLE_TEXT |
 PB_STYLE_FILL), ClrGray, ClrWhite, ClrRed, ClrRed,
 g_psFontCmss22b, "Toggle red LED", 0, 0, 0, 0, OnButtonPress);

bool g_RedLedOn = false;

void OnButtonPress(tWidget *pWidget)
{
 g_RedLedOn = !g_RedLedOn;

 if(g_RedLedOn)
 {
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0x02);
 }
 else
 {
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0x00);
 }
}
int main(void)
{
 SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);
 Kentec320x240x16_SSD2119Init();
 TouchScreenInit();
 TouchScreenCallbackSet(WidgetPointerMessage);

 WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sBackground);

 WidgetPaint(WIDGET_ROOT);

 while(1)
 {
 WidgetMessageQueueProcess();
 }
}

 Lab 10: Graphics Library

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib 10 - 31

Build, Load and Test
50. ► Build, load and run your code to make sure that everything works. Press the

rectangular button and the red LED on the LaunchPad will light, press it again and it will
turn off.

51. ► Click the Terminate button to return to the CCS Edit perspective when you are done.
Close lab10 and minimize Code Composer Studio.

52. Disconnect the LaunchPad from the USB cable. Remove the Kentec display and put it
away. Replace the USB cable.

Homework ideas:

• Change the red background of the button so that it stays on when the LED is lit
• Add more buttons to control the green and blue LEDs.
• Use the Lab5 ADC code to display the measured temperature on the LCD in real

time.
• Use the RTC to display the time of day on screen.
• Use the Lab6 Hibernation code to make the device sleep, and the backlight go

off, after no screen touch for 10 seconds
• Use the Lab7 USB code to send data to the LCD and touch screen presses back to

the PC.
• Use the Lab9 sine wave code to create a program that displays the sine wave data

on the LCD screen.

 You’re done.

Lab 10: Graphics Library

10 - 32 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - BoosterPacks & grLib

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11 - 1

Synchronous Serial Interface

Introduction
This chapter will introduce you to the capabilities of the Synchronous Serial Interface (SSI) . The
lab uses an Olimex 8x8 LED BoosterPack to explore programming the SPI portion of the SSI. In
order to do the lab you will need to purchase and modify the BoosterPack.

Agenda

Features...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

Chapter Topics

11 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Chapter Topics
Synchronous Serial Interface ..11-1

Chapter Topics ...11-2

Features and Block Diagram ...11-3

Interrupts and µDMA Operation ...11-4

Signal Formats ...11-5

Lab 11: SPI Bus and the Olimex LED BoosterPack ..11-7
Objective..11-7
Procedure ...11-8

 Features and Block Diagram

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11 - 3

Features and Block Diagram

TM4C123GH6PM SSI Features

Block Diagram ...

Four SSI modules. Each with:
 Freescale SPI, MICROWIRE or TI Synchronous Serial interfaces
 Master or Slave operation
 Programmable bit clock rate and pre-scaler
 Programmable data frame size from 4 to 16-bits
 Separate Tx and Rx FIFOs (8 x16-bits)
 Interrupts and µDMA support

SSI Block Diagram

Interrupts...

Signal Pinout (n = 0 to 3) …

SSInClk: SSI Module n Clock
SSInFss: SSI Module n Frame Signal
SSInRx: SSI Module n Receive
SSInTx: SSI Module n Transmit

Interrupts and µDMA Operation

11 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Interrupts and µDMA Operation

SSI Interrupts

Operation...

Single interrupt per module, cleared automatically
Interrupt conditions:

 Transmit FIFO service (when the transmit FIFO is half full or less)
 Receive FIFO service (when the receive FIFO is half full or more)
 Receive FIFO time-out
 Receive FIFO overrun
 End of transmission
 Receive DMA transfer complete
 Transmit DMA transfer complete

Interrupts on these conditions can be enabled individually
Your handler code must check to determine the source
of the SSI interrupt and clear the flag(s)

SSI µDMA Operation

 Separate channels for Tx and Rx
 When enabled, the SSI will assert a DMA request on either channel

when the Rx or Tx FIFO can transfer data
 For Rx channel: A single transfer request is made when any data is in the

Rx FIFO. A burst transfer request is made when 4 or more items is in the Rx
FIFO.

 For Tx channel: A single transfer request is made when there is at least
one empty location in the Tx FIFO. A burst transfer request is made when 4
or more slots are empty.

Signal Formats...

1 2

 Signal Formats

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11 - 5

Signal Formats

Freescale SPI Signal Formats

TI Signal Formats ...

 Four wire interface. Full duplex.
 SSIFss acts as chip select
 Inactive state and clock phasing are programmable via the

SPO and SPH bits (SSI_FRF_MOTO_MODE_0-3 parameter)
 SPO = 0: SSIClk low when inactive. SPO = 1: high
 SPH = 0: Data is captured on 1st SSIClk transition. SPH = 1: 2nd

SPO = 0
SPH = 0
Single

Transfer

SPO = 0
SPH = 1
Single

Transfer

TI Synchronous Serial Signal Formats

Microwire Signal Formats...

 Three wire interface
 Devices are always slaves
 SSIClk and SSIFss are forced low and SSITx is tri-stated

when the SSI is idle

Single
Transfer

Continuous
Transfer

Signal Formats

11 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Microwire Signal Formats

Lab...

 Four wire interface
 Similar to SPI, except transmission is half-duplex
 Master – Slave message passing technique

Single
Transfer

Continuous
Transfer

 Lab 11: SPI Bus and the Olimex LED BoosterPack

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11 - 7

Lab 11: SPI Bus and the Olimex LED BoosterPack

Objective
In this lab you will use the Olimex LED BoosterPack to explore the capabilities and
programming of the SPI bus on the SSI peripheral.

Lab 11 : SPI Bus and the Olimex LED Boosterpack

 Carefully install pin-modified
Olimex BoosterPack

 Run faces program (SoftSSI)
 Carefully install proto-board

modified Olimex BoosterPack
 Create program to utilize SSI SPI

USB Emulation Connection

Agenda ...

Lab 11: SPI Bus and the Olimex LED BoosterPack

11 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Procedure

Hardware
1. If you want to do this lab, you’re going to need a BoosterPack with a SPI connection. I

chose the Olimex 8x8 LED BoosterPack:
(https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-
B00STERPACK/).

This BoosterPack is also available from Mouser Electronics
(http://www.mouser.com/new/olimex/olimexLED8x8/)

The LED BoosterPack is cheap and fun, but there are two issues with it out of the box.
The first is that it has male Molex pins rather than Molex female connectors. You can get
two of these
(http://www.mouser.com/ProductDetail/FCI/66951-
010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtO
EC39jD0m1rF2xGE%3d) and solder them directly to the
male pins (let’s call this board 1). This way you can
import, build and run the “faces” program located at:
C:\TI\TivaWare_C_Series-
1.1\examples\boards\ek-tm4c123gxl-
boost-olimex-8x8

This program is pretty cool but it has one little issue, which
brings us back to the second problem with the Olimex
BoosterPack. The pin-out on the Olimex BoosterPack does
not match with any of the SSI module pin-sets on the Tiva
C Series LaunchPad board (it actually matches an early version of the MSP430
LaunchPad).

So the author of the “faces” program did what any good engineer would do, they made it
work … with a software SPI port (SoftSSI). The programming of SoftSSI is virtually the
same as programming the actual hardware, but for the purposes of this lab, that’s not
good enough.

2. We need to connect the pins on the Olimex BoosterPack to the female headers that will
mount on top of the LaunchPad board. Any small perf-board will do, but Joe’s Bytes
(http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html) has a nice proto-
board that fits perfectly. I soldered the female headers on one side of the board in one
direction and the Olimex BoosterPack on the other side with a 90 degree turn.

https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/
http://www.mouser.com/new/olimex/olimexLED8x8/
http://www.mouser.com/ProductDetail/FCI/66951-010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtOEC39jD0m1rF2xGE%3d
http://www.mouser.com/ProductDetail/FCI/66951-010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtOEC39jD0m1rF2xGE%3d
http://www.mouser.com/ProductDetail/FCI/66951-010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtOEC39jD0m1rF2xGE%3d
http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html

 Lab 11: SPI Bus and the Olimex LED BoosterPack

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11 - 9

3. Comparing the Olimex BoosterPack schematic found
at https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-
B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf to the
LaunchPad schematic, I came up with the following connections for the proto-board
(There are a number of possible solutions here). Bear in mind that the correct way to
number the BoosterPack pins is 1 to 10 from the top of the board to the bottom.

Olimex
Header

Pin

Olimex
Function

 LaunchPad
Header Pin

LM4F120H5QR
Pin Name

Pin
Function

J1-7 SR_SCK J2-10 PA2 SSI0CLK

J1-6 SR_LATCH J2-9 PA3 SSI0Fss

J2-7 SR_DATA_IN J1-8 PA5 SSI0Tx

J1-2 A_IN J2-3 PE0 AIN3

J1-3 BUZ_PIN1 J1-9 PA6 GPIO

J1-4 BUZ_PIN2 J1-10 PA7 GPIO

J2-1 Ground J2-1 Ground -

J1-1 Vcc J1-1 Vcc -

4. While you’ve got the Olimex BoosterPack schematic out, take a look at the circuit.
You’ll see that the board is pretty simple; 16-bits of shift register, a Darlington seven
transistor array (for drive strength) plus one more single transistor to make 8 and the 8x8
LED array. In order for the LEDs to light properly, the upper byte of the 16-bit word
must be the bit-reversed version of the lower byte. That will be done in software.

Since this lab concerns the SPI port, we’re going to ignore the connections for the mic
and buzzer.

Once this board is done, let’s call it board 2.

https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf

Lab 11: SPI Bus and the Olimex LED BoosterPack

11 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Faces Code
5. If you have one of the Olimex BoosterPacks and have connected the female headers to it

(board 1), carefully connect it to your LaunchPad board. ► In Code Composer, import
the faces project from c:\TI\TivaWare_C_Series-1.1\examples\boards\ek-
tm4c123gxl-boost-olimex-8x8 into your workspace.

6. ► Build, load and run the project. Watch the LED array. Poke around in the code if you
like, but we’ll go into detail building Lab11 that uses the SSI peripheral instead of the
SoftSSI.

► When you’re done, click the Terminate button and close the faces project.

► Disconnect your LaunchPad board from the USB port and carefully remove the
Olimex BoosterPack.

 Lab 11: SPI Bus and the Olimex LED BoosterPack

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11 - 11

Import Lab11
7. If you have a proto-board modified Olimex BoosterPack (board 2), ► carefully connect

it to the LaunchPad with the expansion pins towards the top of the LaunchPad as shown
below. You may need to bend the power measurement jumper out of the way slightly.
Reconnect your USB cable.

8. ► Maximize Code Composer. Import lab11 with the settings shown below.

Make sure the Copy projects into workspace checkbox is not checked and click Finish.

Lab 11: SPI Bus and the Olimex LED BoosterPack

11 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

9. ► Expand the project and open main.c for editing. Place the following includes at the
top of the file:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_ssi.h"
#include "inc/hw_types.h"
#include "driverlib/ssi.h"
#include "driverlib/gpio.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"

We’re going to need all the regular include files along with the ones that give us access to
the SSI peripheral.

10. ► Skip a line for spacing and add the next three lines:

#define NUM_SSI_DATA 8
const uint8_t pui8DataTx[NUM_SSI_DATA] =
{0x88, 0xF8, 0xF8, 0x88, 0x01, 0x1F, 0x1F, 0x01};

The “third” line is really part of the second one. This array of 8-bit numbers defines
which of the LEDs in the array will be on or off in the following fashion, where red is on
and the open circle is off.

{A7-0, B7-0, C7-0, D7-0, E7-0, F7-0, G7-0, H7-0}

 TOP

 H G F E D C B A

7

0

 Lab 11: SPI Bus and the Olimex LED BoosterPack

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11 - 13

11. ► Leave a line for spacing and add the following code. This code will take the 8-bit
number from the array above and bit-reverse it front to back .Then those 8-bits will be
concatenated (in the code that calls this function) with the original number to create a 16-
bit number that will be sent over the SPI port.

// Bit-wise reverses a number.
uint8_t
Reverse(uint8_t ui8Number)
{
 uint8_t ui8Index;
 uint8_t ui8ReversedNumber = 0;
 for(ui8Index=0; ui8Index<8; ui8Index++)
 {
 ui8ReversedNumber = ui8ReversedNumber << 1;
 ui8ReversedNumber |= ((1 << ui8Index) & ui8Number) >> ui8Index;
 }
 return ui8ReversedNumber;
}

12. ► Leave a line for spacing and add the template for main() below:

int main(void)
{
}

13. ► Insert the next two lines as the first ones in main(). We’ll need these variables for
temporary data and index purposes.

 uint32_t ui32Index;
 uint32_t ui32Data;

14. ► Leave a line for spacing and set the clock to 50MHz as we’ve done before:

SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

15. ► Space down a line and add the next two lines. Since SSI0 is on GPIO port A, we’ll
need to enable both peripherals:

SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

16. ► Space down a line and add the following four lines. These will configure the muxing
and GPIO settings to bring the SSI functions out to the pins. Since the BoosterPack only
accepts data, we won’t program the receive pin (pin 4).

GPIOPinConfigure(GPIO_PA2_SSI0CLK);
GPIOPinConfigure(GPIO_PA3_SSI0FSS);
GPIOPinConfigure(GPIO_PA5_SSI0TX);
GPIOPinTypeSSI(GPIO_PORTA_BASE,GPIO_PIN_5|GPIO_PIN_3|GPIO_PIN_2);

Lab 11: SPI Bus and the Olimex LED BoosterPack

11 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

17. Next we need to configure the SPI port on SSI0 for the type of operation that we want.
Given that there are two bits (SPH – clock polarity and SPO – idle state), there are four
modes (0-3). ► Leave a line for spacing and add the next two lines after the last. Then
double-click on SSI_FRF_MOTO_MODE_0 and press F3 to see all four definitions in
ssi.h:

SSIConfigSetExpClk(SSI0_BASE,SysCtlClockGet(),SSI_FRF_MOTO_MODE_0,SSI_MODE_MASTER,10000,16);
SSIEnable(SSI0_BASE);

The API specifies the SSI module, the clock source (this is hard wired), the mode, master
or slave, the bit rate and the data width.

18. ► The LED array has no latch, so the data must be continuously streamed in order for a
static image to appear. We’ll do that with a while() loop, so add a lines for spacing and
then add the while() loop below:

 while(1)
 {
 }

19. We’re going to need to step through the data, sending each 16-bit word on at the time.
► Add the following for() construct inside the while() loop you just added:

 for(ui32Index = 0; ui32Index < NUM_SSI_DATA; ui32Index++)
{

}

20. ► Place the five lines below inside the for() construct you just added. Those lines have
these functions:

1) Create the 16-bit data word using the Reverse() function we added earlier

2) Place the data in the transmit FIFO using a blocking function (a non-blocking version
is also available)

3) Wait until the data has been transmitted

 ui32Data = (Reverse(pui8DataTx[ui32Index]) << 8) + (1 << ui32Index);
 SSIDataPut(SSI0_BASE, ui32Data);
 while(SSIBusy(SSI0_BASE))

{
}

Admittedly, this isn’t the most efficient technique. It would be less wasteful of CPU
cycles to use the µDMA to perform these transfers, but we haven’t covered the µDMA
yet.

You might think about fixing the indentation too. ► Save your work.

 Lab 11: SPI Bus and the Olimex LED BoosterPack

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11 - 15

Build and Load
21. ► Build and load the code. If you have errors, compare your main.c to the code below:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_ssi.h"
#include "inc/hw_types.h"
#include "driverlib/ssi.h"
#include "driverlib/gpio.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"

#define NUM_SSI_DATA 8
const uint8_t pui8DataTx[NUM_SSI_DATA] =
{0x88, 0xF8, 0xF8, 0x88, 0x01, 0x1F, 0x1F, 0x01};

// Bit-wise reverses a number.
uint8_t
Reverse(uint8_t ui8Number)
{
 uint8_t ui8Index;
 uint8_t ui8ReversedNumber = 0;
 for(ui8Index=0; ui8Index<8; ui8Index++)
 {
 ui8ReversedNumber = ui8ReversedNumber << 1;
 ui8ReversedNumber |= ((1 << ui8Index) & ui8Number) >> ui8Index;
 }
 return ui8ReversedNumber;
}

int main(void)
{
 uint32_t ui32Index;
 uint32_t ui32Data;

 SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 GPIOPinConfigure(GPIO_PA2_SSI0CLK);
 GPIOPinConfigure(GPIO_PA3_SSI0FSS);
 GPIOPinConfigure(GPIO_PA5_SSI0TX);
 GPIOPinTypeSSI(GPIO_PORTA_BASE,GPIO_PIN_5|GPIO_PIN_3|GPIO_PIN_2);

 SSIConfigSetExpClk(SSI0_BASE, SysCtlClockGet(), SSI_FRF_MOTO_MODE_0, SSI_MODE_MASTER, 10000, 16);
 SSIEnable(SSI0_BASE);

 while(1)
 {
 for(ui32Index = 0; ui32Index < NUM_SSI_DATA; ui32Index++)
 {
 ui32Data = (Reverse(pui8DataTx[ui32Index]) << 8) + (1 << ui32Index);
 SSIDataPut(SSI0_BASE, ui32Data);
 while(SSIBusy(SSI0_BASE))
 {
 }
 }

 }

}

If you’re still having problems you can find this code in the lab11/project folder as
main.txt.

Lab 11: SPI Bus and the Olimex LED BoosterPack

11 - 16 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Run and Test
22. ► Run the code by clicking the Resume button. You should see “TI” displayed on the

LED array. If you like you can play with the data structure to draw something different.
Keep it clean.

23. If you have a SPI protocol analyzer, now would be a good time to dust it off and take a
look at the serial data stream. These analyzers can save weeks troubleshooting
communication problems. The screen captures on the next page were taken with a Saleae
Logic8 logic analyzer/communications analyzer made by Saleae LLC (www.saleae.com)
Beware of counterfeits!

24. When you’re done, ► click the Terminate button to return to the CCS Edit perspective.

25. ► Right-click on lab11 in the Project Explorer pane and close the project.

26. ► Disconnect your LaunchPad board from the USB port, carefully remove and store the
Olimex BoosterPack. Re-connect your LaunchPad.

27. ► Minimize Code Composer Studio.

 You’re done.

http://www.saleae.com/

 Lab 11: SPI Bus and the Olimex LED BoosterPack

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI 11 - 17

Lab 11: SPI Bus and the Olimex LED BoosterPack

11 - 18 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - SSI

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 1

UART

Introduction
This chapter will introduce you to the capabilities of the Universal Asynchronous
Receiver/Transmitter (UART). The lab uses the LaunchPad board and the Stellaris Virtual Serial
Port running over the debug USB port.

Agenda

Features...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

UART Features and Block Diagram

12 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

Chapter Topics
UART .. 12-1

UART Features and Block Diagram .. 12-3
Basic Operation ... 12-4
UART Interrupts and FIFOs .. 12-5
UART “stdio” Functions and Other Features .. 12-6
Lab 12 ... 12-7

Objective ... 12-7

 UART Features and Block Diagram

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 3

UART Features and Block Diagram

UART Features
 Separate 16x8 bit transmit and receive FIFOs
 Programmable baud rate generator
 Auto generation and stripping of start, stop, and

parity bits
 Line break generation and detection
 Programmable serial interface

 5, 6, 7, or 8 data bits
 even, odd, stick, or no parity bits
 1 or 2 stop bits
 baud rate generation, from DC to processor clock/16

 Modem flow control on UART1 (RTS/CTS)
 IrDA and EIA-495 9-bit protocols
 µDMA support

Block Diagram...

Block Diagram

Basic Operation...

Basic Operation

12 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

Basic Operation

Basic Operation
 Initialize the UART

 Enable the UART peripheral, e.g.
SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 Set the Rx/Tx pins as UART pins
GPIOPinConfigure(GPIO_PA0_U0RX);
GPIOPinConfigure(GPIO_PA1_U0TX);
GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 Configure the UART baud rate, data configuration
ROM_UARTConfigSetExpClk(UART0_BASE, ROM_SysCtlClockGet(), 115200,

UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE));

 Configure other UART features (e.g. interrupts, FIFO)
 Send/receive a character

 Single register used for transmit/receive
 Blocking/non-blocking functions in driverlib:

UARTCharPut(UART0_BASE, ‘a’);
newchar = UARTCharGet(UART0_BASE);
UARTCharPutNonBlocking(UART0_BASE, ‘a’);
newchar = UARTCharGetNonBlocking(UART0_BASE);

Interrupts...

 UART Interrupts and FIFOs

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 5

UART Interrupts and FIFOs

UART Interrupts
Single interrupt per module, cleared automatically
Interrupt conditions:

 Overrun error
 Break error
 Parity error
 Framing error
 Receive timeout – when FIFO is not empty and no further data is

received over a 32-bit period
 Transmit – generated when no data present (if FIFO enabled, see next

slide)
 Receive – generated when character is received (if FIFO enabled, see

next slide)
Interrupts on these conditions can be enabled individually
Your handler code must check to determine the source
of the UART interrupt and clear the flag(s)

FIFOs...

Using the UART FIFOs

 Both FIFOs are accessed via the
UART Data register (UARTDR)

 After reset, the FIFOs are enabled*,
you can disable by resetting the FEN
bit in UARTLCRH, e.g.

UARTFIFODisable(UART0_BASE);

 Trigger points for FIFO interrupts can
be set at 1/8, 1/4, 1/2,3/4, 7/8 full, e.g.

UARTFIFOLevelSet(UART0_BASE,
UART_FIFO_TX4_8,
UART_FIFO_RX4_8);

Transmit
FIFO

UART_FIFO_TX4_8

UART_FIFO_TX1_8

UART_FIFO_TX2_8

UART_FIFO_TX6_8

UART_FIFO_TX7_8

FIFO Level
Select

* Note: the datasheet says FIFOs are disabled at reset

stdio Functions...

UART “stdio” Functions and Other Features

12 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

UART “stdio” Functions and Other Features

UART “stdio” Functions
 TivaWare “utils” folder contains functions for C stdio

console functions:
c:\TivaWare\utils\uartstdio.h
c:\TivaWare\utils\uartstdio.c

 Usage example:
UARTStdioInit(0); //use UART0, 115200
UARTprintf(“Enter text: “);

 See uartstdio.h for other functions
 Notes:

 Use the provided interrupt handler UARTStdioIntHandler()
code in uartstdio.c

 Buffering is provided if you define UART_BUFFERED
symbol
Receive buffer is 128 bytes
Transmit buffer is 1024 bytes

Other UART Features...

Other UART Features
 Modem flow control on UART1 (RTS/CTS)
 IrDA serial IR (SIR) encoder/decoder

 External infrared transceiver required
 Supports half-duplex serial SIR interface
 Minimum of 10-ms delay required between transmit/receive, provided by software

 ISA 7816 smartcard support
 UnTX signal used as a bit clock
 UnRx signal is half-duplex communication line
 GPIO pin used for smartcard reset, other signals provided by your system design

 LIN (Local Interconnect Network) support: master or slave
 µDMA support

 Single or burst transfers support
 UART interrupt handler handles DMA completion interrupt

 EIA-495 9-bit operation
 Multi-drop configuration: one master, multiple slaves
 Provides “address” bit (in place of parity bit)
 Slaves only respond to their address

Lab...

 Lab 12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 7

Lab 12

Objective
In this lab you will send data through the UART. The UART is connected to the emulator’s virtual serial
port that runs over the debug USB cable.

 Initialize UART and echo characters
using polling

 Use interrupts

Lab 12: UART

USB Emulation Connection

Lab 12

12 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

Procedure
Import Lab12
1. We have already created the lab12 project for you with a main.c file, a startup file, and all the

necessary project and build options set.

► Maximize Code Composer and click Project → Import Existing CCS Eclipse Project. Make the
settings shown below and click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

2. ► Expand the project by clicking on the + or next to lab12 in the Project Explorer pane. Double-
click on main.c to open it for review. The code looks like the next page:

 Lab 12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 9

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"

int main(void) {

 SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 GPIOPinConfigure(GPIO_PA0_U0RX);
 GPIOPinConfigure(GPIO_PA1_U0TX);
 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 115200,
 (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));

 UARTCharPut(UART0_BASE, 'E');
 UARTCharPut(UART0_BASE, 'n');
 UARTCharPut(UART0_BASE, 't');
 UARTCharPut(UART0_BASE, 'e');
 UARTCharPut(UART0_BASE, 'r');
 UARTCharPut(UART0_BASE, ' ');
 UARTCharPut(UART0_BASE, 'T');
 UARTCharPut(UART0_BASE, 'e');
 UARTCharPut(UART0_BASE, 'x');
 UARTCharPut(UART0_BASE, 't');
 UARTCharPut(UART0_BASE, ':');
 UARTCharPut(UART0_BASE, ' ');

 while (1)
 {
 if (UARTCharsAvail(UART0_BASE)) UARTCharPut(UART0_BASE, UARTCharGet(UART0_BASE));
 }

}

3. In main(), notice the initialization sequence for using the UART:

• Set up the system clock

• Enable the UART0 and GPIOA peripherals (the UART pins are on GPIO Port A)

• Configure the pins for the receiver and transmitter using GPIOPinConfigure

• Initialize the parameters for the UART: 115200, 8-1-N

• Use simple “UARTCharPut()” calls to create a prompt.

• An infinite loop. In this loop, if there is a character in the receiver, it is read, and then written to
the transmitter. This echos what you type in the terminal window.

Lab 12

12 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

Build, Download, and Run the UART Example Code
4. ► Click the Debug button to build and download your

program to the TM4C123GH6PM flash memory.

 We can communicate with the board through the UART,
which is connected as a virtual serial port through the
emulator USB connection. You can find the COM port
number for this serial port back in chapter one of this
workbook on page 18 or 19.

 In WinXP, ► open HyperTerminal by clicking Start
Run…, then type hypertrm in the Open: box and click OK.
Pick any name you like for your connection and click OK. In
the next dialog box, change the Connect using: selection to
COM##, where ## is the COM port number you noted earlier
from Device Manager. Click OK. Make the selections
shown below and click OK.

 When the terminal window opens click the Resume button in CCS, then type some characters and you

should see the characters echoed into the terminal window.
Skip to step 8.

5. In Win7, ► double-click on putty.exe. Make the
settings shown below and then click Open. Your COM
port number will be the one you noted earlier in
chapter one.

 When the terminal window opens ► click the Resume
button in CCS, then type some characters and you
should see the characters echoed into the terminal
window.

 Lab 12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 11

Using UART Interrupts
Instead of continually polling for characters, we’ll make some modifications to our code to allow the use of
interrupts to receive and transmit characters. In the first part of this lab, the only indication we had that our
code was running was to open the terminal window to type characters and see them echoed back. In this
part of the lab, we’ll add a visual indicator to show that we received and transmitted a character. So we’ll
need to add code similar to previous labs to blink the LED inside the interrupt handler.

6. First, let’s add the code in main() to enable the UART interrupts we want to handle. ► Click on the
Terminate button to return to the CCS Edit perspective. We need to add two additional header files at
the top of the file:

#include "inc/hw_ints.h"
#include "driverlib/interrupt.h"

7. Now we need to add the code to enable processor interrupts, then enable the UART interrupt, and then
select which individual UART interrupts to enable. We will select receiver interrupts (RX) and
receiver timeout interrupts (RT). The receiver interrupt is generated when a single character has been
received (when FIFO is disabled) or when the specified FIFO level has been reached (when FIFO is
enabled). The receiver timeout interrupt is generated when a character has been received, and a second
character has not been received within a 32-bit period. ► Add the following code just below
the UARTConfigSetExpClk() function call:

 IntMasterEnable();
 IntEnable(INT_UART0);
 UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT);

8. We also need to initialize the GPIO peripheral and pin for the LED. ► Just before the
function UARTConfigSetExpClk() is called, add these two lines:

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2);

9. ► Finally, we can create an empty while(1) loop at the end of main by commenting out the line of
code that’s already there:

while (1)
{
//if (UARTCharsAvail(UART0_BASE))UARTCharPut(UART0_BASE,UARTCharGet(UART0_BASE));
}

10. ► Save the changes you made to main.c (but leave it open for making additional edits).

Lab 12

12 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

11. Now we need to write the UART interrupt handler. The interrupt handler needs to read the UART in-
terrupt status register to know which specific interrupt event(s) just occurred. This value is then used to
clear the interrupt status bits (we only enabled RX and RT interrupts, so those are the only possible
sources for the interrupt). The next step is to receive and transmit all the characters that have been re-
ceived. After each character is “echoed” to the terminal, the LED is blinked for about 1 millisecond. ►
Insert this code below the include statements and above main():

void UARTIntHandler(void)
{
 uint32_t ui32Status;

 ui32Status = UARTIntStatus(UART0_BASE, true); //get interrupt status

 UARTIntClear(UART0_BASE, ui32Status); //clear the asserted interrupts

 while(UARTCharsAvail(UART0_BASE)) //loop while there are chars
 {
 UARTCharPutNonBlocking(UART0_BASE, UARTCharGetNonBlocking(UART0_BASE));
 //echo character
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2); //blink LED
 SysCtlDelay(SysCtlClockGet() / (1000 * 3)); //delay ~1 msec
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0); //turn off LED
 }
}

12. We’re almost done. We’ve added all the code we need. The final step is to insert the address of the
UART interrupt handler into the interrupt vector table. ► Open
the tm4c123gh6pm_startup_ccs.c file. Just below the prototype for _c_int00(void), add the
UART interrupt handler prototype:

extern void UARTIntHandler(void);

13. On about line 68, you’ll find the interrupt vector table entry for “UART0 Rx and Tx”. It’s just below
the entry for “GPIO Port E”. The default interrupt handler is named IntDefaultHandler. ► Replace this
name with UARTIntHandler so the line looks like:

UARTIntHandler, // UART0 Rx and Tx

 Lab 12

Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART 12 - 13

14. Save your work. Your main.c code should look like this.
#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"

void UARTIntHandler(void)
{
 uint32_t ui32Status;
 ui32Status = UARTIntStatus(UART0_BASE, true); //get interrupt status
 UARTIntClear(UART0_BASE, ui32Status); //clear the asserted interrupts

 while(UARTCharsAvail(UART0_BASE)) //loop while there are chars
 {
 UARTCharPutNonBlocking(UART0_BASE, UARTCharGetNonBlocking(UART0_BASE)); //echo character
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2); //blink LED
 SysCtlDelay(SysCtlClockGet() / (1000 * 3)); //delay ~1 msec
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0); //turn off LED
 }
}

int main(void) {

 SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 GPIOPinConfigure(GPIO_PA0_U0RX);
 GPIOPinConfigure(GPIO_PA1_U0TX);
 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); //enable GPIO port for LED
 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2); //enable pin for LED PF2

 UARTConfigSetExpClk(UART0_BASE, SysCtlClockGet(), 115200,
 (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));

 IntMasterEnable(); //enable processor interrupts
 IntEnable(INT_UART0); //enable the UART interrupt
 UARTIntEnable(UART0_BASE, UART_INT_RX | UART_INT_RT); //only enable RX and TX interrupts

 UARTCharPut(UART0_BASE, 'E');
 UARTCharPut(UART0_BASE, 'n');
 UARTCharPut(UART0_BASE, 't');
 UARTCharPut(UART0_BASE, 'e');
 UARTCharPut(UART0_BASE, 'r');
 UARTCharPut(UART0_BASE, ' ');
 UARTCharPut(UART0_BASE, 'T');
 UARTCharPut(UART0_BASE, 'e');
 UARTCharPut(UART0_BASE, 'x');
 UARTCharPut(UART0_BASE, 't');
 UARTCharPut(UART0_BASE, ':');
 UARTCharPut(UART0_BASE, ' ');

 while (1) //let interrupt handler do the UART echo function
 {
// if (UARTCharsAvail(UART0_BASE)) UARTCharPut(UART0_BASE, UARTCharGet(UART0_BASE));
 }

}

Lab 12

12 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad Workshop - UART

15. ► Click the Debug button to build and download your program to the TM4C123GH6PM memory.

16. ► If you’ve closed it, open Hyperterminal or puTTY, and configure it as before.

17. ► Click the Resume button. Type some characters and you should see the characters echoed into the
terminal window. Note the LED.

18. ► Close puTTY or HyperTerminal. Click the Terminate button to return to the CCS Edit perspective.
► Close the Lab12 project and minimize Code Composer Studio.

 You’re done.

Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA 13 - 1

µDMA

Introduction
This chapter will introduce you to the micro DMA (µDMA) peripheral on Tiva C Series devices.
In the lab we’ll experiment with the µDMA transfers in memory and to/from the UART.

Agenda

Features...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

Chapter Topics

13 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA

Chapter Topics
µDMA ..13-1

Chapter Topics ...13-2

Features and Transfer Types ...13-3

Block Diagram and Channel Assignment ..13-4

Channel Configuration ..13-5

Lab 13: µDMA ...13-7
Objective..13-7
Procedure ...13-8

 Features and Transfer Types

Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA 13 - 3

Features and Transfer Types

µDMA Features

Transfer types...

 32 channels
 SRAM to SRAM , SRAM to peripheral and peripheral to

SRAM transfers (no Flash or ROM transfers are possible)
 Basic, Auto (transfer completes even if request is removed),

Ping-Pong and Scatter-gather (via a task list)
 Two priority levels
 8, 16 and 32-bit data element sizes
 Transfer sizes of 1 to 1024 elements (in binary steps)
 CPU bus accesses outrank DMA controller
 Source and destination address increment sizes:

size of element, half-word, word, no increment
 Interrupt on transfer completion (per channel)
 Hardware and software triggers
 Single and Burst requests
 Each channel can specify a minimum # of transfers before

relinquishing to a higher priority transfer.
Known as “Burst” or “Arbitration”

Transfer Types
Basic

 Single to Single
 Single to Array
 Array to Single
 Array to Array

Auto
 Same as Basic but the transfer completes even if the

request is removed
Ping-Pong

 Single to Array (and vice-versa). Normally used to stream
data from a peripheral to memory. When the PING array is
full the µDMA switches to the PONG array, freeing the
PING array for use by the program.

Scatter-Gather
 Many Singles to an Array (and vice-versa). May be used to

read elements from a data stream or move objects in a
graphics memory frame.

Block diagram...

Block Diagram and Channel Assignment

13 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA

Block Diagram and Channel Assignment

µDMA Block Diagram

Channels...

µDMA Channels
 Each channel has 5 possible assignments made in the DMACHMAPn register

S = Single
B = Burst
SB = Both

Configuration...

 Channel Configuration

Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA 13 - 5

Channel Configuration

Channel Configuration
 Channel control is done via a set of control structures in a table
 The table must be located on a 1024-byte boundary
 Each channel can have one or two control structures; a primary and an alternate
 The primary structure is for BASIC and AUTO transfers. Alternate is for Ping-Pong

and Scatter-gather

Control Structure Memory Map Channel Control Structure

Control word contains:
 Source and Dest data sizes
 Source and Dest addr increment size
 # of transfers before bus arbitration
 Total elements to transfer
 Useburst flag
 Transfer mode

Lab...

Channel Configuration

13 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA

 Lab 13: µDMA

Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA 13 - 7

Lab 13: µDMA

Objective
In this lab you will experiment with the µDMA, transferring arrays of data in memory and then
transferring data to and from the UART.

Lab 13: Transferring Data with the µDMA

 Perform an array to array memory
transfer

 Transfer data to and from the UART

USB Emulation Connection

Agenda ...

Lab 13: µDMA

13 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA

Procedure

Import Lab13
1. We have already created the lab13 project for you with main.c, a startup file and all

necessary project and build options set.

► Maximize Code Composer and click Project Import Existing CCS Eclipse Project.
Make the settings shown below and click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

 Lab 13: µDMA

Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA 13 - 9

Browse the Code
2. In order to save some time, we’re going to browse this existing code rather than enter it

line by line. ► Expand the project, open main.c in the editor pane and we’ll get started.
If you accidentally make a change, this code is also in main1.txt in the
lab13\project folder.

This code is a stripped-down version of the uDMA_demo example in
c:\TI\TivaWare_C_Serices-1.1\examples\boards\ek-tm4c123gxl . To
make things a little simpler, the UART portion of the code has been removed.

At the top of the code you’ll find all the normal includes, and the addition of udma.h
since we’ll be using that peripheral.

3. Just under includes are the definitions for the source and destination buffers, two error
counter variables and a counter to track the number of transfers.

#define MEM_BUFFER_SIZE 1024
static uint32_t g_ui32SrcBuf[MEM_BUFFER_SIZE];
static uint32_t g_ui32DstBuf[MEM_BUFFER_SIZE];

static uint32_t g_ui32DMAErrCount = 0;
static uint32_t g_ui32BadISR = 0;

static uint32_t g_ui32MemXferCount = 0;

4. Below that, the µDMA control table is defined. Remember that the table must be aligned
to a 1024-byte boundary. The #pragma will do that for us. If you are using a different
IDE, this construct may be different. The table probably doesn’t need to be 1K in length,
but that’s fine for this example.

#pragma DATA_ALIGN(pui8ControlTable, 1024)
uint8_t pui8ControlTable[1024];

5. Below the control table definition is the library error handler that we’ve covered earlier.
Next is the µDMA error handler code. If the µDMA controller encounters a bus or memory
protection error as it attempts to perform a data transfer, it disables the µDMA channel that
caused the error and generates an interrupt on the µDMA error interrupt vector. The handler here
will clear the error and increment the error count.

void uDMAErrorHandler(void)
{
 uint32_t ui32Status;
 ui32Status = ROM_uDMAErrorStatusGet();

 if(ui32Status)
 {
 ROM_uDMAErrorStatusClear();
 g_ui32DMAErrCount++;
 }
}

Lab 13: µDMA

13 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA

6. Below the error handler is the µDMA interrupt handler. The interrupt that runs this
handler is triggered by the completion of the programmed transfer. The code first checks
to see if the µDMA channel is in stop mode. If it is, the transfer count is incremented, the
µDMA is set up for another transfer and the next transfer is triggered. If this interrupt was
triggered in error, the bad ISR variable will be incremented.

The last two lines inside the if() trigger the second and every subsequent µDMA
request.

void uDMAIntHandler(void)
{
 uint32_t ui32Mode;

 ui32Mode = ROM_uDMAChannelModeGet(UDMA_CHANNEL_SW);
 if(ui32Mode == UDMA_MODE_STOP)
 {
 g_ui32MemXferCount++;

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SW, UDMA_MODE_AUTO,
 g_ui32SrcBuf, g_ui32DstBuf, MEM_BUFFER_SIZE);

 ROM_uDMAChannelEnable(UDMA_CHANNEL_SW);
 ROM_uDMAChannelRequest(UDMA_CHANNEL_SW);
 }
 else
 {
 g_ui32BadISR++;
 }
}

 Lab 13: µDMA

Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA 13 - 11

7. Next is the InitSWTransfer() function. This code initializes the µDMA software
channel to perform a memory to memory transfer. We’ll be triggering these transfers
from software, so we’ll use the software µDMA channel (UDMA_CHANNEL_SW).

The for() construct at the top initializes the source array with a simple pattern.

The next line enables the µDMA interrupt to the NVIC.

The next line disables the listed attributes of the software µDMA channel so that it’s in a
known state.

The ROM_uDMAChannelControlSet() API sets up the control parameters for the software
channel µDMA control structure. Notice that we’ll be using the primary (not the alternate set)
and that the element size and increment sizes are 32-bits. The arbitration count is 8.

The ROM_uDMAChannelTransferSet() API sets up the transfer parameters for the software
channel µDMA control structure. Again, this is for the primary set, auto mode (continue
transfer until completion even if request is removed … common for software requests),
the source and destination buffer addresses and the size of the transfer.

Finally, the code enables the software channel and makes the first µDMA request.

void InitSWTransfer(void)
{
 uint32_t ui32Idx;

 for(ui32Idx = 0; ui32Idx < MEM_BUFFER_SIZE; ui32Idx++)
 {
 g_ui32SrcBuf[ui32Idx] = ui32Idx;
 }

 ROM_IntEnable(INT_UDMA);

 ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_SW,
 UDMA_ATTR_USEBURST | UDMA_ATTR_ALTSELECT |
 (UDMA_ATTR_HIGH_PRIORITY |
 UDMA_ATTR_REQMASK));

 ROM_uDMAChannelControlSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,
 UDMA_SIZE_32 | UDMA_SRC_INC_32 | UDMA_DST_INC_32 |
 UDMA_ARB_8);

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,
 UDMA_MODE_AUTO, g_ui32SrcBuf, g_ui32DstBuf,
 MEM_BUFFER_SIZE);

 ROM_uDMAChannelEnable(UDMA_CHANNEL_SW);
 ROM_uDMAChannelRequest(UDMA_CHANNEL_SW);
}

Lab 13: µDMA

13 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA

8. Lastly, we’ll look at the code in main().

• Lazy stacking allows floating point to be used inside interrupt handlers, but uses
additional stack space. This isn’t strictly needed since we aren’t doing any
floating-point operations in the handler.

• Set up the clock to 50MHz.

• Enable the µDMA peripheral.

• ROM_SysCtlPeripheralSleepEnable() enables the clock to reach this peripheral
while the CPU is sleeping. This isn’t strictly required here, but if you forget it and put the
CPU to sleep, it will be horrible to track down the problem.

• Then enable the µDMA error interrupt and then the µDMA itself.

• Make sure the control channel base address is set to the one we created.

• Call the InitSWTransfer() function and start the first transfer, then have the
CPU wait in the while(1) loop. In your actual code this would be where you’d
either sleep or do something else with those CPU cycles.

int main(void)
{

 ROM_FPULazyStackingEnable();

 ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
 SYSCTL_XTAL_16MHZ);

 ROM_SysCtlPeripheralClockGating(true);

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
 ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);

 ROM_IntEnable(INT_UDMAERR);
 ROM_uDMAEnable();

 ROM_uDMAControlBaseSet(pui8ControlTable);

 InitSWTransfer();

 while(1)
 {
 }
}

 Lab 13: µDMA

Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA 13 - 13

Build, Download and Run the Code
9. ► Click the Debug button to build and download the code to the TM4C123GH6PM flash

memory.

10. ► If the Memory Browser pane is not already visible, click View Memory Browser to
open it. Move/resize the window if you have to. Pick g_ui32SrcBuf from the pull-
down menu in the box below the Memory Browser tab. ► Click the New Tab button, and
pick g_ui32DstBuf from the pull-down menu. Note that both arrays are zeroed out.
► Click on the g_ui32SrcBuf tab to view the source array.

11. ► We want to see the contents of the source array before any transfers begin. Find the
line containing ROM_IntEnable(INT_UDMA); (about line 100) inside the
InitSWTransfer() function. Right-click on that line and select Run to Line.

12. ► In the Memory Browser, note the initialized values in the source array. Check the
destination array to make sure it’s still clear.

13. ► We want to see the results after the transfer is completed and the transfer count has
been incremented, but before the next transfer has begun. Find the line containing
ROM_uDMAChannelTransferSet() (about line 72) in the uDMAIntHandler function.
► Right-click on that line and select Run to Line.

14. Note that the contents of the destination array have changed.

15. ► Add a watch expression on g_ui32MemXferCount, switch the Memory Browser to
the destination tab and repeat the Run to Line procedure on line 72.

You can do this a few times and watch the transfer count increment, but since the source
buffer never changes, the destination buffer will look the same after each transfer.

16. ► Add watch expressions on g_ui32BadISR and g_ui32DMAErrCount (lines 23 and 24).
► Click Resume. Wait a few moments and click the Suspend button. We saw over
200,000 transfers and 0 errors.

17. ► Remove all of the watch expressions by right-clicking in the Expressions pane and
selecting Remove All Yes. Close the Memory Browser pane.

18. ► Click the Terminate button to return to the CCS Edit perspective.

Lab 13: µDMA

13 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA

Streaming Data To and From the UART using a Ping-Pong Buffer
In real-world applications, incoming or outgoing data doesn’t usually stop. If you are receiving
data from an ADC or sending/receiving data to/from a UART, the best way to make sure the data
always has a place to go to or from is to use a Ping-Pong buffer. Take a filtering application like
the one shown below:

Here the DMA on the left is responsible for bringing data from the ADC into memory. When the
PING IN buffer is full, the DMA signals the CPU (with an interrupt) and switches its destination
to the PONG IN buffer (and vice versa). The CPU filters the frame of data from the PING IN
buffer, sends the result to the PING OUT buffer and triggers the DMA on the right to send it to
the DAC (and vice versa). This is a straight-forward Input – Process – Output technique. When
properly synchronized and timed, all three processes happen simultaneously and there is no
chance for a “skip” or “miss” of even a single bit a data, as long as the CPU is capable of
processing the buffer of data in the same amount of time that it takes to fill or empty the buffer
from/to the outside world.

This example will be a little simpler. We’ll have a single transmit buffer, since the data in it won’t
change. The transmit DMA will send that buffer to the UART transmit register continuously. The
UART will be configured in loopback mode so that data will be streaming back in continuously.
The receive DMA will stream the data received from the UART data receive register into a Ping-
Pong buffer that we can observe.

What makes this DMA programming interesting is that the primary and alternate modes must be
used in order for the DMA to switch Ping-Pong buffers automatically. Also, the DMA transfers
that point to the UART must not increment, otherwise they would write data into the wrong
location. At the same time, the DMA must increment through the Ping and Pong buffer to fill
them.

 Lab 13: µDMA

Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA 13 - 15

Code Changes
19. ► Delete all the code in main.c. ► Double-click on main2.txt in your Project

Explorer pane to open it for editing. ► Copy the contents of main2.txt into your now
empty main.c. ► Close main2.txt and save your work.

20. ► Delete all the code in tm4c123gh6pm_startup_ccs.c. ► Double-click on
tm4c123gh6pm_startup_ccs2.txt in your Project Explorer pane to open it for
editing. ► Copy the contents of tm4c123gh6pm_startup_ccs2.txt into your now
empty tm4c123gh6pm_startup_ccs.c. ► Close
tm4c123gh6pm_startup_ccs2.txt and save your work.

Browse the Code
21. Starting at the top, notice the additional includes to support the UART. Just below them

are the definitions for the single Tx and two Rx Ping and Pong buffers. Then you’ll find
the uDMA error count and transfer count variables.

22. Next is the allocation for the uDMA control table. This table is read by the uDMA
peripheral hardware and must be aligned on a 1024-byte boundary.

23. Below the table allocation is the familiar library error routine and the same uDMA error
handler from the first part of this lab.

Lab 13: µDMA

13 - 16 Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA

24. The heart of this code is the UART interrupt handler. This ISR is run when the receive
ping (primary) or pong (alternate) buffer is full or when the transmit buffer is empty.
Note the ui32Mode = lines that determine which event triggered the interrupt.

In the receive buffers the mode is verified to be stopped and the proper transfer count is
incremented. You’ll see in the initialization that both the primary and alternate
parameters are already set up. When the Ping side of the transfer causes an interrupt, the
uDMA is already processing the Pong side, so the TransferSet API resets the
parameters for the flowing Ping transfer. Note that the source is the UART data register.

The transmit transfer is a basic transfer and needs to be re-enabled each time it completes.
Note that the destination is the same UART data register.

void
UART1IntHandler(void)
{
 uint32_t ui32Status;
 uint32_t ui32Mode;
 ui32Status = ROM_UARTIntStatus(UART1_BASE, 1);
 ROM_UARTIntClear(UART1_BASE, ui32Status);

 ui32Mode = ROM_uDMAChannelModeGet(UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT);

 if(ui32Mode == UDMA_MODE_STOP)
 {
 g_ui32RxPingCount++;

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT,
 UDMA_MODE_PINGPONG,
 (void *)(UART1_BASE + UART_O_DR),
 g_pui8RxPing, sizeof(g_pui8RxPing));
 }

 ui32Mode = ROM_uDMAChannelModeGet(UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT);

 if(ui32Mode == UDMA_MODE_STOP)
 {
 g_ui32RxPongCount++;

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT,
 UDMA_MODE_PINGPONG,
 (void *)(UART1_BASE + UART_O_DR),
 g_pui8RxPong, sizeof(g_pui8RxPong));
 }

 if(!ROM_uDMAChannelIsEnabled(UDMA_CHANNEL_UART1TX))
 {
 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC, g_pui8TxBuf,
 (void *)(UART1_BASE + UART_O_DR),
 sizeof(g_pui8TxBuf));

 ROM_uDMAChannelEnable(UDMA_CHANNEL_UART1TX);
 }
}

 Lab 13: µDMA

Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA 13 - 17

25. The µDMA and UART must be initialized and the next function,
InitUART1Transfer() does that.

The for() loop at the beginning initializes the transmit buffer with some count data.

The next two lines enable UART1 and make sure that the clock to the peripheral will still
be available even if the CPU is sleeping. This last step isn’t strictly needed, but many
programs utilizing the DMA do sleep and if you forget this step, if will not be easy to
track down.

The next six lines configure the UART clock, the FIFO utilization, enable it, enable it to
use the DMA, set loopback mode and enable the interrupt.

Next up are the µDMA control and transfer programming steps.

ROM_uDMAChannelAttributeDisable() turns off all the indicated parameters to
assure the starting point.

The next two ROM_uDMAChannelControlSet() lines set up the control parameters for
the Ping (primary) and Pong (alternate) sets. Note that the transfer element size is 8-bits,
the source increment is none (since it should be pointing to the UART data register all the
time) and the destination increment is 8-bits.

The next two ROM_uDMAChannelTransferSet() lines program the transfer
parameters for both the Ping (primary) and Pong (alternate) sets. Note that the mode is
PINGPONG, the source is the UART data register and the destination is the appropriate
Ping or Pong buffer.

The next four lines set up the control and transfer parameters for the transmit channel.
Note that the destination is the UART data register and the source is the single transmit
buffer. The element transfer size is 8-bits, the source increment is 8-bits and the
destination increment is none.

In all of these setting the priority has been left as HIGH. It doesn’t make sense to
prioritize the transmit over the receive or vice versa.

The final two lines enable both µDMA transfers.

Lab 13: µDMA

13 - 18 Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA

void InitUART1Transfer(void)
{
 uint32_t ui32Idx;

 for(ui32Idx = 0; ui32Idx < UART_TXBUF_SIZE; ui32Idx++)
 {
 g_pui8TxBuf[ui32Idx] = ui32Idx;
 }

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1);
 ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART1);

 ROM_UARTConfigSetExpClk(UART1_BASE, ROM_SysCtlClockGet(), 115200,
 UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
 UART_CONFIG_PAR_NONE);

 ROM_UARTFIFOLevelSet(UART1_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);

 ROM_UARTEnable(UART1_BASE);
 ROM_UARTDMAEnable(UART1_BASE, UART_DMA_RX | UART_DMA_TX);

 HWREG(UART1_BASE + UART_O_CTL) |= UART_CTL_LBE;

 ROM_IntEnable(INT_UART1);

 ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_UART1RX,
 UDMA_ATTR_ALTSELECT | UDMA_ATTR_USEBURST |
 UDMA_ATTR_HIGH_PRIORITY |
 UDMA_ATTR_REQMASK);

 ROM_uDMAChannelControlSet(UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT,
 UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 |
 UDMA_ARB_4);

 ROM_uDMAChannelControlSet(UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT,
 UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 |
 UDMA_ARB_4);

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1RX | UDMA_PRI_SELECT,
 UDMA_MODE_PINGPONG,
 (void *)(UART1_BASE + UART_O_DR),
 g_pui8RxPing, sizeof(g_pui8RxPing));

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1RX | UDMA_ALT_SELECT,
 UDMA_MODE_PINGPONG,
 (void *)(UART1_BASE + UART_O_DR),
 g_pui8RxPong, sizeof(g_pui8RxPong));

 ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_UART1TX,
 UDMA_ATTR_ALTSELECT |
 UDMA_ATTR_HIGH_PRIORITY |
 UDMA_ATTR_REQMASK);

 ROM_uDMAChannelAttributeEnable(UDMA_CHANNEL_UART1TX, UDMA_ATTR_USEBURST);

 ROM_uDMAChannelControlSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
 UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE |
 UDMA_ARB_4);

 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC, g_pui8TxBuf,
 (void *)(UART1_BASE + UART_O_DR),
 sizeof(g_pui8TxBuf));

 ROM_uDMAChannelEnable(UDMA_CHANNEL_UART1RX);
 ROM_uDMAChannelEnable(UDMA_CHANNEL_UART1TX);
}

 Lab 13: µDMA

Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA 13 - 19

26. Finally we’re in main().

Starting at the top we have the lazy stacking enable, which isn’t strictly necessary since
we’re not using the FPU in the handlers.

The clock is set up to 50MHz and the peripherals are allowed to be clocked during sleep
mode.

GPIO port F is enabled and set up for the LEDs. We’ll only be using the blue LED.

The next five lines set up the hardware for the UART on port A pins 0 and 1.

The five lines afterwards enable the uDMA clock, allow it to operate during sleep modes,
enable the error interrupt, enable the uDMA for operation and sets the base address for
the uDMA control table.

Then the initialization function is called for the transfers.

The while(1) loop simply blinks the blue LED while the transfers are happening to let
us know the code is alive.

int main(void)
{
 volatile uint32_t ui32Loop;

 ROM_FPULazyStackingEnable();

 ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
 SYSCTL_XTAL_16MHZ);

 ROM_SysCtlPeripheralClockGating(true);

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
 ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2);

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
 ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART0);
 GPIOPinConfigure(GPIO_PA0_U0RX);
 GPIOPinConfigure(GPIO_PA1_U0TX);
 ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
 ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);
 ROM_IntEnable(INT_UDMAERR);
 ROM_uDMAEnable();
 ROM_uDMAControlBaseSet(ucControlTable);

 InitUART1Transfer();

 while(1)
 {
 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);

 SysCtlDelay(SysCtlClockGet() / 20 / 3);

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);

 SysCtlDelay(SysCtlClockGet() / 20 / 3);
 }
}

Lab 13: µDMA

13 - 20 Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA

Build, Load and Run
27. ► Click the Debug button to build and load the program.

28. In order to determine of the program is operating properly, we need to see the buffers.
► In the Memory Browser select g_pui8RxPing from the drop-down menu in the box
below the Memory Browser tab. The g_pui8RxPing, g_pui8RxPong and g_pui8TxBuf
buffers are all close together, so you should be able to see them in the same window.
Resize the browser if necessary. To see the 8-bit values better, in the drop-down menu for
the display format, choose 8-bit UnSigned Int.

29. Notice that the g_pui8TxBuf buffer is clear. ► Set a breakpoint in the
InitUART1Transfer() function on the line containing
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1); . This is right after the
g_pui8RxTxBuf buffer is initialized with data. (Run to Line won’t work inside an ISR)

30. ► Click the Resume button to run to the breakpoint. Note in the Memory Browser that
the g_pui8TxBuf buffer is now filled with data.

31. ► Remove the breakpoint and set another in UART1IntHandler() on the line
containing ui32Status = (line 66). This breakpoint will trip when the first (Pong)
transfer completes

32. ► Click the Resume button to run to the breakpoint. Note in the Memory Browser that
the g_pui8RxPing buffer is now filled with data. ► Click Resume again and the
g_pui8RxPong buffer will fill.

33. ► Add watch expressions for g_ui32RxPingCount and g_ui32RxPongCount (lines
29 and 30).► Add another watch expression for g_ui32DMAErrCount (line 26).
► Change the properties of the breakpoint at line 66 so that its Action is Refresh All
Windows.

34. ► Click Resume. The transfer counters should track and the error count should be zero.
You’ll also notice that the LED on the LaunchPad stops blinking. Since the CPU is
stopping at the breakpoint and transferring data to the PC, the next uDMA interrupt
occurs before any code can run in the while(1) loop. Consider that when using this
technique to debug.

The Memory browser isn’t very interesting since the g_pui8TxBuf buffer never changes.
Let’s fix that.

35. ► Click the Suspend button and find the g_pui8TxBuf buffer portion of the
UART1IntHandler. ► Add the line highlighted below at about line 96. This will
increment the first location in the g_pui8TxBuf buffer.

 if(!ROM_uDMAChannelIsEnabled(UDMA_CHANNEL_UART1TX))
 {
 g_pui8TxBuf[0]++;
 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART1TX | UDMA_PRI_SELECT,
 UDMA_MODE_BASIC, g_ucTxBuf,
 (void *)(UART1_BASE + UART_O_DR),
 sizeof(g_ucTxBuf));

 ROM_uDMAChannelEnable(UDMA_CHANNEL_UART1TX);

 }

 Lab 13: µDMA

Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA 13 - 21

36. ► Build and load. You may need to click the Go button in the Memory Browser again.
Click Resume to run the code. The first location in all three buffers should be
incrementing.

37. When you’re done, ► click the Terminate button to return to the CCS Edit perspective.
Now that the CCS windows aren’t being updated, the blue LED will start blinking again.

38. ► Right-click on lab13 in the Project Explorer pane and close the project.

39. ► Minimize Composer Studio.

 You’re done.

Lab 13: µDMA

13 - 22 Getting Started With the Tiva C Series TM4C123G LaunchPad - µDMA

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 1

Sensor Hub

Introduction
The Tiva™ Sensor Hub BoosterPack is an exciting new addition to TI’s MCU LaunchPad
ecosystem. It is a plug-in daughter board that allows developers to create products with up to nine
axes of motion tracking and multiple environmental sensing capabilities.

This BoosterPack is designed for TI’s new Tiva C Series TM4C123G LaunchPad, but it will also
work equally well with its predecessor, the Stellaris LM4F120XL LaunchPad. The BoosterPack
is hardware compatible with the existing MSP430 and C2000 LaunchPads too.

Agenda

Features...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory and Security

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

Chapter Topics

14 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Chapter Topics
Sensor Hub ..14-1

Chapter Topics ...14-2

Kit Features ...14-3

Individual Sensors ..14-4

Orientation Kinematics and the DCM Algorithm ..14-7

Air Mouse Example ..14-8
Lab 14a: Air Mouse Example ..14-9

Objective..14-9
Procedure ... 14-10

Sensor Library ... 14-14

Sensor Hub Examples .. 14-15

Lab 14b: Sensor Library Usage ... 14-17
Objective.. 14-17
Procedure ... 14-18

 Kit Features

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 3

Kit Features

 Motion & environmental sensing
 BoosterPack XL connectors

(compatible with earlier BoosterPack
connectors)

 EM board connectors
(for TI’s wireless RF evaluation kits)

 2 buttons & 2 LEDs
 Example applications for

each unique sensor
 “Air” Mouse (PC HID) example

demonstrates sensor fusion
 CCS, Keil, IAR, &

Mentor Embedded
IDEs supported

 TivaWare DriverLib under
TI BSD-style license

 Runs on Tiva TM4C123G and
LM4F120 LaunchPads.
HW compatible with MSP430 &
C2000 LaunchPads

 MSRP $49.99 USD

Tiva™ Sensor Hub BoosterPack Evaluation Kit
Features

BOOSTXL-SENSHUB

TMP006...

Individual Sensors

14 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Individual Sensors

TI TMP006 Infrared Temperature Sensor

 No contact temperature
measurement

 -40C to 125C measurement
range

 240uA supply current
 2.2 to 7V supply
 I2C interface (address 0x41)
 Host calculates observed

temperature

BMP180...

Bosch BMP180 Digital Pressure Sensor

 -500 to 9000m Mean Sea Level
(1100 to 300hPa)

 Temperature sensing for
altitude compensation

 1.8 – 3.6V supply
 5uA supply current at

1 sample/sec
 Very low noise
 Multiple modes for

power/accuracy tradeoff
 I2C interface (address 0x77)
 Host calculates altitude

MPU9150...

 Individual Sensors

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 5

Invensense MPU-9150 9-axis Motion Sensor

 3-axis MEMS accelerometer
 3-axis MEMS gyroscope
 3-axis MEMS magnetometer
 16-bit gyroscope and

accelerometer resolution
 13-bit magnetometer resolution
 I2C interface (address 0x68)
 2.375 to 3.465V supply

MEMS = Micromechanical system

ISL29023...

Intersil ISL29023 Ambient & Infrared Light Sensor

 16-bit resolution
 50 & 60Hz flicker rejection
 1.7 to 3.63V supply
 I2C interface (address 0x44)
 HW (BoosterPack XL pin) and

SW Interrupts on light levels

SHT21...

Individual Sensors

14 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Sensirion SHT21 Humidity & Ambient Temperature Sensor

 8/12-bit humidity resolution
 12/14-bit temperature

resolution
 2.1 to 3.6V supply
 I2C interface (address 0x40)
 Slots in board for air circulation

Orientation Kinematics

 Orientation Kinematics and the DCM Algorithm

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 7

Orientation Kinematics and the DCM Algorithm

Orientation Kinematics
 The Direct Cosine Matrix (DCM) algorithm combines multiple

axes of motion data into a single set of Euler angles for roll,
pitch and yaw. The final calculated position is :
 Less prone to drop-out
 Of higher accuracy than the best individual sensor

 The DCM algorithm calculates the orientation of a rigid body, in
respect to the rotation of the earth by using rotation matrices.
The rotation matrices are related to the Euler angles, which
describe the three consecutive
rotations needed to describe the
orientation

 The three sensors used in the
algorithm are:
 3 axis accelerometer (measures earth’s

gravity field minus acceleration)
 3 axis magnetometer (measures earth’s

magnetic field)
 3 axis gyroscope (measures angular

velocity)

DCM Algorithm...

DCM Algorithm
 The gyroscope is the primary sensor

 Unaffected by the gravitational or magnetic field
 Prone to drift

 The accelerometer is used as an orientation reference in
the X and Z axes
 Compensates for roll and pitch errors

 The magnetometer is used to calculate reference vector in the
Y axis
 Compensates for yaw errors

 Proportional feedback
removes the gyro’s
drift Z

X

Y

Roll

Pitch

Yaw

Air Mouse Example...

Air Mouse Example

14 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Air Mouse Example

Air Mouse Example
 The Invensense MPU-9150 provides raw acceleration, angular

velocity and magnetic field measurements.
 All 9 axes are fused and filtered using a complimentary direct

cosine matrix or DCM algorithm into Euler angles for roll, pitch
and yaw.

 Roll and pitch are used to perform the mouse movements.
 Raw angular velocities and accelerations are used to interpret

gestures
 Angles are calculated 100 times per second

Lab ...

 Lab 14a: Air Mouse Example

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 9

Lab 14a: Air Mouse Example

Objective
In this lab you will experiment with the Air Mouse example, programming the code into the
TM4C123G’s flash memory using the LM Flash Programmer.

Lab 14a: Air Mouse

 Program the airmouse.bin binary
into the MCU’s flash memory using
LM Flash Programmer

 Install the Sensor Hub BoosterPack
 Experiment with the Air Mouse example

USB Emulation Port

USB
H/D/OTG

Port

Power
Switch

Reset
Button

Sensor Library ...

To complete labs 14a and 14b you will need a BOOSTXL-SENSHUB Sensor Hub Boosterpack.
If you are attending a live workshop, the instructor will have several for attendees to use.
Otherwise you will need to purchase one: http://www.ti.com/tool/boostxl-senshub

http://www.ti.com/tool/boostxl-senshub

Lab 14a: Air Mouse Example

14 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Procedure

LM Flash Programmer
1. Remove the USB cable from the LaunchPad’s emulator port.

2. Carefully install the Sensor Hub BoosterPack onto the XL connectors of the LaunchPad
board. The buttons on the BoosterPack should be at the same end as the ones on the
LaunchPad. You may need to carefully bend the power measurement jumper out of the
way slightly.

3. Connect the USB cable from the emulation port to an open USB port on your computer.

4. Run the LM Flash Programmer and make the selection in the Quick
Set window shown below. If you have an older version of the LM
Flash Programmer, use the LM4F120XL selection instead.

 Lab 14a: Air Mouse Example

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 11

Click on the Program tab at the top. Click the Browse button and browse to:
C:\TI\TivaWare_C_Series-1.1\examples\boards\
ek-tm4c123gxl-boostxl-senshub\airmouse\ccs\Debug\ and select
airmouse.bin in the Select .bin file dialog box. Make sure to check the “Verify After
Program” and “Reset MCU After Program” checkboxes. Then click the Program button.

When the process completes, close the LM Flash Programmer.

5. Open a browser window or a longer pdf or Word document on your desktop.

Unplug your USB cable from the LaunchPad’s emulation port, switch the power switch
to the DEVICE (left-most) position and connect the USB cable to the H/D/OTG port on
the side of the LaunchPad (see the earlier diagram).

Press the LaunchPad’s reset button to make sure that the code starts up properly.

Lab 14a: Air Mouse Example

14 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Air Mouse Example
6. Your computer will detect the new USB device and install the standard mouse drivers. If

everything is working properly, the LEDs on the LaunchPad will be blinking quickly.

The proper way to hold the air mouse is with the USB cable to the right and the buttons
under your fingers. Although both sets of buttons will work, it’s easier to use the
LaunchPad buttons.

7. Gently pitch the LaunchPad forward and back to mouse
down and up. Roll left and right to mouse left and right. The
left and right buttons should work normally.

8. From a resting position flat and level, a quick jerk up will
simulate ALT+TAB on your keyboard to show your open
programs. Once “lifted”, a quick twist left or right will select
between the available windows. A quick jerk down will
make the selection stick and release the ALT key. If you find
yourself “stuck”, press the ALT key on your keyboard to exit
the mode.

9. From flat and level, a spin about the Z (vertical) axis will
PAGE UP or PAGE DOWN.

10. From flat and level, a quick forward or back motion while

keeping the air mouse flat will zoom in and out.

 Lab 14a: Air Mouse Example

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 13

11. Explanation: For the air mouse example, the Invensense MPU-9150 provides raw
acceleration, angular velocity and magnetic field measurements. All 9 axes are fused and
filtered using a complimentary direct cosine matrix, or DCM, algorithm into Euler angles
for roll, pitch and yaw. Roll and pitch are used to perform the mouse movements. Raw
angular velocities and accelerations are used to interpret gestures.

12. When you’re done experimenting, remove the USB cable from the LaunchPad’s device
port, move the power switch back to the DEBUG (right-most) position and connect the
USB cable to the LaunchPad’s emulator port.

 You’re done with Lab14a.

Sensor Library

14 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Sensor Library

TivaWare™ Sensor Library Contents
 Drivers for the I2C port and each sensor
 Functions for manipulating the magnetometer

readings
 DCM Algorithm

 comp_dcm.c/h reads the sensors and applies
the DCM algorithm to the data

 Vector operations
 VectorAdd()

 VectorCrossProduct()

 VectorDotProduct()

 VectorScale()

Sensor Library Usage...

TivaWare™ Sensor Library Usage

Examples...

For instance, to interface with the TMP006:
 Initialize I2C pins and I2C peripheral normally
 Initialize the I2C driver I2CMInit()
 Initialize the TMP006 TMP006Init()
 Configure the TMP006 TMP006ReadModifyWrite()
 Read data from the TMP006 TMP006DataRead()
 Convert data into temperature TMP006DataTemperatureGetFloat()

The Sensor library is a consistent API with this general flow for all sensors

It’s easy to leverage the library for custom I2C sensors

 Sensor Hub Examples

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 15

Sensor Hub Examples

TivaWare™ Sensor Hub Examples
airmouse

 fuses motion data into mouse and keyboard events

compdcm_mpu9150
 basic data gathering from the MPU-9150

drivers
 for buttons and LEDs

humidity_sht21
 periodic measurements of humidity

light_isl29023
 uses measurements of ambient visible and IR light to control the “white” LED

pressure_bmp180
 periodic measurements of air pressure and temperature

temperature_tmp006
 periodic measurements of ambient and IR temperatures to calculate actual

object temperature

Lab...

Sensor Hub Examples

14 - 16 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

 Lab 14b: Sensor Library Usage

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 17

Lab 14b: Sensor Library Usage

Objective
In this lab you will create a simple sensor application using the Intersil ISL29023 light sensor and
the SensorHub library.

Lab 14b: Sensor Library Usage

 Create a simple program to read the
data from the ISL29023 light sensor

 Display the results in Code Composer
 Try out GUI Composer

USB Emulation Port

USB
H/D/OTG

Port

Power
Switch

Reset
Button

Agenda ...

Lab 14b: Sensor Library Usage

14 - 18 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Procedure

Import the Project
1. Maximize CCS.

2. On the CCS Menu bar, click Project Import Existing CCS Eclipse Project. When the
Select Existing CCS Eclipse Project dialog appears, click the Browse button beside the
search-directory box. Navigate to C:\TI\TivaWare_C_Series-1.1\examples\
boards\ek-tm4c123gxl-boostxl-senshub\light_isl29023 and click OK.
Click the Finish button. The project files will be copied into you workspace folder.

3. In the Project Explorer pane, click the beside the light_isl29023 project name to

expand the project.

The main components of the project are light_isl29023.c, which contains all of the
c code needed to run the program and startup_ccs.c, which contains the reset vector,
ISR vectors and system fault handlers.

 Lab 14b: Sensor Library Usage

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 19

4. In the Project Explorer pane, right-click on light_isl29023.c and select Copy.
Right-click again in the open space of the Project Explorer pane and select Paste. When
the Name Conflict dialog appears, accept the “Copy of light_isl29023.c” name
by clicking OK. This will preserve the existing file for later use, but you’ve created a
problem … both files contain a main() and both are part of the project.

 Fix this by right-clicking on the “Copy of light_isl29023.c” file, select Resource
Configurations and then Exclude from Build … When the Exclude from build dialog
appears, click the Select All button and then click OK.

Note that the symbol for the file will have a “strike”
through it.

5. In the Project Explorer pane, right-click on startup_ccs.c and select Copy. Right-
click again in the open space of the Project Explorer pane and select Paste. When the
Name Conflict dialog appears, accept the “Copy of startup_ccs.c.c” name by
clicking OK.

Right-click on the “Copy of startup_ccs.c” file, select Resource Configurations
and then Exclude from Build … When the Exclude from build dialog appears, click the
Select All button and then click OK.

6. Code Composer has been updated since this version of TivaWare was released, so you
will likely see a warning to this effect in the Problems pane. To correct this, right-click on
the light_isl29023 project in the Project Explorer and select Properties. In the upper-left,
click on General. Find the Compiler version box and change it to TI v5.1.1. Click OK.

Lab 14b: Sensor Library Usage

14 - 20 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Write the Code
7. If we’re going to write a sensor application from a blank sheet of paper, we first need that

blank sheet. Double-click on light_isl29023.c in the Project Explorer pane to open
the file for editing in the Editor pane. Click anywhere in the code, press Ctrl-A on your
keyboard to select all the code and then press your delete button. Viola, a blank sheet to
start from.

8. Let’s start from the top with the necessary includes. Copy the following lines from this
pdf file and insert them into the blank sheet you just created. In most pdf readers you can
select either a screen capture (arrow pointer) or text (cursor or I pointer). Use the text
selector for the best results.
#include "stdint.h"
#include "stdbool.h"
#include "inc/hw_memmap.h"
#include "inc/hw_ints.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/rom.h"
#include "driverlib/sysctl.h"
#include "sensorlib/hw_isl29023.h"
#include "sensorlib/i2cm_drv.h"
#include "sensorlib/isl29023.h"
#define DEBUG

In order, the purpose of each of these is:

stdint.h: assure that integer types are compatible with the 1999 C standard
stdbool.h: assure that Boolean types are compatible with the 1999 C standard
hw_memmap.h: define the memory map of the device
hw_ints.h: macros defining the interrupt assignments
hw_ints.h: macros for assisting debug of the driver library
gpio.h: definitions and macros for the general purpose I/O APIs
interrupt.h: prototypes for the interrupt controller driver
pin_map.h: the mapping of the peripherals to the pins
rom.h: macros to facilitate calling the functions in ROM
sysctl.h: prototypes for the system control driver
hw_isl29023.h: macros for accessing the Intersil light sensor
i2cm_drv.h: prototypes for the I2C master driver
isl29023.h: prototypes for the light sensor driver
DEBUG: See step 17

9. Leave a blank line for spacing and add the following five lines below the includes:

#define ISL29023_I2C_ADDRESS 0x44 // ISL29023 I2C address
tI2CMInstance g_sI2CInst; // I2C master driver structure
tISL29023 g_sISL29023Inst; // ISL29023 sensor driver structure
volatile unsigned long g_vui8DataFlag; // Data ready flag
volatile unsigned long g_vui8ErrorFlag; // Error flag

 Lab 14b: Sensor Library Usage

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 21

Handlers and Functions
10. Leave a blank line for spacing and add the following code below the last. This error

routine will be called if the driver library experiences an error. Run-time error checking is
fairly simple so that the impact to speed during runtime will be minimal, but accounting
for potential errors is good programming practice. This code will save the location of the
error, but only when the project is built with the DEBUG definition.
//***
#ifdef DEBUG
void
__error__(char *pcFilename, uint32_t ui32Line)
{
}
#endif

//***

11. Leave a blank line for spacing and add the following code below the last. This is the
ISL29023 sensor callback function, which will be called at the end of the ISL29023
sensor driver transaction. It is called from the I2C interrupt context that we’ll add shortly.
It assures that the I2C communication was successfully completed and sets the
appropriate flags.
//***
void
ISL29023AppCallback(void *pvCallbackData, uint_fast8_t ui8Status)
{
 if(ui8Status == I2CM_STATUS_SUCCESS)
 {
 g_vui8DataFlag = 1;
 }
 g_vui8ErrorFlag = ui8Status;
}

//***

12. Leave a blank line for spacing and add the following code below the last. This handler
code will be called by the device’s interrupt controller when an I2C3 interrupt occurs. I2C
port 3 on the TM4C123G is the connection to the ISL29023.
//***
void
ISL29023I2CIntHandler(void)
{
I2CMIntHandler(&g_sI2CInst);
}

//***

Lab 14b: Sensor Library Usage

14 - 22 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

13. Leave a blank line for spacing and add the following code below the last. This is the
ISL29023 application error handler. If an error occurs, execution will trap here. Maybe
that isn’t what you’d like to happen in a production system.
//***
void
ISL29023AppErrorHandler(char *pcFilename, uint_fast32_t ui32Line)
{
 while(1)
 {
 }
}

//***

14. Leave a blank line for spacing and add the following code below the last. This function
waits for the ISL29023 I2C transactions to complete. If an error occurs the error handler
will be called immediately.
//***
void
ISL29023AppI2CWait(char *pcFilename, uint_fast32_t ui32Line)
{
 while((g_vui8DataFlag == 0) && (g_vui8ErrorFlag == 0))
 {
 }
 if(g_vui8ErrorFlag)
 {
 ISL29023AppErrorHandler(pcFilename, ui32Line);
 }
 g_vui8DataFlag = 0;
}

//***

 Lab 14b: Sensor Library Usage

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 23

main()
15. Now let’s add main() to the file. After this we’ll fill in the run-time code. fAmbient is

a variable that holds the light reading from the sensor. ui8Mask holds a series of
parameters with which to program the ISL29023. Leave a blank line for spacing and add
the following code below the last.
//***
int
main(void)
{
 float fAmbient;
 uint8_t ui8Mask;

}

16. The first thing we want the processor to do after reset is to properly configure the clock.
The following API will set up the system clock at 40MHz using the PLL with the 16MHz
external crystal as a reference. After the line containing uint8_t ui8Mask; add a line
for spacing and then add the API below.

ROM_SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

Note the ROM_ preceding the API. The ROM on all Tiva C Series devices contains the
entire TivaWare™ peripheral driver library. Calling functions from ROM saves precious
Flash memory for the users’ functions.

Lab 14b: Sensor Library Usage

14 - 24 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

17. Next we need to enable I2C port 3 on the device. The pins are multiplexed with 4
functions per pin, so this programming is critical. TI has created a pin mux GUI to ease
this programming; you can find it at: http://www.ti.com/tool/lm4f_pinmux . The last line
turns on the “master interrupt switch”, enabling interrupts on the processor.

Add a line for spacing under the last and add these seven lines to main().
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
ROM_GPIOPinConfigure(GPIO_PD0_I2C3SCL);
ROM_GPIOPinConfigure(GPIO_PD1_I2C3SDA);
GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);

ROM_IntMasterEnable();

18. Now we’re ready to initialize I2C port 3. Add a line for spacing under the last and add the
next two lines to main().
I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xFF, 0xFF, ROM_SysCtlClockGet());

SysCtlDelay(SysCtlClockGet() / 3);

The parameters in the first line specify the I2C instance, the base address of the I2C
module, the µDMA Tx and Rx channels used (none) and the clock frequency used as the
I2C module input clock. The second line provides a 1000mS delay to allow for any
possible conflicts on the I2C bus to resolve.

19. Now it’s time to initialize the ISL29023. Add a line for spacing under the last and add
these lines to main().

ISL29023Init(&g_sISL29023Inst, &g_sI2CInst,
 ISL29023_I2C_ADDRESS,ISL29023AppCallback, &g_sISL29023Inst);

ISL29023AppI2CWait(__FILE__, __LINE__);

The first API initializes the ISL29023 driver, preparing it for operation. It also asserts a
reset signal to the ISL29023 itself, to clear any previous configuration data.

The first parameter is a pointer to the ISL29023 instance data. The second is a pointer to
the I2C driver instance data. The third is the I2C address of the ISL29023 device. The
fourth is the function to be called when the initialization has completed (can be NULL if
a callback is not required). The last is a pointer that is passed to the callback function.

The second API simply waits for the I2C communication to complete. If an error occurs,
its location will be preserved.

http://www.ti.com/tool/lm4f_pinmux

 Lab 14b: Sensor Library Usage

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 25

20. The next lines configure the ISL29023. The R-M-W API modifies the operation register
on the ISL29023. These parameters are defined in isl29023.h. Skip a line for spacing
and add this code under the rest inside main().
ui8Mask = (ISL29023_CMD_I_OP_MODE_M);

ISL29023ReadModifyWrite(&g_sISL29023Inst, ISL29023_O_CMD_I, ~ui8Mask,
 (ISL29023_CMD_I_OP_MODE_ALS_CONT),
 ISL29023AppCallback, &g_sISL29023Inst);

ISL29023AppI2CWait(__FILE__, __LINE__);

Double-click on any of the parameters and press F3 to quickly see its definition. The
parameters passed in this configuration assure that the ISL29023 is in operation mode
and continuous sampling mode.

Again, the wait is needed to insure the completion of the last communication before
starting the next.

while(1) Loop
21. Next we’ll add the code that continuously reads the light sensor. To do that we’ll need a

while(1) loop. Skip a line for spacing and add the following after the last code.
while(1)

{

}

22. Insert the following lines into the while(1) loop. The first line will read the data from
the sensor and the third will convert it into a floating point number stored in fAmbient.
This will occur as quickly as the I2C communication transactions will allow, based on the
wait APIs.

Note: We will be using breakpoints in this lab to slow the interaction. Without those
breakpoints we would likely be sampling the sensor far too quickly for it to perform
a proper conversion.

ISL29023DataRead(&g_sISL29023Inst, ISL29023AppCallback, &g_sISL29023Inst);
ISL29023AppI2CWait(__FILE__, __LINE__);

ISL29023DataLightVisibleGetFloat(&g_sISL29023Inst, &fAmbient);

23. Correct the indentation of your code if necessary.

Click the Save button on the CCS menu bar to save your work.Note that the
asterisk on the tab will disappear when the saved version is current.

Compare your code with the code on the next two pages. If you are having
problems, you can copy/paste this into Code Composer Studio.

Lab 14b: Sensor Library Usage

14 - 26 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

#include "stdint.h"
#include "stdbool.h"
#include "inc/hw_memmap.h"
#include "inc/hw_ints.h"
#include "driverlib/debug.h"
#include "driverlib/gpio.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"
#include "driverlib/rom.h"
#include "driverlib/sysctl.h"
#include "sensorlib/hw_isl29023.h"
#include "sensorlib/i2cm_drv.h"
#include "sensorlib/isl29023.h"
#define DEBUG

#define ISL29023_I2C_ADDRESS 0x44 // ISL29023 I2C address
tI2CMInstance g_sI2CInst; // I2C master driver structure
tISL29023 g_sISL29023Inst; // ISL29023 sensor driver structure
volatile unsigned long g_vui8DataFlag; // Data ready flag
volatile unsigned long g_vui8ErrorFlag; // Error flag

//***
void
ISL29023AppCallback(void *pvCallbackData, uint_fast8_t ui8Status)
{
 if(ui8Status == I2CM_STATUS_SUCCESS)
 {
 g_vui8DataFlag = 1;
 }
 g_vui8ErrorFlag = ui8Status;
}
//***

//***
void
ISL29023I2CIntHandler(void)
{
 I2CMIntHandler(&g_sI2CInst);
}
//***

//***
void
ISL29023AppErrorHandler(char *pcFilename, uint_fast32_t ui32Line)
{
 while(1)
 {
 }
}
//***

//***
void
ISL29023AppI2CWait(char *pcFilename, uint_fast32_t ui32Line)
{
 while((g_vui8DataFlag == 0) && (g_vui8ErrorFlag == 0))
 {
 }
 if(g_vui8ErrorFlag)
 {
 ISL29023AppErrorHandler(pcFilename, ui32Line);
 }
 g_vui8DataFlag = 0;
}
//***

 Lab 14b: Sensor Library Usage

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 27

//***
int
main(void)
{
 float fAmbient;
 uint8_t ui8Mask;

 ROM_SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
 ROM_GPIOPinConfigure(GPIO_PD0_I2C3SCL);
 ROM_GPIOPinConfigure(GPIO_PD1_I2C3SDA);
 GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
 ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);

 ROM_IntMasterEnable();

 I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xFF, 0xFF, ROM_SysCtlClockGet());

 SysCtlDelay(SysCtlClockGet() / 3);

 ISL29023Init(&g_sISL29023Inst, &g_sI2CInst,
 ISL29023_I2C_ADDRESS,ISL29023AppCallback, &g_sISL29023Inst);
 ISL29023AppI2CWait(__FILE__, __LINE__);

 ui8Mask = (ISL29023_CMD_I_OP_MODE_M);

 ISL29023ReadModifyWrite(&g_sISL29023Inst, ISL29023_O_CMD_I, ~ui8Mask,
 (ISL29023_CMD_I_OP_MODE_ALS_CONT),
 ISL29023AppCallback, &g_sISL29023Inst);

 ISL29023AppI2CWait(__FILE__, __LINE__);

 while(1)
 {
 ISL29023DataRead(&g_sISL29023Inst, ISL29023AppCallback, &g_sISL29023Inst);
 ISL29023AppI2CWait(__FILE__, __LINE__);

 ISL29023DataLightVisibleGetFloat(&g_sISL29023Inst, &fAmbient);
 }
}

If you’re having problems, this code can be found in the lab14/files folder.

Lab 14b: Sensor Library Usage

14 - 28 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

startup_ccs.c
24. The original light sensor project used several interrupts that we will not be using. We

need to eliminate them from the startup_ccs.c file. Double-click on
startup_ccs.c in the Project Explorer pane to open it for editing in the Editor pane

Find the external declarations around line 59. Comment out the first, third, fourth and
fifth as shown below.

//extern void IntGPIOe(void);
extern void ISL29023I2CIntHandler(void);
//extern void SysTickIntHandler(void);
//extern void UARTStdioIntHandler(void);
//extern void RGBBlinkIntHandler(void);

25. Page down to around line 77. The system exception and peripheral interrupt vectors start
here. Find IntDefaultHandler and double-click on it to select it. Then press Ctrl-C to
copy it to the clipboard. This handler is the one that is called when an unexpected
interrupt occurs. In a production environment, you might want to change the “trap”
behavior of this code.

Around line 91, find SysTickIntHandler. Double-click on it and press Ctrl-V to
replace it with IntDefaultHandler.

Do the same to:

IntGPIOe at about line 96,
UARTStdioIntHandler at about line 97and
RGBBlinkIntHandler at about line 197.

Save your work.

If you’re having problems, this code can be found in the lab14/files folder.

 Lab 14b: Sensor Library Usage

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 29

Build and Download your Project
26. Make sure that your LaunchPad/SensorHub combination is connected from a free USB

port on your PC to the emulation port on the LaunchPad. Cycle the power on the board
by moving the power switch from the DEBUG (right-most) position to the DEVICE (left-
most) position and back to the DEBUG (right-most) position.

27. Build and download the program to the flash memory of the TM4C123GH6PM
by clicking on the Debug button on the CCS menu bar.

Watch Expressions and Breakpoints
28. Click on the Expressions tab in the Watch and Expressions pane. If there are any

Expressions in the window, right click in the window and select Remove All.

29. Find fAmbient in the light_isl29023.c code pane (right after main) and double-
click on it to select it. Right-click on it and select Add Watch Expression … Click OK to
leave the name as-is.

30. Page down to the end of light_isl29023.c and find the while(1) loop. Identify the

line of code that contains ISL29023DataLightVisibleGetFloat(). Double-click in
the blue area just left of the line number to set a breakpoint on this line. You’ll see a blue
dot with a check mark appear. When code execution reaches this point, control will be
returned to CCS (before the line runs).

Remember that the current drivers do not support setting breakpoints while the code is
executing.

Lab 14b: Sensor Library Usage

14 - 30 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Run the Code

31. Click the Resume button or press F8 on your keyboard to run your code.
32. Since the breakpoint is set before the ISL29023DataLightVisibleGetFloat() API

was run, fAmbient was not updated. Click the Resume button or press F8 on your
keyboard repeatedly.

Continuously clicking the Resume button can get pretty tedious. We can
change the behavior of the breakpoint we set so that it doesn’t stay halted.
Right-click on the breakpoint symbol (it will now have a blue arrow on
it) and select Breakpoint Properties …

On the row containing Action, click on the Remain Halted value. When the down-arrow
appears on the right, click on it. Select Refresh All Windows from the list and click OK.

33. Click the Resume button or press F8 on your keyboard to run your code. Now the
while(1) loop will run to the breakpoint, stop, update the fAmbient value in CCS and
re-start code execution. Based on how the code is written in the while(1) loop, this will
happen as quickly as possible (as soon as the I2C communication is finished, another will
begin). Note that every time the value changes, CCS will highlight it in yellow.

Pass your hand over the SensorHub or shine a bright light on it and watch the value of
fAmbient change.

Note the maximum value of fAmbient here: ___________________

 Lab 14b: Sensor Library Usage

Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub 14 - 31

GUI Composer
34. Earlier in the workshop we used the CCS graphing feature to visulaize our data. TI

debuted a new feature in CCS version 5.3 called “GUI Composer”. Let’s use it to
visulaize the data from the light sensor.

35. Click the Suspend button to halt your program.

36. From the CCS menu bar, click View – GUI Composer. When you see the New Project
button, click it. Insert a name of your choice in the dialog and click OK

37. When the GUI Composer tab and workspace appears, click
Instrumentation on the left

38. Find the AnalogGauge and drag it to the open design area. .
Resize the gauge to make it as large as possible.

39. Make sure the Widget is selected (click on it) and click the Widget
tab on the far right. . Find the Title box and enter “Light Level” into
it. Find the Maximum Value box and enter a value somewhat
greater that the maximum value of fAmbient you noted in step
32.

40. Click the Binding tab on the far right. In the Value box, enter fAmbient. Be careful
with the spelling and case.

41. Click the Resume button on the CCS menu bar.

42. Click the Run button in the GUI Composer pane.
Pretty cool, huh?

43. Suspend the code and delete the breakpoint. Resume
the code. GUI Composer is capable of reading
memory locations in the background through the
emulotor hardware. Since fAmbient is a global
variable, we are assured that it has a memory location
and has not been optimized into a register.

44. GUI Composer can be used inside of CCS or can be exported to run “stand-alone”
without starting CCS. The steps to do this can be found in the GUI Composer
documentation.

45. Minimize Code Composer Studio.

 You’re done with Lab14b

Lab 14b: Sensor Library Usage

14 - 32 Getting Started With the Tiva C Series TM4C123G LaunchPad - Sensor Hub

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15 - 1

PWM

Introduction
Pulse width modulation or PWM is a method of digitally encoding analog signal levels. It is used
extensively in servo positioning, motor control, power supplies and lighting control.

Agenda

Features...

Introduction to ARM® Cortex™-M4F and Peripherals
Code Composer Studio

Introduction to TivaWare™, Initialization and GPIO
Interrupts and the Timers

ADC12
Hibernation Module

USB
Memory

Floating-Point
BoosterPacks and grLib

Synchronous Serial Interface
UART
µDMA

Sensor Hub
PWM

Chapter Topics

15 - 2 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

Chapter Topics
PWM..15-1

Chapter Topics ...15-2

Pulse Width Modulation ..15-3

TM4C123GH6PM PWM ..15-4

PWM Generator Features ..15-5

Block Diagrams ...15-6
Lab 15: PWM ...15-7

Objective..15-7
Servo Control ...15-8
Hardware ...15-9
Software ... 15-11

 Pulse Width Modulation

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15 - 3

Pulse Width Modulation

Pulse Width Modulation

Pulse Width Modulation (PWM) is a method of digitally encoding
analog signal levels. High-resolution digital counters are used to
generate a square wave of a given frequency, and the duty cycle
of that square wave is modulated to encode the analog signal.
Typical applications for PWM are switching power supplies,
motor control, servo positioning and lighting control.

TM4C123GH6PM PWM …

TM4C123GH6PM PWM

15 - 4 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

TM4C123GH6PM PWM

TM4C123GH6PM PWM

Each PWM module consists of:
 Four PWM generator blocks
 A control block which determines the polarity of the signals and

which signals are passed to the pins

Each PWM generator block produces:
 Two independent output signals of the same frequency or
 A pair of complementary signals with dead-band generation

(for H-bridge circuit protection)
 Eight outputs total

Module Features …

The TM4C123GH6PM has two PWM modules

 PWM Generator Features

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15 - 5

PWM Generator Features

PWM Generator Features

One hardware fault input for low-latency shutdown
One 16-bit counter

 Down or Up/Down count modes
 Output frequency controlled by a 16-bit load value
 Load value updates can be synchronized
 Produces output signals at zero and load value

Two PWM comparators
 Comparator value updates can be synchronized
 Produces output signals on match

PWM signal generator
 Output PWM signal is constructed based on actions taken as a

result of the counter and PWM comparator output signals
 Produces two independent PWM signals

PWM Generator Features (cont)

Dead-band generator
 Produces two PWM signals with programmable dead-band delays

suitable for driving a half-H bridge
 Can be bypassed, leaving input PWM signals unmodified

Flexible output control block with:
 PWM output enable of each PWM signal
 Optional output inversion of each PWM signal (polarity control)
 Optional fault handling for each PWM signal
 Synchronization of timers in the PWM generator blocks
 Synchronization of timer/comparator updates across the PWM

generator blocks
 Interrupt status summary of the PWM generator blocks

Can initiate an ADC sample sequence

Block diagram …

Block Diagrams

15 - 6 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

Block Diagrams

PWM Module Block Diagram

PWM Generator Block Diagram

Lab …

 Lab 15: PWM

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15 - 7

Lab 15: PWM

Objective
In this lab you’ll use the PWM on the Tiva C Series device to control the position of a radio-
control (RC) type servo. This type of servo uses a 50-60Hz base frequency and then uses a 1-2mS
high level to control the position. There are both analog and digital radio control servos, but
which type you use does not affect the control signal being used.

Lab 15: PWM

Wrap-up ...

USB Emulation Connection

 Configure the PWM outputs and
frequency

 Add code to control a servo
 Connect the servo to the LaunchPad
 Test

VCC
GND

SIGNAL

To complete lab 15 you will need a radio-control type servo. These are easily obtainable online
for less than US$5.

Lab 15: PWM

15 - 8 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

Servo Control
The servo-actuators or “servos” used in hobby applications require a control signal of between 50
and 60Hz with a 1 to 2mS positive signal to control the position as seen below. The 1 and 2mS
endpoints represent the limits of travel of the servo while 1.5mS represents the center position.

These oscilloscope captures were taken from a DSO Nano measuring the PWM output of this lab.

 55Hz Control Signal 1.5mS Center Position

 2.0mS Limit Position 1.0mS Limit Position

 Lab 15: PWM

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15 - 9

Hardware
In order to run this lab you will need to acquire and modify an RC servo like the one
here: http://www.hobbyking.com/hobbyking/store/__662__HXT900_9g_1_6kg_12sec_Micro_Servo.html
If you are attending a live workshop, your instructor will have a modified servo that you can use.

Servos have a three pin connector on them that provides:

Vcc – usually red
Ground – usually black or brown
Signal – usually white, yellow or orange

1. Re-order the pins in the
existing servo connector and
see if they make good enough
contact. To do this, pry the
little plastic tabs on the
connector gently upwards with
a knife and pull the wires out.
Reinsert them (with the correct
orientation) and they will click
into place.

2. Connect the modified servo to
J3 pins 1 – 3 on your
LaunchPad as shown.

Signal
Ground

Vcc

V
cc

G

ro
un

d
Si

gn
al

http://www.hobbyking.com/hobbyking/store/__662__HXT900_9g_1_6kg_12sec_Micro_Servo.html

Lab 15: PWM

15 - 10 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

3. Referring to the schematic in your workbook, J3 pins 1-3 are as shown below:

Referring to the device UG, port D pin 0 (PD0) has the following functions:

We will configure the pin as M1PWM0 as described in the table. Any PWM output
would have been acceptable, but this one happened to be right next to the Vcc and ground
pins on the BoosterPack connector.

If you were going to monitor and control multiple servos, a better option would be to
create your own BoosterPack proto board with standard connections for the servos.

 Lab 15: PWM

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15 - 11

Software
4. We have already created the lab15 project for you with an empty main.c, a startup file

and all necessary project and build options set.

► Maximize Code Composer and click Project Import Existing CCS Eclipse Project.

Make the settings shown below and ► click Finish.

Make sure that the “Copy projects into workspace” checkbox is unchecked.

Lab 15: PWM

15 - 12 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

5. It’s been quite a while since we configured our workspace and verified all the settings
that are needed to find the libraries, resolve the symbols and allow the compiler and
linker to work. We can check those now or you can skip to step 7.

► Right-click on lab15 in the Project Explorer and select Properties. Expand the
Resource category on the left and click on Linked Resources. Make sure that the symbol
TIVAWARE_INSTALL is in the Path Variables list as shown below:

This symbol was created when you imported vars.ini.

6. ► On the left of the Build Properties window click on Build ARM Compiler
Include Options. Verify that ${TIVAWARE_INSTALL} is in the include search path as
shown below:

 Lab 15: PWM

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15 - 13

7. ► On the left of the Build Properties window click on Build ARM Compiler
Advanced Options Predefined Symbols. Verify the PART_TM4C123GH6PM and
TARGET_IS_BLIZZARD_RB1 are listed in the Pre-defined NAME pane as show
below:

These names are required in order for the pin map to select the correct pins when
configured and to link to the correct ROM location for ROM-coded API’s. Click OK to
close the Properties window.

8. ► Open main.c and add (or copy/paste) the following lines to the top of the file:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "driverlib/debug.h"
#include "driverlib/pwm.h"
#include "driverlib/pin_map.h"
#include "inc/hw_gpio.h"
#include "driverlib/rom.h"

9. We’ll use a 55Hz base frequency to control the servo. ► Skip a line and add the
following definition right below the includes:

#define PWM_FREQUENCY 55

Lab 15: PWM

15 - 14 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

main()

10. ► Skip a line and enter the following lines after the error checking routine as a template
for main().

int main(void)
{

}

11. The following variables will be used to program the PWM. They are defined as “volatile”
to guarantee that the compiler will not eliminate them, regardless of the optimization set-
ting. The ui8Adjust variable will allow us to adjust the position of the servo. 83 is the
center position to create a 1.5mS pulse from the PWM.

Here’s how we came up with 83 … In the servo control code (covered shortly) we’re go-
ing to divide the PWM period by 1000. Since the programmed frequency is 55HZ and the
period is 18.2mS, dividing that by 1000 gives us a pulse resolution of 1.82µS. Multiply-
ing that by 83 gives us a pulse-width of 1.51mS. Other selections for the resolution, etc.
would be just as valid as long as they produced a 1.5mS pulse-width. Take care though to
be sure that your numbers will fit within the 16-bit registers.

► Insert these four lines as the first in main() :

 volatile uint32_t ui32Load;
 volatile uint32_t ui32PWMClock;
 volatile uint8_t ui8Adjust;
 ui8Adjust = 83;

12. Let’s run the CPU at 40MHz. The PWM module is clocked by the system clock through

a divider, and that divider has a range of 2 to 64. By setting the divider to 64, it will run
the PWM clock at 625 kHz. Note that we’re using the ROM versions to reduce our code
size.
 ► Leave a line for spacing and add these lines after the previous ones in main().

 ROM_SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);
ROM_SysCtlPWMClockSet(SYSCTL_PWMDIV_64);

13. We need to enable the PWM1 and GPIOD modules (for the PWM output on PD0) and
the GPIOF module (for the LaunchPad buttons on PF0 and PF4).
► Skip a line and add the following lines of code after the last:

ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM1);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

14. Port D pin 0 (PD0) must be configured as a PWM output pin for module 1, PWM genera-
tor 0 (check out the schematic).
► Skip a line and add the following lines of code after the last:

 ROM_GPIOPinTypePWM(GPIO_PORTD_BASE, GPIO_PIN_0);
ROM_GPIOPinConfigure(GPIO_PD0_M1PWM0);

 Lab 15: PWM

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15 - 15

15. Port F pin 0 and pin 4 are connected to the S2 and S1 switches on the LaunchPad. In or-

der for the state of the pins to be read in our code, the pins must be pulled up. (The
BUTTONSPOLL API could do this for us, but that API checks for individual button
presses rather than a button being held down). Pulling up a GPIO pin is normally pretty
straight-forward, but PF0 is considered a critical peripheral since it can be configured to
be a NMI input. Since this is the case, we will have to unlock the GPIO commit control
register to make this change. This feature was mentioned in chapter 3 of the workshop.

The first three lines below unlock the GPIO commit control register, the fourth config-
ures PF0 & 4 as inputs and the fifth configures the internal pull-up resistors on both pins.
The drive strength setting is merely a place keeper and has no function for an input.

► Skip a line and add these 5 lines after the last:

HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
HWREG(GPIO_PORTF_BASE + GPIO_O_CR) |= 0x01;
HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = 0;
ROM_GPIODirModeSet(GPIO_PORTF_BASE, GPIO_PIN_4|GPIO_PIN_0, GPIO_DIR_MODE_IN);
ROM_GPIOPadConfigSet(GPIO_PORTF_BASE, GPIO_PIN_4|GPIO_PIN_0, GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);

16. The PWM clock is SYSCLK/64 (set in step 12 above). Divide the PWM clock by the de-
sired frequency (55Hz) to determine the count to be loaded into the Load register. Then
subtract 1 since the counter down-counts to zero. Configure module 1 PWM generator 0
as a down-counter and load the count value.
► Skip a line and add these four lines after the last:

ui32PWMClock = SysCtlClockGet() / 64;
ui32Load = (ui32PWMClock / PWM_FREQUENCY) - 1;

PWMGenConfigure(PWM1_BASE, PWM_GEN_0, PWM_GEN_MODE_DOWN);
PWMGenPeriodSet(PWM1_BASE, PWM_GEN_0, ui32Load);

17. Now we can make the final PWM settings and enable it. The first line sets the pulse-
width. The PWM Load value is divided by 1000 (which determines the minimum resolu-
tion for the servo) and the multiplied by the adjusting value. These numbers could be
changed to provide more or less resolution. In lines two and three, PWM module 1, gen-
erator 0 needs to be enabled as an output and enabled to run.
► Skip a line and add these three lines after the last:

ROM_PWMPulseWidthSet(PWM1_BASE, PWM_OUT_0, ui8Adjust * ui32Load / 1000);
ROM_PWMOutputState(PWM1_BASE, PWM_OUT_0_BIT, true);
ROM_PWMGenEnable(PWM1_BASE, PWM_GEN_0);

18. ► Skip a line and add a while(1) loop just before the final closing brace. At this point

you can test-build your code. If you run it, the servo will move to its center position. If
you want to reposition the servo arm, now would be a good time.

while(1)
{
}

Lab 15: PWM

15 - 16 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

Controlling the Servo
19. This code will read the PF4 pin to see if SW1 is pressed. No debouncing is needed since

we’re not looking for individual key pressed. Each time this code is run it will decrement
the adjust variable by one unless it reaches the lower 1mS limit. This number, like the
center and upper positions was determined by measuring the output of the PWM. The last
line loads the PWM pulse width register with the new value. This load is done
asynchronously to the output. In a more critical design you might want to consult the
databook concerning making this load differently.
► Add the following code inside the while(1) loop.

 if(ROM_GPIOPinRead(GPIO_PORTF_BASE,GPIO_PIN_4)==0x00)
 {
 ui8Adjust--;
 if (ui8Adjust < 56)
 {
 ui8Adjust = 56;
 }
 ROM_PWMPulseWidthSet(PWM1_BASE, PWM_OUT_0, ui8Adjust * ui32Load / 1000);

}

20. The next code will read the PF0 pin to see if SW2 is pressed to increment the pulse
width. The maximum limit is set to reach 2.0mS.
► Skip a line and add the following code after the last inside the while(1) loop.

 if(ROM_GPIOPinRead(GPIO_PORTF_BASE,GPIO_PIN_0)==0x00)
 {
 ui8Adjust++;
 if (ui8Adjust > 111)
 {
 ui8Adjust = 111;
 }

 ROM_PWMPulseWidthSet(PWM1_BASE, PWM_OUT_0, ui8Adjust * ui32Load / 1000);
}

21. This final line determines the speed of the loop. If the servo moves too quickly or too
slowly for you, feel free to change the count to your liking.
► Skip a line and add the this line after the last inside the while(1) loop.

ROM_SysCtlDelay(100000);

If your code looks strange, don’t forget that you can automatically correct the
indentation.

► Save your changes.

 Lab 15: PWM

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15 - 17

Your final code should look something like this:

#include <stdint.h>
#include <stdbool.h>
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "driverlib/debug.h"
#include "driverlib/pwm.h"
#include "driverlib/pin_map.h"
#include "inc/hw_gpio.h"
#include "driverlib/rom.h"

#define PWM_FREQUENCY 55

int main(void)
{
 volatile uint32_t ui32Load;
 volatile uint32_t ui32PWMClock;
 volatile uint8_t ui8Adjust;
 ui8Adjust = 83;

 ROM_SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);
 ROM_SysCtlPWMClockSet(SYSCTL_PWMDIV_64);

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM1);
 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 ROM_GPIOPinTypePWM(GPIO_PORTD_BASE, GPIO_PIN_0);
 ROM_GPIOPinConfigure(GPIO_PD0_M1PWM0);

 HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
 HWREG(GPIO_PORTF_BASE + GPIO_O_CR) |= 0x01;
 HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = 0;
 ROM_GPIODirModeSet(GPIO_PORTF_BASE, GPIO_PIN_4|GPIO_PIN_0, GPIO_DIR_MODE_IN);
 ROM_GPIOPadConfigSet(GPIO_PORTF_BASE, GPIO_PIN_4|GPIO_PIN_0, GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);

 ui32PWMClock = SysCtlClockGet() / 64;
 ui32Load = (ui32PWMClock / PWM_FREQUENCY) - 1;
 PWMGenConfigure(PWM1_BASE, PWM_GEN_0, PWM_GEN_MODE_DOWN);
 PWMGenPeriodSet(PWM1_BASE, PWM_GEN_0, ui32Load);

 ROM_PWMPulseWidthSet(PWM1_BASE, PWM_OUT_0, ui8Adjust * ui32Load / 1000);
 ROM_PWMOutputState(PWM1_BASE, PWM_OUT_0_BIT, true);
 ROM_PWMGenEnable(PWM1_BASE, PWM_GEN_0);

 while(1)
 {

 if(ROM_GPIOPinRead(GPIO_PORTF_BASE,GPIO_PIN_4)==0x00)
 {
 ui8Adjust--;
 if (ui8Adjust < 56)
 {
 ui8Adjust = 56;
 }
 ROM_PWMPulseWidthSet(PWM1_BASE, PWM_OUT_0, ui8Adjust * ui32Load / 1000);
 }

 if(ROM_GPIOPinRead(GPIO_PORTF_BASE,GPIO_PIN_0)==0x00)
 {
 ui8Adjust++;
 if (ui8Adjust > 111)
 {
 ui8Adjust = 111;
 }
 ROM_PWMPulseWidthSet(PWM1_BASE, PWM_OUT_0, ui8Adjust * ui32Load / 1000);
 }

 ROM_SysCtlDelay(100000);
 }

}

If you’re having issues, you can find this code in your lab15 project folder as main.txt.

Lab 15: PWM

15 - 18 Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM

Build and Run the Code
22. Make sure your LaunchPad is connected and that the servo is correctly

connected to J3 pins 1 - 3. Compile and download your application by
clicking the Debug button.

23. Click the Resume button to run the program. If the servo was positioned off-
center it will immediately reposition itself to the center. Use the SW1 and
SW2 buttons on the LaunchPad to move the servo. Feel free to set
breakpoints and monitor the load and pulse width variables if you like.
Restarting the code will return the servo to center position.

24. When you’re finished, click the Terminate button to return to the Editing
perspective, close the lab15 project and close Code Composer Studio.

Homework: You can use this same method to control LED brightness and/or
toggle rates. It can also control a motor using the appropriate drivers (R/C folks call these
Electronic Speed Controls or ESCs … modern ones control brushless motors). The PWMs
can be configured to decode pulse widths and frequencies … give this a try.

 You’re done with Lab15 and the workshop

 Lab 15: PWM

Getting Started With the Tiva C Series TM4C123G LaunchPad - PWM 15 - 19

Thanks for Attending!

 Make sure to take your LaunchPad boards,
LCDs and workbooks with you

 Please leave the TTO flash drives, meters
and other instructor supplied hardware here

 Please fill out the email survey when it
arrives

 Have safe trip home!

Presented by

Texas Instruments
Technical Training Organization

www.ti.com/training

www.ti.com

108 WILD BASIN ROAD, SUITE 350

AUSTIN TX, 78746

TIVA MICROCONTROLLERS

TEXAS INSTRUMENTS

0.3

EK-TM4C123GXL

Tiva TM4C123G LaunchPad

Microcontroller, USB, Expansion, Buttons and LED

DGT

2/20/2013

EK-TM4C123GXL Rev A.sch

OF

1

3

SHEET

PART NO.

DATE

REVISION

DESIGNER

FILENAME

DESCRIPTION

PROJECT

R

J1 and J2 provide compatability with

Booster Packs designed for MSP430 Launchpad

J3 and J4 sit 100 mils inside J1 and J2 to provide

extended functions specific to this board.

See the board user manual for complete table of pin mux functions

1

V
B

2

D
-

3

D
+

4

ID

5

G

6

8

9

7

J9

CON-USB-MICROAB

1

2

3

4

5

6

7

8

9

10

J1

CON_110_100

1

2

3

4

5

6

7

8

9

10

J2

CON_110_100

SW1

SW2

R8

330

1

2

3

4

5

6

7

8

9

10

J3

CON_110_100

1

2

3

4

5

6

7

8

9

10

J4

CON_110_100

1

PB6

4

PB7

5

PF4

6

PE3

7

PE2

8

PE1

9

PE0

10

PD7

13

PC7

14

PC6

15

PC5

16

PC4

17

PA0

18

PA1

19

PA2

20

PA3

21

PA4

22

PA5

23

PA6

24

PA7

28

PF0

29

PF1

30

PF2

31

PF3

43

PD4

44

PD5

45

PB0

46

PB1

47

PB2

48

PB3

49

PC3

50

PC2

51

PC1

52

PC0

53

PD6

58

PB4

57

PB5

59

PE4

60

PE5

61

PD0

62

PD1

63

PD2

64

PD3

U1-A

TM4C123G

1

A

2

R

3

G

4

B

D1

RGB_LED_0404_COMA

R9

0

R10

0

R1

0

R2

0

R11

0

R12

0

R13

0

R14

0

R4

330

B

E

C

Q2

DTC114EET1G

R3

330

B

E

C

Q1

DTC114EET1G

R5

330

B

E

C

Q3

DTC114EET1G

R25

0

R29

0

USB_DM

USB_DP

DEBUG/VCOM

GPIO

GPIO

PA2

PA3

PA4

PA5

PA6

PA7

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PC4

PC5

PC6

PC7

PD0

PD1

PD2

PD3

PD6

PD7

PE0

PE1

PE2

PE3

PE4

PE5

PA0/U0RX_VCP_TXD

PA1/U0TX_VCP_RXD

DEBUG_PC0/TCK/SWCLK

DEBUG_PC1/TMS/SWDIO

DEBUG_PC2/TDI

DEBUG_PC3/TDO/SWO

USB_DM

USB_DP

USR_SW2

USR_SW1

GPIO

PB0

PB1

PB4

PB7

PB6

+3.3V

USR_SW2

USR_SW1

+USB_VBUS

WAKE

PB6

PB7

TARGETRST

PF4

PF3

PF2

PF1

PF0

PF4

PD7

+VBUS

PF2

PF3

PB2

+VBUS

LED_B

PB5

PE4

PE5

PA6

PA2

PA3

PA4

PF0

PE0

PF1

PB3

PC4

PC5

PC6

PC7

PD6

PA5

PA7

PD0

PD1

PD2

PD3

PE1

PE2

PE3

PD0

PD1

LED_G

LED_R

LED_R

LED_B

LED_G

PB1

PB0

TIVA MICROCONTROLLERS

www.ti.com

EK-TM4C123GXL

Tiva Launchpad

0.3

Power Management

DGT

AUSTIN TX, 78746

108 WILD BASIN ROAD, SUITE 350

TEXAS INSTRUMENTS

2/20/2013

EK-TM4C123GXL Rev A.sch

OF

2

3

SHEET

PART NO.

DATE

REVISION

DESIGNER

FILENAME

DESCRIPTION

PROJECT

R

+3.3V 400mA Regulator

Power Select

RESET

H24 and H25 installed as a single 1x2

header on 100 mil center with jumper

OMIT this SVS Section for Tiva. Errata Fixed

8

IN

5

EN

1

OUT

3

NR

4

GND

9

PAD

U8

TPS73633DRB

C18

0.01uF

D
4

G
re

e
n

R
2

7

3
3

0

C3

0.01uF

C4

0.1uF

C5

0.01uF

C6

0.1uF

C8

0.01uF

C10

0.1uF

C11

0.1uF

R
3

1

1
M

H
1

C31

10pF

C32

10pF

Y2

16MHz

C
2

9

2
4

p
F

C
2

8

2
4

p
F

R28

10k

RESET

C13

0.1uF

OMIT

H
2

C22

2.2uF

H17

H18

H19

H20

H21

2

VDDA

3

GNDA

11

VDD

12

GND

25

VDDC

26

VDD

27

GND

32

WAKE

33

HIB

34

XOSC0

35

GNDX

36

XOSC1

37

VBAT

38

RESET

39

GND

40

OSC0

41

OSC1

42

VDD

54

VDD

55

GND

56

VDDC

U1-B

TM4C123G

Y1

32.768Khz

1

2

3

4

5

6

SW3

H22

H23

R
2

6

0

R30

0

OMIT

H11

H12

H10

H13

H24

H25

1

A

2

A

3

K

D2

R17

10k

1

GND

2

RESET

3

VDD

U4

TLV803

C7

1.0uF

C12

1.0uF

C14

1.0uF

+3.3V

+VBUS

WAKE

TARGETRST

+USB_VBUS

+ICDI_VBUS

+VBUS

+MCU_VDDC

+MCU_PWR

+3.3V

HIB

TARGETRST

ICDI_RST

+3.3V

+VBUS

+MCU_PWR

TIVA MICROCONTROLLERS

www.ti.com

EK-TM4C123GXL

In Circuit Debug Interface

Tiva TM4C123G LaunchPad

0.3

2/20/2013

DGT

AUSTIN TX, 78746

108 WILD BASIN ROAD, SUITE 350

TEXAS INSTRUMENTS

EK-TM4C123GXL Rev A.sch

OF

3

3

SHEET

PART NO.

DATE

REVISION

DESIGNER

FILENAME

DESCRIPTION

PROJECT

R

ICDI JTAG

In-Circuit Debug Interface (ICDI)

5

4

3

2

1

6

7

8

9

10

J5

TC2050-IDC-NL

C15

0.01uF

C17

0.1uF

C19

0.01uF

C20

0.1uF

C21

0.01uF

C23

0.1uF

C24

0.1uF

C25

10pF

C26

10pF

Y5

16MHz

R19

10k

C34

0.1uF

OMIT

R21

10k

R22

10k

C9

2.2uF

R18

10k

R23

10k

H14

1

VB

2

D-

3

D+

4

ID

5

G

6

8

9

7

J1
1

C
O

N
-U

S
B

-M
IC

R
O

B

R24

330

H
1

5

1

PB6

4

PB7

5

PF4

6

PE3

7

PE2

8

PE1

9

PE0

10

PD7

13

PC7

14

PC6

15

PC5

16

PC4

17

PA0

18

PA1

19

PA2

20

PA3

21

PA4

22

PA5

23

PA6

24

PA7

28

PF0

29

PF1

30

PF2

31

PF3

43

PD4

44

PD5

45

PB0

46

PB1

47

PB2

48

PB3

49

PC3

50

PC2

51

PC1

52

PC0

53

PD6

58

PB4

57

PB5

59

PE4

60

PE5

61

PD0

62

PD1

63

PD2

64

PD3

U2-A

TM4C123G

2

VDDA

3

GNDA

11

VDD

12

GND

25

VDDC

26

VDD

27

GND

32

WAKE

33

HIB

34

XOSC0

35

GNDX

36

XOSC1

37

VBAT

38

RESET

39

GND

40

OSC0

41

OSC1

42

VDD

54

VDD

55

GND

56

VDDC

U2-B

TM4C123G

R16

0

C1

1.0uF

C2

1.0uF

R
2

0

0

ICDI_TMS

ICDI_TCK

ICDI_TDO

ICDI_TDI

ICDI_RST

+3.3V

+3.3V

+3.3V

ICDI_TCK

ICDI_TMS

ICDI_TDI

ICDI_TDO

ICDI_RST

+3.3V

DEBUG/VCOM

PA1/U0TX_VCP_RXD

PA0/U0RX_VCP_TXD

DEBUG_PC0/TCK/SWCLK

DEBUG_PC1/TMS/SWDIO

DEBUG_PC3/TDO/SWO

DEBUG_PC2/TDI

TARGETRST

EXTDBG

DEBUG_PC3/TDO/SWO

DEBUG_PC1/TMS/SWDIO

DEBUG_PC0/TCK/SWCLK

+3.3V

+ICDI_VBUS

+MCU_PWR

	TM4C123GXL-LaunchPad-00
	Important Notice
	Revision History
	Mailing Address

	Table of Contents

	TM4C123GXL-LaunchPad-01
	Introduction
	Chapter Topics
	TI Processor Portfolio and Tiva C Series Roadmap
	Tiva™ TM4C123G Series Overview
	TM4C123GH6PM Specifics
	LaunchPad Board
	Lab1: Hardware and Software Set Up
	Objective
	Procedure
	Hardware
	Download and Install Code Composer Studio (
	Install TivaWare™ for C Series (Complete) (
	Install LM Flash Programmer (
	Download and Install Workshop Lab Files (
	Download Workshop Workbook (
	Terminal Program (
	Windows-side USB Examples (
	Download and Install GIMP (
	LaunchPad Board Schematic
	Helpful Documents and Sites
	Kit Contents
	Initial Board Set-Up
	QuickStart Application

	TM4C123GXL-LaunchPad-02
	Code Composer Studio
	Chapter Topics
	Tiva C Series Development Tools
	TI Software and Ecosystem
	Code Composer Studio Functional Overview
	Target Configuration and Emulators
	Projects and Workspaces
	Creating a New Project and Adding Files
	Portable Projects
	Path and Build Variables
	Build Configurations
	Licensing and Pricing
	Lab2: Code Composer Studio
	Objective

	Lab 2 Procedure
	Folder Structure for the Labs
	Create a New CCS Project
	Add Path and Build Variables
	Add files to your project
	Build, Load, Run
	Perspectives
	Terminate the debug session.

	VARS.INI – An Easier Way to Add Variables
	Using VARS.INI – Conclusion

	LM Flash Programmer
	Optional: Creating a bin File for the Flash Programmer

	TM4C123GXL-LaunchPad-03
	TivaWare™, Initialization and GPIO
	Chapter Topics
	TivaWare
	Clocking
	GPIO
	Lab 3: Initialization and GPIO
	Objective
	Procedure
	Create lab3 Project
	Header Files
	main() Function
	Clock Setup
	SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);
	GPIO Configuration
	The base addresses of the GPIO ports listed in the User Guide are shown below. Note that they are all within the memory map’s peripheral section shown in module 1. APB refers to the Advanced Peripheral Bus, while AHB refers to the Advanced High-Perfor...
	while() Loop
	Startup Code
	Set the Build Options
	Compile, Download and Run the Code
	Examine the Tiva C Series Pin Masking Feature

	TM4C123GXL-LaunchPad-04
	Interrupts and the Timers
	Chapter Topics
	Cortex-M4 NVIC
	Cortex-M4 Interrupt Handing and Vectors
	General Purpose Timer Module
	Lab 4: Interrupts and the Timer
	Objective
	Procedure
	Import Lab4 Project
	Header Files
	main()
	Clock Setup
	GPIO Configuration
	Timer Configuration
	Calculate Delay
	ui32Period = (SysCtlClockGet() / 10) / 2; TimerLoadSet(TIMER0_BASE, TIMER_A, ui32Period -1);
	Interrupt Enable
	Timer Enable
	while(1) Loop
	Timer Interrupt Handler
	Startup Code
	Pre-defined Name
	Compile, Download and Run The Code
	Exceptions

	TM4C123GXL-LaunchPad-05
	ADC12
	Chapter Topics
	ADC12
	Sample Sequencers
	Lab 5: ADC12
	Objective
	Procedure
	Import lab5 Project
	Header Files
	main()
	Inside the while(1) Loop
	Build and Run the Code
	Breakpoint

	Hardware averaging
	Calling APIs from ROM
	Build, Download and Run Your Code

	TM4C123GXL-LaunchPad-06
	Hibernation Module
	Chapter Topics
	Low Power Modes
	Lab 6: Low Power Modes
	Objective
	Procedure
	Import lab6
	Limitations
	Header Files
	main()
	Clock Setup
	GPIO Configuration
	Hibernate Configuration
	SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE); HibernateEnableExpClk(SysCtlClockGet()); HibernateGPIORetentionEnable(); SysCtlDelay(64000000); HibernateWakeSet(HIBERNATE_WAKE_PIN); GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_3, 0x00);
	Hibernate Request
	► Click the Save button to save your work. Your code should look something like the next page:
	Build, Download and Run the VDD3ON (no RTC) Code
	Measure the Current
	Wake Up on RTC

	TM4C123GXL-LaunchPad-07
	USB
	Chapter Topics
	USB Basics
	TM4C123GH6PM USB
	USB Hardware and Library
	Lab 7: USB
	Objective
	Procedure
	Example Code
	Import The Project
	Build, Download and Run The Code
	Digging Deeper
	Watch the Buffers

	TM4C123GXL-LaunchPad-08
	Memory
	Chapter Topics
	Internal Memory
	Flash
	EEPROM
	SRAM
	Bit-Banding
	Memory Protection Unit
	Priority Levels
	Securing Your IP
	Lab 8: Memory and the MPU
	Objective
	Procedure
	Import lab8
	Writing to Flash
	Build, Download and Run the Flash Programming Code
	Reading and Writing EEPROM
	Build, Download and Run the EEPROM Programming Code
	Further EEPROM Information
	Bit-Banding
	Memory Protection Unit (MPU)

	TM4C123GXL-LaunchPad-09
	Floating-Point Unit
	Chapter Topics
	What is Floating-Point and IEEE-754?
	Floating-Point Unit
	CMSIS DSP Library Performance
	Lab 9: FPU
	Objective
	Procedure
	Import lab9
	Browse the Code
	Build, Download and Run the Code
	Profiling the Code

	TM4C123GXL-LaunchPad-10
	BoosterPacks and grLib
	Chapter Topics
	LaunchPad Boards and BoosterPacks
	KenTec TouchSceen TFT LCD
	Graphics Library
	Lab 10: Graphics Library
	Objective
	Procedure
	Connect the KenTec Display to your LaunchPad Board
	Import Project
	Build, Download and Run the Demo
	Writing Our Own Code
	Modify pic.c
	main.c
	Pointer to the Image Array
	main()
	Displaying the Image
	Build and Run the Code
	Display Text On-Screen
	Build, Load and Test
	Drawing Shapes
	Build, Load and Test
	Widgets
	Build, Load and Test

	TM4C123GXL-LaunchPad-11
	Synchronous Serial Interface
	Chapter Topics
	Features and Block Diagram
	Interrupts and µDMA Operation
	Signal Formats
	Lab 11: SPI Bus and the Olimex LED BoosterPack
	Objective
	Procedure
	Hardware
	Faces Code
	Import Lab11
	Build and Load
	Run and Test

	TM4C123GXL-LaunchPad-12
	UART
	UART Features and Block Diagram
	Basic Operation
	UART Interrupts and FIFOs
	UART “stdio” Functions and Other Features
	Lab 12
	Objective
	Procedure
	Import Lab12
	Build, Download, and Run the UART Example Code
	Using UART Interrupts

	TM4C123GXL-LaunchPad-13
	µDMA
	Chapter Topics
	Features and Transfer Types
	Block Diagram and Channel Assignment
	Channel Configuration
	Lab 13: µDMA
	Objective
	Procedure
	Import Lab13
	Browse the Code
	Build, Download and Run the Code
	Streaming Data To and From the UART using a Ping-Pong Buffer
	Code Changes
	Browse the Code
	Build, Load and Run

	TM4C123GXL-LaunchPad-14
	Sensor Hub
	Chapter Topics
	Kit Features
	Individual Sensors
	Orientation Kinematics and the DCM Algorithm
	Air Mouse Example
	Lab 14a: Air Mouse Example
	Objective
	Procedure
	LM Flash Programmer
	Air Mouse Example

	Sensor Library
	Sensor Hub Examples
	Lab 14b: Sensor Library Usage
	Objective
	Procedure
	Import the Project
	Write the Code
	Handlers and Functions
	main()
	while(1) Loop
	startup_ccs.c
	Build and Download your Project
	Watch Expressions and Breakpoints
	Run the Code
	GUI Composer

	TM4C123GXL-LaunchPad-15
	PWM
	Chapter Topics
	Pulse Width Modulation
	TM4C123GH6PM PWM
	PWM Generator Features
	Block Diagrams
	Lab 15: PWM
	Objective
	Servo Control
	Hardware
	Software
	main()
	Controlling the Servo
	Build and Run the Code

	Z-EK-TM4C123GXL Rev A Schematic

