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Successive Overrelaxation for
Support Vector Machines

Olvi L. Mangasarian and David R. Musicant

Abstract—Successive overrelaxation (SOR) for symmetric lin- maximize the margin with respect to both the normal to the

ear complementarity problems and quadratic programs is used separating planes as well as their location using a strategy
to train a support vector machine (SVM) for discriminating from [19].

between the elements of two massive datasets, each with millions In Secti I tat discriminati bl |
of points. Because SOR handles one point at a time, similar to Nl SECHON i, We Stale DUraISCrimInation Probiem as a clas=

Platt's sequential minimal optimization (SMO) algorithm which ~ Sical support vector machine (SVM) problem (1) and introduce
handles two constraints at a time and Joachims’ SVM#" which  our variant of the problem (4) that allows us to state its dual (6)
handles a small number of points at a time, SOR can process very ags an SOR-solvable convex quadratic program with bounds.
large datasets that need not reside in memory. The algorithm \ye show in Proposition 1.1 that both problems yield the
converges linearly to a solution. Encouraging numerical results ) " ;
are presented on datasets with up to 10 000 000 points. Such mas->ame answer under falrly broad Con.dltlo.ns..ln Section [ll, we
sive discrimination problems cannot be processed by conventional State our SOR algorithm and establish its linear convergence
linear or quadratic programming methods, and to our knowledge using a powerful result of Luo and Tseng [3, Proposition 3.5].
have not been solved by other methods. On smaller problems, |n Section IV, we give numerical results for problems with
232 was faster than SVM*** and comparable or faster than gatasets with as many as 10000000 points. Section V draws
' some conclusions and points out future directions such as
Index Terms—Massive data discrimination, successive overre- parallel SOR implementations that may lead to the solution

laxation, support vector machines. of even larger problems.
A word about our notation. All vectors will be column vec-
|. INTRODUCTION tors unless transposed to a row vector by a prime superscript
CCESSIVE overrelaxation (SOR), originally developeg FOr @ vectorz in then-dimensional real spacg”, the plus
or the solution of large systems of linear equations [8], [g}nction = is defined agz); = max{0,z;}, i =1,---,n.

has been successfully applied to mathematical programm n‘qr column vectors: € R" andy € R™, [z;y] denotes a
problems [[1], [2], [10]-[13], some with as many 9.4 millioncolumn vector |!1R"+"’. The sqalar (inner) product.of two
variables [14]. By taking the dual of the quadratic progratectorsz andy in the n-dimensional real spac&™ will be
associated with a support vector machine [4], [5] for whicAeénoted by:"y. For anm x n matrix A, A; will denote theith

the margin (distance between bounding separating planes) ¥ of A andA.; will denote thejth column ofA. The identity
been maximized with respect lwth the normal to the planes matrix in a real space of arbitrary dlmenS|or) will bg denqted
as well as their location, we obtain a very simple conve@é’ 1, while a column vector of ones of arbitrary dimension
quadratic program with bound constraimsly. This problem Wil be denoted bye.

is equivalent to a symmetric mixed linear complementarity

problem (i.e., with upper and lower bounds on its variables ||. THE SUPPORTVECTOR MACHINE AND ITS VARIANT

[15]) to which SOR can be directly applied. This corresponds

: : We consider the problem of discriminating between
to solving the SVM dual convex quadratic program for one . " . . : ”
. . ) . L oints in then-dimensional real spac&"”, represented by the
variable at a time, that is computing one multiplier of

potential support vector at a time m X n matrix A, according to membership of each poih

. . in the classes 1 o1 as specified by a givem x m diagonal
We note that in the Kernel Adatron Algorithm [16], [17]’matrixD with ones or minus ones along its diagonal. For this

Erlgsset al. propose a similar algontlhm which updates T“‘*!" roblem the standard SVM with a linear kernéH’ [4], [5]
tipliers of support vectors one at a time. They also maximi e given by the following for some > 0:
the margin with respect to both the normal to the separating . ) L '
planes as well as their location (bias). However, because they L{)H;I}J vey+ 5 ww

minimize the 2-norm of the constraint violatignof (1) and

we minimize the 1-norm of;, our dual variables are bounded St DlAw—en)+yzc

above in (6) whereas theirs are not. Bogg¢ral. [18] also u=0. (1)
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separable angl = 0. If the classes are linearly inseparable thefollowing linear system has a solutich
the two planes bound thg two classes with a “spft margin” ADv=0 dDv=% v3>0 8)
determined by a slack variablee R™, y > 0, that is
w—y 4y > +1, forz=A;andD;; = +1
dw—vy—y; < -1, forx=A;andD; =—1. (3)
The one-norm of the slack variablg is minimized with
weight  in (1). The quadratic term in (1), which is twice

such that

do(dg—1) <7 (9)
We note immediately that condition (9) is automatically satis-
fied if ¢’y < 1. We skip the straightforward proof of this propo-
the reciprocal of the square of the 2-norm distaggtuw|» sition Which_consists of writing the Karush—Kuhn-Tucker
between the two planes of (2) in thedimensional space of (KKT) conditions [20] for the two problems (1) and (4) and
w € R for afixed~, maximizes that distance. In our approacfoWing that if (w,7,9,4) is a KKT point for (4), then
here, which is similar to that of [18], [16], [17], we measuré®:7: ¥ (& + 0)) is @ KKT point for (1) with - replaced by

the distance between the planes in the+ 1)-dimensional » T e'v. o _
space of[w;y] € R™! which is 2/||[w;~]||2. Thus using Ve turn now to the principal computational aspect of the

twice its reciprocal squared instead, yields our variant of ti&Per.

SVM problem as follows:
I1l. SuCCESSIVE OVERRELAXATION

,}Unwi% ve'y + 5 w'w+ %) FOR SUPPORT VECTOR MACHINES
st. D(Aw—ey)+y>e The main reason for introducing our variant (4) of the SVM
y>0 (4) is that its dual (6) does not contain an equality constraint

) ) as does the dual (5) of (1). This enables us to apply in a
The Wolfe duals [20, Section 8.2] to the quadratic programgraightforward manner the effective matrix splitting methods

(1) and (4) are as follows: such as those of [1]-[3] that process one constraint of (4)
max —1 ' DAA Du + ¢'u at a time through its dual variable, without the complication
u of having to enforce an equality constraint at each step on
s.t.d'Du =0, 0<u<vre the dual variable:. This permits us to process massive data
(w = A'Du). (5) without bringing it all into fast memory.
If we define

max —1 W DAA' Dy — 5 v'Dec’ Du+ ¢'u / /
st 0<u<ve ) hH:D[A ‘IC]’ L;EELX:HH _ (1?])
, / where the nonzero elements € R™*™ constitute the

(w=A'Du,y = ~c'Du,y = (e — D(Aw —¢7))4). (6) strictly lower triangular part of the symmetric mat#kH’, and
We note immediately that the variablés, v, %) of the primal the nonzero elements df € R™*™ constitute the diagonal
problem (4) can be directly computed from the solutioof its of HH’, then the dual problem (6) becomes the following
dual (6) as indicated. Howeveonly w of the primal problem minimization problem after its objective function has been
(1) variables can be directly computed from the solutioaf replaced by its negative:
its dual (5) as indicated. The remaining variablesy) of (1) 1nin L |H'w||? = ¢'u, stueS={u|0<u<ve}. (11)
can be computed by setting = A’ Du in (1), wherew isa " o o » ]
solution of its dual (5), and solving the resulting linear prograf Necessary and sufficient optimality condition for (11) is the
for (v, ). Alternatively, v can be determined by minimizingfouow'ng gradient projection optimality condition [22], [3]:

the expression for'y = ¢/(e— D(Aw—ev))4 as a function of w=(u—wE YHHu—e))y, w>0 (12)
the single variabley afterw has been expressed as a functioyhere (-),, denotes the 2-norm projection on the feasible
of the dual solutiorn. as indicated in (5), that is region S of (11), that is
Iréilr% é(e — D(AA' Dy — ev))4). (7) 0if u; <0
5 . .
. i = JIF0<u; < , 1=1---,m. 13
We note that the formulation (6) can be extended to a general ((w)4) Zif w ;:/ Y ' m. (13)

nonlinear kernelK (A, A") by replacingAA’ by the kernel

K(A, A’) and the SOR approach can similarly be extended : ) o :
a general nonlinear kernel. This is fully described in [21]. converges linearly to a point satisfying (12), consists of

L ) L X

It is interesting to note that very frequently the standar?f“ttmg the matrix # H" into the sum of two matrices as
. . llows:

SVM problem (1) and our variant (4) give the sanmre For ) o ) - .

1,000 randomly generated such problems withe R0%3 HH =w "E(B+ (), s.t. B— Cis positive definite. (14)

and the same, only 34 cases had solution vectossthat For our specific problem we take

differed by more than 0.00.1 in 'Fheir 2-nprm. In fagt. weean  p_(r4wEL), C=(w-1)I+wEL),

state the following result which gives sufficient conditions that 0<w<? (15)

ensure that every solution of (4) is also a solution of (1) for T .

a possibly largen. This leads to the following linearly convergent [3, (3.14)]
Proposition 11.1: Each solutior(«#, 7, ) of (4) is a solution Matrix spl,ttlng aIgonthm: ‘ ‘

of (1) for a possibly larger value of in (1) whenever the ut = (' - Byt — Cu' +wE T e)y (16)

%ur SOR method, which is a matrix splitting method that
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for which through all the data points. Since we assume that data points
B+C=wE ‘HH' generally reside on disk and are expensive to retrieve, we
B-C=(2-wl+wEL-L). (17) retain in memory all support vectors, that is, constraints of (4)

corresponding to nonzero componentsufWe only utilize
Note that for0 <w < 2, the matrixB+C'is positive semidefi- these support vectors for subsequent evaluations, until we can
nite and matrix — C' is positive definite. The matrix splitting o longer make progress in improving the objective. We then
algorithm (_16) results in the following eas_ily irr_lplementabI%|O another sweep through all data points. This large sweep
SOR algorithm once the values &f andC' given in (15) aré y,5gh all data points typically results in larger jumps in
substituted in (16). , objective values than sweeping through the support vectors
_Algonth[)n ”"17; SOR Algci)nthm Cho?ffw € (0.2). Start 50 “though it takes significantly longer. Moving back and
with any «” € R™. Having«* computeu’™ as follows: forth between all data points and support vectors works quite
wtt = (v —wETN(HHW — e+ L(u'™ —u?))),  (18) well, as indicated by Platt’s results on the SMO algorithm [6].
until ||« — /|| is less than some prescribed tolerance. Another large gain .in performance is thained by sorting
Remark I1l.2: The components ofu*! are computed the support vectors in memory by their values_ before
in order of increasing component index. Thus th&Weeping through them to apply the SOR algorithm. Inter-

SOR iteration (18) consists of computingj*l using estingly_ enough,_ _sorting in either ascending or (jescending
(UT’I,---,u;»ﬂ,uj»,---,uin). That is, the latest Computedorder gives S|gn|f|cant_|mprovement over no sorting at a_II.
components ofy are used in the computation ef*!. The The experiments described below were all implemented using
strictly lower triangular matrixZL in (18) can be t]r10ﬁght of sort?ng in descendiqg order vyhen sweeping through all con-
as a substitution o bstitutifgi+* i1y £ straints, and sorting in ascending order when sweeping through
perator, substitutigg;™",---,«";) for . i )
(o i_). Thus, SOR can be interpreted asj using ea%ft the support vectors. This combination yielded the best
ui7"'7uj—1' s

t value of i diately after it i ted rformance on the University of California at Irvine (UCI)
new component value of immediately after it is computed, » | v jataset [23].

thereby achley|ng improvement over other iterative methodsA” calculations were coded to consider three types of data
such as gradient methods where all components: adre . . :
structures: nonsparse, sparse, and binary. The calculations

updated at once. o .
. . .. were all optimized to take advantage of the particular structure
We have immediately from [3, Proposition 3.5] the follow- P g P

ing linear convergence result of the input data.
. ' . Finally, the SOR algorithm requires that parameter
Theorem II1.3: SOR Linear Convergence The iterates y 9 9 P =

{u'} of the SOR Algorithm IIl.1 convergei-linearly to a (0,2) and v >0 be set in advance. All the experiments here

solution of w of the dual problem (6), and the objectiveUtlllze w =10 andr = 0.05 The.-se values showed good
function values{ f(ui)} of (6) convergeQ-linearly to f(z). performance on the Adult dataset; some of the experimental

That is fori > i for somei results presented here could conceivably be improved further
‘L = ‘ ' by experimenting more with these parameters. Additional
||lu" — 7l <pé’, for somep>0,6 € (0,1) experimentation may lead to other valueswfand » that

f' ™Y = f@) <7(f(u') — f(@)), forsomer € (0,1). achieve faster convergence.

(19) B. Experimental Methodology

R_emark ”I'4f: ivefn l}:lOUQh our S_Ogg?rgtlon (18) 'IIS Vt\)'”t' In order to evaluate the effectiveness of the SOR algorithm,
Fen Im termsdo the fulim x m ma_tr;}x b N |t.can I?a?'z g we conducted two types of experiments. One set of experi-
Implemented one row at a time without bringing all of the datg,o s gemonstrates the performance of the SOR algorithm in

into memory as follows foy = 1,---,m: comparison with Platt's SMO algorithm [6] and Joachims’

‘ ‘ i-1 ‘ SVMlislt glgorithm [7]. We report below on results from
wt = —wENH; | > Heu™t running the SOR and SV#!* algorithms on the UCI Adult
(=1,j>1 dataset along with the published results from SMO. The
m SMO experiments are reported to have been carried out on
+ZH”‘2 -1 . (20) a 266 MHz Pentium Il processor running Windows NT 4,
= using Microsoft's Visual G-+ 5.0 compiler. We have run our

. . . . " chparabIe SOR experiments on a 200 MHz Pentium Pro
A simple interpretation of this step is that one component ¢ . . .
- . . o . processor with 64 megabytes of RAM, also running Windows
the multiplieru; is updated at a time by bringing one constrai ) Mgkt .
of (4) at a time T 4 and Visual G-+ 5.0. We ran our SV experiments
' on the same hardware, but under the Solaris 5.6 operating
system using the code available from Joachims’ web site [24].
The other set of experiments is directed toward evaluating
i i the efficacy of SOR on much larger datasets. These exper-
A. Implementation Details iments were conducted under Solaris 5.6, using the GNU
We implemented the SOR algorithm in+G-, utilizing EGCS 1.0.3 G+ compiler, and run on the University of
some heuristics to speed up convergence. After initializinfisconsin Computer Sciences Department Ironsides cluster.
the u variables to zero, the first iteration consists of a swedphis cluster of four Sun Enterprise E6000 machines consists

IV. NUMERICAL TESTING
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of 16 UltraSPARC Il 248 MHz processors and 2 Gb of RAM TABLE |

on each node, resulting in a total of 64 processors and 8 Gb EFFECT OF DATASET SEPARABILITY ON SOR
PERFORMANCE ON A 50 000-RINT DATASET IN R*

of RAM.

We first look at the effect of varying dggrees of separability True Soparability | CPU Minutes to: T
on the performance of the SOR algorithm for a dataset of 95% Separability | 95% Separability
50000 data points. We do this by varying the fraction of Final Convergence | Final Convergence
misclassified points in our generated data, and measure the 80.0% 303.0 301,500
corresponding performance of SOR. A tuning set of 0.1% is 498.4 559,898
held out so that generalization can be measured as well. We 85.0% 83.3 76,000
use this tuning set to determine when the SOR algorithm has 334.6 145,213
achieved 95% of the true separability of the dataset. 90.0% 51.9 63,000

For the SMO experiments, the datasets are small enough 260.9 443,868
in size so that the entire dataset can be stored in memory. 95.0% 39.2 62,500
These differ significantly from larger datasets, however, which 230.6 351,268

o . . . 98.5% 15.2 24,500
must be maintained on disk. A disk-based dataset results in 1783 998788
significantly larger convergence times, due to the slow speed 99.5% s 9 [;OO
of I/O access as compared to direct memory access. fihe C 127.8 12;’535

code is therefore designed to easily handle datasets stored
either in memory or on disk. Our experiments with the UCI
Adult dataset were conducted by storing all points in memory. s
For all other experiments, we kept the dataset on disk and
stored only support vectors in memory.

We next ran SOR on the same dataset of 1000000 points
in R32 which was used in evaluating the linear programming
chunking (LPC) algorithm [25]. The previous LPC work
measured how long it took the algorithm to converge to a
stable objective. We consider this here as well; we also monitor
training and tuning set accuracy. In order to do this, we remove
1% of the data (10000 data points) to serve as a tuning set.
This tuning set is not used at all in the SOR algorithm. Instead,
we use it to monitor the generalizability of the separating plane
which we produce. We chose 1% in order to balance the fact s}
that we want the tuning set to be a significant fraction of the o . .

L H
80 85 90 95 98.599.5

training set, yet it must be entirely stored in memory in order True Separabiy (%)

to b.e utilized efflc_lently_. - . Fig. 1. Effect of dataset separability on SOR performance on a 50 000-point
Finally, we continue in a similar fashion and evaluate th@iaset inr32: Time to convergence (top curve) and time to 95% of true

success of SOR on a dataset one order of magnitude largeparability (bottom curve) versus true training set separability.

namely consisting of 10 million points iR3?. We created the

data by generating 10000000 uniformly distributed randofiataset ink3? to 95% correctness on a 5000-point tuning set.

nonsparse data points, and a random separating hyperpkaRe note that it takes about four times as long for SOR to

to split the data into two distinct classes. In order to maksbnverge for a training set that is 80% separable as it does for

the data not linearly separable, we intentionally mislabeledaaset that is 99.5% separable. These results are also depicted

fraction of the points on each side of the plane in order ia Fig. 1. We note that there are many real world datasets that

obtain a training set with a minimum prescribed separabilisre 95-99% separable [26], [23].

of the data. Table Il illustrates running times, numbers of support vec-
We note that a problem of this magnitude might be solvabiers, and iterations for the SOR, SMO, and S¥W algo-

by using a sample of the data. Preliminary experiments haxghms using the UCI Adult dataset. Testing set accuracies

shown that sampling may be less effective on datasets whigfe also included for SOR and SV . We quote the SMO

are less separable. A proper experiment on the effect mimbers from [6], and adopt the similar convention of showing

sampling would require running SOR to convergence dsbth bound-constrained support vectors (those whgre=

various subsets of a massive dataset, and comparing igstand nonbound-constrained support vectors (those where

set accuracies. While we have not carried out this time-<u,; < 1). Note that the “iterations” column takes on very

intensive procedure, we are considering further directiogfferent meanings for the three algorithms. The SMO work

N w © & &
G <3 & 2 I
S = 3 S 3
T T T

N

S

S
T

Time to 95% of true separability (minutes)

using sampling (see Conclusion). defines an iteration as a single optimization process taking
i place between two data points. SVt defines an iteration
C. Experimental Results as solving an optimization problem over a a small number of

Table | shows the effect of training set separability on theonstraints. For SOR we define an iteration to be a complete
speed of convergence of the SOR algorithm on a 50 000-poswteep through the data. By “data” we mean either all the data
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TABLE 1l N SOR and SMO comparision on the Adult dataset
SOR, SMO [6],aND SVMlisht [7] 180 T : y " T "
COMPARISONS ON THEADULT DATASET IN R'23 - Tgm gMo P
Training | CPU Non-Bound | Bound | Iter Test Set 140} ,’/ 1
Set Size Sec SVs SVs Accuracy //}
SOR SOR SOR | SOR SOR T / ]
SMO SMO SMO | SMO | SMO § ol ’ ]
SVM! SVM! svm! | svm SVM! S
1605 0.3 49 635 924 84.06 E .l ]
0.4 42 633 3230 sl 1
5.4 44 634 292 84.25
2265 1.2 51 930 1142 84.24 “r & 1
0.9 47 930 4635 ol i 1
10.8 49 929 383 84.43 }/
3185 1.4 52 1221 962 84.23 % M‘?ﬁou 10000 15000 20_:100 pr 30000 35000
1.8 57 1210 | 6950 Training set size
21.0 62 1208 732 84.40 Fig. 2. SOR and SMO comparison on the Adult dataseRiA>.
4781 1.6 65 1794 1819 84.28
3.6 63 1791 9847 TABLE I
13.2 67 1788 865 84.47 SORAND LPC [25] ComPARISON ON THE1 000 000 RINT DATASET IN 1232
6414 4.1 64 2379 1799 84.30
55 61 23701 10669 Training Set Size | CPU hrs | CPU hrs to 99.7% Accuracy
87.6 63 2370 956 84.43 SOR SOR
11221 18.8 81 4085 2642 84.37
17.0 79 4079 17128 LPC LPC
306.6 85 4078 1625 84.68 1,000,000 9.7 0.3
16101 24.8 86 5852 2995 84.62 231.1 —
35.3 67 5854 22770
667.2 77 5849 2234 84.83
22697 31.3 103 8209 6061 85.06 TABLE IV
85.7 88 8209 35892 SOR APPLIED TO 10 000 000 BINT DATASET IN R32
1425.6 109 8199 3960 85.17
39561 83.9 201 11550 4702 84.96 | Training Set Size | Time to 95% separability l Iterations l
163.6 149 11558 | 44774 [ 10,000,000 | 14.3 hours | 10,000 ]
2184.0 166 11554 5075 85.05

we required that at least omgevalue change by more than 19
points on disk, or all the support vectors in memory, dependiig order to proceed with another iteration. Furthermore (as in
on the type of iteration. We observe that although we r&MO), an attempt at updating a dual variable is made only if
our experiments on a&lower processor, the larger datasetshe associated primal constraint violates the KKT conditions
converged almost twice as fast under SOR as they did unégr more than a particular tolerance (also#p In order to
SMO. These results are seen in Fig. 2. Finally, we see thagrify the quality of the solution that we obtained, we looked
SOR converged much more quickly than SY8% while still  at training set and tuning set accuracy as described above. Both
producing similar test set accuracies. training set and tuning set accuracy achieved levels of 99.7%

We note the underlying optimization problems (1) and (4fter 18 min. Though the algorithm continued to run for many
for SMO and SOR, respectively, are both strictly convex ihours, no further improvement in training and tuning accuracy
the variablew. Hence this variable, which determines thavas seen. We note that LPC did not review training or tuning
orientation of the separating planes, is unique in both tiset accuracy, and could possibly use a similar criterion for
SMO and SOR solutions. However these solutions may Bérly stopping. These results are summarized in Table IIl.
different unless conditions of Proposition I1.1 hold. Even when Finally, Table IV shows SOR performance on a 99.9% lin-
the solution to these two problems are the same theoreticarly separable dataset of 10000 000 data points. After 14.3 h,
different implementation details of the two different algorithm85% of the true separability of the dataset was achieved.
can lead to different approximate solutions. Similar comments
apply when comparing SOR with S\At. V. CONCLUSION

The SOR algorithm performed quite well on the 1000000 We have proposed a versatile iterative method, successive
point dataset of [25]. Previous experiments with the LPGverrelaxation, for the solution of extremely large discrimi-
algorithm converged to a solution in 231.3 h [25]. SORation problems using support vector machines. The method
converged in only 9.7 h. This vast improvement may beonverges considerably faster than other methods that require
partially due to the fact that we used a less stringent criteritime presence of a substantial amount of the data in memory.
for convergence in the SOR algorithm than in LPC; like SMOMe have solved problems that cannot be directly handled
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by conventional methods of mathematical programming. The Learning Theory D. Haussler, Ed. Pittsburgh, PA: ACM Press, July
proposed method scales up with no changes and can be e Tgy 1992, pp. 144-152.

. . . . V. N. Vapnik, Estimation of Dependences Based on Empirical Data.
parallelized by using techniques already implemented [27]," New York: Springer-Verlag, 1982.

[14]. Future work includes multicategory discrimination andk0]
nonlinear discrimination via kernel methods and successive
overrelaxation. We also plan to use SOR in conjunction witfz1)
sampling methods to choose appropriate sample sizes.
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