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Successive Overrelaxation for
Support Vector Machines

Olvi L. Mangasarian and David R. Musicant

Abstract—Successive overrelaxation (SOR) for symmetric lin-
ear complementarity problems and quadratic programs is used
to train a support vector machine (SVM) for discriminating
between the elements of two massive datasets, each with millions
of points. Because SOR handles one point at a time, similar to
Platt’s sequential minimal optimization (SMO) algorithm which
handles two constraints at a time and Joachims’ SVMlight which
handles a small number of points at a time, SOR can process very
large datasets that need not reside in memory. The algorithm
converges linearly to a solution. Encouraging numerical results
are presented on datasets with up to 10 000 000 points. Such mas-
sive discrimination problems cannot be processed by conventional
linear or quadratic programming methods, and to our knowledge
have not been solved by other methods. On smaller problems,
SOR was faster than SVMlight and comparable or faster than
SMO.

Index Terms—Massive data discrimination, successive overre-
laxation, support vector machines.

I. INTRODUCTION

SUCCESSIVE overrelaxation (SOR), originally developed
for the solution of large systems of linear equations [8], [9]

has been successfully applied to mathematical programming
problems [[1], [2], [10]–[13], some with as many 9.4 million
variables [14]. By taking the dual of the quadratic program
associated with a support vector machine [4], [5] for which
the margin (distance between bounding separating planes) has
been maximized with respect toboth the normal to the planes
as well as their location, we obtain a very simple convex
quadratic program with bound constraintsonly. This problem
is equivalent to a symmetric mixed linear complementarity
problem (i.e., with upper and lower bounds on its variables
[15]) to which SOR can be directly applied. This corresponds
to solving the SVM dual convex quadratic program for one
variable at a time, that is computing one multiplier of a
potential support vector at a time.

We note that in the Kernel Adatron Algorithm [16], [17],
Friesset al. propose a similar algorithm which updates mul-
tipliers of support vectors one at a time. They also maximize
the margin with respect to both the normal to the separating
planes as well as their location (bias). However, because they
minimize the 2-norm of the constraint violationof (1) and
we minimize the 1-norm of our dual variables are bounded
above in (6) whereas theirs are not. Boseret al. [18] also
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maximize the margin with respect to both the normal to the
separating planes as well as their location using a strategy
from [19].

In Section II, we state our discrimination problem as a clas-
sical support vector machine (SVM) problem (1) and introduce
our variant of the problem (4) that allows us to state its dual (6)
as an SOR-solvable convex quadratic program with bounds.
We show in Proposition II.1 that both problems yield the
same answer under fairly broad conditions. In Section III, we
state our SOR algorithm and establish its linear convergence
using a powerful result of Luo and Tseng [3, Proposition 3.5].
In Section IV, we give numerical results for problems with
datasets with as many as 10 000 000 points. Section V draws
some conclusions and points out future directions such as
parallel SOR implementations that may lead to the solution
of even larger problems.

A word about our notation. All vectors will be column vec-
tors unless transposed to a row vector by a prime superscript

For a vector in the -dimensional real space the plus
function is defined as ,
For column vectors and , denotes a
column vector in The scalar (inner) product of two
vectors and in the -dimensional real space will be
denoted by For an matrix will denote the th
row of and will denote the th column of The identity
matrix in a real space of arbitrary dimension will be denoted
by , while a column vector of ones of arbitrary dimension
will be denoted by

II. THE SUPPORTVECTOR MACHINE AND ITS VARIANT

We consider the problem of discriminating between
points in the -dimensional real space , represented by the

matrix , according to membership of each point
in the classes 1 or 1 as specified by a given diagonal
matrix with ones or minus ones along its diagonal. For this
problem the standard SVM with a linear kernel [4], [5]
is given by the following for some :

s.t.

(1)

Here is the normal to the bounding planes

(2)

The first plane above bounds the class 1 points and the second
plane bounds the class1 points, if the two classes are linearly
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separable and If the classes are linearly inseparable then
the two planes bound the two classes with a “soft margin”
determined by a slack variable , , that is

for and

for and (3)

The one-norm of the slack variable is minimized with
weight in (1). The quadratic term in (1), which is twice
the reciprocal of the square of the 2-norm distance
between the two planes of (2) in the-dimensional space of

for afixed maximizes that distance. In our approach
here, which is similar to that of [18], [16], [17], we measure
the distance between the planes in the -dimensional
space of which is Thus using
twice its reciprocal squared instead, yields our variant of the
SVM problem as follows:

s.t.

(4)

The Wolfe duals [20, Section 8.2] to the quadratic programs
(1) and (4) are as follows:

s.t.

(5)

s.t.

(6)

We note immediately that the variables of the primal
problem (4) can be directly computed from the solutionof its
dual (6) as indicated. However,only of the primal problem
(1) variables can be directly computed from the solutionof
its dual (5) as indicated. The remaining variables of (1)
can be computed by setting in (1), where is a
solution of its dual (5), and solving the resulting linear program
for Alternatively, can be determined by minimizing
the expression for as a function of
the single variable after has been expressed as a function
of the dual solution as indicated in (5), that is

(7)

We note that the formulation (6) can be extended to a general
nonlinear kernel by replacing by the kernel

and the SOR approach can similarly be extended to
a general nonlinear kernel. This is fully described in [21].

It is interesting to note that very frequently the standard
SVM problem (1) and our variant (4) give the same For
1,000 randomly generated such problems with
and the same only 34 cases had solution vectors that
differed by more than 0.001 in their 2-norm. In fact we can
state the following result which gives sufficient conditions that
ensure that every solution of (4) is also a solution of (1) for
a possibly larger

Proposition II.1: Each solution of (4) is a solution
of (1) for a possibly larger value of in (1) whenever the

following linear system has a solution:

(8)

such that

(9)

We note immediately that condition (9) is automatically satis-
fied if We skip the straightforward proof of this propo-
sition which consists of writing the Karush–Kuhn–Tucker
(KKT) conditions [20] for the two problems (1) and (4) and
showing that if is a KKT point for (4), then

is a KKT point for (1) with replaced by

We turn now to the principal computational aspect of the
paper.

III. SUCCESSIVE OVERRELAXATION

FOR SUPPORT VECTOR MACHINES

The main reason for introducing our variant (4) of the SVM
is that its dual (6) does not contain an equality constraint
as does the dual (5) of (1). This enables us to apply in a
straightforward manner the effective matrix splitting methods
such as those of [1]–[3] that process one constraint of (4)
at a time through its dual variable, without the complication
of having to enforce an equality constraint at each step on
the dual variable This permits us to process massive data
without bringing it all into fast memory.

If we define

(10)

where the nonzero elements of constitute the
strictly lower triangular part of the symmetric matrix , and
the nonzero elements of constitute the diagonal
of then the dual problem (6) becomes the following
minimization problem after its objective function has been
replaced by its negative:

s.t. (11)

A necessary and sufficient optimality condition for (11) is the
following gradient projection optimality condition [22], [3]:

(12)

where denotes the 2-norm projection on the feasible
region of (11), that is

if
if

if
(13)

Our SOR method, which is a matrix splitting method that
converges linearly to a point satisfying (12), consists of
splitting the matrix into the sum of two matrices as
follows:

s.t. is positive definite. (14)

For our specific problem we take

(15)

This leads to the following linearly convergent [3, (3.14)]
matrix splitting algorithm:

(16)
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for which

(17)

Note that for the matrix is positive semidefi-
nite and matrix is positive definite. The matrix splitting
algorithm (16) results in the following easily implementable
SOR algorithm once the values of and given in (15) are
substituted in (16).

Algorithm III.1: SOR Algorithm Choose (0,2). Start
with any Having compute as follows:

(18)

until is less than some prescribed tolerance.
Remark III.2: The components of are computed

in order of increasing component index. Thus the
SOR iteration (18) consists of computing using

That is, the latest computed
components of are used in the computation of The
strictly lower triangular matrix in (18) can be thought of
as a substitution operator, substituting for

Thus, SOR can be interpreted as using each
new component value of immediately after it is computed,
thereby achieving improvement over other iterative methods
such as gradient methods where all components ofare
updated at once.

We have immediately from [3, Proposition 3.5] the follow-
ing linear convergence result.

Theorem III.3: SOR Linear Convergence The iterates
of the SOR Algorithm III.1 converge -linearly to a

solution of of the dual problem (6), and the objective
function values of (6) converge -linearly to
That is for for some

for some

for some

(19)

Remark III.4: Even though our SOR iteration (18) is writ-
ten in terms of the full matrix , it can easily be
implemented one row at a time without bringing all of the data
into memory as follows for :

(20)

A simple interpretation of this step is that one component of
the multiplier is updated at a time by bringing one constraint
of (4) at a time.

IV. NUMERICAL TESTING

A. Implementation Details

We implemented the SOR algorithm in C , utilizing
some heuristics to speed up convergence. After initializing
the variables to zero, the first iteration consists of a sweep

through all the data points. Since we assume that data points
generally reside on disk and are expensive to retrieve, we
retain in memory all support vectors, that is, constraints of (4)
corresponding to nonzero components ofWe only utilize
these support vectors for subsequent evaluations, until we can
no longer make progress in improving the objective. We then
do another sweep through all data points. This large sweep
through all data points typically results in larger jumps in
objective values than sweeping through the support vectors
only, though it takes significantly longer. Moving back and
forth between all data points and support vectors works quite
well, as indicated by Platt’s results on the SMO algorithm [6].

Another large gain in performance is obtained by sorting
the support vectors in memory by their values before
sweeping through them to apply the SOR algorithm. Inter-
estingly enough, sorting in either ascending or descending
order gives significant improvement over no sorting at all.
The experiments described below were all implemented using
sorting in descending order when sweeping through all con-
straints, and sorting in ascending order when sweeping through
just the support vectors. This combination yielded the best
performance on the University of California at Irvine (UCI)
Adult dataset [23].

All calculations were coded to consider three types of data
structures: nonsparse, sparse, and binary. The calculations
were all optimized to take advantage of the particular structure
of the input data.

Finally, the SOR algorithm requires that parameters
and be set in advance. All the experiments here

utilize and These values showed good
performance on the Adult dataset; some of the experimental
results presented here could conceivably be improved further
by experimenting more with these parameters. Additional
experimentation may lead to other values ofand that
achieve faster convergence.

B. Experimental Methodology

In order to evaluate the effectiveness of the SOR algorithm,
we conducted two types of experiments. One set of experi-
ments demonstrates the performance of the SOR algorithm in
comparison with Platt’s SMO algorithm [6] and Joachims’
SVM algorithm [7]. We report below on results from
running the SOR and SVM algorithms on the UCI Adult
dataset along with the published results from SMO. The
SMO experiments are reported to have been carried out on
a 266 MHz Pentium II processor running Windows NT 4,
using Microsoft’s Visual C 5.0 compiler. We have run our
comparable SOR experiments on a 200 MHz Pentium Pro
processor with 64 megabytes of RAM, also running Windows
NT 4 and Visual C 5.0. We ran our SVM experiments
on the same hardware, but under the Solaris 5.6 operating
system using the code available from Joachims’ web site [24].

The other set of experiments is directed toward evaluating
the efficacy of SOR on much larger datasets. These exper-
iments were conducted under Solaris 5.6, using the GNU
EGCS 1.0.3 C compiler, and run on the University of
Wisconsin Computer Sciences Department Ironsides cluster.
This cluster of four Sun Enterprise E6000 machines consists
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of 16 UltraSPARC II 248 MHz processors and 2 Gb of RAM
on each node, resulting in a total of 64 processors and 8 Gb
of RAM.

We first look at the effect of varying degrees of separability
on the performance of the SOR algorithm for a dataset of
50 000 data points. We do this by varying the fraction of
misclassified points in our generated data, and measure the
corresponding performance of SOR. A tuning set of 0.1% is
held out so that generalization can be measured as well. We
use this tuning set to determine when the SOR algorithm has
achieved 95% of the true separability of the dataset.

For the SMO experiments, the datasets are small enough
in size so that the entire dataset can be stored in memory.
These differ significantly from larger datasets, however, which
must be maintained on disk. A disk-based dataset results in
significantly larger convergence times, due to the slow speed
of I/O access as compared to direct memory access. The C
code is therefore designed to easily handle datasets stored
either in memory or on disk. Our experiments with the UCI
Adult dataset were conducted by storing all points in memory.
For all other experiments, we kept the dataset on disk and
stored only support vectors in memory.

We next ran SOR on the same dataset of 1 000 000 points
in which was used in evaluating the linear programming
chunking (LPC) algorithm [25]. The previous LPC work
measured how long it took the algorithm to converge to a
stable objective. We consider this here as well; we also monitor
training and tuning set accuracy. In order to do this, we remove
1% of the data (10 000 data points) to serve as a tuning set.
This tuning set is not used at all in the SOR algorithm. Instead,
we use it to monitor the generalizability of the separating plane
which we produce. We chose 1% in order to balance the fact
that we want the tuning set to be a significant fraction of the
training set, yet it must be entirely stored in memory in order
to be utilized efficiently.

Finally, we continue in a similar fashion and evaluate the
success of SOR on a dataset one order of magnitude larger,
namely consisting of 10 million points in We created the
data by generating 10 000 000 uniformly distributed random
nonsparse data points, and a random separating hyperplane
to split the data into two distinct classes. In order to make
the data not linearly separable, we intentionally mislabeled a
fraction of the points on each side of the plane in order to
obtain a training set with a minimum prescribed separability
of the data.

We note that a problem of this magnitude might be solvable
by using a sample of the data. Preliminary experiments have
shown that sampling may be less effective on datasets which
are less separable. A proper experiment on the effect of
sampling would require running SOR to convergence on
various subsets of a massive dataset, and comparing test
set accuracies. While we have not carried out this time-
intensive procedure, we are considering further directions
using sampling (see Conclusion).

C. Experimental Results

Table I shows the effect of training set separability on the
speed of convergence of the SOR algorithm on a 50 000-point

TABLE I
EFFECT OF DATASET SEPARABILITY ON SOR

PERFORMANCE ON A 50 000-POINT DATASET IN R32

Fig. 1. Effect of dataset separability on SOR performance on a 50 000-point
dataset inR32: Time to convergence (top curve) and time to 95% of true
separability (bottom curve) versus true training set separability.

dataset in to 95% correctness on a 5000-point tuning set.
We note that it takes about four times as long for SOR to
converge for a training set that is 80% separable as it does for
a set that is 99.5% separable. These results are also depicted
in Fig. 1. We note that there are many real world datasets that
are 95–99% separable [26], [23].

Table II illustrates running times, numbers of support vec-
tors, and iterations for the SOR, SMO, and SVM algo-
rithms using the UCI Adult dataset. Testing set accuracies
are also included for SOR and SVM We quote the SMO
numbers from [6], and adopt the similar convention of showing
both bound-constrained support vectors (those where
) and nonbound-constrained support vectors (those where

). Note that the “iterations” column takes on very
different meanings for the three algorithms. The SMO work
defines an iteration as a single optimization process taking
place between two data points. SVM defines an iteration
as solving an optimization problem over a a small number of
constraints. For SOR we define an iteration to be a complete
sweep through the data. By “data” we mean either all the data
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TABLE II
SOR, SMO [6],AND SVMlight [7]

COMPARISONS ON THEADULT DATASET IN R123

points on disk, or all the support vectors in memory, depending
on the type of iteration. We observe that although we ran
our experiments on aslower processor, the larger datasets
converged almost twice as fast under SOR as they did under
SMO. These results are seen in Fig. 2. Finally, we see that
SOR converged much more quickly than SVM while still
producing similar test set accuracies.

We note the underlying optimization problems (1) and (4)
for SMO and SOR, respectively, are both strictly convex in
the variable Hence this variable, which determines the
orientation of the separating planes, is unique in both the
SMO and SOR solutions. However these solutions may be
different unless conditions of Proposition II.1 hold. Even when
the solution to these two problems are the same theoretically,
different implementation details of the two different algorithms
can lead to different approximate solutions. Similar comments
apply when comparing SOR with SVM

The SOR algorithm performed quite well on the 1 000 000
point dataset of [25]. Previous experiments with the LPC
algorithm converged to a solution in 231.3 h [25]. SOR
converged in only 9.7 h. This vast improvement may be
partially due to the fact that we used a less stringent criterion
for convergence in the SOR algorithm than in LPC; like SMO,

Fig. 2. SOR and SMO comparison on the Adult dataset inR123:

TABLE III
SORAND LPC [25] COMPARISON ON THE1 000 000 POINT DATASET IN R32

TABLE IV
SOR APPLIED TO 10 000 000 POINT DATASET IN R32

we required that at least onevalue change by more than 10
in order to proceed with another iteration. Furthermore (as in
SMO), an attempt at updating a dual variable is made only if
the associated primal constraint violates the KKT conditions
by more than a particular tolerance (also 10). In order to
verify the quality of the solution that we obtained, we looked
at training set and tuning set accuracy as described above. Both
training set and tuning set accuracy achieved levels of 99.7%
after 18 min. Though the algorithm continued to run for many
hours, no further improvement in training and tuning accuracy
was seen. We note that LPC did not review training or tuning
set accuracy, and could possibly use a similar criterion for
early stopping. These results are summarized in Table III.

Finally, Table IV shows SOR performance on a 99.9% lin-
early separable dataset of 10 000 000 data points. After 14.3 h,
95% of the true separability of the dataset was achieved.

V. CONCLUSION

We have proposed a versatile iterative method, successive
overrelaxation, for the solution of extremely large discrimi-
nation problems using support vector machines. The method
converges considerably faster than other methods that require
the presence of a substantial amount of the data in memory.
We have solved problems that cannot be directly handled
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by conventional methods of mathematical programming. The
proposed method scales up with no changes and can be easily
parallelized by using techniques already implemented [27],
[14]. Future work includes multicategory discrimination and
nonlinear discrimination via kernel methods and successive
overrelaxation. We also plan to use SOR in conjunction with
sampling methods to choose appropriate sample sizes.
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