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Outline

Why take this course?

Prerequisites

Week by Week Course plan

Course Logistics

Continuous Optimization in Machine Learning

Discrete Optimization in Machine Learning
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Why take this Course?

Optimization is everywhere: Big Data and Machine Learning, Scheduling
and Planning, Operations Research, control theory, data analysis,
simulations, almost all technology we use, search engines,
computers/laptops, smart-phones, hardware/software of all kinds, ...

Mathematical Modeling:

defining and modeling the problem

Computational Optimization:

Algorithms to solve these optimization problems optimally or near
optimally.
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Why take this Course?

Machine Learning and AI are embedded in practically every spear of our
life: Google/Bing Search & Ads, Amazon product search/recommendation,
driverless cars, Google Maps, Uber/Ola matching, Google Photos,
Youtube, Facebook, Twitter, Microsoft Office, ...

With democratization of AI, software engineers can write ML
applications with a few lines of code!

Open-source libraries today offer capabilities to build products with
practically zero knowledge of ML.

However to push the boundaries of research and really solve problems,
you need to gain hands on experience in ML!

Optimization is one of the important ackbones of machine learning.
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Why take this Course?
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Why take this Course?

Optimization one of the pillers of ML!

Continuous Optimization:

Continuous Optimization often appears as relaxations of risk/error
minimization problem. The Learning problem in many parametrized
models (whether supervised, semi-supervised, unsupervised, or
reinforcement learning) involves Continuous Optimization.

Discrete Optimization:

Discrete Optimization occurs in Inference problems in structured
spaces, certain learning problems and auxilliary problems such as
Feature Selection, Data subset selection, Data summarization,
Architechture search etc.

Mixed Continuous and Discrete Optimization:

A growing number of problems including classical problems such as
clustering, feature selection, structured sparsity occur as mixed
discrete/continuous optimization problems.

Ganesh Ramakrishnan Optimization in Machine Learning January, 2021 6 / 34



6/34

Why take this Course?

Optimization one of the pillers of ML!

Continuous Optimization:

Continuous Optimization often appears as relaxations of risk/error
minimization problem. The Learning problem in many parametrized
models (whether supervised, semi-supervised, unsupervised, or
reinforcement learning) involves Continuous Optimization.

Discrete Optimization:

Discrete Optimization occurs in Inference problems in structured
spaces, certain learning problems and auxilliary problems such as
Feature Selection, Data subset selection, Data summarization,
Architechture search etc.

Mixed Continuous and Discrete Optimization:

A growing number of problems including classical problems such as
clustering, feature selection, structured sparsity occur as mixed
discrete/continuous optimization problems.

Ganesh Ramakrishnan Optimization in Machine Learning January, 2021 6 / 34



6/34

Why take this Course?

Optimization one of the pillers of ML!

Continuous Optimization:

Continuous Optimization often appears as relaxations of risk/error
minimization problem. The Learning problem in many parametrized
models (whether supervised, semi-supervised, unsupervised, or
reinforcement learning) involves Continuous Optimization.

Discrete Optimization:

Discrete Optimization occurs in Inference problems in structured
spaces, certain learning problems and auxilliary problems such as
Feature Selection, Data subset selection, Data summarization,
Architechture search etc.

Mixed Continuous and Discrete Optimization:

A growing number of problems including classical problems such as
clustering, feature selection, structured sparsity occur as mixed
discrete/continuous optimization problems.

Ganesh Ramakrishnan Optimization in Machine Learning January, 2021 6 / 34



7/34

Why take this Course?

Countless number of ML libraries available which implement all kinds
of optimization algorithms (Tensorflow, pytorch, scipy, sklearn,
Vowpal Wabbit, ...)

This course will give you the expertise to look inside these algorithms,
understand how they work, why they work and how fast they work.

Invariably in Research, you will come up with new optimization
problems which you might need to implement custom algorithms or
atleast the loss functions.

Even if you don’t implement new algorithms, you will have a better
idea of which algorithm to use in which scneario.
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Philosophy of this Course

The spirit of this course is best summarized by the quote of Thomas
Cover: Theory is only the first term of the Taylor’s series of Practice

This course will focus on mainly the algorithmic aspects of
optimization (both continuous and discrete optimization) and not so
much on the modeling.

Give a flavor of the proofs and proof techniques but will try to not
make this course heavily theoretical.

Focus extensively on implementational aspects and as a part of
assignments, we will implement many ML loss functions and
algorithms.
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Why did you enroll for this Course?

Lets hear from a few of you why you took this course...
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Prerequisites

Basic Linear Algebra: Matrices, Vectors

Basics of Machine Learning (Ideally you should have taken either an
undergraduate or graduate ML course)

Algorithms course (either in undergraduate or graduate version)
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First Half of this Course: Continuous optimization

Basics of Continuous
Optimization

Convexity

Gradient Descent

Projected/Proximal GD

Subgradient Descent

Accelerated Gradient Descent

Newton & Quasi Newton

Duality: Lagrange, Fenchel

Coordinate Descent

Frank Wolfe

Optimization in Practice
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Second Half of this Course: Discrete optimization

Linear Cost Problems

Matroids, Spanning Trees

s-t paths, s-t cuts

Matchings

Covers (Set Covers, Vertex
Covers, Edge Covers)

Optimal Transport (if time
permits)

Non-Linear Discrete Optimization

Submodular Functions

Submodularity and Convexity

Submodular Minimization

Submodular Maximization

Optimization in Practice
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Relevant Books for this Course

Convex Optimization: Algorithms and Complexity, by Sébastien
Bubeck

Convex Optimization, Stephen Boyd and Lieven Vandenberghe

Introductory Lectures on Convex Optimization, Yurii Nesterov

A Course in Combinatorial Optimization, Alexander Schrijver

Learning with Submodular Functions: A Convex Optimization
Perspective, Francis Bach

Zhang, Lipton, Li and Smola, Dive into Deep Learning
(http://d2l.ai/)

Schrijver, Alexander, Combinatorial optimization: polyhedra and
efficiency, Vol. 24. Springer Science & Business Media, 2003.

Fujishige, Satoru. Submodular functions and optimization. Vol. 58.
Elsevier, 2005.
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Continuous Optimization in Machine Learning

Continuous Optimization often appears as relaxations of empirical risk
minimization problems.

Supervised Learning: Logistic Regression, Least Squares, Support
Vector Machines, Deep Models

Unsupervised Learning: k-Means Clustering, Principal Component
Analysis

Contextual Bandits and Reinforcement Learning: Soft-Max
Estimators, Policy Exponential Models

Recommender Systems: Matrix Completion, Non-Negative Matrix
Factorization, Collaborative Filtering
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Big Picture: Types of Optimization Problems
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Logistics, Grading etc: https://www.cse.iitb.ac.in/~ganesh/cs769/

Credit/Audit Requirements Anyone who does an exceptional course
project that has the potential to be a publishable paper is eligible for
a straight AA grade. Otherwise the grading breakup would be:

20% Mid-semester exam
30% End semester exam
20% Project: A basic project will take any of the algorithms we study or any

related papers, implement the algorithms in the paper, do a basic performance

study and diagnose the performance. However, I would expect most projects to

suggest ideas for improvement (atleast in specific settings such as multi core or

multiple nodes or reasonable assumptions on matrices etc in the problem for which

greater speedup is possible). A more advanced project would take a problem

specification for which no solution is publicly available, figure out how to solve it,

and implement the solution.

10% Reading and paper presentation.
20% 2 Programming Assignments

Lectures: In Slot 2, Lectures on MS Teams (Code: 6yxnonu) and will
be recorded. All lecture recordings and slides will be organized on
moodle.
TA(s): Durga Sivasubramanian (and possibly Samrat Dutta)Ganesh Ramakrishnan Optimization in Machine Learning January, 2021 16 / 34
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Course Project Ideas

Let’s spend a few minutes discussing some ideas for course project(s)

Why not we all jointly contribute to our DECILE
https://decile.org/ python toolkit and add to it a component
OptML which implements several (discrete and continuous) loss
functions, optimization algorithms along with wrappers to machine
learning models (e.g. classification, recommender systems, regression
etc.).

Why another toolkit when there are already so many out there?

A lot of the base for this toolkit will already be covered in this course

Each group can take on a particular component of the toolkit: with
components as a) linear classification/regression, b) non-linear
classification/regression, c) recommendation and matrix factorization,
d) contextual bandits, e) submodular minimization, f) submodular
maximization g) graph algorithms and so on...

We can discuss ideas on this as the class progresses.

Ganesh Ramakrishnan Optimization in Machine Learning January, 2021 17 / 34
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Adding OptML to DECILE

The DECILE (https://decile.org/) python toolkit is being built
toward principled human-machine interaction for machine learning, has 4
important components and we can have OptML as the fifth!

1 Submodlib (in C++ with Python wrappers)
https://github.com/vishkaush/submodlib/: Submodlib is an efficient and scalable
library for submodular optimization which finds its application in summarization, data
subset selection, hyper parameter tuning etc.

2 DISTIL (https://github.com/decile-team/distil): This is a library in python for
Deep dIverSified inTeractIve Learning

3 CORDS (https://github.com/decile-team/cords): This is a library in python for
COResets and Data Subset selection

4 DOMAIN (https://github.com/oishik75/CAGE): This is a library (work-in-progress) in
python for Data prOgraMming viA rule induction through human INteraction

5 OptML can implement several continuous loss functions optimization algorithms along
with wrappers to machine learning models (e.g., classification, recommender systems,
regression etc.).
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Application 1: Supervised Learning

Data: Given training examples {(x1, y1), · · · , xn, yn} where xi ∈ Rm

is the feature vectors and yi is the label.

Applications: Several different models depending on the applications:

Email Spam Filtering: Features are words, phrases, regexps in the
email, Label is ”+1” for Spam, ”0” for Not Spam.
Handwritten Digit Recognition: Features are Images of Images, Label is
the Digit (say between ”0” to ”9”).
Housing price Prediction: Features are House properties (square
footage, # Bedrooms/Bathrooms, Location, ...) and Label is the Cost
(continuous variable).

Ganesh Ramakrishnan Optimization in Machine Learning January, 2021 19 / 34
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Supervised Learning: Modeling

Data: Given training examples {(x1, y1), · · · , (xn, yn)} where
xi ∈ Rm is the feature vectors and yi is the label.

Model: Denote the Model by Fθ(x) with θ being the parameters of
the model. Model examples: Fθ(x) = θT x as a simple linear model.
Deep Models are recursive functions:

Fθ1,θ2,··· ,θl (x) = f1(θT1 f2(· · · θTl−1fl(θ
T
l x)))

Loss Functions: The Loss Function L tries to measure the distance
between Fθ(xi ) and yi .
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Supervised Learning: Optimization Problem

”Loss plus Regularizer” Framework:

min
θ

G (θ) =
n∑

i=1

L(Fθ(xi ), yi ) + λΩ(θ)

L: Loss function, Ω: Regularizer. Example Fθ(x) = θT x

Examples of L:

Logistic Loss: log(1 + exp(−yiFθ(xi )))
Hinge Loss: max{0, 1− yiFθ(xi )}
Softmax Loss:
−Fθyi

(xi ) + log(
∑k

c=1 exp(Fθc (xi )))
Absolute Error: |Fθ(xi )− yi |
Least Squares: (Fθ(xi )− yi )

2

Examples of Ω:

L1 Regularizer:
∑m

i=1 |θ[i ]|
L2 Regularizer:

∑m
i=1 θ[i ]2
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Some Concrete Supervised Learning Instances

L1 Regularized Logistic Regression:
minθ

∑n
i=1 log(1 + exp(−yiFθ(xi ))) + λ

∑m
i=1 |θ[i ]|

L2 Regularized Logistic Regression:
minθ

∑n
i=1 log(1 + exp(−yiFθ(xi ))) + λ

∑m
i=1 θ[i ]2

L2 Regularized SVMs: minθ
∑n

i=1 max{0, 1− yiFθ(xi )}+ λ
∑m

i=1 θ[i ]2

L2 Regularized Multi-class Logistic Regression:
minθ1,··· ,θk

∑n
i=1{−Fθyi (xi ) + log(

∑k
c=1 exp(Fθc (xi )))}+∑c

i=1 λ
∑m

j=1 θi [j ]
2

L1 Regularized Least Squares (Lasso):
minθ

∑n
i=1(Fθ(xi )− yi )

2 + λ
∑m

i=1 |θ[i ]|
L2 Regularized Least Squares (Ridge):
minθ

∑n
i=1(Fθ(xi )− yi )

2 + λ
∑m

i=1 θ[i ]2
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Application 2: Clustering

This is an instance of unsupervised learning.

Data: Given unsupervised data {x1, x2, · · · , xn} where xi ∈ Rm is the
feature vectors.

Goal: Find clusters (sets) C1,C2, · · · ,Ck with each cluster consisting
of similar instances. Denote V = {1, · · · , n}. Then ∪ki=1Ci = V .

Optimization Problem: The k-means optimization problem is:

min
C1,C2,,Ck

k∑
i=1

∑
x∈Ci

|x − 1/|Ci |
∑
xj∈Ci

xj |22

This problem can actually be viewed as a joint discrete and
continuous problem.
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Application 3: Principal Component Analysis

This is an instance of unsupervised learning.

Data: Given unsupervised data {x1, x2, · · · , xn} where xi ∈ Rm is the
feature vectors.

Goal: Find compressors U ∈ Rk×m (and correspondingly
decompresses V ∈ Rm×k) such that xi is close to UVxi .

It turns out the compressor must satisfy V = UT such that UTU = I .

Optimization Problem: The PCA optimization problem is:

min
U:UTU=I

n∑
i=1

||xi − UUT xi ||22
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Application 4: Matrix Completion

Data: Given observations y1, · · · , yn, such that each yj = Aj(X )
where Aj could be a single element or a combination of elements in
X ∈ Rm×n. Consider for example X being product recommendation
matrix.

Goal: Find the simplest matrix X s.t Aj(X ) ≈ yj ,∀j ∈ 1, · · · , n
Optimization Problem: Matrix completion optimization problem is:

min
X

n∑
i=1

||yi − Aj(X )||22 + ||X ||∗

(The nuclear norm tries to ensure the Matrix X is low-rank)

Another way is to explicitly model this is by assuming X = LR where
L ∈ Rm×k and R ∈ Rk×n (and hence X is rank r), and optimize for L
and R.
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Application 5: Low Rank and Non Negative Matrix
Factorization

Goal: Find low rank matrices L,R with L ∈ Rm×k and R ∈ Rk×n s.t
Aj(LR) ≈ yj ,∀j ∈ 1, · · · , n

Optimization Problem: Matrix Factorization optimization problem is:

min
L,R

n∑
i=1

||yi − Aj(LR)||22

No need of matrix regularization.

We can also add non-negativity constraints and this becomes
non-negative Matrix Factorization:
minL,R:L≥0,R≥0

∑n
i=1 ||yi − Aj(LR)||22

Sometimes Y is fully observed and we want a non-negative low rank
factorization of Y ≈ LR. The optimization problem is:
minL,R:L≥0,R≥0

∑n
i=1 ||Y − LR||22.
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Application 6: Contextual Bandits and Learning from
Logged Data

Scenario: Learn from logged contextual bandit data. Example: We
need to show k ads to users with each ad comprising of features
(title, ad text, query etc.), and given an online policy which (with
certain randomization) picks ads to show to users and the system logs
feedback (whether the user clicks on the ad or not).

Data: We are given bandit logged data in the form of
{(x1, a1, r1, p1), · · · , (xn, an, rn, pn)}. Notation::

Assume we can take fixed number of actions 1 : k
Denote xi = {x1

1 , · · · , xk1 } as the feature vectors of the k actions
Denote ai as the chosen action by the current online policy
Denote pi as the probability of the logged action (by the current online
policy)
Denote ri as the Reward obtained by choosing action ai
Define our policy as πθ(x) = argmaxi=1:kFθ(x i ). Again the simplest
example of Fθ(x) = θT x .
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Application 6: Contextual Bandits and Learning from
Logged Data

Optimization Problem: The Inverse Propensity Estimate of the
Reward (which is an unbiased estimate of the Reward function is):

max
θ

IPS(θ) = max
θ

n∑
i=1

ri/pi I (πθ(xi ) == ai )

SoftMax Relaxation: The IPS objective above is not continuous and
non differentiable. We can define a softmax relaxation as:

max
θ

SM(θ) = max
θ

n∑
i=1

ri/pi
exp(Fθ(xaii ))∑k
j=1 exp(Fθ(x ji ))
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Discrete Optimization in Machine Learning

MAP inference in Probabilistic
Models: Ising Models, DPPs

Feature Subset Selection

Data Partitioning

Data Subset Selection

Data Summarization: Text,
Images, Video Summarization

Social networks, Influence
Maximization

Natural Language Processing:
words, phrases, n-grams, syntax
trees, semantic structures

Computer Vision: Image
Segmentation, Image
Correspondence

Genomics and Computational
Biology: cell types or assay
selection, selecting peptides and
proteins

Ganesh Ramakrishnan Optimization in Machine Learning January, 2021 29 / 34



29/34

Discrete Optimization in Machine Learning

MAP inference in Probabilistic
Models: Ising Models, DPPs

Feature Subset Selection

Data Partitioning

Data Subset Selection

Data Summarization: Text,
Images, Video Summarization

Social networks, Influence
Maximization

Natural Language Processing:
words, phrases, n-grams, syntax
trees, semantic structures

Computer Vision: Image
Segmentation, Image
Correspondence

Genomics and Computational
Biology: cell types or assay
selection, selecting peptides and
proteins

Ganesh Ramakrishnan Optimization in Machine Learning January, 2021 29 / 34



30/34

Application 1: Image Segmentation and Correspondence
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Application 2: Feature Selection

Data: Given random variables X1,X2, · · · ,Xn as features of a given
ML task. Denote I (A,B) as the Mutual Information between
variables A and B.

Goal: Select a subset of features A ⊆ {1, · · · , n} such that the subset
of features are as good as the original set.

Optimization Problem: Maximize the Mutual Information between
the set of features and the label Y :

max
A:|A|≤k

I (XA;Y )

We will see in the second part of this course that this is related to the
concept of submodularity.
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of features are as good as the original set.

Optimization Problem: Maximize the Mutual Information between
the set of features and the label Y :

max
A:|A|≤k

I (XA;Y )
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Application 3: Training Data Subset Selection

Data: Given a training dataset {(x1, y1), · · · , (xn, yn)} and a budget
k .

Goal: Select a subset of data-points A ⊆ {1, · · · , n} such that the
model trained on the subset of data is as good as the entire dataset.

This setting makes even more sense when the labels are missing on
some or all of the given data-points.

Optimization Problem: Let DKL(.) denote the KL divergence
between two distributions. The optimization problem can be cast as:

max
A:|A|≤k

DKL(p(XA)|p(XV ))

We will see in the second part of this course that this is also related
to the concept of submodularity.
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Application 4: k-Mediods Clustering

Data: Given a set of datapoints {(x1, x2, · · · , xn}, a similarity
function sij , i , j ∈ {1, · · · , n} and a budget k .

Goal: Select a subset of data-points A ⊆ {1, · · · , n} which can act as
k-mediods (similar to k-means except that the means are a part of the
original set of points.

Optimization Problem: The optimization problem can be cast as:

max
A:|A|≤k

n∑
i=1

max
j∈X

sij

We will see in the second part of this course that this problem is
called Facility Location also related to the concept of submodularity.
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Big Picture: Types of Optimization Problems
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