
Lecture 1 : Introduction to Convex Optimization CS709
Instructor: Prof. Ganesh Ramakrishnan
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Introduction: Mathematical optimization
Motivating Example
Applications
Least-squares(LS) and linear programming(LP) - Very common place

Course goals and topics
Nonlinear optimization
Brief history of convex optimization
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Mathematical optimization

(Mathematical) Optimization problem:-

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

x = (x1, ..., xn) : optimization variables
fi : ℜn→ℜ, i = 1, ...,m : constraint functions
optimal solution x∗ has smallest value of f0 among all vectors that satisfy the constraints
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Almost Every Problem can be posed as an Optimization Problem

Given a set C ⊆ ℜn find the ellipsoid E ⊆ ℜn that is of smallest volume such that C ⊆ E .
Hint: First work out the problem in lower dimensions
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C x in C is a vector of size n
x = [x1,x2......xn]

Constraint: x1^2/a1^2 + x2^2/a2^2
+ ....xn^2/an^2 <= 1

a2

a1

NEED A ROTATED+TRANSLATED VERSION



Almost Every Problem can be posed as an Optimization Problem

Given a set C ⊆ ℜn find the ellipsoid E ⊆ ℜn that is of smallest volume such that C ⊆ E .
Hint: First work out the problem in lower dimensions
Sphere Sr ⊆ ℜn centered at 0 is expressed as:
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Sr = { ||x||_2 <= r}
2-norm is the square root of sum of squares
of the individual components of x



Almost Every Problem can be posed as an Optimization Problem

Given a set C ⊆ ℜn find the ellipsoid E ⊆ ℜn that is of smallest volume such that C ⊆ E .
Hint: First work out the problem in lower dimensions
Sphere Sr ⊆ ℜn centered at 0 is expressed as: Sr = {u ∈ ℜn|∥u∥2 ≤ r}
Ellipsoid E ⊆ ℜn is expressed as:
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Ellipsoid is a rotated, scaled and translated version of the sphere

A'u + b'

uA'

mxn n m

Our basic ellipsoid
had A' = diagonal

Av + b



Almost Every Problem can be posed as an Optimization Problem

Given a set C ⊆ ℜn find the ellipsoid E ⊆ ℜn that is of smallest volume such that C ⊆ E .
Hint: First work out the problem in lower dimensions
Sphere Sr ⊆ ℜn centered at 0 is expressed as: Sr = {u ∈ ℜn|∥u∥2 ≤ r}
Ellipsoid E ⊆ ℜn is expressed as:
E =

{
v ∈ ℜn|Av + b ∈ S1

}
=

{
v ∈ ℜn|∥Av + b∥2 ≤ 1

}
. Here, A ∈ Sn

++, that is, A is
an n × n (strictly) positive definite matrix.
The optimization problem will be:
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1) A is an nxn matrix
(Sphere and Ellipsoid are both
in R^n)
2) This brings an additional
constraint that A is symmetic,
and it is positive definite

3) That is, A has positive eigen
values.. 
4) The positive eigenvalues will
correspond to scaling of the axis
and corresponding eigenvectors
to the new axes
5) The volume is proportional to the 
product of lengths of eigenvalues



Almost Every Problem can be posed as an Optimization Problem

Given a set C ⊆ ℜn find the ellipsoid E ⊆ ℜn that is of smallest volume such that C ⊆ E .
Hint: First work out the problem in lower dimensions
Sphere Sr ⊆ ℜn centered at 0 is expressed as: Sr = {u ∈ ℜn|∥u∥2 ≤ r}
Ellipsoid E ⊆ ℜn is expressed as:
E =

{
v ∈ ℜn|Av + b ∈ S1

}
=

{
v ∈ ℜn|∥Av + b∥2 ≤ 1

}
. Here, A ∈ Sn

++, that is, A is
an n × n (strictly) positive definite matrix.
The optimization problem will be:

minimize
[a11,a12..,ann,b1,..bn]

det(A−1)

subject to vTAv > 0, ∀v ̸= 0

∥Av + b∥2 ≤ 1, ∀v ∈ C

Prof. Ganesh Ramakrishnan (IIT Bombay) Introduction to Convex Optimization : CS709 July 17, 2018 4 / 42

A is positive definite

C is contained
in the Ellipsoid

C

Can forall v be changed to checking for a finite
number of boundary points? 



Almost Every Problem can be posed as an Optimization Problem (contd.)

Given a polygon P ⊆ ℜn find the ellipsoid E ⊆ ℜn that is of smallest volume such that
P ⊆ E .
Let v1,v2, ...vp be the corners of the polygon P
The optimization problem will be:

minimize
[a11,a12..,ann,b1,..bn]

det(A−1)

subject to − vTAv > 0, ∀v ̸= 0

∥Avi + b∥2 ≤ 1, i ∈ {1..p}
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v1
v2

v3
v4v5

Given that the specified set S is indeed a polygon, is this problem
with a simplified set of constraints equivalent to the original problem?
YES



Almost Every Problem can be posed as an Optimization Problem (contd.)

Given a polygon P ⊆ ℜn find the ellipsoid E ⊆ ℜn that is of smallest volume such that
P ⊆ E .
Let v1,v2, ...vp be the corners of the polygon P
The optimization problem will be:

minimize
[a11,a12..,ann,b1,..bn]

det(A−1)

subject to − vTAv > 0, ∀v ̸= 0

∥Avi + b∥2 ≤ 1, i ∈ {1..p}

How would you pose an optimization problem to find the ellipsoid E ′ of largest volume
that fits inside C?
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So Again: Mathematical optimization

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

x = (x1, ..., xn) : optimization variables
fi : ℜn→ℜ, i = 1, ...,m : constraint functions
optimal solution x∗ has smallest value of f0 among all vectors that satisfy the constraints

Prof. Ganesh Ramakrishnan (IIT Bombay) Introduction to Convex Optimization : CS709 July 17, 2018 6 / 42



Examples

portfolio optimization
variables: amounts invested in different assets
constraints: budget, max./min. investment per asset, minimum return
objective: overall risk or return variance
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Examples

device sizing in electronic circuits
variables: device widths and lengths
constraints: manufacturing limits, timing requirements, maximum area
objective: power consumption
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Examples

Data fitting - Machine learning
variables: model parameters
constraints: prior information, parameter limits
objective: measure of misfit or prediction error
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Classification
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An Example in 



Motivation

Human beings better in categorical judgements than absolute scoring

Prof. Ganesh Ramakrishnan (IIT Bombay) Introduction to Convex Optimization : CS709 July 17, 2018 11 / 42



Motivation

Human beings better in categorical judgements than absolute scoring
Classification vs. regression

▶ MidSem: Good or Bad vs. Absolute score
▶ Course register: Yes or No vs. how much(?)
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Applications

Spam Detection
Digit Recognition
Medical diagnosis
Bio-diversity classification
Buying or selling products
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Problem in Perspective

Given data points xi, i = 1, 2, . . . ,m
Possible class choices: c1, c2, . . . , ck

Wish to generate a mapping/classifier

f : x → {c1, c2, . . . , ck}
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Problem in Perspective

Given data points xi, i = 1, 2, . . . ,m
Possible class choices: c1, c2, . . . , ck

Wish to generate a mapping/classifier

f : x → {c1, c2, . . . , ck}

To get class labels y1, y2, . . . , ym
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Problem in Perspective

In general, series of mappings

x f(·)−−→ y
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Problem in Perspective

In general, series of mappings

x f(·)−−→ y g(·)−−→ z h(·)−−→ {c1, c2, . . . , ck}
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eg: neural networks



Problem in Perspective

In general, series of mappings

x f(·)−−→ y g(·)−−→ z h(·)−−→ {c1, c2, . . . , ck}

where y, z are in some latent space.

Prof. Ganesh Ramakrishnan (IIT Bombay) Introduction to Convex Optimization : CS709 July 17, 2018 14 / 42



Binary Classification using Perceptron
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Perceptron Classifier

Consider a binary classification problem: f(x) ∈ {−1,+1}

Objective: Learn a linear classifier
With linearly separability
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w^Tx + b

w

Extent of misclassification of a point
is = -y(w^Tx + b) 



Perceptron Classifier

Consider a binary classification problem: f(x) ∈ {−1,+1}

Objective: Learn a linear classifier
With linearly separability, any finite time learning algorithm?
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Perceptron Classifier

Consider a binary classification problem: f(x) ∈ {−1,+1}
Desirable: Any new input pattern similar to a seen pattern is classified correctly
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Perceptron Classifier

Consider a binary classification problem: f(x) ∈ {−1,+1}
Desirable: Any new input pattern similar to a seen pattern is classified correctly

Linear Classification?
w⊤ϕ(x) + b ≥ 0 for +ve points (y = +1)
w⊤ϕ(x) + b < 0 for -ve points (y= -1)
w,ϕ ∈ IRm
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Perceptron Update Rule: Error Perspective

Explicitly account for signed distance of (misclassified) points from the hyperplane
wTϕ(bx) = 0.
Consider point x0 with wT(ϕ(x0)) = 0
Signed distance from hyperplane: wT(ϕ(x)− ϕ(x0)) = wTϕ(x)
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Perceptron Update Rule: Error Perspective

Unsigned distance from hyperplane: ywT(ϕ(x))

D
ϕ(x)

wTϕ(bx) = 0

w

ϕ(x0)
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Negative of the unsigned distance is the error



Perceptron Update Rule: Error Perspective

Unsigned distance from hyperplane: ywT(ϕ(x))

D
ϕ(x)

wTϕ(bx) = 0

w

ϕ(x0)

If x is misclassified, the misclassification cost for x is −ywT(ϕ(x))
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Perceptron Update Rule: Error Minimization

Perceptron update tries to minimize the error function
E = negative of sum of unsigned distances over misclassified examples = sum of
misclassification costs

E = −
∑

(x,y)∈M
ywTϕ(x)
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Perceptron Update Rule: Error Minimization

Perceptron update tries to minimize the error function
E = negative of sum of unsigned distances over misclassified examples = sum of
misclassification costs

E = −
∑

(x,y)∈M
ywTϕ(x)

where M ⊆ D is the set of misclassified examples.
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Machine Learning as Optimization

bw∗ = argmin
w

L (w) + Ω(∥w∥2) (1)

0-1 Loss:

L (w) =
∑

(x,y) δ
(
y ̸= wTϕ(x)

)
(2)

Minimizing the 0-1 Loss is NP-hard. We therefore look for surrogates.
Perceptron: A Non-convex Surrogate

L (w) = −∑
(x,y)∈M ywTϕ(x) (3)

where M ⊆ D is the set of misclassified examples.

Prof. Ganesh Ramakrishnan (IIT Bombay) Introduction to Convex Optimization : CS709 July 17, 2018 26 / 42



Convex Surrogates for 0-1 Loss in Classification

bw∗ = argmin
w

L (w) + Ω(∥w∥2) (4)

Logistic Regression:

L (w) = −


 1

m
∑m

i=1


y(i)wTϕ(x(i))− log

(
1 + exp

(
wTϕ

(
x(i)

)))




 (5)

Sigmoidal Neural Net:

L (w) = − 1

m




m∑

i=1

K∑

k=1

y(i)k log
(
σL

k

(
x(i)

))
+

(
1− y(i)k

)
log

(
1− σL

k

(
x(i)

))

 (6)
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Convex Surrogates for 0-1 Loss in Classification

bw∗ = argmin
w

L (w) + Ω(∥w∥2) (7)

Logistic Regression:

L (w) = −


 1

m
∑m

i=1


y(i)wTϕ(x(i))− log

(
1 + exp

(
wTϕ

(
x(i)

)))




 (8)

Sigmoidal Neural Net:

L (w) = − 1

m




m∑

i=1

K∑

k=1

y(i)k log
(
σL

k

(
x(i)

))
+

(
1− y(i)k

)
log

(
1− σL

k

(
x(i)

))

 (9)
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More Generally..

x represents some action such as
▶ portfolio decisions to be made
▶ resources to be allocated
▶ schedule to be created
▶ vehicle/airline deflections

Constraints impose conditions on outcome based on
▶ performance requirements
▶ manufacturing process

Objective f0(x) might correspond to one of the following and should be desirably small
▶ total cost
▶ risk
▶ negative profit
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Solving optimization problems

General optimization problems
very difficult to solve
methods involve some compromise, e.g., very long computation time, or not always
finding the solution

Exceptions: certain problem classes can be solved efficiently and reliably
least-squares problems
linear programming problems
convex optimization problems
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Least-squares

minimize
x

∥Ax − b∥22
solving least-squares problems

analytical solution: x∗ = (ATA) −1ATb
reliable and efficient algorithms and software
computation time proportional to n2k (A ∈ Rk×n); less if structured
a mature technology

using least-squares
least-squares problems are easy to recognize
a few standard techniques increase flexibility (e.g., including weights, adding
regularization terms)
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Linear programming

minimize
x

cTx

subject to aT
i x ≥ bi, i = 1, . . . ,m.

solving linear programs
no analytical formula for solution
reliable and efficient algorithms and software
computation time proportional to n2m if m ≥ n; less with structure
a mature technology

using linear programs
not as easy to recognize as least-squares problems
a few standard tricks used to convert problems into linear programs (e.g., problems
involving l1- or l∞-norms, piecewise-linear functions)
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Convex optimization problem
minimize

x
f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.

objective and constraint functions are convex:

fi(αx1 + βx2) ≤ αfi(x1) + βfi(x2)

if α + β = 1, α ≥ 0, β ≥ 0

includes least-squares problems and linear programs as special cases
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Convex optimization problem

solving convex optimization problems
no analytical solution
reliable and efficient algorithms
computation time (roughly) proportional to {n3, n2m, F}, where F is cost of evaluating
fi’s and their first and second derivative
almost a technology

using convex optimization
often difficult to recognize
many tricks for transforming problems into convex form
surprisingly many problems can be solved via convex optimization
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Example: m lamps illuminating n(small, flat) patches

intensity Ik at patch k depends linearly on lamp powers pj:

Ik =

n∑

j=1

akjpj, akj = rkj
−2max{cosθkj, 0}

problem: Provided the fixed locations(akj’s), achieve desired illumination Ides with bounded
lamp powers

minimize
pj

maxk=1,..,n | log(Ik)− log(Ides) |

subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m.
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Example: m lamps illuminating n(small, flat) patches
How to solve? Some approximate(suboptimal) ’solutions’:-

1 use uniform power: pj = p, vary p
2 use least-squares:

minimize
pj

n∑

k=1

∥Ik − Ides∥22

round pj if pj > pmax or pj < 0
3 use weighted least-squares:

minimize
pj

n∑

k=1

∥Ik − Ides∥22 +
m∑

j=1

wj∥pj − pmax/2∥22

iteratively adjust weights wj until 0 ≤ pj ≤ pmax
4 use linear programming:

minimize maxk=1,..,n | Ik − Ides |

subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m.
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Example: m lamps illuminating n(small, flat) patches
Use convex optimization: problem is equivalent to

minimize
pj

f0(p) = maxk=1,..,nh(Ik/Ides)

subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m.

with h(u) = max{u, 1/u}

f0 is convex because maximum of convex functions is convex
exact solution obtained with effort ≈ modest factor × least-squares effort
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Example: m lamps illuminating n(small, flat) patches

Additional constraints does adding 1 or 2 below complicate the problem?
1 no more than half of total power is in any 10 lamps.
2 no more than half of the lamps are on (pj > 0).
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Example: m lamps illuminating n(small, flat) patches

Additional constraints does adding 1 or 2 below complicate the problem?
1 no more than half of total power is in any 10 lamps.
2 no more than half of the lamps are on (pj > 0).

answer: with (1), still easy to solve; with (2), extremely difficult.
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Example: m lamps illuminating n(small, flat) patches

Additional constraints does adding 1 or 2 below complicate the problem?
1 no more than half of total power is in any 10 lamps.
2 no more than half of the lamps are on (pj > 0).

answer: with (1), still easy to solve; with (2), extremely difficult.
moral: (untrained) intuition doesn’t always work; without the proper background very
easy problems can appear quite similar to very difficult problems.
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Course goals and topics
Goals

recognize/formulate problems (such as the illumination problem) as convex optimization
problem
develop code for problems of moderate size (1000 lamps, 5000 patches)
characterize optimal solution (optimal power distribution), give limits of performance, etc

Topics
Convex sets, (Univariate) Functions, Optimization problem
Unconstrained Optimization: Analysis and Algorithms
Constrained Optimization: Analysis and Algorithms
Optimization Algorithms for Machine Learning
Discrete Optimization and Convexity (Eg: Submodular Minimization)
Other Examples and applications (MAP Inference on Graphical Models,
Majorization-Minimization for Non-convex problems)
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Nonlinear optimization

Traditional techniques for general nonconvex problems involve Local optimization methods
(nonlinear programming)

find a point that minimizes f0 among feasible points near it
fast, can handle large problems
require initial guess
provide no information about distance to (global) optimum

Global optimization methods
find the (global) solution
worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems
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Grading and Audit

Grading
Quizzes and Assignments: 15%
Midsem: 25%
Endsem: 45%
Project: 15%

Audit requirement
Quizzes and Assignments and Project
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Brief history of convex optimization
theory (convex analysis): ca1900–1970
algorithms

1947: simplex algorithm for linear programming (Dantzig)
1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)
1970s: ellipsoid method and other subgradient methods
1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)
late 1980s–now: polynomial-time interior-point methods for nonlinear convex optimization
(Nesterov & Nemirovski 1994)

applications
before 1990: mostly in operations research; few in engineering
since 1990: many new applications in engineering (control, signal processing,
communications, circuit design, . . .); new problem classes (semidefinite and second-order
cone programming, robust optimization)
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