Lecture 1 : Introduction to Convex Optimization CS709

Instructor: Prof. Ganesh Ramakrishnan
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Introduction: Mathematical optimization

o Motivating Example
o Applications

o Least-squares(LS) and linear programming(LP) - Very common place

Submodular
Optimization
(Gscrete)

General Opt,
Several of these are either
a8) Composed andior

b) Look similar 1o convex
optimization.
@ Course goals and topics
@ Nonlinear optimization

o Brief history of convex optimization
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Mathematical optimization

(Mathematical) Optimization problem:-
minimize  fy(x)
X

subject to. fi(x) < by, i=1,...,m.

9
x = (x1,...,Xp) : optimization variables
fi: R"—=R, i=1,...,m: constraint functions
optimal solution x* has smallest value of f; among all vectors that satisfy the constraints
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Almost Every Problem can be posed as an Optimization Problem

@ Given a set C C R" find the ellipsoid £ C R" that is of smallest volume such that C C £.
Hint: First work out the problem in lower dimensions

X in C is a vector of size n
X = [x1,x2...... Xxn]

a NEED A ROTATED+TRANSLATED VERSION
T Constraint: x172/al”™2 + x272/a2"2
l al + ...xn"2/an"2 <=1
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Almost Every Problem can be posed as an Optimization Problem

@ Given a set C C R" find the ellipsoid £ C R" that is of smallest volume such that C C £.
Hint: First work out the problem in lower dimensions

@ Sphere S, C R" centered at 0 is expressed as:
Sr={||x]|]| 2 <=r}

2-norm is the square root of sum of squares
of the individual components of x

Prof. Ganesh Ramakrishnan (IIT Bombay) Introduction to Convex Optimization : CS709 July 17, 2018 4/ 42



Almost Every Problem can be posed as an Optimization Problem

@ Given a set C C R" find the ellipsoid £ C R" that is of smallest volume such that C C £.
Hint: First work out the problem in lower dimensions

@ Sphere S, C R" centered at 0 is expressed as: S, = {u € R"|||ull2 < r}
@ Ellipsoid £ C R" is expressed as:

Av+b
Au+b' &

Ellipsoid 1 tated, scaled and translated version of the sphere

[ B Our basic ellipsoid
Al ' had A' = diagonal
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Almost Every Problem can be posed as an Optimization Problem

@ Given a set C C R" find the ellipsoid £ C R" that is of smallest volume such that C C £.
Hint: First work out the problem in lower dimensions

@ Sphere S, C R" centered at 0 is expressed as: S, = {u € R"|||ull]2 < r}

@ Ellipsoid £ C R" is expressed as:
E={veRMAV+Db e S} ={veR|Av+Db|s <1}. Here, Ac 87, thatis, Ais
an n x n (strictly) positive definite matrix.

@ The optimization problem will be: 3) That is, A has positive eigen
. . values..
1) Alis an nxn matrix 4) The positive eigenvalues will
(Sphere and Ellipsoid are both  correspond to scaling of the axis
in R™n) and corresponding eigenvectors
2) This brings an additional to the new axes
constraint that A is symmetic,  5) The volume is proportional to the
and it is positive definite product of lengths of eigenvalues
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Almost Every Problem can be posed as an Optimization Problem

@ Given a set C C R" find the ellipsoid £ C R" that is of smallest volume such that C C £.
Hint: First work out the problem in lower dimensions

@ Sphere S, C R" centered at 0 is expressed as: S, = {u € R"|||ull]2 < r}

@ Ellipsoid £ C R" is expressed as:
E={veRNAv+be S} ={veRAv+bls <1} Here, Ac S],, thatis, Ais
an n x n (strictly) positive definite matrix.

@ The optimization problem will be:

minimize det(A™1)
[a11,a12..,@nn,b1,..bn]
subject to vIiAv >0, Www#0 Ais positive definite
[Av+blls <1i¥WWEC Cijs contained

Can forall v be changed to checklng for a finite in the Ellipsoid

[ Der O DOLIN (] A
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Almost Every Problem can be posed as an Optimization Problem (contd.)

@ Given a polygon P C 1" find the ellipsoid & C R” that is of smallest volume such that
PCE.

® Let v, Vva,...v, be the corners of the polygon P

@ The optimization problem will be:

inimi det(A™1
\V2 iz gy PHAT)
3 subject to —vTAV >0, Vv #£0
VvV .
V5 va |Avi+bll2 <1, i€ {1..p}

Given that the specified set S is indeed a polygon, is this problem
with a simplified set of constraints equivalent to the original problem?
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Almost Every Problem can be posed as an Optimization Problem (contd.)

@ Given a polygon P C R” find the ellipsoid £ C R” that is of smallest volume such that
PCE.

@ Let v, vy, ...v, be the corners of the polygon P

@ The optimization problem will be:

minimize det(A™1)
[3117312~~:3nn7b17~~bn]
subject to —vTAV >0, Vv #£0

|Avi+bla <1, i€ {1.p}

@ How would you pose an optimization problem to find the ellipsoid £’ of largest volume

that fits inside C?
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So Again: Mathematical optimization

minimize  fy(x)
X
subject to  fi(x) < b;, i=1,...,m.

x = (X1, ..., Xp) : optimization variables
fi: =R, i=1,...,m: constraint functions
optimal solution x* has smallest value of f; among all vectors that satisfy the constraints
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Examples

portfolio optimization
@ variables: amounts invested in different assets

@ constraints: budget, max./min. investment per asset, minimum return

@ objective: overall risk or return variance
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Examples

device sizing in electronic circuits
@ variables: device widths and lengths

@ constraints: manufacturing limits, timing requirements, maximum area

@ objective: power consumption
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Examples

Data fitting - Machine learning
@ variables: model parameters
@ constraints: prior information, parameter limits

@ objective: measure of misfit or prediction error
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An Example in
Classification
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Motivation

@ Human beings better in categorical judgements than absolute scoring
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Motivation

@ Human beings better in categorical judgements than absolute scoring

@ Classification vs. regression

» MidSem: Good or Bad vs. Absolute score
» Course register: Yes or No vs. how much(?)
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Applications

Spam Detection
Digit Recognition
Medical diagnosis

Bio-diversity classification

Buying or selling products

Prof. Ganesh Ramakrishnan (IIT Bombay) Introduction to Convex Optimization : CS709 July 17, 2018 12 / 42



Problem in Perspective

o Given data points x;,i=1,2,...,m
@ Possible class choices: ¢y, ¢o,. .., ck

e Wish to generate a mapping/classifier

f:x—{c,c,...,ck}
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Problem in Perspective

o Given data points x;,i=1,2,...,m
@ Possible class choices: ¢y, ¢o,. .., ck

e Wish to generate a mapping/classifier

f:x—{c,c,...,ck}

@ To get class labels y1, y2,..., ¥Ym
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Problem in Perspective

@ In general, series of mappings
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Problem in Perspective

@ In general, series of mappings
. . h(-
xil)yg—()—>z—()—> {c1,¢0,..., ¢k}

eg: neural networks
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Problem in Perspective

@ In general, series of mappings

), &)

h(-
x——)y——>z—()—>{c1,c2,...

where y, z are in some latent space.
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Binary Classification using Perceptron

Prof. Ganesh Ramakrishnan (IIT Bombay)



Perceptron Classifier

o Consider a binary classification problem: f{x) € {—1,+1}

P2(x)

$1(x)
@ Objective: Learn a linear classifier

@ With linearly separability

Extent of misclassification of a point
is =-y(w~Tx + b)
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Perceptron Classifier

o Consider a binary classification problem: f{x) € {—1,+1}

+ +
ety
+"++ Lt ) -
$2(x) ot .
+ 4 o= T
+ - - -
. -
i)

@ Objective: Learn a linear classifier

@ With linearly separability, any finite time learning algorithm?
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Perceptron Classifier

o Consider a binary classification problem: f{x) € {—1,+1}

+ +
ety
+"++ Lt ) -
$2(x) ot .
+ 4 o= T
+ - - -
. -
i)

@ Objective: Learn a linear classifier

@ With linearly separability, any finite time learning algorithm?
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Perceptron Classifier

o Consider a binary classification problem: f(x) € {—1,+1}
@ Desirable: Any new input pattern similar to a seen pattern is classified correctly

+ +
ety
++++ .t . -
$a(x) ot T T
+ 4 -
+ -t .
N .
$1(x)
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Perceptron Classifier

o Consider a binary classification problem: f(x) € {—1,+1}
@ Desirable: Any new input pattern similar to a seen pattern is classified correctly

+ +
++++ ++ 4’+ + -
¢ | T _
. - - Linear Classification?
w ' $(x) 4+ b >0 for +ve points (y = +1)
w ' ¢(x)+ b < 0 for -ve points (y=-1)
$1(x) w,$ € R"
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b2(x)

+
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b2(x)

+ +
+ +
+ * + * -7
+ + + g
+ ,,/ -
+++ -7 -
,,// _ -
”~

+

Prof. Ganesh Ramakrishnan (IIT Bombay)

b:(x)

Introduction to Convex Optimization : CS709



Perceptron Update Rule: Error Perspective

e Explicitly account for signed distance of (misclassified) points from the hyperplane
wlg(xX) = 0.
Consider point X with w'(¢(x¢)) =0
Signed distance from hyperplane: w'(¢(x) — ¢(x0)) = W' ¢(x)
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Perceptron Update Rule: Error Perspective

e Explicitly account for signed distance of (misclassified) points from the hyperplane
wlg(xX) = 0.
Consider point X with w'(¢(x¢)) =0
Signed distance from hyperplane: w'(¢(x) — ¢(x0)) = W' ¢(x)
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Perceptron Update Rule: Error Perspective

e Unsigned distance from hyperplane: yw (¢ (x

Negative of the unsigned distance is the error
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Perceptron Update Rule: Error Perspective

e Unsigned distance from hyperplane: yw ' (¢(x))

e If x is misclassified, the misclassification cost for x is —yw (¢ (x))
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Perceptron Update Rule: Error Minimization

@ Perceptron update tries to minimize the error function
E = negative of sum of unsigned distances over misclassified examples = sum of
misclassification costs

E=— > ywiox)

(x,y)eEM
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Perceptron Update Rule: Error Minimization

@ Perceptron update tries to minimize the error function
E = negative of sum of unsigned distances over misclassified examples = sum of

misclassification costs
E=— Y yw o)
(x,y)eEM

where M C D is the set of misclassified examples.

July 17, 2018
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Machine Learning as Optimization

W= argmin L(w) 4+ Q(lw]l2) (1)

@ 0-1 Loss:
L(w) = Z(x7y) 6 (y # WT¢(X)) (2)

Minimizing the 0-1 Loss is NP-hard. We therefore look for surrogates.

@ Perceptron: A Non-convex Surrogate

LW) ==Y (xyem W d(x) 3)

where M C D is the set of misclassified examples.
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Convex Surrogates for 0-1 Loss in Classification

Wt o= argm“i,n L(w)+Q(]|w|l2) 4
o Logistic Regression:
Lw) =- |52 (y<">wT¢><x<’>) — log <1 + exp (w% (x<">)>>) (5)

o Sigmoidal Neural Net:

i=1 k=1

£(w) = _% [iiyg) log (Ut (x(i)>> + (1 - Yii)) log <1 — ok (x(f)))] (6)
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Convex Surrogates for 0-1 Loss in Classification

Wt o= argm“i,n L(w)+Q(]|w|l2) )
o Logistic Regression:
Lw) =- |52 (y<">wT¢><x<’>) — log <1 + exp (w% (x<">)>>) (8)

o Sigmoidal Neural Net:

m

L(w)= —% [Ziy(ki) log (Uﬁ (x(i))> + (1 - y(ki)) log <1 — o (X(’)))] (9)

i=1 k=1
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More Generally..

@ X represents some action such as
» portfolio decisions to be made
» resources to be allocated
» schedule to be created
» vehicle/airline deflections

@ Constraints impose conditions on outcome based on

» performance requirements
» manufacturing process

@ Objective fy(x) might correspond to one of the following and should be desirably small
> total cost
> risk
> negative profit
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Solving optimization problems

General optimization problems
o very difficult to solve

@ methods involve some compromise, e.g., very long computation time, or not always
finding the solution

Exceptions: certain problem classes can be solved efficiently and reliably
@ least-squares problems
@ linear programming problems

@ convex optimization problems

N
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L east-squares [OPTIONAL]

minimize ||Ax — b||3
X

solving least-squares problems
e analytical solution: x* = (ATA) ~'ATb
@ reliable and efficient algorithms and software
@ computation time proportional to n?k (A € R¥*"); less if structured
@ a mature technology
using least-squares

@ least-squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights, adding
regularization terms)
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Linear programming [OPTIONAL]
mini)[nize c’x
subject to a,-sz by, i=1,...,m.

solving linear programs

@ no analytical formula for solution
@ reliable and efficient algorithms and software
@ computation time proportional to n?m if m > n; less with structure
@ a mature technology
using linear programs
@ not as easy to recognize as least-squares problems

@ a few standard tricks used to convert problems into linear programs (e.g., problems
involving I1- or lo-norms, piecewise-linear functions)
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Convex optimization problem
mini;nize fo(x)
subject to  fi(x) < b;, i=1,...,m.
@ objective and constraint functions are convex:

filax) + Bx2) < afi(x1) + Bfi(x)
fa+B8=1a>0 >0

f(x2)
f(x1)

X1 X2

@ includes least-squares problems and linear programs as special cases
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Convex optimization problem

solving convex optimization problems
@ no analytical solution
@ reliable and efficient algorithms

e computation time (roughly) proportional to {n?, n?m, F}, where F is cost of evaluating
fi's and their first and second derivative

@ almost a technology
using convex optimization
o often difficult to recognize
@ many tricks for transforming problems into convex form

@ surprisingly many problems can be solved via convex optimization
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Example: m lamps illuminating n(small, flat) patches [OPTIONAL]
Lamp power py

Hlumination
In

intensity |, at patch k depends linearly on lamp powers p;:

n
§ : -2

/k = akjPj, dkj = rkj maX{COSij, O}
j=1

problem: Provided the fixed locations(ag;'s), achieve desired illumination lges with bounded
lamp powers

minimize  maxx=1,.n | log(lx) — log(ldes) |
Pj

subject to 0 < p; < pmax, j=1,...,m.
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Example: m lamps illuminating n(small, flat) patches [OPTIONAL]

How to solve? Some approximate(suboptimal) 'solutions’:-
@ use uniform power: pj = p, vary p
@ use least-squares:

n
minimize z 1k — laes||3

g k=1
round p; if pj > pmax or p; < 0
© use weighted least-squares:
n m
minLrjnize ”Ik_ /des||g+zwj|lpj_pmax/2”%
k=1 j=1

iteratively adjust weights w; until 0 < p; < ppax
@ use linear programming:

minimize  maxk=1,.n | Ik — ldes |

subject to 0 < p; < pmax, j=1,...,m.
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Example: m lamps illuminating n(small, flat) patches  [OPTIONAL]

@ Use convex optimization: problem is equivalent to

minimize  fo(p) = maxk=1,.. nh(lc/ ldes)
pi

subject to 0 < p; < pmax, j=1,...,m.
with h(u) = max{u, 1/u}

h(u)

@ fy is convex because maximum of convex functions is convex

@ exact solution obtained with effort ~ modest factor x least-squares effort
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Example: m lamps illuminating n(small, flat) patches [OPTIONAL]

Additional constraints does adding 1 or 2 below complicate the problem?

@ no more than half of total power is in any 10 lamps.

@ no more than half of the lamps are on (p; > 0).
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Example: m lamps illuminating n(small, flat) patches [OPTIONAL]

Additional constraints does adding 1 or 2 below complicate the problem?
@ no more than half of total power is in any 10 lamps.

@ no more than half of the lamps are on (p; > 0).

e answer: with (1), still easy to solve; with (2), extremely difficult.
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Example: m lamps illuminating n(small, flat) patches = [OPTIONAL]

Additional constraints does adding 1 or 2 below complicate the problem?
@ no more than half of total power is in any 10 lamps.

@ no more than half of the lamps are on (p; > 0).

e answer: with (1), still easy to solve; with (2), extremely difficult.

e moral: (untrained) intuition doesn’t always work; without the proper background very
easy problems can appear quite similar to very difficult problems.

Prof. Ganesh Ramakrishnan (IIT Bombay) Introduction to Convex Optimization : CS709 July 17, 2018 38 /42




Course goals and topics
Goals

@ recognize/formulate problems (such as the illumination problem) as convex optimization
problem

@ develop code for problems of moderate size (1000 lamps, 5000 patches)
@ characterize optimal solution (optimal power distribution), give limits of performance, etc
Topics

Convex sets, (Univariate) Functions, Optimization problem
Unconstrained Optimization: Analysis and Algorithms

Constrained Optimization: Analysis and Algorithms

°

°

@ Optimization Algorithms for Machine Learning

@ Discrete Optimization and Convexity (Eg: Submodular Minimization)
°

Other Examples and applications (MAP Inference on Graphical Models,
Majorization-Minimization for Non-convex problems)
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Nonlinear optimization

Traditional techniques for general nonconvex problems involve Local optimization methods

(nonlinear programming)

e find a point that minimizes fy among feasible points near it

@ fast, can handle large problems

@ require initial guess

@ provide no information about distance to (global) optimum
Global optimization methods

e find the (global) solution

@ worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems
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Grading and Audit

Grading
@ Quizzes and Assighments: 15%
o Midsem: 25%
o Endsem: 45%
e Project: 15%

Audit requirement

@ Quizzes and Assignments and Project
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Brief history of convex optimization

theory (convex analysis): ca1900-1970
algorithms

1947: simplex algorithm for linear programming (Dantzig)
1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)
1970s: ellipsoid method and other subgradient methods

1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)

late 1980s—now: polynomial-time interior-point methods for nonlinear convex optimization
(Nesterov & Nemirovski 1994)

applications
@ before 1990: mostly in operations research; few in engineering

@ since 1990: many new applications in engineering (control, signal processing,
communications, circuit design, . . .); new problem classes (semidefinite and second-order
cone programming, robust optimization)
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