
HW: Illustrating Computation of Directional Derivative

As another example, let us find the rate of change of f(x, y, z) = exyz at p0 = (1, 2, 3) in
the direction from p1 = (1, 2, 3) to p2 = (−4, 6,−1).
We first construct a unit vector from p1 to p2; v = 1√

57
[−5, 4,−4].

The gradient of f in general is ∇f = [yzexyz, xzexyz, xyexyz] = exyz[yz, xz, xy].
Evaluating the gradient at a specific point p0, ∇f(1, 2, 3) = e6 [6, 3, 2]T. The directional
derivative at p0 in the direction v is Duf(1, 2, 3) = e6[6, 3, 2]. 1√

57
[−5, 4,−4]T = e6−26√

57
.

This directional derivative is negative, indicating that the function f decreases at p0 in the
direction from p1 to p2.
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HW: Level Surface based Interpretation of Gradient: Examples

Let f(x1, x,x3) = x21x32x43 and consider the point x0 = (1, 2, 1). We will find the equation of
the tangent plane to the level surface through x0.
The level surface through x0 is determined by setting f equal to its value evaluated at x0;
that is, the level surface will have the equation x21x32x43 = 122314 = 8.
The gradient vector (normal to tangent plane) at (1, 2, 1) is
∇f(x1, x2, x3)

��
(1,2,1)

= [2x1x32x43, 3x21x22x43, 4x21x32x33]T
���
(1,2,1)

= [16, 12, 32]T.

The equation of the tangent plane at x0, given the normal vector ∇f(x0) can be easily
written down: ∇f(x0)T.[x− x0] = 0 which turns out to be
16(x1 − 1) + 12(x2 − 2) + 32(x3 − 1) = 0, a plane in 3D.
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HW: Level Surface based Interpretation of Gradient: Examples

Consider the function f(x, y, z) = x
y+z . The directional derivative of f in the direction of

the vector v = 1√
14
[1, 2, 3] at the point x0 = (4, 1, 1) is

∇Tf
���
(4,1,1)

. 1√
14
[1, 2, 3]T =

[
1
y+z , − x

(y+z)2 , − x
(y+z)2

]����
(4,1,1)

. 1√
14
[1, 2, 3]T =

[
1
2 , −1, −1

]
. 1√

14
[1, 2, 3]T = − 9

2
√
14
.

The directional derivative is negative, indicating that the function decreases along the
direction of v. Based on an earlier result, we know that the maximum rate of change of a
function at a point x is given by ||∇f(x)|| and it is in the direction ∇f(x)

||∇f(x)|| .
In the example under consideration, this maximum rate of change at x0 is 3

2 and it is in
the direction of the vector 2

3

[
1
2 , −1, −1

]
.
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HW: Level Surface based Interpretation of Gradient: Examples

Let us find the maximum rate of change of the function f(x, y, z) = x2y3z4 at the point
x0 = (1, 1, 1) and the direction in which it occurs. The gradient at x0 is
∇Tf
���
(1,1,1)

= [2, 3, 4]. The maximum rate of change at x0 is therefore
√
29 and the direction

of the corresponding rate of change is 1√
29

[2, 3, 4]. The minimum rate of change is −
√
29

and the corresponding direction is − 1√
29

[2, 3, 4].
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HW: Level Surface based Interpretation of Gradient: Examples

Determine the equations of
(a) the tangent plane to the paraboloid P : x1 = x22 + x23 + 2 at (−1, 1, 0) and
(b) the normal line to the tangent plane.
To realize this as the level surface of a function of three variables, we define the function
f(x1, x2, x3) = x1 − x22 − x23 and find that the paraboloid P is the same as the level surface
f(x1, x2, x3) = −2. The normal to the tangent plane to P at x0 is in the direction of the
gradient vector ∇f(x0) = [1,−2, 0]T and its parametric equation is
[x1, x2, x3] = [−1 + t, 1− 2t, 0].
The equation of the tangent plane is therefore (x1 + 1)− 2(x2 − 1) = 0.
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Gradient and Convex Functions?

How do we understand the behaviour of gradients for convex functions?
While we have a lot to see in the coming sessions, here is a small peek through sub-level
sets of a convex function

Definition
[Sublevel Sets]: Let D ⊆ ℜn be a nonempty set and f : D → ℜ. The set

Lα(f) =
{

x|x ∈ D, f(x) ≤ α
}

is called the α−sub-level set of f.

Now if a function f is convex,
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the sublevel set will be convex for every value of
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Gradient and Convex Functions?

How do we understand the behaviour of gradients for convex functions?
While we have a lot to see in the coming sessions, here is a small peek through sub-level
sets of a convex function

Definition
[Sublevel Sets]: Let D ⊆ ℜn be a nonempty set and f : D → ℜ. The set

Lα(f) =
{

x|x ∈ D, f(x) ≤ α
}

is called the α−sub-level set of f.

Now if a function f is convex, its α−sub-level set is a convex set.
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Convex Function ⇒ Convex Sub-level sets
Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ be a convex function. Then Lα(f) is a
convex set for any α ∈ ℜ.

Proof: Consider x1,x2 ∈ Lα(f). Then by definition of the level set, x1,x2 ∈ D, f(x1) ≤ α and
f(x2) ≤ α. From convexity of D it follows that for all θ ∈ (0, 1), x = θx1 + (1− θ)x2 ∈ D.
Moreover, since f is also convex,

f(x) ≤ θf(x1) + (1− θ)f(x2) ≤ θα+ (1− θ)α = α

which implies that x ∈ Lα(f). Thus, Lα(f) is a convex set.
The converse of this theorem does not hold (for fixed α or even for all α):

Consider f(x) = x2
1+2x21

. The 0-sublevel set of this function is
{
(x1, x2) | x2 ≤ 0

}
, which is

convex. However, the function f(x) itself is not convex.
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A function may be non-convex. Yet one of its sublevel sets may be convex
What if all its sublevel sets were convex? Will the function be convex? 

Verify that for 
positive alpha
level sets
will not be convex

What is function is also bounded? 



alpha on y axis
range on x axis



Convex Function ⇒ Convex Sub-level sets
Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ be a convex function. Then Lα(f) is a
convex set for any α ∈ ℜ.

Proof: Consider x1,x2 ∈ Lα(f). Then by definition of the level set, x1,x2 ∈ D, f(x1) ≤ α and
f(x2) ≤ α. From convexity of D it follows that for all θ ∈ (0, 1), x = θx1 + (1− θ)x2 ∈ D.
Moreover, since f is also convex,

f(x) ≤ θf(x1) + (1− θ)f(x2) ≤ θα+ (1− θ)α = α

which implies that x ∈ Lα(f). Thus, Lα(f) is a convex set.
The converse of this theorem does not hold (for fixed α or even for all α):

Consider f(x) = x2
1+2x21

. The 0-sublevel set of this function is
{
(x1, x2) | x2 ≤ 0

}
, which is

convex. However, the function f(x) itself is not convex.
A function is called quasi-convex if all its sub-level sets are convex sets Eg:
Negative of the normal distribution − 1

σ
√
2π
exp
(
− (x−µ)2

2σ2

)
is quasi-convex but not convex.
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Convex Sub-level sets ≠⇒ Convex Function

A function is called quasi-convex if all its sub-level sets are convex sets. Every
quasi-convex function is not convex!
Consider the Negative of the normal distribution − 1

σ
√
2π
exp
(
− (x−µ)2

2σ2

)
. This function is

quasi-convex but not convex. Consider, instead, the simpler function
f(x) = −exp(−(x− µ)2).

▶ Then f′(x) =
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Convex Sub-level sets ≠⇒ Convex Function

A function is called quasi-convex if all its sub-level sets are convex sets. Every
quasi-convex function is not convex!
Consider the Negative of the normal distribution − 1

σ
√
2π
exp
(
− (x−µ)2

2σ2

)
. This function is

quasi-convex but not convex. Consider, instead, the simpler function
f(x) = −exp(−(x− µ)2).

▶ Then f′(x) = 2(x− µ)exp(−(x− µ)2)
▶ And f′′(x) = 2exp(−(x− µ)2)− 4(x− µ)2exp(−(x− µ)2) = (2− 4(x− µ)2)exp(−(x− µ)2)

which is < 0 if (x− µ)2 > 1
2 ,

▶ Thus, the second derivative is negative if x > µ+ 1√
2
or x < −µ− 1√

2
.

▶ Recall from discussion of convexity of f : ℜ → ℜ that if the derivative is not non-decreasing
everywhere =⇒
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Convex Sub-level sets ≠⇒ Convex Function

A function is called quasi-convex if all its sub-level sets are convex sets. Every
quasi-convex function is not convex!
Consider the Negative of the normal distribution − 1

σ
√
2π
exp
(
− (x−µ)2

2σ2

)
. This function is

quasi-convex but not convex. Consider, instead, the simpler function
f(x) = −exp(−(x− µ)2).

▶ Then f′(x) = 2(x− µ)exp(−(x− µ)2)
▶ And f′′(x) = 2exp(−(x− µ)2)− 4(x− µ)2exp(−(x− µ)2) = (2− 4(x− µ)2)exp(−(x− µ)2)

which is < 0 if (x− µ)2 > 1
2 ,

▶ Thus, the second derivative is negative if x > µ+ 1√
2
or x < −µ− 1√

2
.

▶ Recall from discussion of convexity of f : ℜ → ℜ that if the derivative is not non-decreasing
everywhere =⇒ function is not convex everywhere.

To prove that this function is quasi-convex, we can ....
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Proof that the function is Quasi-Convex
1 Inspect the Lα(f) sublevel sets of this function:

Lα(f) = {x|− exp(−(x− µ)2) ≤ α} = {x|exp(−(x− µ)2) ≥ −α}.
2 Since exp(−(x− µ)2) is monotonically increasing for x < µ and monotonically decreasing

for x > µ, the set {x|exp(−(x− µ)2) ≥ −α} will be a contiguous closed interval around µ
and therefore a convex set.

3 Thus, f(x) = −exp(−(x− µ)2) is quasi-convex (and so is its generalization - the negative
of the normal density function).

One can similarly prove that the negative of the multivariate normal density function
f(x) = − 1√

|Σ|(2π)n
exp
(
−(x− µ)TΣ−1(x− µ)

)
is also quasi-convex:
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all ellipsoids
The function 
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Proof that the function is Quasi-Convex
1 Inspect the Lα(f) sublevel sets of this function:

Lα(f) = {x|− exp(−(x− µ)2) ≤ α} = {x|exp(−(x− µ)2) ≥ −α}.
2 Since exp(−(x− µ)2) is monotonically increasing for x < µ and monotonically decreasing

for x > µ, the set {x|exp(−(x− µ)2) ≥ −α} will be a contiguous closed interval around µ
and therefore a convex set.

3 Thus, f(x) = −exp(−(x− µ)2) is quasi-convex (and so is its generalization - the negative
of the normal density function).

One can similarly prove that the negative of the multivariate normal density function
f(x) = − 1√

|Σ|(2π)n
exp
(
−(x− µ)TΣ−1(x− µ)

)
is also quasi-convex:

Lα(f) =
{

x
����−exp

(
−(x− µ)TΣ−1(x− µ)

)
≤ α
√

|Σ|(2π)n
}

=
{

x
����exp
(
−(x− µ)TΣ−1(x− µ)

)
≥ −α

√
|Σ|(2π)n

}
=

{
x
����
(
(x− µ)TΣ−1(x− µ)

)
≤ − log

(
−α
√

|Σ|(2π)n
)}

which is an ellipsoid.
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Quasi-Convex Functions and Optimization
Consider a minimization problem with a quasi-convex objective q(x) and convex functions
f1(x)...fm(x) in the constraints

minimize q(x)
subject to fi(x) ≤ 0 for each i = 1..m (4)

We note that the constraint set is

August 21, 2018 37 / 397

Eg: maximizing likelihood of
gaussian fits is equivalent to this

intersection over the 0 sublevel sets
of the fi's. 



Quasi-Convex Functions and Optimization
Consider a minimization problem with a quasi-convex objective q(x) and convex functions
f1(x)...fm(x) in the constraints

minimize q(x)
subject to fi(x) ≤ 0 for each i = 1..m (4)

We note that the constraint set is convex since (i) each fi(x) ≤ is convex sub-level set of
a convex function fi(x) and (ii) intersection of finite convex sets is convex.
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Quasi-Convex Functions and Optimization
Consider a minimization problem with a quasi-convex objective q(x) and convex functions
f1(x)...fm(x) in the constraints

minimize q(x)
subject to fi(x) ≤ 0 for each i = 1..m (4)

We note that the constraint set is convex since (i) each fi(x) ≤ is convex sub-level set of
a convex function fi(x) and (ii) intersection of finite convex sets is convex.
How do we proceed from a quasi-convex q(x) to complete convexity? Consider:

minimize t
subject to q(x) ≤ t
and fi(x) ≤ 0 for each i = 1..m

(5)

This is a
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Quasi-Convex Functions and Optimization
Consider a minimization problem with a quasi-convex objective q(x) and convex functions
f1(x)...fm(x) in the constraints

minimize q(x)
subject to fi(x) ≤ 0 for each i = 1..m (4)

We note that the constraint set is convex since (i) each fi(x) ≤ is convex sub-level set of
a convex function fi(x) and (ii) intersection of finite convex sets is convex.
How do we proceed from a quasi-convex q(x) to complete convexity? Consider:

minimize t
subject to q(x) ≤ t
and fi(x) ≤ 0 for each i = 1..m

(5)

This is a convex feasibility problem (convex objective and convex constraint set) and can
be solved as a series of
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Quasi-Convex Functions and Optimization
Consider a minimization problem with a quasi-convex objective q(x) and convex functions
f1(x)...fm(x) in the constraints

minimize q(x)
subject to fi(x) ≤ 0 for each i = 1..m (4)

We note that the constraint set is convex since (i) each fi(x) ≤ is convex sub-level set of
a convex function fi(x) and (ii) intersection of finite convex sets is convex.
How do we proceed from a quasi-convex q(x) to complete convexity? Consider:

minimize t
subject to q(x) ≤ t
and fi(x) ≤ 0 for each i = 1..m

(5)

This is a convex feasibility problem (convex objective and convex constraint set) and can
be solved as a series of convex (feasibility) optimization problems using bisection search
on t (see Section 4.2.5 of Boyd and Vandenberghe)
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Not the most brilliant way to optimize for gaussian likelihood! 
what if we take log of gaussian?

is it concave (its negative convex)



In general refer to 4.2.5 of Boyd for operations that preserve 
quasi-convexity
And what about operations that convert quasi-convex function
into a convex function? -Log(-f(x)) ? 



Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that
The gradient ∇f(x∗) at x∗ is normal to the tangent hyperplane to the level set
{x|f(x) = f(x∗)} at x∗

The gradient ∇f(x∗) at x∗ points in direction of increasing values of f(.) at x∗

Now, if f(x) is also convex
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the gradient gives you a tangential hyperplane that is
a supporting hyperplane to the sublevel set at that point



Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that
The gradient ∇f(x∗) at x∗ is normal to the tangent hyperplane to the level set
{x|f(x) = f(x∗)} at x∗

The gradient ∇f(x∗) at x∗ points in direction of increasing values of f(.) at x∗

Now, if f(x) is also convex
The gradient ∇f(x∗) at x∗ is normal to the tangent hyperplane to the sub-level set
Lf(x∗)(f) = {x|f(x) ≤ f(x∗)} at x∗, pointing away from the set Lf(x∗)(f)
The tangent hyperplane defined by ∇f(x∗) at x∗ is a supporting hyperplane to the
convex set {x|f(x) ≤ f(x∗)} at x∗
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Recall: Supporting hyperplane and Convex Sets
Supporting hyperplane to set C at boundary point xo:{

x|aTx = aTxo
}

where a ̸= 0 and aTx ≤ aTxo for all x ∈ C

Recall Supporting hyperplane theorem: if C is convex, then there exists a supporting
hyperplane at every boundary point of C.

August 21, 2018 39 / 397

H/W: Are sublevel sets always closed? 
Do they contain the boundary point? 



Convex Functions and Their Epigraphs
We saw that a convex function has a convex sub-level set. But the converse is not true. Is
there a set corresponding to a function such that one is convex if and only if the other is?
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Convex Functions and Their Epigraphs
We saw that a convex function has a convex sub-level set. But the converse is not true. Is
there a set corresponding to a function such that one is convex if and only if the other is?

Definition
[Epigraph]: Let D ⊆ ℜn be a nonempty set and f : D → ℜ. The set

{
(x, f(x)|x ∈ D

}
is

called graph of f and lies in ℜn+1. The epigraph of f is a subset of ℜn+1 and is
defined as

epi(f) =
{
(x,α)|f(x) ≤ α, x ∈ D, α ∈ ℜ

}
(6)

In some sense, the epigraph is the set of points lying above the graph of f.

Eg: Recall affine functions of vectors: aTx + b where a ∈ ℜn. Its epigraph is
{(x, t)|aTx + b ≤ t} ⊆ ℜn+1 which is a half-space (a convex set).
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Convex Functions and Their Epigraphs

Definition
[Hypograph]: Similarly, the hypograph of f is a subset of ℜn+1, lying below the graph of f

and is defined by

hyp(f) =
{
(x,α)|f(x) ≥ α, x ∈ D, α ∈ ℜ

}
(7)
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f is concave function if and only if its hypograph is convex set



Convex Functions and Their Epigraphs (contd)
There is a one to one correspondence between the convexity of function f and that of the set
epi(f), as stated in the following result.

Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ. Then
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Convex Functions and Their Epigraphs (contd)
There is a one to one correspondence between the convexity of function f and that of the set
epi(f), as stated in the following result.

Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ. Then f is convex if and only if epi(f) is
a convex set.

Proof: f convex function =⇒ epi(f) convex set
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Proof has similar traits as proof for sublevel sets



Convex Functions and Their Epigraphs (contd)
There is a one to one correspondence between the convexity of function f and that of the set
epi(f), as stated in the following result.

Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ. Then f is convex if and only if epi(f) is
a convex set.

Proof: f convex function =⇒ epi(f) convex set

Let f be convex. For any (x1,α1) ∈ epi(f) and (x2,α2) ∈ epi(f) and any θ ∈ (0, 1),

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)) ≤
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Convex Functions and Their Epigraphs (contd)
There is a one to one correspondence between the convexity of function f and that of the set
epi(f), as stated in the following result.

Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ. Then f is convex if and only if epi(f) is
a convex set.

Proof: f convex function =⇒ epi(f) convex set

Let f be convex. For any (x1,α1) ∈ epi(f) and (x2,α2) ∈ epi(f) and any θ ∈ (0, 1),

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)) ≤ θα1 + (1− θ)α2

Since D is convex, θx1 + (1− θ)x2 ∈ D. Therefore,(
θx1 + (1− θ)x2, θα1 + (1− θ)α2

)
∈
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Convex Functions and Their Epigraphs (contd)
There is a one to one correspondence between the convexity of function f and that of the set
epi(f), as stated in the following result.

Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ. Then f is convex if and only if epi(f) is
a convex set.

Proof: f convex function =⇒ epi(f) convex set

Let f be convex. For any (x1,α1) ∈ epi(f) and (x2,α2) ∈ epi(f) and any θ ∈ (0, 1),

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)) ≤ θα1 + (1− θ)α2

Since D is convex, θx1 + (1− θ)x2 ∈ D. Therefore,(
θx1 + (1− θ)x2, θα1 + (1− θ)α2

)
∈ epi(f). Thus, epi(f) is convex if f is convex. This proves

the necessity part.
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Convex Functions and Their Epigraphs (contd)

epi(f) convex set =⇒ f convex function
To prove sufficiency, assume that epi(f) is convex. Let x1,x2 ∈ D. So,

(
x1, f(x1)

)
∈ epi(f)

and
(
x2, f(x2)

)
∈ epi(f). Since epi(f) is convex, for θ ∈ (0, 1),

(
θx1 + (1− θ)x2, θα1 + (1− θ)α2

)
∈ epi(f)

which implies that

August 21, 2018 43 / 397

f must also be convex! 



Convex Functions and Their Epigraphs (contd)

epi(f) convex set =⇒ f convex function
To prove sufficiency, assume that epi(f) is convex. Let x1,x2 ∈ D. So,

(
x1, f(x1)

)
∈ epi(f)

and
(
x2, f(x2)

)
∈ epi(f). Since epi(f) is convex, for θ ∈ (0, 1),

(
θx1 + (1− θ)x2, θα1 + (1− θ)α2

)
∈ epi(f)

which implies that f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)) for any θ ∈ (0, 1). This proves
the sufficiency.

August 21, 2018 43 / 397



Epigraph and Convexity

Given a convex function f(x) and a convex domain D, the convex optimization problem

min
x∈D

f(x)

can be equivalently expressed as

min
x∈D,t∈ℜ,f(x)≤t

t =
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Epigraph and Convexity

Given a convex function f(x) and a convex domain D, the convex optimization problem

min
x∈D

f(x)

can be equivalently expressed as

min
x∈D,t∈ℜ,f(x)≤t

t = min
x∈D,(x,t)∈epi(f)

t

Recall the first order condition for convexity of a differentiable function f : ℜ → ℜ. Is
there an equivalent for f : D → ℜ?
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Epigraph and Convexity

Given a convex function f(x) and a convex domain D, the convex optimization problem

min
x∈D

f(x)

can be equivalently expressed as

min
x∈D,t∈ℜ,f(x)≤t

t = min
x∈D,(x,t)∈epi(f)

t

Recall the first order condition for convexity of a differentiable function f : ℜ → ℜ. Is
there an equivalent for f : D → ℜ? Let f : D → ℜ be a differentiable convex function on
an open convex set D. Then f is convex if and only if, for any x,y ∈ D,

f(y) ≥ f(x) +∇Tf(x)(y− x)
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Epigraph, Convexity and Gradients
..(contd).... f is convex if and only if, for any x,y ∈ D,

f(y) ≥ f(x) +∇Tf(x)(y− x) (8)
If D ⊆ ℜn, this means that for each and every point x ∈ D for a convex real function f(x),
there exists a hyperplane H ∈ ℜn+1 having normal [∇f(x) − 1]T supporting the function
epigraph at [x f(x)]T. See Figure below sourced from https://ccrma.stanford.edu/~dattorro/gcf.pdf
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Epigraph, Convexity, Gradients and Level-sets

Revisiting level sets: We can embed the graph of a function of n variables as the 0-level
set of a function of n+ 1 variables

1(that is, the tangent hyperplane to f(x) at the point x)
August 21, 2018 46 / 397



Epigraph, Convexity, Gradients and Level-sets

Revisiting level sets: We can embed the graph of a function of n variables as the 0-level
set of a function of n+ 1 variables
More concretely, if f : D → ℜ, D ⊆ ℜn then we define F : D′ → ℜ, D′ = D × ℜ as
F(x, z) = f(x)− z with x ∈ D′.
The gradient of F at any point (x, z) is simply, ∇F(x, z) =

[
fx1 , fx2 , . . . , fxn ,−1

]
with the

first n components of ∇F(x, z) given by the n components of ∇f(x).
The graph of f can be recovered as the 0−level set of F given by F(x, z) = 0.
The equation of the tangent hyperplane (y, z) to the 0−level set of F at the point
(x, f(x)) is1 ∇TF(x, f(x)).[y− x, z− f(x)]T = [∇f(x),−1]T.[y− x, z− f(x)]T = 0.

1(that is, the tangent hyperplane to f(x) at the point x)
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Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for ∇F(x), the equation of the tangent plane (y, z) can be
written as




n∑

i=1

fxi(x)(yi − xi)


−
(
z− f(x)

)
= 0

or equivalently as, (
∇Tf(x)(y− x)

)
+ f(x) = z
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Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for ∇F(x), the equation of the tangent plane (y, z) can be
written as




n∑

i=1

fxi(x)(yi − xi)


−
(
z− f(x)

)
= 0

or equivalently as, (
∇Tf(x)(y− x)

)
+ f(x) = z

Revisiting the gradient-based condition for convexity in (8), we have that for a convex
function, f(y) is greater than each such z on the hyperplane: f(y) ≥ z = f(x) +∇Tf(x)(y− x)
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Gradient and Epigraph (contd)
As an example, consider the paraboloid, f(x1, x2) = x21 + x22 − 9 that attains its minimum at
(0, 0). We see below its epigraph.
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Illustrations to understand Gradient
For the paraboloid, f(x1, x2) = x21 + x22 − 9, the corresponding
F(x1, x2, z) = x21 + x22 − 9− z and the point x0 = (x0, z) = (1, 1,−7) which lies on the
0-level surface of F. The gradient ∇F(x1, x2, z) is [2x1, 2x2, −1], which when evaluated
at x0 = (1, 1,−7) is [−2, −2, −1]. The equation of the tangent plane to f at x0 is
therefore given by 2(x1 − 1) + 2(x2 − 1)− 7 = z.
The paraboloid attains its minimum at (0, 0). Plot the tanget plane to the surface at
(0, 0, f(0, 0)) as also the gradient vector ∇F at (0, 0, f(0, 0)). What do you expect?
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