HW: Illustrating Computation of Directional Derivative

- As another example, let us find the rate of change of $f(x, y, z)=e^{x y z}$ at $p_{0}=(1,2,3)$ in the direction from $p_{1}=(1,2,3)$ to $p_{2}=(-4,6,-1)$.
- We first construct a unit vector from p_{1} to $p_{2} ; \mathbf{v}=\frac{1}{\sqrt{57}}[-5,4,-4]$.
- The gradient of f in general is $\nabla f=\left[y z e^{x y z}, x z e^{x y z}, x y e^{x y z}\right]=e^{x y z}[y z, x z, x y]$.
- Evaluating the gradient at a specific point $p_{0}, \nabla f(1,2,3)=e^{6}[6,3,2]^{T}$. The directional derivative at p_{0} in the direction \mathbf{v} is $D_{\mathbf{u}} f(1,2,3)=e^{6}[6,3,2] \cdot \frac{1}{\sqrt{57}}[-5,4,-4]^{T}=e^{6} \frac{-26}{\sqrt{57}}$.
- This directional derivative is negative, indicating that the function f decreases at p_{0} in the direction from p_{1} to p_{2}.

HW: Level Surface based Interpretation of Gradient: Examples

- Let $f\left(x_{1}, x, x_{3}\right)=x_{1}^{2} x_{2}^{3} x_{3}^{4}$ and consider the point $\mathbf{x}^{0}=(1,2,1)$. We will find the equation of the tangent plane to the level surface through x^{0}.
- The level surface through \mathbf{x}^{0} is determined by setting f equal to its value evaluated at \mathbf{x}^{0}; that is, the level surface will have the equation $x_{1}^{2} x_{2}^{3} x_{3}^{4}=1^{2} 2^{3} 1^{4}=8$.
- The gradient vector (normal to tangent plane) at $(1,2,1)$ is

$$
\left.\nabla f\left(x_{1}, x_{2}, x_{3}\right)\right|_{(1,2,1)}=\left.\left[2 x_{1} x_{2}^{3} x_{3}^{4}, 3 x_{1}^{2} x_{2}^{2} x_{3}^{4}, 4 x_{1}^{2} x_{2}^{3} x_{3}^{3}\right]^{T}\right|_{(1,2,1)}=[16,12,32]^{T} .
$$

- The equation of the tangent plane at x^{0}, given the normal vector $\nabla f\left(\mathrm{x}^{0}\right)$ can be easily written down: $\nabla f\left(\mathbf{x}^{0}\right)^{T} .\left[\mathrm{x}-\mathrm{x}^{0}\right]=0$ which turns out to be $16\left(x_{1}-1\right)+12\left(x_{2}-2\right)+32\left(x_{3}-1\right)=0$, a plane in $3 D$.

HW: Level Surface based Interpretation of Gradient: Examples

- Consider the function $f(x, y, z)=\frac{x}{y+z}$. The directional derivative of f in the direction of the vector $\mathbf{v}=\frac{1}{\sqrt{14}}[1,2,3]$ at the point $x^{0}=(4,1,1)$ is
$\left.\nabla^{T} f\right|_{(4,1,1)} \cdot \frac{1}{\sqrt{14}}[1,2,3]^{T}=\left.\left[\frac{1}{y+z},-\frac{x}{(y+z)^{2}},-\frac{x}{(y+z)^{2}}\right]\right|_{(4,1,1)} \cdot \frac{1}{\sqrt{14}}[1,2,3]^{T}=$
$\left[\frac{1}{2},-1,-1\right] \cdot \frac{1}{\sqrt{14}}[1,2,3]^{T}=-\frac{9}{2 \sqrt{14}}$.
- The directional derivative is negative, indicating that the function decreases along the direction of \mathbf{v}. Based on an earlier result, we know that the maximum rate of change of a function at a point \mathbf{x} is given by $\|\nabla f(\mathbf{x})\|$ and it is in the direction $\frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|}$.
- In the example under consideration, this maximum rate of change at \mathbf{x}^{0} is $\frac{3}{2}$ and it is in the direction of the vector $\frac{2}{3}\left[\frac{1}{2},-1,-1\right]$.

HW: Level Surface based Interpretation of Gradient: Examples

Let us find the maximum rate of change of the function $f(x, y, z)=x^{2} y^{3} z^{4}$ at the point $\mathbf{x}^{0}=(1,1,1)$ and the direction in which it occurs. The gradient at \mathbf{x}^{0} is
$\left.\nabla^{T} f\right|_{(1,1,1)}=[2,3,4]$. The maximum rate of change at \mathbf{x}^{0} is therefore $\sqrt{29}$ and the direction of the corresponding rate of change is $\frac{1}{\sqrt{29}}[2,3,4]$. The minimum rate of change is $-\sqrt{29}$ and the corresponding direction is $-\frac{1}{\sqrt{29}}[2,3,4]$.

HW: Level Surface based Interpretation of Gradient: Examples

Determine the equations of
(a) the tangent plane to the paraboloid $\mathcal{P}: x_{1}=x_{2}^{2}+x_{3}^{2}+2$ at $(-1,1,0)$ and
(b) the normal line to the tangent plane.

To realize this as the level surface of a function of three variables, we define the function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-x_{2}^{2}-x_{3}^{2}$ and find that the paraboloid \mathcal{P} is the same as the level surface $f\left(x_{1}, x_{2}, x_{3}\right)=-2$. The normal to the tangent plane to \mathcal{P} at \mathbf{x}^{0} is in the direction of the gradient vector $\nabla f\left(\mathbf{x}^{0}\right)=[1,-2,0]^{T}$ and its parametric equation is $\left[x_{1}, x_{2}, x_{3}\right]=[-1+t, 1-2 t, 0]$.
The equation of the tangent plane is therefore $\left(x_{1}+1\right)-2\left(x_{2}-1\right)=0$.

Gradient and Convex Functions?

- How do we understand the behaviour of gradients for convex functions?
- While we have a lot to see in the coming sessions, here is a small peek through sub-level sets of a convex function

Definition

[Sublevel Sets]: Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty set and $f: \mathcal{D} \rightarrow \Re$. The set

$$
L_{\alpha}(f)=\{\mathbf{x} \mid \mathbf{x} \in \mathcal{D}, f(\mathbf{x}) \leq \alpha\}
$$

is called the α-sub-level set of f.
Now if a function f is convex, the sublevel set will be convex for every value of alpha

Gradient and Convex Functions?

- How do we understand the behaviour of gradients for convex functions?
- While we have a lot to see in the coming sessions, here is a small peek through sub-level sets of a convex function

Definition

[Sublevel Sets]: Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty set and $f: \mathcal{D} \rightarrow \Re$. The set

$$
L_{\alpha}(f)=\{\mathbf{x} \mid \mathbf{x} \in \mathcal{D}, f(\mathbf{x}) \leq \alpha\}
$$

is called the α-sub-level set of f.
Now if a function f is convex, its α-sub-level set is a convex set.

Convex Function \Rightarrow Convex Sub-level sets

Theorem

Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty convex set, and $f: \mathcal{D} \rightarrow \Re$ be a convex function. Then $L_{\alpha}(f)$ is a convex set for any $\alpha \in \Re$.

Proof: Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in L_{\alpha}(f)$. Then by definition of the level set, $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}, f\left(\mathbf{x}_{1}\right) \leq \alpha$ and $f\left(\mathbf{x}_{2}\right) \leq \alpha$. From convexity of \mathcal{D} it follows that for all $\theta \in(0,1), \mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2} \in \mathcal{D}$. Moreover, since f is also convex,

$$
f(\mathbf{x}) \leq \theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \leq \theta \alpha+(1-\theta) \alpha=\alpha \quad \text { positive alpha }
$$ level sets

which implies that $\mathbf{x} \in L_{\alpha}(f)$. Thus, $L_{\alpha}(f)$ is a convex set.
Verify that for evel sets The converse of this theorem does not hold (for fixed α or even for all α): will not be conve

- Consider $f(\mathbf{x})=\frac{x_{2}}{1+2 x_{1}^{2}}$. The 0 -sublevel set of this function is $\left\{\left(x_{1}, x_{2}\right) \mid x_{2} \leq 0\right\}$, which is convex. However, the function $f(\mathrm{x})$ itself is not convex.
A function may be non-convex. Yet one of its sublevel sets may be con What if all its sublevel sets were convex? Will the function be convex? What is function is also bounded?

Convex Function \Rightarrow Convex Sub-level sets

Theorem

Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty convex set, and $f: \mathcal{D} \rightarrow \Re$ be a convex function. Then $L_{\alpha}(f)$ is a convex set for any $\alpha \in \Re$.

Proof: Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in L_{\alpha}(f)$. Then by definition of the level set, $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}, f\left(\mathbf{x}_{1}\right) \leq \alpha$ and $f\left(\mathbf{x}_{2}\right) \leq \alpha$. From convexity of \mathcal{D} it follows that for all $\theta \in(0,1), \mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2} \in \mathcal{D}$. Moreover, since f is also convex,

$$
f(\mathbf{x}) \leq \theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \leq \theta \alpha+(1-\theta) \alpha=\alpha
$$

which implies that $\mathbf{x} \in L_{\alpha}(f)$. Thus, $L_{\alpha}(f)$ is a convex set.
The converse of this theorem does not hold (for fixed α or even for all α):

- Consider $f(\mathbf{x})=\frac{x_{2}}{1+2 x_{1}^{2}}$. The 0 -sublevel set of this function is $\left\{\left(x_{1}, x_{2}\right) \mid x_{2} \leq 0\right\}$, which is convex. However, the function $f(\mathbf{x})$ itself is not convex.
- A function is called quasi-convex if all its sub-level sets are convex sets Eg : Negative of the normal distribution $-\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$ is quasi-convex but not convex.

Convex Sub-level sets \nRightarrow Convex Function

- A function is called quasi-convex if all its sub-level sets are convex sets. Every quasi-convex function is not convex!
- Consider the Negative of the normal distribution $-\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$. This function is quasi-convex but not convex. Consider, instead, the simpler function $f(x)=-\exp \left(-(x-\mu)^{2}\right)$.
- Then $f(x)=$

Convex Sub-level sets \nRightarrow Convex Function

- A function is called quasi-convex if all its sub-level sets are convex sets. Every quasi-convex function is not convex!
- Consider the Negative of the normal distribution $-\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$. This function is quasi-convex but not convex. Consider, instead, the simpler function $f(x)=-\exp \left(-(x-\mu)^{2}\right)$.
- Then $f(x)=2(x-\mu) \exp \left(-(x-\mu)^{2}\right)$
- And $f^{\prime}(x)=2 \exp \left(-(x-\mu)^{2}\right)-4(x-\mu)^{2} \exp \left(-(x-\mu)^{2}\right)=\left(2-4(x-\mu)^{2}\right) \exp \left(-(x-\mu)^{2}\right)$ which is <0 if $(x-\mu)^{2}>\frac{1}{2}$,
- Thus, the second derivative is negative if $x>\mu+\frac{1}{\sqrt{2}}$ or $x<-\mu-\frac{1}{\sqrt{2}}$.
- Recall from discussion of convexity of $f: \Re \rightarrow \Re$ that if the derivative is not non-decreasing everywhere \Longrightarrow

Convex Sub-level sets \nRightarrow Convex Function

- A function is called quasi-convex if all its sub-level sets are convex sets. Every quasi-convex function is not convex!
- Consider the Negative of the normal distribution $-\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$. This function is quasi-convex but not convex. Consider, instead, the simpler function $f(x)=-\exp \left(-(x-\mu)^{2}\right)$.
- Then $f(x)=2(x-\mu) \exp \left(-(x-\mu)^{2}\right)$
- And $f^{\prime}(x)=2 \exp \left(-(x-\mu)^{2}\right)-4(x-\mu)^{2} \exp \left(-(x-\mu)^{2}\right)=\left(2-4(x-\mu)^{2}\right) \exp \left(-(x-\mu)^{2}\right)$ which is <0 if $(x-\mu)^{2}>\frac{1}{2}$,
- Thus, the second derivative is negative if $x>\mu+\frac{1}{\sqrt{2}}$ or $x<-\mu-\frac{1}{\sqrt{2}}$.
- Recall from discussion of convexity of $f: \Re \rightarrow \Re$ that if the derivative is not non-decreasing everywhere \Longrightarrow function is not convex everywhere.
- To prove that this function is quasi-convex, we can

Proof that the function is Quasi-Convex

(1) Inspect the $L_{\alpha}(f)$ sublevel sets of this function:

$$
L_{\alpha}(f)=\left\{x \mid-\exp \left(-(x-\mu)^{2}\right) \leq \alpha\right\}=\left\{x \mid \exp \left(-(x-\mu)^{2}\right) \geq-\alpha\right\} .
$$

(2) Since $\exp \left(-(x-\mu)^{2}\right)$ is monotonically increasing for $x<\mu$ and monotonically decreasing for $x>\mu$, the set $\left\{x \mid \exp \left(-(x-\mu)^{2}\right) \geq-\alpha\right\}$ will be a contiguous closed interval around μ and therefore a convex set.
(3) Thus, $f(x)=-\exp \left(-(x-\mu)^{2}\right)$ is quasi-convex (and so is its generalization - the negative of the normal density function).
One can similarly prove that the negative of the multivariate normal density function $f(\mathbf{x})=-\frac{1}{\sqrt{|\Sigma|(2 \pi)^{n}}} \exp \left(-(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)$ is also quasi-convex:

The sublevel sets in R2 are all ellipsoids The function graph in R3 is not
surface

Proof that the function is Quasi-Convex

(1) Inspect the $L_{\alpha}(f)$ sublevel sets of this function:

$$
L_{\alpha}(f)=\left\{x \mid-\exp \left(-(x-\mu)^{2}\right) \leq \alpha\right\}=\left\{x \mid \exp \left(-(x-\mu)^{2}\right) \geq-\alpha\right\} .
$$

(2) Since $\exp \left(-(x-\mu)^{2}\right)$ is monotonically increasing for $x<\mu$ and monotonically decreasing for $x>\mu$, the set $\left\{x \mid \exp \left(-(x-\mu)^{2}\right) \geq-\alpha\right\}$ will be a contiguous closed interval around μ and therefore a convex set.
(3) Thus, $f(x)=-\exp \left(-(x-\mu)^{2}\right)$ is quasi-convex (and so is its generalization - the negative of the normal density function).
One can similarly prove that the negative of the multivariate normal density function $f(\mathbf{x})=-\frac{1}{\sqrt{|\Sigma|(2 \pi)^{n}}} \exp \left(-(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)$ is also quasi-convex:
$L_{\alpha}(f)=\left\{\mathbf{x} \mid-\exp \left(-(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right) \leq \alpha \sqrt{|\Sigma|(2 \pi)^{n}}\right\}=$
$\left\{\mathbf{x} \mid \exp \left(-(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right) \geq-\alpha \sqrt{|\Sigma|(2 \pi)^{n}}\right\}=$
$\left\{\mathbf{x} \mid\left((\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right) \leq-\log \left(-\alpha \sqrt{|\Sigma|(2 \pi)^{n}}\right)\right\}$ which is an ellipsoid. Verify!

Quasi-Convex Functions and Optimization

- Consider a minimization problem with a quasi-convex objective $q(\mathbf{x})$ and convex functions $\underline{f_{1}(\mathbf{x}) \ldots f_{m}(\mathbf{x}) \text { in }}$ the constraints Eg: maximizing likelihood of

$$
\begin{array}{ll}
\text { minimize } & q(\mathbf{x}) \quad \text { gaussian fits is equivalent to this } \\
\text { subject to } & \underline{f_{i}(\mathbf{x}) \leq 0} \text { for each } i=1 . . m
\end{array}
$$

We note that the constraint set is intersection over the 0 sublevel sets of the fi's.

Quasi-Convex Functions and Optimization

- Consider a minimization problem with a quasi-convex objective $q(\mathbf{x})$ and convex functions $f_{1}(\mathbf{x}) \ldots f_{m}(\mathbf{x})$ in the constraints

$$
\begin{array}{ll}
\operatorname{minimize} & q(\mathrm{x}) \\
\text { subject to } & f_{i}(\mathrm{x}) \leq 0 \quad \text { for each } i=1 . . m \tag{4}
\end{array}
$$

We note that the constraint set is convex since (i) each $f_{i}(\mathbf{x}) \leq$ is convex sub-level set of a convex function $f_{i}(\mathbf{x})$ and (ii) intersection of finite convex sets is convex.

Quasi-Convex Functions and Optimization

- Consider a minimization problem with a quasi-convex objective $q(x)$ and convex functions $f_{1}(\mathbf{x}) \ldots f_{m}(\mathbf{x})$ in the constraints

$$
\begin{array}{ll}
\operatorname{minimize} & q(\mathbf{x}) \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 0 \quad \text { for each } i=1 . . m \tag{4}
\end{array}
$$

We note that the constraint set is convex since (i) each $f_{i}(\mathbf{x}) \leq$ is convex sub-level set of a convex function $f_{i}(\mathbf{x})$ and (ii) intersection of finite convex sets is convex.

- How do we proceed from a quasi-convex $q(\mathbf{x})$ to complete convexity? Consider:

$\operatorname{minimize}$	t	linear function in objective is convex
subject to	$q(\mathbf{x}) \leq t$	
and	$f_{i}(\mathbf{x}) \leq 0 \quad$ for each $i=1 . . m$	convex constraiht
set		

This is a problem with convex objective and convex constraint set

Quasi-Convex Functions and Optimization

- Consider a minimization problem with a quasi-convex objective $q(x)$ and convex functions $f_{1}(\mathbf{x}) \ldots f_{m}(\mathbf{x})$ in the constraints

$$
\begin{array}{ll}
\operatorname{minimize} & q(\mathbf{x}) \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 0 \quad \text { for each } i=1 . . m \tag{4}
\end{array}
$$

We note that the constraint set is convex since (i) each $f_{i}(\mathbf{x}) \leq$ is convex sub-level set of a convex function $f_{i}(\mathbf{x})$ and (ii) intersection of finite convex sets is convex.

- How do we proceed from a quasi-convex $q(\mathbf{x})$ to complete convexity? Consider:

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & q(\mathbf{x}) \leq t \tag{5}\\
\text { and } & f_{i}(\mathbf{x}) \leq 0 \quad \text { for each } i=1 . . m
\end{array}
$$

can be posed as
This is a convex feasibility problem (convex objective and convex constraint set) and can be solved as a series of bisection search on convex feasibility

Quasi-Convex Functions and Optimization

- Consider a minimization problem with a quasi-convex objective $q(\mathbf{x})$ and convex functions $f_{1}(\mathbf{x}) \ldots f_{m}(\mathbf{x})$ in the constraints

$$
\begin{array}{ll}
\operatorname{minimize} & q(\mathbf{x}) \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 0 \quad \text { for each } i=1 . . m \tag{4}
\end{array}
$$

We note that the constraint set is convex since (i) each $f_{i}(\mathbf{x}) \leq$ is convex sub-level set of a convex function $f_{i}(\mathbf{x})$ and (ii) intersection of finite convex sets is convex.

- How do we proceed from a quasi-convex $q(\mathbf{x})$ to complete convexity? Consider: Not the most brilliant way to optimize for gaussian likelihood!
minimize t what if we take log of gaussian?
subject to $q(x) \leq t \quad$ is it concave (its negative con $(5 x)$
and $\quad f_{i}(\mathbf{x}) \leq 0 \quad$ for each $i=1 . . m$
This is a convex feasibility problem (convex objective and convex constraint set) and can be solved as a series of convex (feasibility) optimization problems using bisection search on t (see Section 4.2.5 of Boyd and Vandenberghe)

In general refer to 4.2.5 of Boyd for operations that preserve quasi-convexity
And what about operations that convert quasi-convex function into a convex function? - Log(-f(x)) ?

Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that

- The gradient $\nabla f\left(\mathbf{x}^{*}\right)$ at \mathbf{x}^{*} is normal to the tangent hyperplane to the level set $\left\{\mathbf{x} \mid f(\mathbf{x})=f\left(\mathbf{x}^{*}\right)\right\}$ at \mathbf{x}^{*}
indepdendent
- The gradient $\nabla f\left(\mathbf{x}^{*}\right)$ at \mathbf{x}^{*} points in direction of increasing values of $f($.$) at \mathbf{x}^{*}$ of Now, if $f(\mathbf{x})$ is also convex
the gradient gives you a tangential hyperplane that is a supporting hyperplane to the sublevel set at that point

Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that

- The gradient $\nabla f\left(\mathbf{x}^{*}\right)$ at \mathbf{x}^{*} is normal to the tangent hyperplane to the level set $\left\{\mathbf{x} \mid f(\mathbf{x})=f\left(\mathbf{x}^{*}\right)\right\}$ at \mathbf{x}^{*}
- The gradient $\nabla f\left(\mathbf{x}^{*}\right)$ at \mathbf{x}^{*} points in direction of increasing values of $f($.$) at \mathbf{x}^{*}$ Now, if $f(\mathbf{x})$ is also convex
- The gradient $\nabla f\left(\mathbf{x}^{*}\right)$ at \mathbf{x}^{*} is normal to the tangent hyperplane to the sub-level set $L_{f\left(\mathbf{x}^{*}\right)}(f)=\left\{\mathbf{x} \mid f(\mathbf{x}) \leq f\left(\mathbf{x}^{*}\right)\right\}$ at \mathbf{x}^{*}, pointing away from the set $L_{f\left(\mathbf{x}^{*}\right)}(f)$
- The tangent hyperplane defined by $\nabla f\left(\mathbf{x}^{*}\right)$ at \mathbf{x}^{*} is a supporting hyperplane to the convex set $\left\{\mathbf{x} \mid f(\mathbf{x}) \leq f\left(\mathbf{x}^{*}\right)\right\}$ at \mathbf{x}^{*}

Recall: Supporting hyperplane and Convex Sets

Supporting hyperplane to set \mathcal{C} at boundary point \mathbf{x}_{o} :

- $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=\mathbf{a}^{T} \mathbf{x}_{o}\right\}$
- where $\mathbf{a} \neq 0$ and $\mathbf{a}^{T} \mathbf{x} \leq \mathbf{a}^{T} \mathbf{x}_{o}$ for all $\mathbf{x} \in \mathcal{C}$

H/W: Are sublevel sets always closed?
Do they contain the boundary point?

Recall Supporting hyperplane theorem: if \mathcal{C} is convex, then there exists a supporting hyperplane at every boundary point of C.

Convex Functions and Their Epigraphs

We saw that a convex function has a convex sub-level set. But the converse is not true. Is there a set corresponding to a function such that one is convex if and only if the other is?

YES: Set of points lying above the graph of the function Also called "Epigraph"

Convex Functions and Their Epigraphs

We saw that a convex function has a convex sub-level set. But the converse is not true. Is there a set corresponding to a function such that one is convex if and only if the other is?

Definition

[Epigraph]: Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty set and $f: \mathcal{D} \rightarrow \Re$. The set $\{(\mathbf{x}, f(\mathbf{x}) \mid \mathbf{x} \in \mathcal{D}\}$ is called graph of f and lies in \Re^{n+1}. The epigraph of f is a subset of \Re^{n+1} and is defined as

$$
\begin{equation*}
e p i(f)=\{(\mathbf{x}, \alpha) \mid f(\mathbf{x}) \leq \alpha, \mathbf{x} \in \mathcal{D}, \alpha \in \Re\} \tag{6}
\end{equation*}
$$

In some sense, the epigraph is the set of points lying above the graph of f.
Eg: Recall affine functions of vectors: $\mathbf{a}^{T} \mathbf{x}+b$ where $\mathbf{a} \in \Re^{n}$. Its epigraph is $\left\{(\mathbf{x}, t) \mid \mathbf{a}^{T} \mathbf{x}+b \leq t\right\} \subseteq \Re^{n+1}$ which is a half-space (a convex set).

Convex Functions and Their Epigraphs

Definition

[Hypograph]: Similarly, the hypograph of f is a subset of \Re^{n+1}, lying below the graph of f and is defined by

$$
\begin{equation*}
\operatorname{hyp}(f)=\{(\mathbf{x}, \alpha) \mid f(\mathbf{x}) \geq \alpha, \mathbf{x} \in \mathcal{D}, \alpha \in \Re\} \tag{7}
\end{equation*}
$$

f is concave function if and only if its hypograph is convex set

Convex Functions and Their Epigraphs (contd)

There is a one to one correspondence between the convexity of function f and that of the set $e p i(f)$, as stated in the following result.

Theorem

Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty convex set, and $f: \mathcal{D} \rightarrow \Re$. Then

Convex Functions and Their Epigraphs (contd)

There is a one to one correspondence between the convexity of function f and that of the set epi(f), as stated in the following result.

Theorem

Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty convex set, and $f: \mathcal{D} \rightarrow \Re$. Then f is convex if and only if epi(f) is a convex set.

Proof: f convex function $\Longrightarrow e p i(f)$ convex set

Proof has similar traits as proof for sublevel sets

Convex Functions and Their Epigraphs (contd)

There is a one to one correspondence between the convexity of function f and that of the set epi(f), as stated in the following result.

Theorem

Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty convex set, and $f: \mathcal{D} \rightarrow \Re$. Then f is convex if and only if epi(f) is a convex set.

Proof: f convex function $\Longrightarrow e p i(f)$ convex set
Let f be convex. For any $\left(\mathrm{x}_{1}, \alpha_{1}\right) \in e p i(f)$ and $\left(\mathrm{x}_{2}, \alpha_{2}\right) \in e p i(f)$ and any $\theta \in(0,1)$,

$$
\begin{gathered}
\left.f\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right) \leq \theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right)\right) \leq \text { use property of member } \\
\text { By convexity of } \mathrm{f}
\end{gathered}
$$

Convex Functions and Their Epigraphs (contd)

There is a one to one correspondence between the convexity of function f and that of the set $e p i(f)$, as stated in the following result.

Theorem

Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty convex set, and $f: \mathcal{D} \rightarrow \Re$. Then f is convex if and only if epi(f) is a convex set.

Proof: f convex function $\Longrightarrow e p i(f)$ convex set
Let f be convex. For any $\left(\mathbf{x}_{1}, \alpha_{1}\right) \in e p i(f)$ and $\left(\mathbf{x}_{2}, \alpha_{2}\right) \in e p i(f)$ and any $\theta \in(0,1)$,

$$
\left.f\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right) \leq \theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right)\right) \leq \theta \alpha_{1}+(1-\theta) \alpha_{2}
$$

Since \mathcal{D} is convex, $\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2} \in \mathcal{D}$. Therefore, $\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}, \theta \alpha_{1}+(1-\theta) \alpha_{2}\right) \in \operatorname{epi}(f)$

Convex Functions and Their Epigraphs (contd)

There is a one to one correspondence between the convexity of function f and that of the set $e p i(f)$, as stated in the following result.

Theorem

Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty convex set, and $f: \mathcal{D} \rightarrow \Re$. Then f is convex if and only if epi(f) is a convex set.

Proof: f convex function $\Longrightarrow e p i(f)$ convex set
Let f be convex. For any $\left(\mathbf{x}_{1}, \alpha_{1}\right) \in e p i(f)$ and $\left(\mathbf{x}_{2}, \alpha_{2}\right) \in e p i(f)$ and any $\theta \in(0,1)$,

$$
\left.f\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right) \leq \theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right)\right) \leq \theta \alpha_{1}+(1-\theta) \alpha_{2}
$$

Since \mathcal{D} is convex, $\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2} \in \mathcal{D}$. Therefore, $\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}, \theta \alpha_{1}+(1-\theta) \alpha_{2}\right) \in e p i(f)$. Thus, epi(f) is convex if f is convex. This proves the necessity part.

Convex Functions and Their Epigraphs (contd)

$e p i(f)$ convex set $\Longrightarrow f$ convex function
To prove sufficiency, assume that epi(f) is convex. Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$. So, $\left(\mathbf{x}_{1}, f\left(\mathbf{x}_{1}\right)\right) \in \operatorname{epi}(f)$ and $\left(\mathrm{x}_{2}, f\left(\mathrm{x}_{2}\right)\right) \in \operatorname{epi}(f)$. Since epi (f) is convex, for $\theta \in(0,1)$,

$$
\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}, \theta \alpha_{1}+(1-\theta) \alpha_{2}\right) \in \operatorname{epi}(f)
$$

which implies that f must also be convex!

Convex Functions and Their Epigraphs (contd)

epi (f) convex set $\Longrightarrow f$ convex function
To prove sufficiency, assume that epi(f) is convex. Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$. So, $\left(\mathbf{x}_{1}, f\left(\mathbf{x}_{1}\right)\right) \in \operatorname{epi}(f)$ and $\left(\mathrm{x}_{2}, f\left(\mathrm{x}_{2}\right)\right) \in$ epi (f). Since epi (f) is convex, for $\theta \in(0,1)$,

$$
\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}, \theta \alpha_{1}+(1-\theta) \alpha_{2}\right) \in e p i(f)
$$

which implies that $\left.f\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right) \leq \theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right)\right)$ for any $\theta \in(0,1)$. This proves the sufficiency.

Epigraph and Convexity

- Given a convex function $f(x)$ and a convex domain \mathcal{D}, the convex optimization problem

$$
\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})
$$

can be equivalently expressed as

$$
\min _{\mathbf{x} \in \mathcal{D}, t \in \Re, f(\mathbf{x}) \leq t} t=
$$

Epigraph and Convexity

- Given a convex function $f(\mathbf{x})$ and a convex domain \mathcal{D}, the convex optimization problem

$$
\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})
$$

can be equivalently expressed as

$$
\min _{\mathbf{x} \in \mathcal{D}, t \in \Re, \underline{f(\mathbf{x}) \leq t}} t=\min _{\mathbf{x} \in \mathcal{D}, \underline{(\mathbf{x}, t) \in e p i(f)}} t
$$

minimize upper bound on f

- Recall the first order condition for convexity of a differentiable function $f: \Re \rightarrow \Re$. Is there an equivalent for $f: \mathcal{D} \rightarrow \Re$?

Key idea: Supporting hyperplane to epigraph is The lower bound to the graph

Epigraph and Convexity

- Given a convex function $f(\mathbf{x})$ and a convex domain \mathcal{D}, the convex optimization problem

$$
\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})
$$

can be equivalently expressed as

$$
\min _{\mathbf{x} \in \mathcal{D}, t \in \Re, f(\mathbf{x}) \leq t} t=\min _{\mathbf{x} \in \mathcal{D},(\mathbf{x}, t) \in e p i(f)} t
$$

- Recall the first order condition for convexity of a differentiable function $f: \Re \rightarrow \Re$. Is there an equivalent for $f: \mathcal{D} \rightarrow \Re$? Let $f: \mathcal{D} \rightarrow \Re$ be a differentiable convex function on an open convex set \mathcal{D}. Then f is convex if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})
$$

First order taylor expansiog lower bounds.

Epigraph, Convexity and Gradients

..(contd).... f is convex if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{8}
\end{equation*}
$$

If $\mathcal{D} \subseteq \Re^{n}$, this means that for each and every point $\mathbf{x} \in \mathcal{D}$ for a convex real function $f(\mathbf{x})$, there exists a hyperplane $H \in \Re^{n+1}$ having normal $[\nabla f(\mathbf{x})-1]^{T}$ supporting the function epigraph at $[\mathbf{x} f(\mathbf{x})]^{T}$. See Figure below sourced from https://ccrma.stanford.edu/dattorro/gcf.pdf

Epigraph, Convexity, Gradients and Level-sets

- Revisiting level sets: We can embed the graph of a function of n variables as the 0 -level set of a function of $n+1$ variables

[^0]
Epigraph, Convexity, Gradients and Level-sets

- Revisiting level sets: We can embed the graph of a function of n variables as the 0 -level set of a function of $n+1$ variables
- More concretely, if $f: \mathcal{D} \rightarrow \Re, \mathcal{D} \subseteq \Re^{n}$ then we define $F: \mathcal{D}^{\prime} \rightarrow \Re, \mathcal{D}^{\prime}=\mathcal{D} \times \Re$ as $F(\mathrm{x}, z)=f(\mathrm{x})-z$ with $\mathrm{x} \in \mathcal{D}^{\prime}$.
- The gradient of F at any point (\mathbf{x}, z) is simply, $\nabla F(\mathbf{x}, z)=\left[f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}},-1\right]$ with the first n components of $\nabla F(x, z)$ given by the n components of $\nabla f(x)$.
- The graph of f can be recovered as the 0 -level set of F given by $F(\mathbf{x}, z)=0$.
- The equation of the tangent hyperplane (\mathbf{y}, z) to the 0 -level set of F at the point $(\mathbf{x}, f(\mathbf{x}))$ is ${ }^{1} \nabla^{T} F(\mathbf{x}, f(\mathbf{x})) \cdot[\mathbf{y}-\mathbf{x}, z-f(\mathbf{x})]^{T}=[\nabla f(\mathbf{x}),-1]^{T} \cdot[\mathbf{y}-\mathbf{x}, z-f(\mathbf{x})]^{T}=0$.

[^1]
Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for $\nabla F(\mathbf{x})$, the equation of the tangent plane (\mathbf{y}, z) can be written as

$$
\left(\sum_{i=1}^{n} f_{x_{i}}(\mathbf{x})\left(y_{i}-x_{i}\right)\right)-(z-f(\mathbf{x}))=0
$$

or equivalently as,

$$
\left(\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})\right)+f(\mathbf{x})=z
$$

Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for $\nabla F(\mathbf{x})$, the equation of the tangent plane $(\mathbf{y}, \boldsymbol{z})$ can be written as

$$
\left(\sum_{i=1}^{n} f_{x_{i}}(\mathbf{x})\left(y_{i}-x_{i}\right)\right)-(z-f(\mathbf{x}))=0
$$

or equivalently as,

$$
\left(\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})\right)+f(\mathbf{x})=z
$$

Revisiting the gradient-based condition for convexity in (8), we have that for a convex function, $f(\mathbf{y})$ is greater than each such z on the hyperplane: $f(\mathbf{y}) \geq z=f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})$

Gradient and Epigraph (contd)

As an example, consider the paraboloid, $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-9$ that attains its minimum at $(0,0)$. We see below its epigraph.

Illustrations to understand Gradient

- For the paraboloid, $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-9$, the corresponding $F\left(x_{1}, x_{2}, z\right)=x_{1}^{2}+x_{2}^{2}-9-z$ and the point $x^{0}=\left(\mathrm{x}^{0}, z\right)=(1,1,-7)$ which lies on the 0 -level surface of F. The gradient $\nabla F\left(x_{1}, x_{2}, z\right)$ is $\left[2 x_{1}, 2 x_{2},-1\right]$, which when evaluated at $x^{0}=(1,1,-7)$ is $[-2,-2,-1]$. The equation of the tangent plane to f at x^{0} is therefore given by $2\left(x_{1}-1\right)+2\left(x_{2}-1\right)-7=z$.
- The paraboloid attains its minimum at $(0,0)$. Plot the tanget plane to the surface at $(0,0, f(0,0))$ as also the gradient vector ∇F at $(0,0, f(0,0))$. What do you expect?

[^0]: ${ }^{1}$ (that is, the tangent hyperplane to $f(\mathbf{x})$ at the point \mathbf{x})

[^1]: ${ }^{1}$ (that is, the tangent hyperplane to $f(\mathbf{x})$ at the point \mathbf{x})

