HW: lllustrating Computation of Directional Derivative

@ As another example, let us find the rate of change of flx,y,z) = 9% at pp = (1,2,3) in
the direction from p; = (1,2,3) to po = (—4,6,—1).

We first construct a unit vector from p; to po; v =

e [-5,4,—4].
The gradient of fin general is V= |[yze¥?, xze¥?, xye??| = 97[yz, xz, xy].

Evaluating the gradient at a specific point pg, VA(1,2,3) = €56, 3, 2] T The directional

derivative at pg in the direction v is Dyf(1,2,3) = e6[6,3,2].715—7[—5,4, —4]7 = eﬁﬁ.

e This directional derivative is negative, indicating that the function f decreases at py in the
direction from p; to po.
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HW: Level Surface based Interpretation of Gradient: Examples

o Let f{x1,xx3) = x3x3x4 and consider the point x* = (1,2, 1). We will find the equation of
the tangent plane to the level surface through x°.

@ The level surface through x° is determined by setting f equal to its value evaluated at x°;
that is, the level surface will have the equation x}x3x3 = 122314 = 8.

@ The gradient vector (normal to tangent plane) at (1,2,1) is
VHxa %0, %5)| 1 5. = 230, 3x§x§x§,4x§x§x§]T‘(l =6, 12 32T,

e The equation of the tangent plane at x”, given the normal vector VAx") can be easily
written down: VAx?)".[x — x°] = 0 which turns out to be
16(x; — 1) + 12(x2 — 2) +32(x3 — 1) = 0, a plane in 3D.
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HW: Level Surface based Interpretation of Gradient: Examples

e Consider the function f(x,y,z) = 53+ The directional derivative of fin the direction of

the vector v = 71—4[1, 2, 3] at the point X’ = (4,1,1) is

1, 2, 3|7 .ﬁu, 2, 3|7 =

- |l _x _ __x __
[y+z (y+2)2 (y+2)2} (411)

T 1
v ﬁ(4,1,1)'\/ﬁ[
1 1 T _ 9
[5, 1, —1] el 2, 3T = .

@ The directional derivative is negative, indicating that the function decreases along the

direction of v. Based on an earlier result, we know that the maximum rate of change of a

function at a point x is given by ||Vf(x)|| and it is in the direction Tl%f@m

@ In the example under consideration, this maximum rate of change at x is 2 and it is in

the direction of the vector £ {%, -1, —1].
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HW: Level Surface based Interpretation of Gradient: Examples

Let us find the maximum rate of change of the function f(x, y, z) = x2y3Z* at the point
x% = (1,1,1) and the direction in which it occurs. The gradient at x° is

\val 11 = [2, 3, 4]. The maximum rate of change at x* is therefore 1/29 and the direction

of the corresponding rate of change is 7—[ 3, 4]. The minimum rate of change is —/29
and the corresponding direction is 75 2, 3, 4].
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HW: Level Surface based Interpretation of Gradient: Examples

Determine the equations of

(a) the tangent plane to the paraboloid P : x; = x3 + X3 + 2 at (—1,1,0) and

(b) the normal line to the tangent plane.

To realize this as the level surface of a function of three variables, we define the function
f(x1, X2, X3) = x1 — x% — x% and find that the paraboloid P is the same as the level surface
fix1,x2,x3) = —2. The normal to the tangent plane to P at x° is in the direction of the
gradient vector VA(x") = [1,—2,0]7 and its parametric equation is

[x1, x2, x3] =[-1+1¢t 1—2t 0].

The equation of the tangent plane is therefore (x; +1) — 2(xo — 1) = 0.
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Gradient and Convex Functions?

@ How do we understand the behaviour of gradients for convex functions?

@ While we have a lot to see in the coming sessions, here is a small peek through sub-level
sets of a convex function

Definition
[Sublevel Sets]: Let D C R" be a nonempty set and f: D — R. The set

Lo(f) = {x[x € D, fix) < a}

is called the av—sub-level set of f.

»

Now if a function fis convex, the sublevel set will be convex for every value of
alpha
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Gradient and Convex Functions?

@ How do we understand the behaviour of gradients for convex functions?

@ While we have a lot to see in the coming sessions, here is a small peek through sub-level
sets of a convex function

Definition
[Sublevel Sets]: Let D C R" be a nonempty set and f: D — R. The set

Lo(f) = {x[x € D, fix) < a}

is called the av—sub-level set of f.

Now if a function fis convex, its a—sub-level set is a convex set.
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Convex Function = Convex Sub-level sets
Theorem

Let D C R" be a nonempty convex set, and f: D — R be a convex function. Then L,(f) is a
convex set for any a € R.

Proof: Consider x1,x2 € L, (f). Then by definition of the level set, x1,x2 € D, f(x1) < « and
f{x2) < . From convexity of D it follows that for all # € (0,1), x = 0x; + (1 — 0)x3 € D.
Moreover, since fis also convex, Verify that for

fix) < 0f(x1) + (1 — 0)fixz) < 0+ (1 —0)a =« positive alpha

which implies that x € L, (f). Thus, L,(f) is a convex set. le_Vel sets
The converse of this theorem does not hold (for fixed « or even for all «): will not be conve

° Consideq The O-sublevel set of this function is {(XI,XQ) | xo < 0}, which is
convex. However, the function f(x) itself is not convex.

A function may be non-convex. Yet one of its sublevel sets may be con
What if all its sublevel sets were convex? Will the function be convex?
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Convex Function = Convex Sub-level sets
Theorem

Let D C R" be a nonempty convex set, and f: D — R be a convex function. Then L,(f) is a
convex set for any a € R.

Proof: Consider x1,x2 € L, (f). Then by definition of the level set, x1,x2 € D, f(x1) < « and
flxa) < a. From convexity of D it follows that for all # € (0,1), x = x; + (1 — 0)x2 € D.
Moreover, since fis also convex,

fx) <O0fix1)+ (1 —0)f(ixa) <ba+ (1 —0)a=«
which implies that x € L, (f). Thus, L,(f) is a convex set. 3
The converse of this theorem does not hold (for fixed « or even for all «):
o Consider f{x) = 1=4>. The 0-sublevel set of this function is {(x1,%2) | x2 <0}, which is
1
convex. However, the function f(x) itself is not convex.

o A function is called quasi-convex if all its sub-level sets are convex sets Eg:
(

— 2 . .
Negative of the normal distribution —Wl%exp (— %’é)—) is quasi-convex but not convex.
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Convex Sub-level sets =% Convex Function

@ A function is called quasi-convex if all its sub-level sets are convex sets. Every
quasi-convex function is not convex!

@ Consider the Negative of the normal distribution —Wl%exp (—%‘ﬁ) This function is

quasi-convex but not convex. Consider, instead, the simpler function
fx) = —exp(—(x — p)?).
» Then f(x) =
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Convex Sub-level sets =% Convex Function

@ A function is called quasi-convex if all its sub-level sets are convex sets. Every
quasi-convex function is not convex!

20
quasi-convex but not convex. Consider, instead, the simpler function
fx) = —exp(—(x — p)?).
> Then £(x) = 2(x— p)exp(—(x — 1)2)
> And #/(x) = 2exp(—(x— p1)?) — 4(x— p)?exp(—(x — 1)?) = (2 — 4(x — 1)) exp(—(x — 1)?)
which is < 0 if (x— p)? > 3,
» Thus, the second derivative is negative if x > u + % or x < —p — %
» Recall from discussion of convexity of f: 8 — R that if the derivative is not non-decreasing

everywhere —

@ Consider the Negative of the normal distribution —ngexp <—(X—_‘§ﬁ> This function is
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Convex Sub-level sets =% Convex Function

@ A function is called quasi-convex if all its sub-level sets are convex sets. Every
quasi-convex function is not convex!

20
quasi-convex but not convex. Consider, instead, the simpler function
fx) = —exp(—(x — p)?).
> Then £(x) = 2(x— p)exp(—(x — 1)2)
> And #/(x) = 2exp(—(x— p1)?) — 4(x— p)?exp(—(x — 1)?) = (2 — 4(x — 1)) exp(—(x — 1)?)
which is < 0 if (x— p)? > 3,
» Thus, the second derivative is negative if x > u + % or x < —p — %
» Recall from discussion of convexity of f: 8 — R that if the derivative is not non-decreasing

everywhere = function is not convex everywhere.

@ Consider the Negative of the normal distribution —Wl%exp <—(X—_‘§ﬁ> This function is

@ To prove that this function is quasi-convex, we can ....
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Proof that the function is Quasi-Convex

@ Inspect the L, (f) sublevel sets of this function:

La() = {x] — exp(—(x — 1)?) < o} = {xlexp(—(x— u)?) > —a}.

@ Since exp(—(x — 1)) is monotonically increasing for x < z and monotonically decreasing
for x > 1, the set {x|exp(—(x — u)?) > —a} will be a contiguous closed interval around p
and therefore a convex set.

© Thus, fix) = —exp(—(x— u)?) is quasi-convex (and so is its generalization - the negative
of the normal density function).

One can similarly prove that the negative of the multivariate normal density function

fix) = — |Z|1(27T),,€XP (—(x — )T (x u)) is also quasi-convex:

surface

o0 The sublevel

- sets in R2 are
all ellipsoids oo
a0 The function o
o graph in R3is n 5
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0 —
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Proof that the function is Quasi-Convex

@ Inspect the L, (f) sublevel sets of this function:

La(f) = {x] — exp(—(x — 1)?) < a} = {xlexp(~(x— )?) = —a}.

@ Since exp(—(x — 1)) is monotonically increasing for x < z and monotonically decreasing
for x > 1, the set {x|exp(—(x — u)?) > —a} will be a contiguous closed interval around p
and therefore a convex set.

© Thus, fix) = —exp(—(x— u)?) is quasi-convex (and so is its generalization - the negative
of the normal density function).

One can similarly prove that the negative of the multivariate normal density function

fx) = — |Z|1(27T)nexp (—(x — )T (x u)) is also quasi-convex:
Lal) = {x |- (~(x = )75 - 0) < 0BT | =

exp (~x = TS x - ) = /TR | =

{x <(x —p) T (x M)) < —log (—aW) } which is an ellipsoid. Verify!
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Quasi-Convex Functions and Optimization

o Consider a minimization problem with a quasi-convex objective g(x) and convex functions

fi(xX)...fm(x) in the constraints C . .
! () Eg: maximizing likelihood of

. gaussian fits is equivalent to this
minimize  q(x)

subject to  fi(x) <0 foreachi=1.m

(4)

We note that the constraint set is jntersection over the 0 sublevel sets
of the fi's.

e August 21,2018 37 / 307



Quasi-Convex Functions and Optimization

e Consider a minimization problem with a quasi-convex objective g(x) and convex functions
fi(x)...fm(x) in the constraints

minimize  q(x) (4)
subject to fi(x) <0 foreachi=1.m

We note that the constraint set is convex since (i) each fi(x) < is convex sub-level set of
a convex function fi(x) and (ii) intersection of finite convex sets is convex.
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Quasi-Convex Functions and Optimization

e Consider a minimization problem with a quasi-convex objective g(x) and convex functions
fi(x)...fm(x) in the constraints

minimize  q(x) (4)
subject to  fi(x) <0 foreachi=1.m
We note that the constraint set is convex since (i) each fi(x) < is convex sub-level set of
a convex function fi(x) and (ii) intersection of finite convex sets is convex.
@ How do we proceed from a quasi-convex q(x) to complete convexity? Consider:

minimize ¢+  linear function in objective is convex

subject to ~ g(x) <t

(5
and F(x) <0 foreach i=1.m CONVEX constraifft

set
This is a problem with convex objective
and convex constraint set
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Quasi-Convex Functions and Optimization

e Consider a minimization problem with a quasi-convex objective g(x) and convex functions
fi(x)...fm(x) in the constraints

minimize  q(x)
subject to  fi(x) <0 foreachi=1.m

(4)

We note that the constraint set is convex since (i) each fi(x) < is convex sub-level set of
a convex function fi(x) and (ii) intersection of finite convex sets is convex.
@ How do we proceed from a quasi-convex q(x) to complete convexity? Consider:

minimize t
subject to g(x) <t (5)
and fi(x) <0 foreachi=1.m

0S S. .. —_— .
CJPhls is apconvex 1%35|blllty problem (convex objective and convex constraint set) and can

be solved as a series of  pisaction search on convex feasibility
B TR




Quasi-Convex Functions and Optimization

e Consider a minimization problem with a quasi-convex objective g(x) and convex functions
fi(x)...fm(x) in the constraints

minimize  q(x) (4)
subject to  fi(x) <0 foreachi=1.m

We note that the constraint set is convex since (i) each fi(x) < is convex sub-level set of
a convex function fi(x) and (ii) intersection of finite convex sets is convex.
@ How do we proceed from a quasi-convex q(x) to complete convexity? Consider:

Not the most brilliant way to optimize for gaussian likelihood!
minimize t  what if we take log of gaussian?
subject to  q(x) <t s it concave (its negative conuéx)
and fi(x) <0 foreachi=1.m
This is a convex feasibility problem (convex objective and convex constraint set) and can
be solved as a series of convex (feasibility) optimization problems using bisection search
on t (see Section 4.2.5 of Boyd and Vandenberghe)
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In general refer to 4.2.5 of Boyd for operations that preserve

quasi-convexity
And what about operations that convert quasi-convex function

into a cpnvex function? -Log(-f(x)) ?




Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that

@ The gradient Vf(x*) at x* is normal to the tangent hyperplane to the level set

{x[f(x) = fix*)} at x* indepdendent
o The gradient VA(x*) at x* points in direction of increasing values of f{.) at x* Of
Now, if f{x) is also convex convexity of f

the gradient gives you a tangential hyperplane that is
a supporting hyperplane to the sublevel set at that point
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Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that
@ The gradient Vf(x*) at x* is normal to the tangent hyperplane to the level set
{x|flx) = fix*)} at x*
@ The gradient Vf(x*) at x* points in direction of increasing values of f{.) at x*
Now, if f{x) is also convex
@ The gradient Vf(x*) at x* is normal to the tangent hyperplane to the sub-level set
Lax+)(f) = {x|f(x) < f(x*)} at x*, pointing away from the set Ly+)(f)
e The tangent hyperplane defined by VA(x*) at x* is a supporting hyperplane to the
convex set {x|f(x) < f(x*)} at x*
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Recall: Supporting hyperplane and Convex Sets
Supporting hyperplane to set C at boundary point x,:

° {x|aTx = aTxo}

@ where a # 0 and a’x<a'x,forall xeC

H/W: Are sublevel sets always closed?
Do they contain the boundary point?

Recall Supporting hyperplane theorem: if C is convex, then there exists a supporting
hyperplane at every boundary point of C.




Convex Functions and Their Epigraphs
We saw that a convex function has a convex sub-level set. But the converse is not true. Is

there a set corresponding to a function such that one is convex if and only if the other is?

YES: Set of points lying above the graph of the function
Also called "Epigraph”

e R —



Convex Functions and Their Epigraphs

We saw that a convex function has a convex sub-level set. But the converse is not true. Is
there a set corresponding to a function such that one is convex if and only if the other is?
Definition

[Epigraph]: Let D C R" be a nonempty set and f: D — R. The set {(x, {x)|x € D} is

called graph of fand lies in R"*1. The epigraph of fis a subset of #"t! and is
defined as

epi(f) = {(x,a)|ix) <o, x €D, a € R} (6)

In some sense, the epigraph is the set of points lying above the graph of f.

Eg: Recall affine functions of vectors: a’x + b where a € R". Its epigraph is
{(x,t)|]a’s + b <t} CR""! which is a half-space (a convex set)

e August 21,2018 40 / 307



Convex Functions and Their Epigraphs

Definition
[Hypograph]: Similarly, the hypograph of fis a subset of ™1, lying below the graph of f
and is defined by

hyp(f) = {(x,)|f(x) > a, x €D, a € R} (7)

v

fis concave function if and only if its hypograph is convex set
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Convex Functions and Their Epigraphs (contd)

There is a one to one correspondence between the convexity of function f and that of the set
epi(f), as stated in the following result.

Theorem

Let D C R" be a nonempty convex set, and f: D — R. Then
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Convex Functions and Their Epigraphs (contd)

There is a one to one correspondence between the convexity of function f and that of the set
epi(f), as stated in the following result.

Theorem

Let D C R" be a nonempty convex set, and f: D — R. Then f is convex if and only if epi(f) is
a convex set.

Proof: f convex function = epi(f) convex set

Proof has similar traits as proof for sublevel sets
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Convex Functions and Their Epigraphs (contd)

There is a one to one correspondence between the convexity of function f and that of the set
epi(f), as stated in the following result.

Theorem

Let D C R" be a nonempty convex set, and f: D — R. Then f is convex if and only if epi(f) is
a convex set.

Proof: f convex function = epi(f) convex set

Let fbe convex. For any (x, ) € epi(f) and (x5, o) € epi(f) and any 6 € (0,1),

—

flox1 + (1 — 0)x2) < 0f(x1) + (1 — 0)f(x2)) < use property of member
, ship above
By convexity of f

e R ——



Convex Functions and Their Epigraphs (contd)

There is a one to one correspondence between the convexity of function f and that of the set
epi(f), as stated in the following result.

Theorem

Let D C R" be a nonempty convex set, and f: D — R. Then f is convex if and only if epi(f) is
a convex set.

Proof: f convex function = epi(f) convex set

Let fbe convex. For any (x1,a1) € epi(f) and (x2,a2) € epi(f) and any 6 € (0,1),

flox; + (1 — 0)x2) < 0fix1) + (1 — 0)f(x2)) < Bag + (1 — f)as

Since D is convex, 6x; + (1 — 0)x2 € D. Therefore,
(%1 + (1 — 0)x2,001 + (1 — 0)az) € epi(f)
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Convex Functions and Their Epigraphs (contd)

There is a one to one correspondence between the convexity of function f and that of the set
epi(f), as stated in the following result.

Theorem

Let D C R" be a nonempty convex set, and f: D — R. Then f is convex if and only if epi(f) is
a convex set.

Proof: f convex function = epi(f) convex set

Let fbe convex. For any (x1,a1) € epi(f) and (x2,a2) € epi(f) and any 6 € (0,1),
f0x1 + (1 — 0)x2) < Of(x1) + (1 — 0)f(x2)) < Oa; + (1 — O)ay

Since D is convex, 0x1 + (1 — 0)x2 € D. Therefore,
(6x1 + (1 — 0)x2, 001 + (1 — 0)az) € epi(f). Thus, epi(f) is convex if fis convex. This proves
the necessity part.
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Convex Functions and Their Epigraphs (contd)

epi(f) convex set —> f convex function
To prove sufficiency, assume that epi(f) is convex. Let x1,x2 € D. So, (x1,(x1)) € epi(f)
and (xo, f(x2)) € epi(f). Since epi(f) is convex, for 6 € (0,1),

(%1 + (1 = 0)x2, 001 + (1 — O)az) € epi(f)

which implies that f must also be convex!

e RS —



Convex Functions and Their Epigraphs (contd)

epi(f) convex set —> f convex function
To prove sufficiency, assume that epi(f) is convex. Let x1,x3 € D. So, (xl, f(xl)) € epi(f)
and (x2, f(x2)) € epi(f). Since epi(f) is convex, for 6 € (0,1),

(%1 + (1 = 0)x2, 001 + (1 — O)az) € epi(f)

which implies that f(0x; + (1 — )x2) < 0f(x1) + (1 — 0)f(x2)) for any 0 € (0,1). This proves
the sufficiency. (|
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Epigraph and Convexity

e Given a convex function f(x) and a convex domain D, the convex optimization problem

min f(x)

can be equivalently expressed as

min t=
x€D,teR, (%)<t
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Epigraph and Convexity

e Given a convex function f(x) and a convex domain D, the convex optimization problem

min f(x
x€D ( )
can be equivalently expressed as
min t= min t
x€D,teR, f(x)<t x€D,(x,t)Eepi(f)

minimize upper bound on f
@ Recall the first order condition for convexity of a differentiable function f: ® — R. Is

there an equivalent for f: D — R7?

Key idea: Supporting hyperplane to epigraph is
The lower bound to the graph
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Epigraph and Convexity

e Given a convex function f(x) and a convex domain D, the convex optimization problem

min f(x
x€D ( )
can be equivalently expressed as
min t= min t
x€D,teR, f(x)<t x€D,(x,t)Eepi(f)

@ Recall the first order condition for convexity of a differentiable function f: ® — R. Is
there an equivalent for f: D — R? Let f: D — R be a differentiable convex function on
an open convex set D. Then fis convex if and only if, for any x,y € D,

fly) > fix) + V' fx)(y —x)

First order taylor expansion lower bounds
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Epigraph, Convexity and Gradients
..(contd).... fis convex if and only if, for any x,y € D,

fly) = fix) + Vf(x)(y - x) (8)
If D C R", this means that for each and every point x € D for a convex real function f(x),

there exists a hyperplane H € %! having normal [Vf(x) — 1] supporting the function
epigraph at [x f(x)]”. See Figure below sourced from necps://ccrma.stantord. adu/-dattorro/get pas
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Epigraph, Convexity, Gradients and Level-sets

o Reuvisiting level sets: We can embed the graph of a function of n variables as the 0-level
set of a function of n+ 1 variables

!(that is, the tangent hyperplane to f(x) at the point x)
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Epigraph, Convexity, Gradients and Level-sets

Revisiting level sets: We can embed the graph of a function of n variables as the 0-level
set of a function of n+ 1 variables

@ More concretely, if f: D — R, D C R" then we define F: D' — R, D' =D x R as
F(x,z) = flx) — zwith x € D'.

The gradient of F at any point (x, z) is simply, VF(x, z) = [ﬁq, frgs - ooy Fxys —1] with the
first n components of VF(x, z) given by the n components of Vf(x).

The graph of fcan be recovered as the 0—level set of F given by F(x,z) = 0.

The equation of the tangent hyperplane (y, z) to the 0—level set of F at the point
(x,fx)) is! VTF(x, (x)).ly —x,z— fix)]" = [VAx), -1]".[y — x,z— ix)]T = 0.

!(that is, the tangent hyperplane to f(x) at the point x)
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Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for VF(x), the equation of the tangent plane (y, z) can be
written as

(fo, Yi— Xi) ) —(z—flx)) =0
or equivalently as,

<V TAx)(y — x)> +flx)=1z
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Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for VF(x), the equation of the tangent plane (y, z) can be
written as

fo, vi—x) | —(z—fix)) =0

or equivalently as,

(V TAx)(y — x)) +flx) =z

Revisiting the gradient-based condition for convexity in (8), we have that for a convex
function, fy) is greater than each such z on the hyperplane: fly) > z= f(x) + V' f(x)(y — x)
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Gradient and Epigraph (contd)

As an example, consider the paraboloid, f(x, x3) = x% =+ x% — 9 that attains its minimum at
(0,0). We see below its epigraph.

-10 -10

10

Tt

f(x1.x2) |
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[llustrations to understand Gradient

@ For the paraboloid, f{x1,x2) = x} + x3 — 9, the corresponding
F(x1,x2,2) = X3 + x3 — 9 — z and the point X = (x°,z) = (1,1, —7) which lies on the
O-level surface of F. The gradient VF(xi, x2, 2) is [2x1, 2x2, —1], which when evaluated
at X! = (1,1,-7) is [-2, —2, —1]. The equation of the tangent plane to fat x is
therefore given by 2(x; — 1) +2(xx — 1) = 7=z

@ The paraboloid attains its minimum at (0,0). Plot the tanget plane to the surface at
(0,0,1(0,0)) as also the gradient vector VF at (0,0, f{0,0)). What do you expect?
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