Epigraph, Convexity, Gradients and Level-sets

[OPTIONAL]

- Revisiting level sets: We can embed the graph of a function of n variables as the 0 -level set of a function of $n+1$ variables
- More concretely, if $f: \mathcal{D} \rightarrow \Re, \mathcal{D} \subseteq \Re^{n}$ then we define $F: \mathcal{D}^{\prime} \rightarrow \Re, \mathcal{D}^{\prime}=\mathcal{D} \times \Re$ as $F(\mathrm{x}, \mathrm{z})=f(\mathrm{x})-z$ with $\mathrm{x} \in \mathcal{D}^{\prime}$.
- The gradient of F at any point (\mathbf{x}, z) is simply, $\nabla F(\mathbf{x}, z)=\left[f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}},-1\right]$ with the first n components of $\nabla F(x, z)$ given by the n components of $\nabla f(x)$.
- The graph of f can be recovered as the 0 -level set of F given by $F(\mathbf{x}, z)=0$.
- The equation of the tangent hyperplane (\mathbf{y}, z) to the 0 -level set of F at the point $(\mathbf{x}, f(\mathbf{x}))$ is ${ }^{1} \nabla^{T} F(\mathbf{x}, f(\mathbf{x})) \cdot[\mathbf{y}-\mathbf{x}, z-f(\mathbf{x})]^{T}=[\nabla f(\mathbf{x}),-1]^{T} \cdot[\mathbf{y}-\mathbf{x}, z-f(\mathbf{x})]^{T}=0$.

[^0]
Epigraph, Convexity, Gradients and Level-sets (contd.) [OPTIONAL]

Substituting appropriate expression for $\nabla F(\mathbf{x})$, the equation of the tangent plane $(\mathbf{y}, \boldsymbol{z})$ can be written as

$$
\left(\sum_{i=1}^{n} f_{x_{i}}(\mathbf{x})\left(y_{i}-x_{i}\right)\right)-(z-f(\mathbf{x}))=0
$$

or equivalently as,

$$
\left(\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})\right)+f(\mathbf{x})=z
$$

Substituting appropriate expression for $\nabla F(\mathbf{x})$, the equation of the tangent plane $(\mathbf{y}, \boldsymbol{z})$ can be written as

$$
\left(\sum_{i=1}^{n} f_{x_{i}}(\mathbf{x})\left(y_{i}-x_{i}\right)\right)-(z-f(\mathbf{x}))=0
$$

or equivalently as,

$$
\left(\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})\right)+f(\mathbf{x})=z
$$

Revisiting the gradient-based condition for convexity in (8), we have that for a convex function, $f(\mathbf{y})$ is greater than each such z on the hyperplane: $f(\mathbf{y}) \geq z=f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})$

Gradient and Epigraph (contd)

As an example, consider the paraboloid, $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-9$ that attains its minimum at $(0,0)$. We see below its epigraph.

Illustrations to understand Gradient

- For the paraboloid, $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-9$, the corresponding $F\left(x_{1}, x_{2}, z\right)=x_{1}^{2}+x_{2}^{2}-9-z$ and the point $x^{0}=\left(\mathrm{x}^{0}, z\right)=(1,1,-7)$ which lies on the 0 -level surface of F. The gradient $\nabla F\left(x_{1}, x_{2}, z\right)$ is $\left[2 x_{1}, 2 x_{2},-1\right]$, which when evaluated at $x^{0}=(1,1,-7)$ is $[-2,-2,-1]$. The equation of the tangent plane to f at x^{0} is therefore given by $2\left(x_{1}-1\right)+2\left(x_{2}-1\right)-7=z$.
- The paraboloid attains its minimum at $(0,0)$. Plot the tanget plane to the surface at $(0,0, f(0,0))$ as also the gradient vector ∇F at $(0,0, f(0,0))$. What do you expect?

Illustrations to understand Gradient

- For the paraboloid, $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-9$, the corresponding $F\left(x_{1}, x_{2}, z\right)=x_{1}^{2}+x_{2}^{2}-9-z$ and the point $x^{0}=\left(\mathrm{x}^{0}, z\right)=(1,1,-7)$ which lies on the 0 -level surface of F. The gradient $\nabla F\left(x_{1}, x_{2}, z\right)$ is $\left[2 x_{1}, 2 x_{2},-1\right]$, which when evaluated at $x^{0}=(1,1,-7)$ is $[-2,-2,-1]$. The equation of the tangent plane to f at x^{0} is therefore given by $2\left(x_{1}-1\right)+2\left(x_{2}-1\right)-7=z$.
- The paraboloid attains its minimum at $(0,0)$. Plot the tanget plane to the surface at $(0,0, f(0,0))$ as also the gradient vector ∇F at $(0,0, f(0,0))$. What do you expect? Ans: A horizontal tanget plane and a vertical gradient!

Theorem

(1) For differentiable $f: \mathcal{D} \rightarrow \Re$ and open convex set \mathcal{D}, f is convex iff, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{9}
\end{equation*}
$$

(2) f is strictly convex iff, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, with $\mathbf{x} \neq \mathbf{y}$,

$$
f(\mathbf{y})>f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \text { Strict lower bound (10) }
$$

(3) f is strongly convex iff, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, and for some constant $c>0$,

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2} \tag{11}
\end{equation*}
$$

First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (9). Suppose (9) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \text { multiply by theta } \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \text { multiply by 1-theta } \tag{12}
\end{align*}
$$

And add.

First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (9). Suppose (9) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \tag{12}
\end{align*}
$$

Adding $(1-\theta)$ times the second inequality to θ times the first, we get,

First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (9). Suppose (9) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \tag{12}
\end{align*}
$$

Adding $(1-\theta)$ times the second inequality to θ times the first, we get,

$$
\theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})
$$

which proves that $f(\mathbf{x})$ is a convex function. In the case of strict convexity,

First-Order Convexity Condition: Proof

Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (9). Suppose (9) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \tag{12}
\end{align*}
$$

Adding $(1-\theta)$ times the second inequality to θ times the first, we get,

$$
\theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})
$$

which proves that $f(\mathbf{x})$ is a convex function. In the case of strict convexity, strict inequality holds in (12) and it follows through. In the case of strong convexity,

First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (9). Suppose (9) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \tag{12}
\end{align*}
$$

Adding $(1-\theta)$ times the second inequality to θ times the first, we get,

$$
\theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})
$$

which proves that $f(\mathbf{x})$ is a convex function. In the case of strict convexity, strict inequality holds in (12) and it follows through. In the case of strong convexity, we need to additionally prove that

$$
\theta \frac{1}{2} c\left\|\mathbf{x}-\mathbf{x}_{1}\right\|^{2}+(1-\theta) \frac{1}{2} c\left\|\mathbf{x}-\mathbf{x}_{2}\right\|^{2}=
$$

First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (9). Suppose (9) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \tag{12}
\end{align*}
$$

Adding $(1-\theta)$ times the second inequality to θ times the first, we get,

$$
\theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})
$$

which proves that $f(\mathbf{x})$ is a convex function. In the case of strict convexity, strict inequality holds in (12) and it follows through. In the case of strong convexity, we need to additionally prove that

$$
\theta \frac{1}{2} c\left\|\mathbf{x}-\mathbf{x}_{1}\right\|^{2}+(1-\theta) \frac{1}{2} c\left\|\mathbf{x}-\mathbf{x}_{2}\right\|^{2}=\frac{1}{2} c \theta(1-\theta)\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|^{2}
$$

First-Order Convexity Conditions: Proofs

Necessity: Suppose f is convex. Then for all $\theta \in(0,1)$ and $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$, we must have

$$
f\left(\theta \mathbf{x}_{2}+(1-\theta) \mathbf{x}_{1}\right) \leq \theta f\left(\mathbf{x}_{2}\right)+(1-\theta) f\left(\mathbf{x}_{1}\right)
$$

Thus,

$$
\begin{aligned}
\nabla^{\top} f\left(\mathbf{x}_{1}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)= & \text { Directional derivative of } \mathrm{f} \text { at } \mathrm{x} 1 \text { along } \\
& \mathrm{x} 2-\mathrm{x} 1
\end{aligned}
$$

First-Order Convexity Conditions: Proofs

Necessity: Suppose f is convex. Then for all $\theta \in(0,1)$ and $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$, we must have

$$
f\left(\theta \mathbf{x}_{2}+(1-\theta) \mathbf{x}_{1}\right) \leq \theta f\left(\mathbf{x}_{2}\right)+(1-\theta) f\left(\mathbf{x}_{1}\right)
$$

Thus,

$$
\nabla^{T} f\left(\mathbf{x}_{1}\right)\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)=\lim _{\theta \rightarrow 0} \frac{f\left(\mathbf{x}_{1}+\theta\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)-f\left(\mathbf{x}_{1}\right)}{\theta}
$$

First-Order Convexity Conditions: Proofs

Necessity: Suppose f is convex. Then for all $\theta \in(0,1)$ and $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$, we must have

$$
f\left(\theta \mathbf{x}_{2}+(1-\theta) \mathbf{x}_{1}\right) \leq \theta f\left(\mathbf{x}_{2}\right)+(1-\theta) f\left(\mathbf{x}_{1}\right)
$$

Thus,

$$
\nabla^{\top} f\left(\mathrm{x}_{1}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\lim _{\theta \rightarrow 0} \frac{f\left(\mathbf{x}_{1}+\theta\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)-f\left(\mathbf{x}_{1}\right)}{\theta} \leq f\left(\mathbf{x}_{2}\right)-f\left(\mathrm{x}_{1}\right)
$$

This proves necessity for (9). The necessity proofs for (10) and (11) are very similar, except for a small difference for the case of strict convexity; the strict inequality is not preserved when we take limits. Suppose equality does hold in the case of strict convexity, that is for a strictly convex function f, let

$$
\begin{equation*}
f\left(\mathbf{x}_{2}\right)=f\left(\mathbf{x}_{1}\right)+\nabla^{T} f\left(\mathbf{x}_{1}\right)\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right) \tag{13}
\end{equation*}
$$

for some $\mathbf{x}_{2} \neq \mathbf{x}_{1}$.

First-Order Convexity Conditions: Proofs

Necessity (contd for strict case):

Because f is stricly convex, for any $\theta \in(0,1)$ we can write

$$
\begin{equation*}
f\left((1-\theta) \mathbf{x}_{1}+\theta \mathbf{x}_{2}\right)=f\left(\mathbf{x}_{1}+\theta\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)<(1-\theta) f\left(\mathbf{x}_{1}\right)+\theta f\left(\mathbf{x}_{2}\right) \tag{14}
\end{equation*}
$$

Since (9) is already proved for convex functions, we use it in conjunction with (13), and (14), to get

First-Order Convexity Conditions: Proofs

Necessity (contd for strict case):

Because f is stricly convex, for any $\theta \in(0,1)$ we can write

$$
\begin{equation*}
f\left((1-\theta) \mathbf{x}_{1}+\theta \mathbf{x}_{2}\right)=f\left(\mathbf{x}_{1}+\theta\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)<(1-\theta) f\left(\mathbf{x}_{1}\right)+\theta f\left(\mathbf{x}_{2}\right) \tag{14}
\end{equation*}
$$

Since (9) is already proved for convex functions, we use it in conjunction with (13), and (14), to get

$$
f\left(\mathbf{x}_{1}\right)+\theta \nabla^{\top} f\left(\mathbf{x}_{1}\right)\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right) \leq f\left(\mathbf{x}_{1}+\theta\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)<f\left(\mathbf{x}_{1}\right)+\theta \nabla^{\top} f\left(\mathbf{x}_{1}\right)\left(\mathrm{x}_{2}-\mathbf{x}_{1}\right)
$$

which is a contradiction. Thus, equality can never hold in (9) for any $\mathbf{x}_{1} \neq \mathbf{x}_{2}$. This proves the necessity of (10).

First-Order Convexity Conditions: The complete statement

The geometrical interpretation of this theorem is that at any point, the linear approximation based on a local derivative gives a lower estimate of the function, i.e. the convex function always lies above the supporting hyperplane at that point. This is pictorially depicted below:
$f(y)$

$$
f(x)+\nabla f(x)^{T}(y-x)
$$

(Tight) Lower-bound for any (non-differentiable) Convex Function?
For any convex function f (even if non-differentiable) An intuitive argument

- The epi-graph epi(f) will be convex though not rigourous
(Tight) Lower-bound for any (non-differentiable) Convex Function?
For any convex function f (even if non-differentiable)
- The epi-graph epi(f) will be convex
- The convex epi-graph epi(f) will have a supporting hyperplane at any boundary point (x,f(x))

(Tight) Lower-bound for any (non-differentiable) Convex Function?

For any convex function f (even if non-differentiable)

- The epi-graph epi(f) will be convex
- The convex epi-graph epi(f) will have a supporting hyperplane at every boundary point \mathbf{x}

There exist multiple supporting hyperplanes
Let a supporting hyperplane be characterized by a normal vector $[h(x),-1]$ When f was differentiable, this vector was [gradient(x), -1]

(Tight) Lower-bound for any (non-differentiable) Convex Function?

For any convex function f (even if non-differentiable)

- The epi-graph epi(f) will be convex
- The convex epi-graph epi(f) will have a supporting hyperplane at every boundary point \mathbf{x}

- $\{[\mathbf{v}, z] \mid\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{v}, z]\rangle=\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{x}, f(\mathbf{x})]\rangle\}$ for all $[\mathbf{v}, z]$ on the hyperplane and $\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{y}, z]\rangle \leq\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{x}, f(\mathbf{x})]\rangle$ for all $[\mathbf{y}, z] \in$ epi(f) which also includes

$$
[y, f(y)]
$$

(Tight) Lower-bound for any (non-differentiable) Convex Function?

For any convex function f (even if non-differentiable)

- The epi-graph epi(f) will be convex
- The convex epi-graph epi(f) will have a supporting hyperplane at every boundary point \mathbf{x}

- $\{[\mathbf{v}, z] \mid\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{v}, z]\rangle=\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{x}, f(\mathbf{x})]\rangle\}$ for all $[\mathbf{v}, z]$ on the hyperplane and $\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{y}, z]\rangle \leq\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{x}, f(\mathbf{x})]\rangle$ for all $[\mathbf{y}, z] \in e p i(f)$ which also includes $[\mathbf{y}, f(\mathbf{y})]$
Thus: $\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{y}, f(\mathbf{y})]\rangle \leq\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{x}, f(\mathbf{x})]\rangle$ for all $\mathbf{y} \in$ domain of f
- The normal to such a supporting hyperplane serves the same purpose as the [gradient(x),-1]

(Tight) Lower-bound for any (non-differentiable) Convex Function?

For any convex function f (even if non-differentiable)

- The epi-graph epi(f) will be convex
- The convex epi-graph epi(f) will have a supporting hyperplane at every boundary point \mathbf{x}

- $\{[\mathbf{v}, z] \mid\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{v}, z]\rangle=\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{x}, f(\mathbf{x})]\rangle\}$ for all $[\mathbf{v}, z]$ on the hyperplane and $\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{y}, z]\rangle \leq\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{x}, f(\mathbf{x})]\rangle$ for all $[\mathbf{y}, z] \in e p i(f)$ which also includes $[\mathbf{y}, f(\mathbf{y})]$
Thus: $\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{y}, f(\mathbf{y})]\rangle \leq\langle[\mathbf{h}(\mathbf{x}),-1],[\mathbf{x}, f(\mathbf{x})]\rangle$ for all $\mathbf{y} \in$ domain of f
- The normal to such a supporting hyperplane serves the same purpose as the gradient vector. It is called a Sub-gradient vector

The What, Why and How of (sub)gradients

(1) What of (sub)gradient: Normal to supporting hyperplane at point ($\mathrm{x}, \mathrm{f}(\mathrm{x}$) of epi(f) Need not be unique
Gradient is a subgradient when the function is differentiable

The What, Why and How of (sub)gradients
(1) What of (sub)gradient: Normal to the tightly lower bounding linear approximation to a convex function
(2) Why of (sub)gradient: (sub)Gradient necessary and sufficient conditions of optimality for convex functions
Important for algorithms for optimization
Subgradients are important for non-differentiable functions and constraint optimization

The What, Why and How of (sub)gradients
(1) What of (sub)gradient: Normal to the tightly lower bounding linear approximation to a convex function
(2) Why of (sub)gradient: Ability to deal with Constraints, Optimality Conditions, Optimization Algorithms
(3) How of (sub)gradient: How to compute subgradient of complex non-differentiable convex functions
Calculus of convex functions and of subgradients

The What, Why and How of (sub)gradients

(1) What of (sub)gradient: Normal to the tightly lower bounding linear approximation to a convex function
(2) Why of (sub)gradient: Ability to deal with Constraints, Optimality Conditions, Optimization Algorithms
(3) How of (sub)gradient: Calculus of Convex functions and of (sub)gradients

The What of (Sub)Gradient

First-Order Convexity Conditions: Subgradients

The foregoing result motivates the definition of the subgradient for non-differentiable convex functions, which has properties very similar to the gradient vector.

Definition

[Subgradient]: Let $f: \mathcal{D} \rightarrow \Re$ be a convex function defined on a convex set \mathcal{D}. A vector $\mathbf{h} \in \Re^{n}$ is said to be a subgradient of f at the point $\mathbf{x} \in \mathcal{D}$ if

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\mathbf{h}^{T}(\mathbf{y}-\mathbf{x})
$$

$$
\text { for all } \mathbf{y} \in \mathcal{D} \text {. The set of all such vectors is called the subdifferential of } f \text { at } \mathbf{x} \text {. }
$$

For a differentiable convex function, the gradient at point \mathbf{x} is the only subgradient at that point. Most properties of differentiable convex functions that hold in terms of the gradient also hold in terms of the subgradient for non-differentiable convex functions.
Eg: Subgradient for $f(\mathrm{x})=\|\mathrm{x}\|_{1}$ is ? Once we develop tools (the HOW part) we will see that the subdifferential contains infinite such h

(Sub)Gradients and Convexity (contd)

Can you think of a non-convex function f which has a non-empty subdifferential (atleast at some points x)?
Could this be for the negative of the Gaussian?

To say that a function $f: \Re^{n} \mapsto \Re$ is differentiable at \mathbf{x} is to say that there is a (single unique) linear tangent that under estimates the function:

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}), \quad \forall \mathbf{x}, \mathbf{y}
$$

(Sub)Gradients and Convexity (contd)

In this figure we see the function f at \mathbf{x} has many possible linear tangents that may fit appropriately. Recall that a subgradient is any $\mathbf{h} \in \Re^{n}$ (same dimension as x) such that:

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\mathbf{h}^{T}(\mathbf{y}-\mathbf{x}), \forall \mathbf{y}
$$

Thus, intuitively, if a function is differentiable at a point \mathbf{x} then

(Sub)Gradients and Convexity (contd)

In this figure we see the function f at \mathbf{x} has many possible linear tangents that may fit appropriately. Recall that a subgradient is any $\mathbf{h} \in \Re^{n}$ (same dimension as x) such that:

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\mathbf{h}^{T}(\mathbf{y}-\mathbf{x}), \forall \mathbf{y}
$$

Thus, intuitively, if a function is differentiable at a point \mathbf{x} then it has a unique subgradient at that point $(\nabla f(\mathrm{x}))$. Formal Proof?

(Sub)Gradients and Convexity (contd)

- A subdifferential is the closed convex set of all subgradients of the convex function f :

$$
\partial f(\mathbf{x})=\left\{\mathbf{h} \in \Re^{n}: \mathbf{h} \text { is a subgradient of } f \text { at } \mathbf{x}\right\}
$$

Note that this set is guaranteed to be nonempty unless f is not convex.

- Often an indicator function, $I_{C}: \Re^{n} \mapsto \Re$, is employed to remove the contraints of an optimization problem (note that convex set $C \subseteq \Re^{n}$):

$$
\min _{\mathbf{x} \in C} f(\mathbf{x}) \Longleftrightarrow \min _{\mathbf{x}} f(\mathbf{x})+I_{C}(\mathbf{x}), \quad \text { where } \quad I_{C}(\mathbf{x})=I\{\mathbf{x} \in C\}= \begin{cases}0 & \text { if } \mathbf{x} \in C \\ \infty & \text { if } \mathbf{x} \notin C\end{cases}
$$

The subdifferential of the indicator function at x is H/W

[^0]: ${ }^{1}$ (that is, the tangent hyperplane to $f(\mathbf{x})$ at the point \mathbf{x})

