
(Sub)Gradients and Convexity (contd)

A subdifferential is the closed convex set of all subgradients of the convex function f:

∂f(x) = {h ∈ ℜn : h is a subgradient of f at x}

Note that this set is guaranteed to be nonempty unless f is not convex.
Often an indicator function, IC : ℜn 7→ ℜ, is employed to remove the contraints of an
optimization problem (note that convex set C ⊆ ℜn):

min
x∈C

f(x) ⇐⇒ min
x

f(x) + IC(x), where IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

The subdifferential of the indicator function at x is
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(Sub)Gradients and Convexity (contd)

A subdifferential is the closed convex set of all subgradients of the convex function f:

∂f(x) = {h ∈ ℜn : h is a subgradient of f at x}

Note that this set is guaranteed to be nonempty unless f is not convex.
Often an indicator function, IC : ℜn 7→ ℜ, is employed to remove the contraints of an
optimization problem (note that convex set C ⊆ ℜn):

min
x∈C

f(x) ⇐⇒ min
x

f(x) + IC(x), where IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

The subdifferential of the indicator function at x is known as the normal cone, NC(x), of
C:

NC(x) = ∂IC(x) = {h ∈ ℜn : hTx ≥ hTy for any y ∈ C}
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Normal Cones (Tangent Cone and Polar) for some Convex Sets

If C is a convex set and if..
x ∈ int(C) then NC(x) = {0}. In general, if x ∈ int(domain(f)) then ∂f(x) is nonempty
and bounded.
x ∈ C then NC(x) is a closed convex cone. In general, ∂f(x) is (possibly empty) closed
convex set since it is the intersection of half spaces
There is a relation between the intuitive tangent cone and normal cone at a point
x ∈ ∂C....This relation is the polar relation.

Let us construct the normal cone, NC(x) for some points in a convex set C:
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Normal cone



Differentiable convex function has unique subgradient: Proof

Stated inquitively earlier. Now formally:
Let f : ℜn → ℜ be a convex function. If f is differentiable at x ∈ ℜn then ∂f(x) = {∇f(x)}

We know from (9) that for a differentiable f : D → ℜ and open convex set D, f is convex
iff,
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Convexity in terms of first order approximation



Differentiable convex function has unique subgradient: Proof

Stated inquitively earlier. Now formally:
Let f : ℜn → ℜ be a convex function. If f is differentiable at x ∈ ℜn then ∂f(x) = {∇f(x)}

We know from (9) that for a differentiable f : D → ℜ and open convex set D, f is convex
iff, for any x,y ∈ D, f(y) ≥ f(x) +∇Tf(x)(y− x)
Thus, ∇f(x) ∈ ∂f(x).
Let h ∈ ∂f(x), then hT(y− x) ≤ f(y)− f(x). Since f is differentiable at x, we have that
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The directional derivative exists at x along any direction (including along y-x)



Differentiable convex function has unique subgradient: Proof

Stated inquitively earlier. Now formally:
Let f : ℜn → ℜ be a convex function. If f is differentiable at x ∈ ℜn then ∂f(x) = {∇f(x)}

We know from (9) that for a differentiable f : D → ℜ and open convex set D, f is convex
iff, for any x,y ∈ D, f(y) ≥ f(x) +∇Tf(x)(y− x)
Thus, ∇f(x) ∈ ∂f(x).
Let h ∈ ∂f(x), then hT(y− x) ≤ f(y)− f(x). Since f is differentiable at x, we have that
lim

y→x
f(y)−f(x)−∇Tf(x)(y−x)

∥y−x∥ = 0

Thus for any ϵ > 0 there exists a δ > 0 such that
��� f(y)−f(x)−∇Tf(x)(y−x)

∥y−x∥

��� < ϵ whenever
∥y− x∥ < δ.
Multiplying both sides by ∥y− x∥ and adding ∇Tf(x)(y− x) to both sides, we get
f(y)− f(x) < ∇Tf(x)(y− x) + ϵ∥y− x∥ whenever ∥y− x∥ < δ
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Differentiable convex function has unique subgradient: Proof

But then, given that h ∈ ∂f(x),
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Differentiable convex function has unique subgradient: Proof

But then, given that h ∈ ∂f(x),we obtain
hT(y− x) ≤ f(y)− f(x) < ∇Tf(x)(y− x) + ϵ∥y− x∥ whenever ∥y− x∥ < δ

Rearranging we get (h−∇f(x))T(y− x) < ϵ∥y− x∥ whenever ∥y− x∥ < δ

Consider y− x =
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At this point, we can try and choose any epsilon and any y-x whose norm
will be less than delta



Differentiable convex function has unique subgradient: Proof

But then, given that h ∈ ∂f(x),we obtain
hT(y− x) ≤ f(y)− f(x) < ∇Tf(x)(y− x) + ϵ∥y− x∥ whenever ∥y− x∥ < δ

Rearranging we get (h−∇f(x))T(y− x) < ϵ∥y− x∥ whenever ∥y− x∥ < δ

Consider y− x = δ(h−∇f(x))
2∥h−∇f(x)∥ that has norm ∥.∥ = δ

2 less than δ. Then, substituting in
the previous step: (h−∇f(x))T

(
δ(h−∇f(x))
2∥h−∇f(x)∥

)
< ϵ δ2

Canceling out common terms and evaluating dot product as eucledian norm we get:
∥h−∇f(x))∥ < ϵ, which should be true for any ϵ > 0, it should be that
∥h−∇f(x))∥ = 0. Thus, it must be that h = ∇f(x))
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y-x  = unit vector * delta/2



The Why of (Sub)Gradient
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Local and Global Minima, Gradients and Convexity

Recall that for functions of single variable, at local extreme points, the tangent to the
curve is a line with a constant component in the direction of the function and is therefore
parallel to the x-axis.

▶ If the function is differentiable at the extreme point, then the derivative must vanish.
This idea can be extended to functions of multiple variables. The requirement in this case
turns out to be that the tangent plane to the function at any extreme point must be
parallel to the plane z = 0.

▶ This can happen if and only if the gradient ∇F is parallel to the z−axis at the extreme point,
or equivalently, the gradient to the function f must be the zero vector at every extreme point.
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F(x,z) = f(x) - z



(Sub)Gradients and Optimality: Sufficient Condition

For a convex f,
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h^T(y-x) >= 0 for all y ...... sufficient condition 1

0 is a subgradient ............... sufficient condition 2



(Sub)Gradients and Optimality: Sufficient Condition

For a convex f,
f(x∗) = min

x∈Rn
f(x)⇐ 0 ∈ ∂f(x∗)

The reason: h = 0 being a subgradient means that for all y
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f(y) >= f(x)



(Sub)Gradients and Optimality: Sufficient Condition

For a convex f,
f(x∗) = min

x∈Rn
f(x)⇐ 0 ∈ ∂f(x∗)

The reason: h = 0 being a subgradient means that for all y

f(y) ≥ f(x∗) + 0T(y− x∗) = f(x∗)

The analogy to the differentiable case is: ∂f(x) = {∇f(x)}.
Thus, for a convex function f(x), if ∇f(x) = 0, then x must be a point of glolbal
minimum.
Is there a necessary condition for a differentiable (possibly non-convex) function having a
(local or global) minimum at x? (A little later)
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Local Extrema: Necessary Condition

Definition
[Recap: Local maximum]: A function f of n variables has a local maximum at x0 if ∃ϵ > 0

such that ∀ ||x− x0|| < ϵ. f(x) ≤ f(x0). In other words, f(x) ≤ f(x0) whenever
x lies in some circular disk around x0.

Definition
[Recap: Local minimum]: A function f of n variables has a local minimum at x0 if ∃ϵ > 0

such that ∀ ||x− x0|| < ϵ. f(x) ≥ f(x0). In other words, f(x) ≥ f(x0) whenever
x lies in some circular disk around x0.
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Recap: Local Extrema
Figure below shows the plot of f(x1, x2) = 3x21 − x31 − 2x22 + x42. As can be seen in the plot, the
function has several local maxima and minima.
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Local Extrema: Necessary Condition through Fermat’s Theorem

A theorem fundamental to determining the locally extreme values of functions of multiple
variables.
Claim
If f(x) defined on a domain D ⊆ ℜn has a local maximum or minimum at x∗ and if the
first-order partial derivatives exist at x∗, then fxi(x∗) = 0 for all 1 ≤ i ≤ n.

Proof:
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Local Extrema: Necessary Condition through Fermat’s Theorem

A theorem fundamental to determining the locally extreme values of functions of multiple
variables.
Claim
If f(x) defined on a domain D ⊆ ℜn has a local maximum or minimum at x∗ and if the
first-order partial derivatives exist at x∗, then fxi(x∗) = 0 for all 1 ≤ i ≤ n.

Proof: The idea behind this result can be stated as follows. The tangent hyperplane to the
function at any extreme point must be parallel to the plane z = 0. This can happen if and
only if the gradient ∇F = [∇Tf, −1]T is parallel to the z−axis at the extreme point. Or
equivalently, the gradient to the function f must be the zero vector at every extreme point,
i.e., fxi(x∗) = 0 for 1 ≤ i ≤ n.
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Local Extrema: Fermat’s Theorem
To formally prove this result,

1 Consider the function gi(xi) = f(x∗1, x∗2, . . . , x∗i−1, xi, x∗i+1, . . . , x∗n).
2 If f has a local minimum (maximum) at x∗, then
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Local Extrema: Fermat’s Theorem
To formally prove this result,

1 Consider the function gi(xi) = f(x∗1, x∗2, . . . , x∗i−1, xi, x∗i+1, . . . , x∗n).
2 If f has a local minimum (maximum) at x∗, then there exists an open ball

Bϵ = {x|∥x− x∗∥ < ϵ} around x∗ such that for all x ∈ Bϵ, f(x∗) ≤ f(x) (f(x∗) ≥ f(x))
3 Consider the norm to be the Eucledian norm ∥.∥2. By Cauchy Shwarz inequality, for a

unit norm vector ei = [0..1..0] with a 1 only in the ith index in the vector,

August 28, 2018 71 / 402



Local Extrema: Fermat’s Theorem
To formally prove this result,

1 Consider the function gi(xi) = f(x∗1, x∗2, . . . , x∗i−1, xi, x∗i+1, . . . , x∗n).
2 If f has a local minimum (maximum) at x∗, then there exists an open ball

Bϵ = {x|∥x− x∗∥ < ϵ} around x∗ such that for all x ∈ Bϵ, f(x∗) ≤ f(x) (f(x∗) ≥ f(x))
3 Consider the norm to be the Eucledian norm ∥.∥2. By Cauchy Shwarz inequality, for a

unit norm vector ei = [0..1..0] with a 1 only in the ith index in the vector,
|eTi (x− x∗)| = |xi − x∗i | ≤ ∥x− x∗∥∥ei∥ = ∥x− x∗∥.

4 Thus, the existence of an open ball {x|∥x− x∗∥ < ϵ} around x∗ characterizing the
minimum in ℜn also guarantees
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the miniumum of g_i(.) in R



Local Extrema: Fermat’s Theorem
To formally prove this result,

1 Consider the function gi(xi) = f(x∗1, x∗2, . . . , x∗i−1, xi, x∗i+1, . . . , x∗n).
2 If f has a local minimum (maximum) at x∗, then there exists an open ball

Bϵ = {x|∥x− x∗∥ < ϵ} around x∗ such that for all x ∈ Bϵ, f(x∗) ≤ f(x) (f(x∗) ≥ f(x))
3 Consider the norm to be the Eucledian norm ∥.∥2. By Cauchy Shwarz inequality, for a

unit norm vector ei = [0..1..0] with a 1 only in the ith index in the vector,
|eTi (x− x∗)| = |xi − x∗i | ≤ ∥x− x∗∥∥ei∥ = ∥x− x∗∥.

4 Thus, the existence of an open ball {x|∥x− x∗∥ < ϵ} around x∗ characterizing the
minimum in ℜn also guarantees the existence of an open ball (projected ball
corresponding to a projected norm) {xi|∥xi − x∗i ∥ < ϵ} around x∗i in ℜ.

5 Therefore each function gi(xi) must have a local extremum at x∗i . Which, by an earlier
result (derived for differentiable functions of single argument) implies that
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Each g_i'(x_i*) = 0
That is gradient of f must vanish at x*



Local Extrema: Fermat’s Theorem
To formally prove this result,
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2 If f has a local minimum (maximum) at x∗, then there exists an open ball
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minimum in ℜn also guarantees the existence of an open ball (projected ball
corresponding to a projected norm) {xi|∥xi − x∗i ∥ < ϵ} around x∗i in ℜ.

5 Therefore each function gi(xi) must have a local extremum at x∗i . Which, by an earlier
result (derived for differentiable functions of single argument) implies that g′

i(x∗i ) = 0

6 Now g′
i(x∗i ) = fxi(x∗) and hence
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Local Extrema: Fermat’s Theorem
To formally prove this result,

1 Consider the function gi(xi) = f(x∗1, x∗2, . . . , x∗i−1, xi, x∗i+1, . . . , x∗n).
2 If f has a local minimum (maximum) at x∗, then there exists an open ball

Bϵ = {x|∥x− x∗∥ < ϵ} around x∗ such that for all x ∈ Bϵ, f(x∗) ≤ f(x) (f(x∗) ≥ f(x))
3 Consider the norm to be the Eucledian norm ∥.∥2. By Cauchy Shwarz inequality, for a

unit norm vector ei = [0..1..0] with a 1 only in the ith index in the vector,
|eTi (x− x∗)| = |xi − x∗i | ≤ ∥x− x∗∥∥ei∥ = ∥x− x∗∥.

4 Thus, the existence of an open ball {x|∥x− x∗∥ < ϵ} around x∗ characterizing the
minimum in ℜn also guarantees the existence of an open ball (projected ball
corresponding to a projected norm) {xi|∥xi − x∗i ∥ < ϵ} around x∗i in ℜ.

5 Therefore each function gi(xi) must have a local extremum at x∗i . Which, by an earlier
result (derived for differentiable functions of single argument) implies that g′

i(x∗i ) = 0

6 Now g′
i(x∗i ) = fxi(x∗) and hence fxi(x∗) = 0 that is ∇f(x∗) = 0.
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Local Extrema: Illustration
Applying the previous result to the function f(x1, x2) = 9− x21 − x22, we require that at any
extreme point fx1 = −2x1 = 0⇒ x1 = 0 and fx2 = −2x2 = 0⇒ x2 = 0. Thus, f indeed attains
its maximum at the point (0, 0) as shown in Figure 2.

Figure 2:
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Critical Point

Definition
[Critical point]: A point x∗ is called a critical point of a function f(x) defined on D ⊆ ℜn if

1 If fxi(x∗) = 0, for 1 ≤ i ≤ n.
2 OR fxi(x∗) fails to exist for any 1 ≤ i ≤ n.
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Critical Point

A procedure for computing all critical points of a function f is:
1 Compute fxi for 1 ≤ i ≤ n.
2 Determine if there are any points where any one of fxi fails to exist. Add such points (if

any) to the list of critical points.
3 Solve the system of equations fxi = 0 simultaneously. Add the solution points to the list

of saddle points.
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Critical Point
As an example, for the function f(x1, x2) = |x1|, fx1 does not exist for (0, s) for any s ∈ ℜ and
all of them are critical points. Figure 3 shows the corresponding 3−D plot.

Figure 3:
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Saddle Point
Is the converse of the foregoing result true? That is, if you find an x∗ that satisifes fxi(x∗) =
for all 1 ≤ i ≤ n, is it necessary that x∗ is an extreme point? The answer is no. In fact, points
that violate the converse of this result are called saddle points.

Definition
[Saddle point]: A point x∗ is called a saddle point of a function f(x) defined on D ⊆ ℜn if

x∗ is a critical point of f but x∗ does not correspond to a local maximum or
minimum of the function.

The inflection point for a function of single variable, that was discussed earlier, is the
analogue of the saddle point for a function of multiple variables.
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Saddle Point
Is the converse of the foregoing result true? That is, if you find an x∗ that satisifes fxi(x∗) =
for all 1 ≤ i ≤ n, is it necessary that x∗ is an extreme point? The answer is no. In fact, points
that violate the converse of this result are called saddle points.

Definition
[Saddle point]: A point x∗ is called a saddle point of a function f(x) defined on D ⊆ ℜn if

x∗ is a critical point of f but x∗ does not correspond to a local maximum or
minimum of the function.

The inflection point for a function of single variable, that was discussed earlier, is the
analogue of the saddle point for a function of multiple variables.
Can you construct a saddle point of a function f : X × Y → ℜ∪ {± inf} as a pair
(x, y) ∈ X × Y satisfying the following?

max
y

f(x, y) ≤ f(x, y) ≤ min
x

f(x, y)
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Saddle Point
An example for n = 2 is the hyperbolic paraboloid2 f(x1, x2) = x21 − x22, the graph of which is
shown in Figure 4. The hyperbolic paraboloid has a saddle point at (0, 0).

Figure 4:

2The hyperbolic paraboloid is shaped like a saddle and can have a critical point called the saddle point.
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Saddle Point
The hyperbolic paraboloid opens up on x1-axis (Figure 5):

Figure 5:
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Saddle Point
The hyperbolic paraboloid opens down on x2-axis (Figure 6):

Figure 6:
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Extreme Points

Let us find the critical points of f(x1, x2) = x21 + x22 − 2x1 − 6x2 + 14 and classify the
critical point.
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Descent Algorithms for Optimization
Consider the following minimization problem min

x∈D
f(x)

Assume that f is convex and that it attains a finite optimal value p∗.
Minimization techniques produce a sequence of points x(k) ∈ D, k = 0, 1, . . . such that
f
(

x(k)
)
→ p∗ as k→∞ or, ∇f

(
x(k)
)
→ 0 as k→∞.

General idea: Search direction ∆x(k) (a unit vector), is multiplied by a scale factor t(k),
called the step length: x(k+1) = x(k) + t(k)∆x(k)

We assume that we are dealing with the extended value extension ef of the convex
function f : D → ℜ, with D ⊆ ℜn which returns ∞ for any point outside its domain.
However, if we do so, we need to make sure that the initial point indeed lies in the
domain D.

Definition

ef(x) =

{
f(x) if x ∈ D
∞ if x /∈ D (15)
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or look for a 0 subgradient

This is often proportion to a (sub)gradient



The How of (Sub)Gradient

August 28, 2018 82 / 402



First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

Pointwise maximum: If f1, f2, . . . , fm are convex, then
f(x) = max

{
f1(x), f2(x), . . . , fm(x)

}
is
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First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

Pointwise maximum: If f1, f2, . . . , fm are convex, then
f(x) = max

{
f1(x), f2(x), . . . , fm(x)

}
is also convex. For example:

▶ Sum of r largest components of x ∈ ℜn f(x) = x[1] + x[2] + . . .+ x[r], where x[1] is the ith
largest component of x, is
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