Extreme Points

o Let us find the critical points of f{xi,x2) = x} + x3 — 2x; — 6x2 + 14 and classify the
critical point.



Extreme Points

e Let us find the critical points of f{x1,x2) = X3 + x2 — 2x1 — 6x2 + 14 and classify the
critical point.

@ This function is a polyonomial function and is differentiable everywhere. It is a paraboloid
that is shifted away from origin. To find its critical points, we will solve £, =2x; —2 =10
and £, = 2xo — 6 = 0, which when solved simultaneously, yield a single critical point

(1,3).
@ For a simple example like this, the function f can be rewritten as
fx1,x2) = (x1 — 1)? + (xo — 3)® + 4, which implies that f{x;,x;) > 4 = f(1.3). Therefore,

(1,3) is indeed a local minimum (in fact a global minimum) of f(Xl,XQ)
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Descent Algorithms for Optimization

Consider the following minimization problem mig fx)
xXE

@ Assume that fis convex and that it attains a finite optimal value p*.

e Minimization techniques produce a sequence of points x(¥ € D, k=0, 1,... such that
f(x(k)) — p* as k — oo or, Vf(x(k)> — 0 as k — oo.

o General idea: Search direction Ax(¥ (a unit vector), is multiplied by a scale factor t(%),
called the step length: x(kT1) = x(®) 4 (K Ax(¥) N

@ We assume that we are dealing with the extended value extension f of the convex
function f: D — R, with D C R"” which returns oo for any point outside its domain.
However, if we do so, we need to make sure that the initial point indeed lies in the
domain D.

Definition

- {  1xs g
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The How of (Sub)Gradient

Note: Subdifferential is intersection of infinite half-spaces and is therefore CONVEX
and closed
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The How of (Sub)Gradient

Note: Subdifferential is intersection of infinite half-spaces and is therefore a closed convex
set even if fis NOT convex.
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First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?
o Pointwise maximum: If f{, £, ..., f,, are convex, then
f(x) = max{fi(x), o(x),..., fm(x)} is CcOnvex

In Quiz 1, problem 1, m=2
fl=||x||_1
f2 = ||x]||_infinity
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First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

o Pointwise maximum: If f{, £, ..., f,, are convex, then
f(x) = max{fi(x), i2(x), ..., fm(x)} is also convex. For example:

» Sum of rlargest components of x € R” f(x) = x;1) 4+ Xj2 + - .. + X1, Where x(y; is the it
largest component of x, is

Proof: Either from first principles (invoking convexity of f1...fm)
Or
Inspect intersection of epigraphs of f1...fm

Will our proof of convexity hold for an infinite (possibly even uncountable)
number of indices i (which had a finite set of values 1...m above)?

. 1
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First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?
@ Pointwise maximum: If f, f, ..., f, are convex, then
f(x) = max{fi(x), i2(x), ..., fm(x)} is also convex. For example:

» Sum of r largest components of x € R" f(x) = xj + X[2] + - .. + X7, Where Xy is the ith
largest component of x, is a convex function.

e Pointwise supremum: If f(x,y) is convex in x for every y € S, then g(x) = sup f(x,y)
S

S
is convex by a proof similar to S is a set of possiblyy

that on the board: infinite number of indices
RHS will have sup over y instead
of max over i
Similarly,
LHS will also have sup over y instead of max over i
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First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

@ Pointwise maximum: If f, f, ..., f, are convex, then
f(x) = max{fi(x), i2(x), ..., fm(x)} is also convex. For example:

» Sum of r largest components of x € R" f(x) = xj + X[2] + - .. + X7, Where Xy is the ith
largest component of x, is a convex function.

e Pointwise supremum: If f(x,y) is convex in x for every y € S, then g(x) = sup f(x,y)
yeS
is convex. For example:

» The function that returns the maximum eigenvalue of a symmetric matrix X, viz.,
Xyl - : ;
Amax(X) = sup = s a convex function obtained as supremum

= over an infinite number of y with ||y||_ 2 =1
over the function ||Xy||_2
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First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

@ Pointwise maximum: If f, f, ..., f, are convex, then
f(x) = max{fi(x), i2(x), ..., fm(x)} is also convex. For example:

» Sum of r largest components of x € R" f(x) = xj + X[2] + - .. + X7, Where Xy is the ith
largest component of x, is a convex function.

e Pointwise supremum: If f(x,y) is convex in x for every y € S, then g(x) = sup f(x,y)
yeS
is convex. For example:
» The function that returns the maximum eigenvalue of a symmetric matrix X, viz.,

Amax(X) = sup |)§,y|22 is a convex function of the symmetrix matrix X.
yES

If X is symmetrix, max eigenvalue of X~ TX is squared of max

eiﬂenvalue of X
August 31, 2018 83 / 402



Basic Subgradient Calculus: lllustration for pointwise Maximum

@ Finite pointwise maximum: if f{x) = maxi—1._mfi(x), then

0fix) = subdifferential of f_i(x) at points x where f(x) = f_i(x)
(that is points where there is a unique/unambiguous
maximizer, the subdifferential of f(x) is the subdifferential
of that unique maximizer)

Convex hull of subdifferentials of f i(x) for all i s.t f(x) = f_i(x)
(that is points where there is a unique/unambiguous
maximizer, the subdifferential of f(x) is the subdifferential
of that unique maximizer)

Includes union

e S



Basic Subgradient Calculus: lllustration for pointwise Maximum

@ Finite pointwise maximum: if f{x) = maxi—1._mfi(x), then

0f(x) = conv U Ofi(x) |, which is the convex hull of union of subdifferentials of
i fi(x)=1(x)
all active functions at x.

@ General pointwise maximum: if {x) = maxscsfs(x), then

under some regularity conditions (on S, f;), 0f(x) = closure of convex hull
of union of subdifferentials

—_—

Additional operation that ensures the subdifferential
to be closed
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Basic Subgradient Calculus: lllustration for pointwise Maximum

@ Finite pointwise maximum: if f{x) = maxi—1._mfi(x), then

0f(x) = conv U Ofi(x) |, which is the convex hull of union of subdifferentials of
i fi(x)=Mf(x)
all active functions at x.

@ General pointwise maximum: if {x) = maxscsfs(x), then

under some regularity conditions (on S, f;), 0f(x) = cl{conv( U 8@(){))}

() =A)
f
R
\JZ
————— P,
I X RN
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Subgradient of [|x||;

Assume x € R". Then

° lIxlh = max over 2~n functions each corresponding to s~ Tx



Subgradient of ||x||,

Assume x € R". Then

o |1 = max x's which is a pointwise maximum of 2" functions
se{—1,+1}"

o Let S* C {—1,+1}" be the set of s such that for each s € S*, the value of x's is the
same max value.

@ Thus, J|x|[; = conv( U s).

seS*
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More Subgradient Calculus: Function Convexity first

Following functions are again convex, but again, may not be differentiable everywhere. How

does one compute their subgradients at points of non-differentiability?
n

o Nonnegative weighted sum: = Za,-f,- is convex if each f; for 1 < i< nis convex and
=1 —

a;>0,1<i<n.

e Composition with affine function: {Ax+ b) is convex if fis convex. For example:

» The log barrier for linear inequalities, f(x) = Z log(b; — a] x), is convex since — log(x) is

i=1
convex.

» Any norm of an affine function, f{x) = ||Ax+ b, is convex.

if Ais m x n, then f() is defined on R™n whereas f(Ax+Db) is defined on
R™m
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