Extreme Points

- Let us find the critical points of $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-2 x_{1}-6 x_{2}+14$ and classify the critical point.

Extreme Points

- Let us find the critical points of $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-2 x_{1}-6 x_{2}+14$ and classify the critical point.
- This function is a polyonomial function and is differentiable everywhere. It is a paraboloid that is shifted away from origin. To find its critical points, we will solve $f_{x_{1}}=2 x_{1}-2=0$ and $f_{x_{2}}=2 x_{2}-6=0$, which when solved simultaneously, yield a single critical point $(1,3)$.
- For a simple example like this, the function f can be rewritten as $f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-3\right)^{2}+4$, which implies that $f\left(x_{1}, x_{2}\right) \geq 4=f(1,3)$. Therefore, $(1,3)$ is indeed a local minimum (in fact a global minimum) of $f\left(x_{1}, x_{2}\right)$.

Descent Algorithms for Optimization

Consider the following minimization problem $\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})$

- Assume that f is convex and that it attains a finite optimal value p^{*}.
- Minimization techniques produce a sequence of points $\mathbf{x}^{(k)} \in \mathcal{D}, k=0,1, \ldots$ such that $f\left(\mathbf{x}^{(k)}\right) \rightarrow p^{*}$ as $k \rightarrow \infty$ or, $\nabla f\left(\mathbf{x}^{(k)}\right) \rightarrow \mathbf{0}$ as $k \rightarrow \infty$.
- General idea: Search direction $\Delta \mathbf{x}^{(k)}$ (a unit vector), is multiplied by a scale factor $t^{(k)}$, called the step length: $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+t^{(k)} \Delta \mathbf{x}^{(k)}$
- We assume that we are dealing with the extended value extension \widetilde{f} of the convex function $f: \mathcal{D} \rightarrow \Re$, with $\mathcal{D} \subseteq \Re^{n}$ which returns ∞ for any point outside its domain. However, if we do so, we need to make sure that the initial point indeed lies in the domain \mathcal{D}.

Definition

$$
\widetilde{f}(x)=\left\{\begin{array}{cc}
f(x) & \text { if } x \in \mathcal{D} \tag{15}\\
\infty & \text { if } \mathbf{x} \notin \mathcal{D}
\end{array}\right.
$$

The How of (Sub)Gradient

Note: Subdifferential is intersection of infinite half-spaces and is therefore convex and closed

The How of (Sub)Gradient

Note: Subdifferential is intersection of infinite half-spaces and is therefore a closed convex set even if f is NOT convex.

First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Pointwise maximum: If $f_{1}, f_{2}, \ldots, f_{m}$ are convex, then $f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}$ is convex

In Quiz 1, problem 1, m=2
$\mathrm{f} 1=\|x\| _1$
f2 $=\|x\|$ infinity

First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Pointwise maximum: If $f_{1}, f_{2}, \ldots, f_{m}$ are convex, then
$f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}$ is also convex. For example:
- Sum of r largest components of $\mathbf{x} \in \Re^{n} f(\mathbf{x})=x_{[1]}+x_{[2]}+\ldots+x_{[r]}$, where $x_{[1]}$ is the $i^{\text {th }}$ largest component of \mathbf{x}, is

Proof: Either from first principles (invoking convexity of f1...fm) Or

Inspect intersection of epigraphs of f1...fm
Will our proof of convexity hold for an infinite (possibly even uncountable) number of indices i (which had a finite set of values 1 ...m above)?

First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Pointwise maximum: If $f_{1}, f_{2}, \ldots, f_{m}$ are convex, then
$f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}$ is also convex. For example:
- Sum of r largest components of $\mathbf{x} \in \Re^{n} f(\mathbf{x})=x_{[1]}+x_{[2]}+\ldots+x_{[r]}$, where $x_{[1]}$ is the $i^{\text {th }}$ largest component of \mathbf{x}, is a convex function.
- Pointwise supremum: If $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for every $\mathbf{y} \in \mathcal{S}$, then $g(\mathbf{x})=\sup _{\mathbf{y} \in \mathcal{S}} f(\mathbf{x}, \mathbf{y})$
is convex by a proof similar to $\quad \mathrm{S}$ is a set of possibly that on the board: RHS will have sup over y instead of max over i Similarly, LHS will also have sup over y instead of max over i

First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Pointwise maximum: If $f_{1}, f_{2}, \ldots, f_{m}$ are convex, then
$f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}$ is also convex. For example:
- Sum of r largest components of $\mathbf{x} \in \Re^{n} f(\mathbf{x})=x_{[1]}+x_{[2]}+\ldots+x_{[r]}$, where $x_{[1]}$ is the $i^{\text {th }}$ largest component of \mathbf{x}, is a convex function.
- Pointwise supremum: If $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for every $\mathbf{y} \in \mathcal{S}$, then $g(\mathbf{x})=\sup _{\mathbf{y} \in \mathcal{S}} f(\mathbf{x}, \mathbf{y})$ is convex. For example:
- The function that returns the maximum eigenvalue of a symmetric matrix X, viz.,

$$
\lambda_{\max }(X)=\sup _{\mathbf{y} \in \mathcal{S}} \frac{\left\|X_{\mathbf{y}}\right\|_{2}}{\|\mathbf{y}\|_{2}} \text { is }
$$ a convex function obtained as supremum over an infinite number of y with $\|\mathrm{y}\| _2=1$ over the function ||Xy||_2

First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Pointwise maximum: If $f_{1}, f_{2}, \ldots, f_{m}$ are convex, then
$f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}$ is also convex. For example:
- Sum of r largest components of $\mathbf{x} \in \Re^{n} f(\mathbf{x})=x_{[1]}+x_{[2]}+\ldots+x_{[r]}$, where $x_{[1]}$ is the $i^{\text {th }}$ largest component of \mathbf{x}, is a convex function.
- Pointwise supremum: If $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for every $\mathbf{y} \in \mathcal{S}$, then $g(\mathbf{x})=\sup _{\mathbf{y} \in \mathcal{S}} f(\mathbf{x}, \mathbf{y})$ is convex. For example:
- The function that returns the maximum eigenvalue of a symmetric matrix X, viz., $\lambda_{\text {max }}(X)=\sup _{\mathbf{y} \in \mathcal{S}} \frac{\left\|X_{\mathbf{y}}\right\|_{2}}{\|\mathbf{y}\|_{2}}$ is a convex function of the symmetrix matrix X.

If X is symmetrix, max eigenvalue of $X^{\wedge} T X$ is squared of max eigenvalue of X

Basic Subgradient Calculus: Illustration for pointwise Maximum

- Finite pointwise maximum: if $f(\mathbf{x})=\max _{i=1 \ldots m} f_{i}(\mathbf{x})$, then
$\partial f(\mathbf{x})=$ subdifferential of $f _i(x)$ at points x where $f(x)=f_{-} i(x)$
(that is points where there is a unique/unambiguous maximizer, the subdifferential of $f(x)$ is the subdifferential of that unique maximizer)

Convex hull of subdifferentials of f _ $i(x)$ for all i s.t $f(x)=f$ i $i(x)$ (that is points where there is a unique/unambiguous maximizer, the subdifferential of $f(x)$ is the subdifferential of that unique maximizer)

Includes union

Basic Subgradient Calculus: Illustration for pointwise Maximum

- Finite pointwise maximum: if $f(\mathbf{x})=\max _{i=1 \ldots m} f_{i}(\mathbf{x})$, then
$\partial f(\mathbf{x})=\operatorname{conv}\left(\bigcup_{i: f_{i}(\mathrm{x})=f(\mathrm{x})} \partial f_{i}(\mathbf{x})\right)$, which is the convex hull of union of subdifferentials of all active functions at x.
- General pointwise maximum: if $f(\mathbf{x})=\max _{s \in S} f_{s}(\mathbf{x})$, then
under some regularity conditions (on S, f_{s}), $\partial f(\mathbf{x})=$ closure of convex hull

Additional operation that ensures the subdifferential to be closed

Basic Subgradient Calculus: Illustration for pointwise Maximum

- Finite pointwise maximum: if $f(\mathbf{x})=\max _{i=1 \ldots m} f_{i}(\mathbf{x})$, then
$\partial f(\mathbf{x})=\operatorname{conv}\left(\bigcup_{i: f_{i}(\mathbf{x})=f(\mathbf{x})} \partial f_{i}(\mathbf{x})\right)$, which is the convex hull of union of subdifferentials of all active functions at x.
- General pointwise maximum: if $f(\mathbf{x})=\max _{s \in S} f_{s}(\mathbf{x})$, then under some regularity conditions (on $\left.S, f_{s}\right), \partial f(\mathbf{x})=c l\left\{\operatorname{conv}\left(\bigcup_{s: f_{s}(\mathbf{x})=f(\mathbf{x})} \partial f_{s}(\mathbf{x})\right)\right\}$

Subgradient of $\|\mathbf{x}\|_{1}$

Assume $\mathrm{x} \in \Re^{n}$. Then

- $\|\mathbf{x}\|_{1}=$ max over $2^{\wedge} n$ functions each corresponding to $s^{\wedge} \mathrm{Tx}$

Subgradient of $\|\mathbf{x}\|_{1}$

Assume $\mathbf{x} \in \Re^{n}$. Then

- $\|\mathbf{x}\|_{1}=\max _{\mathbf{s} \in\{-1,+1\}^{n}} \mathbf{x}^{T} \mathbf{s}$ which is a pointwise maximum of 2^{n} functions
- Let $\mathcal{S}^{*} \subseteq\{-1,+1\}^{n}$ be the set of \mathbf{s} such that for each $\mathbf{s} \in \mathcal{S}^{*}$, the value of $\mathbf{x}^{T} \mathbf{s}$ is the same max value.
- Thus, $\partial\|\mathbf{x}\|_{1}=\operatorname{conv}\left(\bigcup_{\mathbf{s} \in \mathcal{S}^{*}} \mathbf{s}\right)$.

More Subgradient Calculus: Function Convexity first

Following functions are again convex, but again, may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Nonnegative weighted sum: $f=\sum_{i=1}^{n} \alpha_{i} f_{i}$ is convex if each f_{i} for $1 \leq i \leq n$ is convex and $\alpha_{i} \geq 0,1 \leq i \leq n$.
- Composition with affine function: $f(A x+b)$ is convex if f is convex. For example:
- The log barrier for linear inequalities, $f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)$, is convex since $-\log (x)$ is convex.
- Any norm of an affine function, $f(x)=\|A x+b\|$, is convex.
if A is $m \times n$, then $f()$ is defined on $R^{\wedge} n$ whereas $f(A x+b)$ is defined on $\mathrm{R}^{\wedge} \mathrm{m}$

