Extreme Points

• Let us find the critical points of $f(x_1, x_2) = x_1^2 + x_2^2 - 2x_1 - 6x_2 + 14$ and classify the critical point.

3 996

Extreme Points

- Let us find the critical points of $f(x_1, x_2) = x_1^2 + x_2^2 2x_1 6x_2 + 14$ and classify the critical point.
- This function is a polyonomial function and is differentiable everywhere. It is a paraboloid that is shifted away from origin. To find its critical points, we will solve $f_{x_1} = 2x_1 2 = 0$ and $f_{x_2} = 2x_2 6 = 0$, which when solved simultaneously, yield a single critical point (1,3).
- For a simple example like this, the function f can be rewritten as $f(x_1, x_2) = (x_1 1)^2 + (x_2 3)^2 + 4$, which implies that $f(x_1, x_2) \ge 4 = f(1, 3)$. Therefore, (1,3) is indeed a local minimum (in fact a global minimum) of $f(x_1, x_2)$.

→ < 3 + 3 - 900</p>

Descent Algorithms for Optimization

Consider the following minimization problem $\min_{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})$

- Assume that f is convex and that it attains a finite optimal value p^* .
- Minimization techniques produce a sequence of points $\mathbf{x}^{(k)} \in \mathcal{D}, k = 0, 1, \dots$ such that $f(\mathbf{x}^{(k)}) \to p^*$ as $k \to \infty$ or, $\nabla f(\mathbf{x}^{(k)}) \to \mathbf{0}$ as $k \to \infty$.
- General idea: Search direction $\Delta \mathbf{x}^{(k)}$ (a unit vector), is multiplied by a scale factor $t^{(k)}$, called the step length: $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t^{(k)} \Delta \mathbf{x}^{(k)}$
- We assume that we are dealing with the **extended value extension** f of the convex function $f: \mathcal{D} \to \Re$, with $\mathcal{D} \subseteq \Re^n$ which returns ∞ for any point outside its domain. However, if we do so, we need to make sure that the initial point indeed lies in the domain \mathcal{D} .

Definition

$$\widetilde{f}(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{if } \mathbf{x} \in \mathcal{D} \\ \infty & \text{if } \mathbf{x} \notin \mathcal{D} \end{cases}$$

(15)

The How of (Sub)Gradient Note: Subdifferential is intersection of infinite half-spaces and is therefore convex

Note: Subdifferential is intersection of infinite half-spaces and is therefore CONVEX and closed

August 31, 2018 82 / 402

The How of (Sub)Gradient

Note: Subdifferential is intersection of infinite half-spaces and is therefore a closed convex set even if f is NOT convex.

August 31, 2018 82 / 402

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

• **Pointwise maximum:** If $f_1, f_2, ..., f_m$ are convex, then $f(\mathbf{x}) = max \{ f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_m(\mathbf{x}) \}$ is **CONVEX**

```
In Quiz 1, problem 1, m=2
f1 = ||x||_1
f2 = ||x||_iinfinity
```

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

• **Pointwise maximum:** If f_1, f_2, \ldots, f_m are convex, then

 $f(\mathbf{x}) = max \{f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x})\}$ is also convex. For example:

Sum of *r* largest components of $\mathbf{x} \in \Re^n$ $f(\mathbf{x}) = x_{[1]} + x_{[2]} + \ldots + x_{[r]}$, where $x_{[1]}$ is the *i*th largest component of \mathbf{x} , is

Proof: Either from first principles (invoking convexity of f1...fm) Or Inspect intersection of epigraphs of f1...fm

Will our proof of convexity hold for an infinite (possibly even uncountable) number of indices i (which had a finite set of values 1...m above)?

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- **Pointwise maximum:** If f_1, f_2, \ldots, f_m are convex, then
 - $f(\mathbf{x}) = max \left\{ f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x}) \right\}$ is also convex. For example:
 - Sum of r largest components of x ∈ ℜⁿ f(x) = x_[1] + x_[2] + ... + x_[r], where x_[1] is the ith largest component of x, is a convex function.

• Pointwise supremum: If $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for every $\mathbf{y} \in S$, then $g(\mathbf{x}) = \sup_{\mathbf{y} \in S} f(\mathbf{x}, \mathbf{y})$ is convex by a proof similar to that on the board: RHS will have sup over \mathbf{y} instead of max over \mathbf{i} Similarly, LHS will also have sup over \mathbf{y} instead of max over \mathbf{i}

August 31, 2018

83 / 402

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- **Pointwise maximum:** If f_1, f_2, \ldots, f_m are convex, then
 - $f(\mathbf{x}) = max \{ f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x}) \}$ is also convex. For example:
 - Sum of r largest components of x ∈ ℜⁿ f(x) = x_[1] + x_[2] + ... + x_[r], where x_[1] is the ith largest component of x, is a convex function.
- **Pointwise supremum:** If $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for every $\mathbf{y} \in S$, then $g(\mathbf{x}) = \sup_{\mathbf{y} \in S} f(\mathbf{x}, \mathbf{y})$ is convex. For example:
 - The function that returns the maximum eigenvalue of a symmetric matrix X, viz., $\lambda_{max}(X) = \sup_{\mathbf{y} \in \mathcal{S}} \frac{\|X\mathbf{y}\|_2}{\|\mathbf{y}\|_2} \text{ is } a \text{ convex function obtained as supremum } over an infinite number of y with <math>||\mathbf{y}||_2 = 1$ over the function $||X\mathbf{y}||_2$

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- **Pointwise maximum:** If f_1, f_2, \ldots, f_m are convex, then $f(\mathbf{x}) = max \{ f_1(\mathbf{x}), f_2(\mathbf{x}), \ldots, f_m(\mathbf{x}) \}$ is also convex. For example:
 - Sum of r largest components of x ∈ ℜⁿ f(x) = x_[1] + x_[2] + ... + x_[r], where x_[1] is the ith largest component of x, is a convex function.

• **Pointwise supremum:** If $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for every $\mathbf{y} \in S$, then $g(\mathbf{x}) = \sup_{\mathbf{y} \in S} f(\mathbf{x}, \mathbf{y})$ is convex. For example:

► The function that returns the maximum eigenvalue of a symmetric matrix *X*, *viz.*, $\lambda_{max}(X) = \sup_{\mathbf{y} \in S} \frac{\|X\mathbf{y}\|_2}{\|\mathbf{y}\|_2}$ is a convex function of the symmetrix matrix *X*.

If X is symmetrix, max eigenvalue of X^TX is squared of max eigenvalue of X

ን ዓ ር የ

Basic Subgradient Calculus: Illustration for pointwise Maximum

• Finite pointwise maximum: if $f(\mathbf{x}) = max_{i=1...m}f_i(\mathbf{x})$, then

 $\partial f(\mathbf{x}) =$ subdifferential of f_i(x) at points x where f(x) = f_i(x) (that is points where there is a unique/unambiguous maximizer, the subdifferential of f(x) is the subdifferential of that unique maximizer)

Convex hull of subdifferentials of $f_i(x)$ for all i s.t $f(x) = f_i(x)$ (that is points where there is a unique/unambiguous maximizer, the subdifferential of f(x) is the subdifferential of that unique maximizer)

Includes union

Basic Subgradient Calculus: Illustration for pointwise Maximum

- Finite pointwise maximum: if $f(\mathbf{x}) = max_{i=1...m}f_i(\mathbf{x})$, then $\partial f(\mathbf{x}) = conv\left(\bigcup_{i:f_i(\mathbf{x})=f(\mathbf{x})} \partial f_i(\mathbf{x})\right)$, which is the convex hull of union of subdifferentials of all active functions at x.
- General pointwise maximum: if $f(\mathbf{x}) = max_{s \in S} f_s(\mathbf{x})$, then

under some regularity conditions (on *S*, f_s), $\partial f(\mathbf{x}) =$ closure of convex hull of union of subdifferentials

Additional operation that ensures the subdifferential to be closed

August 31, 2018

84 / 402

Basic Subgradient Calculus: Illustration for pointwise Maximum

• Finite pointwise maximum: if $f(\mathbf{x}) = max_{i=1...m}f_i(\mathbf{x})$, then $\partial f(\mathbf{x}) = conv \left(\bigcup_{i:f_i(\mathbf{x})=f(\mathbf{x})} \partial f_i(\mathbf{x}) \right)$, which is the convex hull of union of subdifferentials of all active functions at x.

August 31, 2018

84 / 402

• General pointwise maximum: if $f(\mathbf{x}) = max_{s \in S} f_s(\mathbf{x})$, then under some regularity conditions (on *S*, f_s), $\partial f(\mathbf{x}) = cl\left\{conv\left(\bigcup_{\mathbf{x} \in \{x\} = f(\mathbf{x})} \partial f_s(\mathbf{x})\right)\right\}$

Subgradient of $\|\mathbf{x}\|_1$

Assume $\mathbf{x} \in \Re^n$. Then

• $\|\mathbf{x}\|_1 = \max \text{ over } 2^n \text{ functions each corresponding to } s^Tx$

Subgradient of $\|\mathbf{x}\|_1$

Assume $\mathbf{x} \in \Re^n$. Then

- $\|\mathbf{x}\|_1 = \max_{\mathbf{s} \in \{-1,+1\}^n} \mathbf{x}^T \mathbf{s}$ which is a pointwise maximum of 2^n functions
- Let $S^* \subseteq \{-1, +1\}^n$ be the set of s such that for each $s \in S^*$, the value of $x^T s$ is the same max value.

• Thus,
$$\partial \|\mathbf{x}\|_1 = conv \left(\bigcup_{\mathbf{s} \in \mathcal{S}^*} \mathbf{s} \right).$$

More Subgradient Calculus: Function Convexity first

Following functions are again convex, but again, may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

• Nonnegative weighted sum: $f = \sum_{i=1}^{n} \alpha_i f_i$ is convex if each f_i for $1 \le i \le n$ is convex and $\alpha_i > 0, 1 < i < n.$

• **Composition with affine function:** f(Ax + b) is convex if f is convex. For example:

• The log barrier for linear inequalities, $f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$, is convex since $-\log(x)$ is convex.

> August 31, 2018

86 / 402

• Any norm of an affine function, f(x) = ||Ax + b||, is convex.

if A is m x n, then f() is defined on R^n whereas f(Ax+b) is defined on R^m