
Extreme Points

Let us find the critical points of f(x1, x2) = x21 + x22 − 2x1 − 6x2 + 14 and classify the
critical point.
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Extreme Points

Let us find the critical points of f(x1, x2) = x21 + x22 − 2x1 − 6x2 + 14 and classify the
critical point.
This function is a polyonomial function and is differentiable everywhere. It is a paraboloid
that is shifted away from origin. To find its critical points, we will solve fx1 = 2x1 − 2 = 0
and fx2 = 2x2 − 6 = 0, which when solved simultaneously, yield a single critical point
(1, 3).
For a simple example like this, the function f can be rewritten as
f(x1, x2) = (x1 − 1)2 + (x2 − 3)2 + 4, which implies that f(x1, x2) ≥ 4 = f(1, 3). Therefore,
(1, 3) is indeed a local minimum (in fact a global minimum) of f(x1, x2).
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Descent Algorithms for Optimization
Consider the following minimization problem min

x∈D
f(x)

Assume that f is convex and that it attains a finite optimal value p∗.
Minimization techniques produce a sequence of points x(k) ∈ D, k = 0, 1, . . . such that
f
(

x(k)
)
→ p∗ as k→∞ or, ∇f

(
x(k)
)
→ 0 as k→∞.

General idea: Search direction ∆x(k) (a unit vector), is multiplied by a scale factor t(k),
called the step length: x(k+1) = x(k) + t(k)∆x(k)

We assume that we are dealing with the extended value extension ef of the convex
function f : D → ℜ, with D ⊆ ℜn which returns ∞ for any point outside its domain.
However, if we do so, we need to make sure that the initial point indeed lies in the
domain D.

Definition

ef(x) =

{
f(x) if x ∈ D
∞ if x /∈ D (15)
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The How of (Sub)Gradient
Note: Subdifferential is intersection of infinite half-spaces and is therefore
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convex
and closed



The How of (Sub)Gradient
Note: Subdifferential is intersection of infinite half-spaces and is therefore a closed convex

set even if f is NOT convex.
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First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

Pointwise maximum: If f1, f2, . . . , fm are convex, then
f(x) = max

{
f1(x), f2(x), . . . , fm(x)

}
is
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In Quiz 1, problem 1, m=2
f1 = ||x||_1
f2 = ||x||_infinity

convex



First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

Pointwise maximum: If f1, f2, . . . , fm are convex, then
f(x) = max

{
f1(x), f2(x), . . . , fm(x)

}
is also convex. For example:

▶ Sum of r largest components of x ∈ ℜn f(x) = x[1] + x[2] + . . .+ x[r], where x[1] is the ith
largest component of x, is
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Proof: Either from first principles (invoking convexity of f1...fm)
Or

Inspect intersection of epigraphs of f1...fm

Will our proof of convexity hold for an infinite (possibly even uncountable)
number of indices i (which had a finite set of values 1...m above)?
ANS: Yes!! 



First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

Pointwise maximum: If f1, f2, . . . , fm are convex, then
f(x) = max

{
f1(x), f2(x), . . . , fm(x)

}
is also convex. For example:

▶ Sum of r largest components of x ∈ ℜn f(x) = x[1] + x[2] + . . .+ x[r], where x[1] is the ith
largest component of x, is a convex function.

Pointwise supremum: If f(x,y) is convex in x for every y ∈ S, then g(x) = sup
y∈S

f(x,y)

is
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S is a set of possibly
infinite number of indices

convex by a proof similar to
that on the board:
RHS will have sup over y instead
of max over i
Similarly, 
LHS will also have sup over y instead of max over i



First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

Pointwise maximum: If f1, f2, . . . , fm are convex, then
f(x) = max

{
f1(x), f2(x), . . . , fm(x)

}
is also convex. For example:

▶ Sum of r largest components of x ∈ ℜn f(x) = x[1] + x[2] + . . .+ x[r], where x[1] is the ith
largest component of x, is a convex function.

Pointwise supremum: If f(x,y) is convex in x for every y ∈ S, then g(x) = sup
y∈S

f(x,y)

is convex. For example:
▶ The function that returns the maximum eigenvalue of a symmetric matrix X, viz.,

λmax(X) = sup
y∈S

∥Xy∥2

∥y∥2
is
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a convex function obtained as supremum
over an infinite number of y with ||y||_2 = 1
over the function ||Xy||_2 



First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

Pointwise maximum: If f1, f2, . . . , fm are convex, then
f(x) = max

{
f1(x), f2(x), . . . , fm(x)

}
is also convex. For example:

▶ Sum of r largest components of x ∈ ℜn f(x) = x[1] + x[2] + . . .+ x[r], where x[1] is the ith
largest component of x, is a convex function.

Pointwise supremum: If f(x,y) is convex in x for every y ∈ S, then g(x) = sup
y∈S

f(x,y)

is convex. For example:
▶ The function that returns the maximum eigenvalue of a symmetric matrix X, viz.,

λmax(X) = sup
y∈S

∥Xy∥2

∥y∥2
is a convex function of the symmetrix matrix X.
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If X is symmetrix, max eigenvalue of X^TX is squared of max 
eigenvalue of X



Basic Subgradient Calculus: Illustration for pointwise Maximum

Finite pointwise maximum: if f(x) = maxi=1...mfi(x), then
∂f(x) =
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subdifferential of f_i(x) at points x where f(x) = f_i(x)
(that is points where there is a unique/unambiguous
maximizer, the subdifferential of f(x) is the subdifferential
of that unique maximizer)

Convex hull of subdifferentials of f_i(x) for all i s.t f(x) = f_i(x)
(that is points where there is a unique/unambiguous
maximizer, the subdifferential of f(x) is the subdifferential
of that unique maximizer)

Includes union



Basic Subgradient Calculus: Illustration for pointwise Maximum

Finite pointwise maximum: if f(x) = maxi=1...mfi(x), then
∂f(x) = conv

( ∪

i:fi(x)=f(x)
∂fi(x)

)
, which is the convex hull of union of subdifferentials of

all active functions at x.
General pointwise maximum: if f(x) = maxs∈Sfs(x), then
under some regularity conditions (on S, fs), ∂f(x) =
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closure of convex hull
of union of subdifferentials

Additional operation that ensures the subdifferential
to be closed



Basic Subgradient Calculus: Illustration for pointwise Maximum

Finite pointwise maximum: if f(x) = maxi=1...mfi(x), then
∂f(x) = conv

( ∪

i:fi(x)=f(x)
∂fi(x)

)
, which is the convex hull of union of subdifferentials of

all active functions at x.
General pointwise maximum: if f(x) = maxs∈Sfs(x), then
under some regularity conditions (on S, fs), ∂f(x) = cl

{
conv

( ∪

s:fs(x)=f(x)
∂fs(x)

)}
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Subgradient of ∥x∥1

Assume x ∈ ℜn. Then
∥x∥1 =
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max over 2^n functions each corresponding to s^Tx



Subgradient of ∥x∥1

Assume x ∈ ℜn. Then
∥x∥1 = max

s∈{−1,+1}n
xTs which is a pointwise maximum of 2n functions

Let S∗ ⊆ {−1,+1}n be the set of s such that for each s ∈ S∗, the value of xTs is the
same max value.
Thus, ∂∥x∥1 = conv

( ∪

s∈S∗
s
)
.
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More Subgradient Calculus: Function Convexity first

Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

Nonnegative weighted sum: f =
n∑

i=1

αifi is convex if each fi for 1 ≤ i ≤ n is convex and

αi ≥ 0, 1 ≤ i ≤ n.
Composition with affine function: f(Ax+ b) is convex if f is convex. For example:

▶ The log barrier for linear inequalities, f(x) = −
m∑

i=1

log(bi − aTi x), is convex since − log(x) is

convex.
▶ Any norm of an affine function, f(x) = ||Ax+ b||, is convex.
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if A is m x n, then f() is defined on R^n whereas f(Ax+b) is defined on 
R^m


