More Subgradient Calculus: Function Convexity first

Following functions are again convex, but again, may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Nonnegative weighted sum: $f=\sum_{i=1}^{n} \alpha_{i} f_{i}$ is convex if each f_{i} for $1 \leq i \leq n$ is convex and $\alpha_{i} \geq 0,1 \leq i \leq n$.
- Composition with affine function: $\underline{f(A x+b) \text { is convex if } f \text { is convex. For example: }}$
- The log barrier for linear inequalities, $f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)$, is convex since $-\log (x)$ is convex.
- Any norm of an affine function, $f(x)=\|A x+b\|$, is convex.

More of Basic Subgradient Calculus

- Scaling: $\partial(a f)=a \cdot \partial f$ provided $a>0$. The condition $a>0$ makes function f remain convex.
- Addition: $\partial\left(f_{1}+f_{2}\right)=\partial\left(f_{1}\right)+\partial\left(f_{2}\right)$
- Affine composition: if $g(\mathbf{x})=f(A \mathbf{x}+\mathbf{b})$, then $\partial g(\mathbf{x})=A^{T} \partial f(A \mathbf{x}+b)$
- Norms: important special case, $f(\mathbf{x})=\|\mathbf{x}\|_{p}$

The derivations done in class could be used to show that if any other subgradient exists for g outside the stated set above, that could be used to construct a subgradient for f outside the stated set above as well!

More of Basic Subgradient Calculus

- Scaling: $\partial(a f)=a \cdot \partial f$ provided $a>0$. The condition $a>0$ makes function f remain convex.
- Addition: $\partial\left(f_{1}+f_{2}\right)=\partial\left(f_{1}\right)+\partial\left(f_{2}\right)$
- Affine composition: if $g(\mathbf{x})=f(A \mathbf{x}+\mathbf{b})$, then $\partial g(\mathbf{x})=A^{T} \partial f(A \mathbf{x}+b)$
- Norms: important special case, $f(\mathbf{x})=\|\mathbf{x}\|_{p}=\max _{\|\mathbf{z}\|_{q} \leq 1} \mathbf{z}^{\top} \mathbf{x}$ where q is such that $1 / p+1 / q=1$. Then On the board we have used y instead of z

More of Basic Subgradient Calculus

- Scaling: $\partial(a f)=a \cdot \partial f$ provided $a>0$. The condition $a>0$ makes function f remain convex.
- Addition: $\partial\left(f_{1}+f_{2}\right)=\partial\left(f_{1}\right)+\partial\left(f_{2}\right)$
- Affine composition: if $g(\mathbf{x})=f(A \mathbf{x}+\mathbf{b})$, then $\partial g(\mathbf{x})=A^{T} \partial f(A \mathbf{x}+b)$
- Norms: important special case, $f(\mathbf{x})=\|\mathbf{x}\|_{p}=\max _{\|\mathbf{z}\|_{q} \leq 1} \mathbf{z}^{T} \mathbf{x}$ where q is such that $1 / p+1 / q=1$. Then

$$
\partial f(\mathbf{x})=\left\{\mathbf{y}:\|\mathbf{y}\|_{q} \leq 1 \text { and } \mathbf{y}^{T} x=\max _{\|\mathbf{z}\|_{q} \leq 1} \mathbf{z}^{T} \mathbf{x}\right\}=
$$

y corresponds to z where the max is attained
The part above is largely connected to previous discussion on max of convex functions

More of Basic Subgradient Calculus

- Scaling: $\partial(a f)=a \cdot \partial f$ provided $a>0$. The condition $a>0$ makes function f remain convex.
- Addition: $\partial\left(f_{1}+f_{2}\right)=\partial\left(f_{1}\right)+\partial\left(f_{2}\right)$
- Affine composition: if $g(\mathbf{x})=f(A \mathbf{x}+\mathbf{b})$, then $\partial g(\mathbf{x})=A^{T} \partial f(A \mathbf{x}+b)$
- Norms: important special case, $f(\mathbf{x})=\|\mathbf{x}\|_{p}=\max _{\|\mathbf{z}\|_{q} \leq 1} \mathbf{z}^{T} \mathbf{x}$ where q is such that

$$
\begin{aligned}
& 1 / p+1 / q=1 \text {. Then } \\
& \partial f(\mathbf{x})=\left\{\mathbf{y}:\|\mathbf{y}\|_{q} \leq 1 \text { and } \mathbf{y}^{T} x=\max _{\|\mathbf{z}\|_{q} \leq 1} \mathbf{z}^{T} \mathbf{x}\right\}=\left\{\mathbf{y}:\|\mathbf{y}\|_{q} \leq 1 \text { and } \mathbf{y}^{T} x=\|\mathbf{x}\|_{p}\right\}
\end{aligned}
$$

Why ||y|l_q <= 1
is because of Minkowski's inequality

Subgradients for the 'Lasso' Problem in Machine Learning

We use Lasso ($\min _{\mathbf{x}} f(\mathbf{x})$) as an example to illustrate subgradients of affine composition:

$$
f(\mathbf{x})=\frac{1}{2}\|\mathbf{y}-\mathbf{x}\|^{2}+\lambda\|\mathbf{x}\|_{1}
$$

The subgradients of $f(\mathbf{x})$ are

$$
\begin{aligned}
& \mathrm{x}-\mathrm{y}+\text { Vambda } \mathrm{s} \\
& \text { Where } \mathrm{s}=\{+1,-1\}^{\wedge} \mathrm{n} \\
& \text { such that }\|x\| \|^{1}=\mathrm{s}^{\wedge} \mathrm{T} \mathrm{x}
\end{aligned}
$$

Subgradients for the 'Lasso' Problem in Machine Learning

We use Lasso ($\min _{\mathbf{x}} f(\mathbf{x})$) as an example to illustrate subgradients of affine composition:

$$
f(\mathbf{x})=\frac{1}{2}\|\mathbf{y}-\mathbf{x}\|^{2}+\lambda\|\mathbf{x}\|_{1}
$$

The subgradients of $f(\mathbf{x})$ are

$$
\mathbf{h}=\mathbf{x}-\mathbf{y}+\lambda \mathbf{s},
$$

where $s_{i}=\operatorname{sign}\left(x_{i}\right)$ if $x_{i} \neq 0$ and $s_{i} \in[-1,1]$ if $x_{i}=0$.

Second component is a result of the convex hull

More Subgradient Calculus: Composition

Following functions, though convex, may not be differentiable everywhere. How does one compute their subgradients? (what holds for subgradient also holds for gradient)

- Composition with functions: Let $p: \Re^{k} \rightarrow \Re$ with $q(x)=\infty, \forall \mathbf{x} \notin \mathbf{d o m} h$ and $q: \Re^{n} \rightarrow \Re^{k}$. Define $f(\mathbf{x})=p(q(\mathbf{x}))$. f is convex if
- q_{i} is convex, p is convex and nondecreasing in each argument We will consider
- or q_{i} is concave, p is convex and nonincreasing in each argument 0 ly

More Subgradient Calculus: Composition

Following functions, though convex, may not be differentiable everywhere. How does one compute their subgradients? (what holds for subgradient also holds for gradient)

- Composition with functions: Let $p: \Re^{k} \rightarrow \Re$ with $q(x)=\infty, \forall \mathbf{x} \notin$ dom h and $q: \Re^{n} \rightarrow \Re^{k}$. Define $f(\mathbf{x})=p(q(\mathbf{x}))$. f is convex if In both conditions,
- q_{i} is convex, p is convex and nondecreasing in each argument composition will be
- or q_{i} is concave, p is convex and nonincreasing in each argument concave if p is Some examples illustrating this property are:
- $\exp q(\mathbf{x})$ is convex if q is convex
exp is a monotonic and convex p
- $\sum_{i=1}^{m} \log q_{i}(\mathbf{x})$ is concave if q_{i} are concave and positive
- $\log \sum_{i=1}^{m} \exp q_{i}(\mathbf{x})$ is convex if q_{i} are convex

p is concave and hence the composition is concave
- $1 / q(x)$ is convex if q is concave and positive

More Subgradient Calculus: Composition (contd)

- Composition with functions: Let $p: \Re^{k} \rightarrow \Re$ with $q(x)=\infty, \forall \mathbf{x} \notin \mathbf{d o m} h$ and $q: \Re^{n} \rightarrow \Re^{k}$. Define $f(\mathbf{x})=p(q(\mathbf{x}))$. f is convex if
- q_{i} is convex, p is convex and nondecreasing in each argument
- or q_{i} is concave, p is convex and nonincreasing in each argument
- Subgradients for the first case (second one is homework):

More Subgradient Calculus: Composition (contd)

- Composition with functions: Let $p: \Re^{k} \rightarrow \Re$ with $q(x)=\infty, \forall \mathbf{x} \notin \mathbf{d o m} h$ and $q: \Re^{n} \rightarrow \Re^{k}$. Define $f(\mathbf{x})=p(q(\mathbf{x}))$. f is convex if
- q_{i} is convex, p is convex and nondecreasing in each argument
- or q_{i} is concave, p is convex and nonincreasing in each argument
- Subgradients for the first case (second one is homework):
- $f(\mathbf{y})=p\left(q_{1}(\mathbf{y}), \ldots, q_{k}(\mathbf{y})\right) \geq p\left(q_{1}(\mathbf{x})+\mathbf{h}_{q_{1}}^{T}(\mathbf{y}-\mathbf{x}), \ldots, q_{k}(\mathbf{x})+\mathbf{h}_{q_{k}}^{T}(\mathbf{y}-\mathbf{x})\right)$ Where $\mathbf{h}_{q_{i}} \in \partial q_{i}(\mathbf{x})$ for $i=1 . . k$ and since $p($.$) is non-decreasing in each argument.$
p applied to $q i(x)$ is $>=p$ applied to the lower bounds on $q i(x)$

More Subgradient Calculus: Composition (contd)

- Composition with functions: Let $p: \Re^{k} \rightarrow \Re$ with $q(x)=\infty, \forall \mathbf{x} \notin \mathbf{d o m} h$ and $q: \Re^{n} \rightarrow \Re^{k}$. Define $f(\mathbf{x})=p(q(\mathbf{x}))$. f is convex if
- q_{i} is convex, p is convex and nondecreasing in each argument
- or q_{i} is concave, p is convex and nonincreasing in each argument
- Subgradients for the first case (second one is homework):
- $f(\mathbf{y})=p\left(q_{1}(\mathbf{y}), \ldots, q_{k}(\mathbf{y})\right) \geq p\left(q_{1}(\mathrm{x})+\mathrm{h}_{q_{1}}^{T}(\mathbf{y}-\mathrm{x}), \ldots, q_{k}(\mathrm{x})+\mathrm{h}_{q_{k}}^{T}(\mathrm{y}-\mathrm{x})\right)$

Where $\mathbf{h}_{q_{i}} \in \partial q_{i}(\mathbf{x})$ for $i=1 . . k$ and since $p($.$) is non-decreasing in each argument.$

- $p\left(q_{1}(\mathrm{x})+\mathrm{h}_{q_{1}}^{T}(\mathrm{y}-\mathrm{x}), \ldots, q_{k}(\mathrm{x})+\mathrm{h}_{q_{k}}^{T}(\mathrm{y}-\mathrm{x})\right) \geq$
$p\left(q_{1}(\mathbf{x}), \ldots, q_{k}(\mathbf{x})\right)+\mathbf{h}_{p}^{T}\left(\underline{\mathbf{h}_{q_{1}}^{T}}(\mathbf{y}-\mathbf{x}), \ldots, \mathbf{h}_{q_{k}}^{T}(\mathbf{y}-\mathbf{x})\right)$
Where $\mathbf{h}_{p} \in \partial p\left(q_{1}(\mathbf{x}), \ldots, q_{k}(\mathbf{x})\right)$

All we need to do next is club together h_p and h_q and leave only ($y-x$) in the second component

More Subgradient Calculus: Composition (contd)

- Composition with functions: Let $p: \Re^{k} \rightarrow \Re$ with $q(x)=\infty, \forall \mathbf{x} \notin \mathbf{d o m} h$ and $q: \Re^{n} \rightarrow \Re^{k}$. Define $f(\mathbf{x})=p(q(\mathbf{x}))$. f is convex if
- q_{i} is convex, p is convex and nondecreasing in each argument
- or q_{i} is concave, p is convex and nonincreasing in each argument
- Subgradients for the first case (second one is homework):
- $f(\mathbf{y})=p\left(q_{1}(\mathbf{y}), \ldots, q_{k}(\mathbf{y})\right) \geq p\left(q_{1}(\mathbf{x})+\mathbf{h}_{q_{1}}^{T}(\mathbf{y}-\mathbf{x}), \ldots, q_{k}(\mathbf{x})+\mathbf{h}_{q_{k}}^{T}(\mathbf{y}-\mathbf{x})\right)$

Where $\mathbf{h}_{q_{i}} \in \partial q_{i}(\mathbf{x})$ for $i=1 . . k$ and since $p($.$) is non-decreasing in each argument.$

- $p\left(q_{1}(\mathbf{x})+\mathbf{h}_{q_{1}}^{T}(\mathbf{y}-\mathbf{x}), \ldots, q_{k}(\mathbf{x})+\mathbf{h}_{q_{k}}^{T}(\mathbf{y}-\mathbf{x})\right) \geq$
$p\left(q_{1}(\mathbf{x}), \ldots, q_{k}(\mathbf{x})\right)+\mathbf{h}_{p}^{T}\left(\mathbf{h}_{q_{1}}^{T}(\mathbf{y}-\mathbf{x}), \ldots, \mathbf{h}_{q_{k}}^{T}(\mathbf{y}-\mathbf{x})\right)$
Where $\mathbf{h}_{p} \in \partial p\left(q_{1}(\mathbf{x}), \ldots, q_{k}(\mathbf{x})\right)$
- $p\left(q_{1}(\mathbf{x}), \ldots, q_{k}(\mathbf{x})\right)+h_{p}^{T}\left(h_{q_{1}}^{T}(\mathbf{y}-\mathbf{x}), \ldots, h_{q_{k}}^{T}(\mathbf{y}-\mathbf{x})\right)=f(\mathbf{x})+\sum_{i=1}^{k}\left(h_{p}\right)_{i} h_{q_{i}}^{T}(\mathbf{y}-\mathbf{x})$

That is, $\sum_{i=1}^{k}\left(h_{p}\right)_{i} h_{q_{i}}$ is a subgradient of the composite function at \mathbf{x}. H/W: Derive the subdifferentials to example functions on previous slide

More Subgradient Calculus: Proximal Operator

Following functions are again convex, but again, may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Infimum: If $c(x, y)$ is convex in (x, y) and \mathcal{C} is a convex set, then $d(x)=\inf _{y \in \mathcal{C}} c(x, y)$ is convex. For example:
- Let $d(\mathbf{x}, \mathcal{C})$ that returns the distance of a point \mathbf{x} to a convex set \mathcal{C}. That is $d(\mathbf{x}, \mathcal{C})=\inf _{y \in \mathcal{C}}\|\mathbf{x}-\mathbf{y}\|=\left\|\mathbf{x}-P_{C}(\mathbf{x})\right\|$, where, $P_{C}(\mathbf{x})=\operatorname{argmin} d(\mathbf{x}, \mathcal{C})$. Then $d(\mathbf{x}, \mathcal{C})$ is a convex function and $\nabla d(\mathbf{x}, \mathcal{C})=\frac{\mathbf{x}-P_{C}(\mathbf{x})}{\left\|\mathbf{x}-P_{C}(\mathbf{x})\right\|}$

H / w : Prove that d is convex if c is a convex function and if C is a convex set

More Subgradient Calculus: Proximal Operator

Following functions are again convex, but again, may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Infimum: If $c(x, y)$ is convex in (x, y) and \mathcal{C} is a convex set, then $d(x)=\inf _{y \in \mathcal{C}} c(x, y)$ is convex. For example:
- Let $d(\mathbf{x}, \mathcal{C})$ that returns the distance of a point \mathbf{x} to a convex set \mathcal{C}. That is $d(\mathbf{x}, \mathcal{C})=\inf _{y \in \mathcal{C}}\|\mathbf{x}-\mathbf{y}\|=\left\|\mathbf{x}-P_{C}(\mathbf{x})\right\|$, where, $P_{C}(\mathbf{x})=\operatorname{argmin} d(\mathbf{x}, \mathcal{C})$. Then $d(\mathbf{x}, \mathcal{C})$ is a convex function and $\nabla d(\mathbf{x}, \mathcal{C})=\frac{\mathbf{x}-P_{C}(\mathbf{x})}{\left\|\mathrm{x}-P_{C}(\mathbf{x})\right\|} \ldots$. The point of intersection of convex sets $C_{1}, C_{2}, \ldots C_{m}$ by minimizing...

More Subgradient Calculus: Proximal Operator

Following functions are again convex, but again, may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Infimum: If $c(x, y)$ is convex in (x, y) and \mathcal{C} is a convex set, then $d(x)=\inf _{y \in \mathcal{C}} c(x, y)$ is convex. For example:
- Let $d(\mathbf{x}, \mathcal{C})$ that returns the distance of a point \mathbf{x} to a convex set \mathcal{C}. That is $d(\mathbf{x}, \mathcal{C})=\inf _{y \in \mathcal{C}}\|\mathbf{x}-\mathbf{y}\|=\left\|\mathbf{x}-P_{C}(\mathbf{x})\right\|$, where, $P_{C}(\mathbf{x})=\operatorname{argmin} d(\mathbf{x}, \mathcal{C})$. Then $d(\mathbf{x}, \mathcal{C})$ is a convex function and $\nabla d(x, \mathcal{C})=\frac{\mathrm{x}-P_{C}(\mathrm{x})}{\left\|\mathrm{x}-P_{C}(\mathrm{x})\right\|} \ldots$. The point of intersection of convex sets $C_{1}, C_{2}, \ldots C_{m}$ by minimizing... (Subgradients and Alternating Projections)
- $\operatorname{argmin} d(\mathbf{x}, \mathcal{C})$ is a special case of the proximity operator: $\operatorname{prox}_{c}(\mathbf{x})=\operatorname{argmin} \operatorname{PROX}_{c}(\mathbf{x})$ of a $y \in \mathcal{C}$ convex function $c(\mathbf{x})$. Here, $\operatorname{PROX}_{c}(\mathrm{x})=c(\mathrm{y})+\frac{1}{2}\|\mathrm{x}-\mathrm{y}\|$ The special case is when

$$
c(x) \text { is the indicator function over } C
$$

More Subgradient Calculus: Proximal Operator

Following functions are again convex, but again, may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Infimum: If $c(x, y)$ is convex in (x, y) and \mathcal{C} is a convex set, then $d(x)=\inf _{y \in \mathcal{C}} c(x, y)$ is convex. For example:
- Let $d(\mathbf{x}, \mathcal{C})$ that returns the distance of a point \mathbf{x} to a convex set \mathcal{C}. That is $d(\mathbf{x}, \mathcal{C})=\inf _{y \in \mathcal{C}}\|\mathbf{x}-\mathbf{y}\|=\left\|\mathbf{x}-P_{\mathcal{C}}(\mathbf{x})\right\|$, where, $P_{C}(\mathbf{x})=\operatorname{argmin} d(\mathbf{x}, \mathcal{C})$. Then $d(\mathbf{x}, \mathcal{C})$ is a convex function and $\nabla d(\mathbf{x}, \mathcal{C})=\frac{\mathrm{x}-P_{C}(\mathbf{x})}{\left\|\mathrm{x}-P_{C}(\mathbf{x})\right\|}$...The point of intersection of convex sets $C_{1}, C_{2}, \ldots C_{m}$ by minimizing... (Subgradients and Alternating Projections)
- $\operatorname{argmin} d(\mathbf{x}, \mathcal{C})$ is a special case of the proximity operator: $\operatorname{prox}_{c}(\mathbf{x})=\operatorname{argmin} P R O X_{c}(\mathbf{x})$ of a $y \in \mathcal{C}$ convex function $c(\mathbf{x})$. Here, $\operatorname{PROX}_{c}(\mathbf{x})=c(\mathbf{y})+\frac{1}{2}\|\mathbf{x}-\mathbf{y}\|$ The special case is when $c(\mathbf{y})$ is the indicator function $I_{C}(\mathbf{y})$ introduced earlier to eliminate the contraints of an optimization problem.

$$
\begin{aligned}
& \star \text { Recall that } \partial I_{C}(\mathbf{y})=N_{C}(\mathbf{y})=\left\{\mathbf{h} \in \Re^{n}: \mathbf{h}^{\top} \mathbf{y} \geq \mathbf{h}^{\top} \mathbf{z} \text { for any } \mathbf{z} \in C\right\} \\
& \star \text { The subdifferential } \partial \operatorname{PROX}_{c}(\mathbf{x})=\partial c(\mathbf{y})+\mathbf{y}-\mathbf{x} \text { which can now be obtained for the special }
\end{aligned}
$$ case $c(\mathbf{y})=I_{C}(\mathbf{y})$.

