More Subgradient Calculus: Function Convexity first

Following functions are again convex, but again, may not be differentiable everywhere. How

does one compute their subgradients at points of non-differentiability?
n

o Nonnegative weighted sum: = Za,-f,- is convex if each f; for 1 < i< nis convex and
i=1

a;>0,1<i<n.
e Composition with affine function: {Ax+ b) is convex if fis convex. For example:

» The log barrier for linear inequalities, f(x) = Z log(b; — a] x), is convex since — log(x) is

i=1
convex.

» Any norm of an affine function, f{x) = ||Ax+ b, is convex.
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More of Basic Subgradient Calculus

@ Scaling: d(af) = a- Of provided a > 0. The condition a > 0 makes function f remain
convex.

e Addition: O(fi + f2) = O(f;) + O(f)

o Affine composition: if g(x) = f{Ax + b), then dg(x) = ATOf(Ax + b)

e Norms: important special case, f{x) = ||x]|, The derivations done in class

could be used to show that
if any other subgradient
exists for g outside the stated
set above, that could be used
to construct a subgradient for
f outside the stated set above
as well!
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More of Basic Subgradient Calculus

@ Scaling: d(af) = a- Of provided a > 0. The condition a > 0 makes function f remain
convex.

e Addition: J(f; + f2) = 0(f1) + O(f2)
o Affine composition: if g(x) = f{Ax + b), then 0g(x) = ATOf Ax + b)
o Norms: important special case, fix) = ||x||, = max z'x where g is such that

l|z[q<1
1/p+1/q=1. Then On the board we have

used y instead of z
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More of Basic Subgradient Calculus

@ Scaling: d(af) = a- Of provided a > 0. The condition a > 0 makes function f remain
convex.

e Addition: J(f; + f2) = 0(f1) + O(f2)
o Affine composition: if g(x) = f{Ax + b), then 0g(x) = ATOf Ax + b)
o Norms: important special case, fix) = ||x||, = max z'x where g is such that

|lz[[q<1
1/p+1/g=1. Then

0f(x) = {y |lyllg <1 and y'x= max sz} =
llzl[g<1

y corresponds to z where the max is attained

The part above is largely connected to previous discussion on max

of convex functions
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More of Basic Subgradient Calculus

@ Scaling: d(af) = a- Of provided a > 0. The condition a > 0 makes function f remain
convex.

e Addition: J(f; + f2) = 0(f1) + O(f2)
o Affine composition: if g(x) = f{Ax + b), then 0g(x) = ATOf Ax + b)

o Norms: important special case, fix) = ||x||, = max z'x where g is such that .
lzllg<1 This is derived in
1/p+1/g=1. Then

class

1) = {3 s 1vlle <1 300 ¥ 7= max a7} = {y Iyl < Land v 0, ]
qsS

Why [ly]l_a <=1
is because of Minkowski's
inequality

I 4 a4 September 1, 2018 87 / 402



Subgradients for the ‘Lasso’ Problem in Machine Learning

We use Lasso (min f(x)) as an example to illustrate subgradients of affine composition:
X

fix) = 5 lly — xII* + Allx[]x

N =

The subgradients of f(x) are
X -y + \lambda s

Wheres = {+1,-1}"n
such that ||x]|_1 = s”T x
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Subgradients for the ‘Lasso’ Problem in Machine Learning

We use Lasso (min f(x)) as an example to illustrate subgradients of affine composition:
X

fix) = 5 lly — xII* + Allx[]x

N =

The subgradients of f(x) are
h=x-y+ Js,
where s; = sign(x;) if x; # 0 and s; € [—1, 1] if x; = 0.

Second component is a result of the
convex hull
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More Subgradient Calculus: Composition

Following functions, though convex, may not be differentiable everywhere. How does one
compute their subgradients? (what holds for subgradient also holds for gradient)

e Composition with functions: Let p: R — R with g(x) = 00,V x ¢ dom h and
g: R" — Rk Define f{x) = p(q(x)). fis convex if . .
: : ) = pla(x)) - We will consider
> q; is convex, p is convex and nondecreasing in each argument .
> Or g; Is concave, p is convex and nonincreasing in each argumentonly the first case
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More Subgradient Calculus: Composition

Following functions, though convex, may not be differentiable everywhere. How does one
compute their subgradients? (what holds for subgradient also holds for gradient)

e Composition with functions: Let p: RK — R with g(x) = o0,V x ¢ dom h and
q: R" — Rk Define f(x) = p(q(x)). fis convex if In both conditions,

> q; is convex, p is convex and nondecreasing in each argumentcomposition will be
> or g; is concave, p is convex and nonincreasing in each argument if p is

Some examples illustrating this property are: concave
> exp q(x) is convex if g is convex ey j5 3 monotonic and convex p

> Z log gi(x) is concave if g; are concave and positive is conc
=1
m and hence the
> IogZexp qi(x) is convex if g; are convex composition is concave
=1

» 1/q(x) is convex if q is concave and positive
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More Subgradient Calculus: Composition (contd)

o Composition with functions: Let p: R — R with g(x) = o0,V x ¢ dom h and
q: R" — Rk Define fix) = p(q(x)). fis convex if
> g, is convex, p is convex and nondecreasing in each argument
> or g; is concave, p is convex and nonincreasing in each argument
@ Subgradients for the first case (second one is homework):
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More Subgradient Calculus: Composition (contd)

o Composition with functions: Let p: R — R with g(x) = o0,V x ¢ dom h and
q: R" — Rk Define fix) = p(q(x)). fis convex if
> g, is convex, p is convex and nondecreasing in each argument
> or g; is concave, p is convex and nonincreasing in each argument
@ Subgradients for the first case (second one is homework):

> fy) = p(au(y), . a(y) = p(q1(x) +h] (y —x),....q(x) +h](y —x))
Where hg, € 0g;(x) for i = 1..k and since p(.) is non-decreasing in each argument.

p applied to qi(x) is >= p applied to the lower bounds on qi(x)
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More Subgradient Calculus: Composition (contd)

o Composition with functions: Let p: R — R with g(x) = o0,V x ¢ dom h and
q: R" — Rk Define fix) = p(q(x)). fis convex if
> g, is convex, p is convex and nondecreasing in each argument
> or g; is concave, p is convex and nonincreasing in each argument
@ Subgradients for the first case (second one is homework):

> 1Y) =P (@), @) 2 p(@1(x) + bl (v = %), . k(%) + (v — )
Where hg, € 0g;(x) for i = 1..k and since p(.) is non-decreasing in each argument.

> p(@1() + bl —%).....q(x) +hi(y —x)) >
p(ql(x),...,qk(x)) —|—hpT (h;(y—x),...,h;—k(y—x))
Where h,, € 9p (q1(x), ..., q(x))

All we need to do next is club together h_p and h_q
and leave only (y-x) in the second component
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More Subgradient Calculus: Composition (contd)

o Composition with functions: Let p: R — R with g(x) = o0,V x ¢ dom h and
q: R" — Rk Define fix) = p(q(x)). fis convex if
> g, is convex, p is convex and nondecreasing in each argument
> or g; is concave, p is convex and nonincreasing in each argument
@ Subgradients for the first case (second one is homework):
-

> AY) = p (@), ak(¥) 2 p(@(x) + hE (v = %), k(%) + B (y — %))
Where hg, € 0g;(x) for i = 1..k and since p(.) is non-decreasing in each argument.

> p (@) + Iy = %), ak(x) +hl(y — X)) =

p(ql(x),...,qk(x)) +hpT (h;(y—x),...,h;—k(y—x)>

Where h,, € 9p (q1(x), ..., q(x))
K

> p(@X). s awlx)) + b (A (v =), by = %)) = %)+ > ()l (y = %)
i=1
k
That is, Z (hp)ihg, is a subgradient of the composite function at x.
i=1 |H/W: Derive the subdifferentials to example functions on previous slid
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More Subgradient Calculus: Proximal Operator

Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

o Infimum: If ¢(x, y) is convex in (x,y) and C is a convex set, then d(x) = ing c(x,y) is
ye
convex. For example:

» Let d(x,C) that returns the distance of a point x to a convex set C. That is
d(x,C) = |2£ [|x —¥y|| = ||x — Pc(x)||, where, Pc(x) = argmin d(x,C) . Then d(x,C) is a
¥
x — Pc(x)
[[x = Pc(x)]|

convex function and Vd(x,C) =

H/w: Prove that d is convex if ¢ is a convex function
and if Cis a convex set
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More Subgradient Calculus: Proximal Operator

Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?
o Infimum: If ¢(x, y) is convex in (x,y) and C is a convex set, then d(x) = ing c(x,y) is

ye
convex. For example:

» Let d(x,C) that returns the distance of a point x to a convex set C. That is
d(x,C) = |2£ [|x —¥y|| = ||x — Pc(x)||, where, Pc(x) = argmin d(x,C) . Then d(x,C) is a
¥
x — Pc(x)

convex function and Vd(x,C) = Ix — Pc(x)]|
— Pc

... The point of intersection of convex sets

G, G,...Cp, by minimizing...
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More Subgradient Calculus: Proximal Operator
Following functions are again convex, but again, may not be differentiable everywhere. How

does one compute their subgradients at points of non-differentiability?
o Infimum: If ¢(x, y) is convex in (x,y) and C is a convex set, then d(x) = ing c(x,y) is
ye
convex. For example:
» Let d(x,C) that returns the distance of a point x to a convex set C. That is
d(x,C) = |2£ [|x —¥y|| = ||x — Pc(x)||, where, Pc(x) = argmin d(x,C) . Then d(x,C) is a
y

x — Pc(x)
Ix = Pe(x)]| -
G, G,...Cp, by minimizing... (Subgradients and Alternating Projections)
» argmin d(x,C) is a special case of the proximity operator: prox.(x) = argmin PROX.(x) of a
yeC y
convex function ¢(x). Here, PROX.(x) = c(y) + 5|[x — y|| The special case is when

convex function and Vd(x,C) = ... The point of intersection of convex sets

c(x) is the indicator function over C

I 4 a4 September 1, 2018 01 / 402



More Subgradient Calculus: Proximal Operator

Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?
o Infimum: If ¢(x, y) is convex in (x,y) and C is a convex set, then d(x) = ing c(x,y) is
ye
convex. For example:
» Let d(x,C) that returns the distance of a point x to a convex set C. That is
d(x,C) = ing [|x —¥y|| = ||x — Pc(x)||, where, Pc(x) = argmin d(x,C) . Then d(x,C) is a
ye
—P
convex function and Vd(x,C) = ﬁ ....The point of intersection of convex sets
— Pc
G, G,...Cp, by minimizing... (Subgradients and Alternating Projections)
» argmin d(x,C) is a special case of the proximity operator: prox.(x) = argmin PROX.(x) of a
y

yec
convex function ¢(x). Here, PROX.(x) = c(y) + 5|[x — y|| The special case is when c(y) is
Proximal the indicator function /c(y) introduced earlier to eliminate the contraints of an optimization
will be done
in details problem.
later * Recall that 9lc(y) = Ne(y) = {h € R" :h'y > h'z for any z € C}

* The subdifferential 0PROX.(x) = dc(y) + y — x which can now be obtained for the special

case c(y) = Ic(y).
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