
More Subgradient Calculus: Function Convexity first

Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

Nonnegative weighted sum: f =
n∑

i=1

αifi is convex if each fi for 1 ≤ i ≤ n is convex and

αi ≥ 0, 1 ≤ i ≤ n.
Composition with affine function: f(Ax+ b) is convex if f is convex. For example:

▶ The log barrier for linear inequalities, f(x) = −
m∑

i=1

log(bi − aTi x), is convex since − log(x) is

convex.
▶ Any norm of an affine function, f(x) = ||Ax+ b||, is convex.
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More of Basic Subgradient Calculus

Scaling: ∂(af) = a · ∂f provided a > 0. The condition a > 0 makes function f remain
convex.
Addition: ∂(f1 + f2) = ∂(f1) + ∂(f2)
Affine composition: if g(x) = f(Ax + b), then ∂g(x) = AT∂f(Ax + b)
Norms: important special case, f(x) = ||x||p
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The derivations done in class
could be used to show that
if any other subgradient 
exists for g outside the stated
set above, that could be used
to construct a subgradient for
f outside the stated set above
as well! 



More of Basic Subgradient Calculus

Scaling: ∂(af) = a · ∂f provided a > 0. The condition a > 0 makes function f remain
convex.
Addition: ∂(f1 + f2) = ∂(f1) + ∂(f2)
Affine composition: if g(x) = f(Ax + b), then ∂g(x) = AT∂f(Ax + b)
Norms: important special case, f(x) = ||x||p = max

||z||q≤1
zTx where q is such that

1/p+ 1/q = 1. Then
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On the board we have
used y instead of z



More of Basic Subgradient Calculus

Scaling: ∂(af) = a · ∂f provided a > 0. The condition a > 0 makes function f remain
convex.
Addition: ∂(f1 + f2) = ∂(f1) + ∂(f2)
Affine composition: if g(x) = f(Ax + b), then ∂g(x) = AT∂f(Ax + b)
Norms: important special case, f(x) = ||x||p = max

||z||q≤1
zTx where q is such that

1/p+ 1/q = 1. Then
∂f(x) =

{
y : ||y||q ≤ 1 and yTx = max

||z||q≤1
zTx
}

=
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y corresponds to z where the max is attained

The part above is largely connected to previous discussion on max
of convex functions



More of Basic Subgradient Calculus

Scaling: ∂(af) = a · ∂f provided a > 0. The condition a > 0 makes function f remain
convex.
Addition: ∂(f1 + f2) = ∂(f1) + ∂(f2)
Affine composition: if g(x) = f(Ax + b), then ∂g(x) = AT∂f(Ax + b)
Norms: important special case, f(x) = ||x||p = max

||z||q≤1
zTx where q is such that

1/p+ 1/q = 1. Then
∂f(x) =

{
y : ||y||q ≤ 1 and yTx = max

||z||q≤1
zTx
}

=
{

y : ||y||q ≤ 1 and yTx = ||x||p
}
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Why ||y||_q <= 1
is because of Minkowski's
inequality

This is derived in 
class



Subgradients for the ‘Lasso’ Problem in Machine Learning

We use Lasso (min
x

f(x)) as an example to illustrate subgradients of affine composition:

f(x) = 1

2
||y− x||2 + λ||x||1

The subgradients of f(x) are
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x - y + \lambda s 
Where s = {+1,-1}^n 
such that ||x||_1 = s^T x



Subgradients for the ‘Lasso’ Problem in Machine Learning

We use Lasso (min
x

f(x)) as an example to illustrate subgradients of affine composition:

f(x) = 1

2
||y− x||2 + λ||x||1

The subgradients of f(x) are
h = x− y + λs,

where si = sign(xi) if xi ̸= 0 and si ∈ [−1, 1] if xi = 0.
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Second component is a result of the 
convex hull



More Subgradient Calculus: Composition
Following functions, though convex, may not be differentiable everywhere. How does one
compute their subgradients? (what holds for subgradient also holds for gradient)

Composition with functions: Let p : ℜk → ℜ with q(x) =∞, ∀ x /∈ dom h and
q : ℜn → ℜk. Define f(x) = p(q(x)). f is convex if

▶ qi is convex, p is convex and nondecreasing in each argument
▶ or qi is concave, p is convex and nonincreasing in each argument
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We will consider
only the first case



More Subgradient Calculus: Composition
Following functions, though convex, may not be differentiable everywhere. How does one
compute their subgradients? (what holds for subgradient also holds for gradient)

Composition with functions: Let p : ℜk → ℜ with q(x) =∞, ∀ x /∈ dom h and
q : ℜn → ℜk. Define f(x) = p(q(x)). f is convex if

▶ qi is convex, p is convex and nondecreasing in each argument
▶ or qi is concave, p is convex and nonincreasing in each argument

Some examples illustrating this property are:
▶ exp q(x) is convex if q is convex

▶
m∑

i=1

log qi(x) is concave if qi are concave and positive

▶ log
m∑

i=1

exp qi(x) is convex if qi are convex

▶ 1/q(x) is convex if q is concave and positive
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exp is a monotonic and convex p

p is concave
and hence the 
composition is concave

In both conditions, 
   composition will be 

concave if p is
concave



More Subgradient Calculus: Composition (contd)
Composition with functions: Let p : ℜk → ℜ with q(x) =∞, ∀ x /∈ dom h and
q : ℜn → ℜk. Define f(x) = p(q(x)). f is convex if

▶ qi is convex, p is convex and nondecreasing in each argument
▶ or qi is concave, p is convex and nonincreasing in each argument

Subgradients for the first case (second one is homework):
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More Subgradient Calculus: Composition (contd)
Composition with functions: Let p : ℜk → ℜ with q(x) =∞, ∀ x /∈ dom h and
q : ℜn → ℜk. Define f(x) = p(q(x)). f is convex if

▶ qi is convex, p is convex and nondecreasing in each argument
▶ or qi is concave, p is convex and nonincreasing in each argument

Subgradients for the first case (second one is homework):
▶ f(y) = p

(
q1(y), . . . , qk(y)

)
≥ p
(
q1(x) + hTq1(y− x), . . . , qk(x) + hTqk(y− x)

)

Where hqi ∈ ∂qi(x) for i = 1..k and since p(.) is non-decreasing in each argument.
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p applied to qi(x) is >= p applied to the lower bounds on qi(x)



More Subgradient Calculus: Composition (contd)
Composition with functions: Let p : ℜk → ℜ with q(x) =∞, ∀ x /∈ dom h and
q : ℜn → ℜk. Define f(x) = p(q(x)). f is convex if

▶ qi is convex, p is convex and nondecreasing in each argument
▶ or qi is concave, p is convex and nonincreasing in each argument

Subgradients for the first case (second one is homework):
▶ f(y) = p

(
q1(y), . . . , qk(y)

)
≥ p
(
q1(x) + hTq1(y− x), . . . , qk(x) + hTqk(y− x)

)

Where hqi ∈ ∂qi(x) for i = 1..k and since p(.) is non-decreasing in each argument.
▶ p
(
q1(x) + hTq1(y− x), . . . , qk(x) + hTqk(y− x)

)
≥

p
(
q1(x), . . . , qk(x)

)
+ hTp

(
hTq1(y− x), . . . ,hTqk(y− x)

)

Where hp ∈ ∂p
(
q1(x), . . . , qk(x)

)
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All we need to do next is club together h_p and h_q
and leave only (y-x) in the second component



More Subgradient Calculus: Composition (contd)
Composition with functions: Let p : ℜk → ℜ with q(x) =∞, ∀ x /∈ dom h and
q : ℜn → ℜk. Define f(x) = p(q(x)). f is convex if

▶ qi is convex, p is convex and nondecreasing in each argument
▶ or qi is concave, p is convex and nonincreasing in each argument

Subgradients for the first case (second one is homework):
▶ f(y) = p

(
q1(y), . . . , qk(y)

)
≥ p
(
q1(x) + hTq1(y− x), . . . , qk(x) + hTqk(y− x)

)

Where hqi ∈ ∂qi(x) for i = 1..k and since p(.) is non-decreasing in each argument.
▶ p
(
q1(x) + hTq1(y− x), . . . , qk(x) + hTqk(y− x)

)
≥

p
(
q1(x), . . . , qk(x)

)
+ hTp

(
hTq1(y− x), . . . ,hTqk(y− x)

)

Where hp ∈ ∂p
(
q1(x), . . . , qk(x)

)

▶ p
(
q1(x), . . . , qk(x)

)
+ hTp

(
hTq1(y− x), . . . , hTqk(y− x)

)
= f(x) +

k∑

i=1

(hp)ihTqi(y− x)

That is,
k∑

i=1

(hp)ihqi is a subgradient of the composite function at x.
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H/W: Derive the subdifferentials to example functions on previous slide



More Subgradient Calculus: Proximal Operator
Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

Infimum: If c(x, y) is convex in (x, y) and C is a convex set, then d(x) = inf
y∈C

c(x, y) is
convex. For example:

▶ Let d(x, C) that returns the distance of a point x to a convex set C. That is
d(x, C) = inf

y∈C
||x− y|| = ||x− PC(x)||, where, PC(x) = argmin d(x, C) . Then d(x, C) is a

convex function and ∇d(x, C) = x− PC(x)
∥x− PC(x)∥
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H/w: Prove that d is convex if c is a convex function 
and    if C is a convex set



More Subgradient Calculus: Proximal Operator
Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

Infimum: If c(x, y) is convex in (x, y) and C is a convex set, then d(x) = inf
y∈C

c(x, y) is
convex. For example:

▶ Let d(x, C) that returns the distance of a point x to a convex set C. That is
d(x, C) = inf

y∈C
||x− y|| = ||x− PC(x)||, where, PC(x) = argmin d(x, C) . Then d(x, C) is a

convex function and ∇d(x, C) = x− PC(x)
∥x− PC(x)∥

....The point of intersection of convex sets
C1, C2,...Cm by minimizing...
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More Subgradient Calculus: Proximal Operator
Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

Infimum: If c(x, y) is convex in (x, y) and C is a convex set, then d(x) = inf
y∈C

c(x, y) is
convex. For example:

▶ Let d(x, C) that returns the distance of a point x to a convex set C. That is
d(x, C) = inf

y∈C
||x− y|| = ||x− PC(x)||, where, PC(x) = argmin d(x, C) . Then d(x, C) is a

convex function and ∇d(x, C) = x− PC(x)
∥x− PC(x)∥

....The point of intersection of convex sets
C1, C2,...Cm by minimizing... (Subgradients and Alternating Projections)

▶ argmin
y∈C

d(x, C) is a special case of the proximity operator: proxc(x) = argmin
y

PROXc(x) of a

convex function c(x). Here, PROXc(x) = c(y) + 1
2 ||x− y|| The special case is when
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c(x) is the indicator function over C



More Subgradient Calculus: Proximal Operator
Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

Infimum: If c(x, y) is convex in (x, y) and C is a convex set, then d(x) = inf
y∈C

c(x, y) is
convex. For example:

▶ Let d(x, C) that returns the distance of a point x to a convex set C. That is
d(x, C) = inf

y∈C
||x− y|| = ||x− PC(x)||, where, PC(x) = argmin d(x, C) . Then d(x, C) is a

convex function and ∇d(x, C) = x− PC(x)
∥x− PC(x)∥

....The point of intersection of convex sets
C1, C2,...Cm by minimizing... (Subgradients and Alternating Projections)

▶ argmin
y∈C

d(x, C) is a special case of the proximity operator: proxc(x) = argmin
y

PROXc(x) of a

convex function c(x). Here, PROXc(x) = c(y) + 1
2 ||x− y|| The special case is when c(y) is

the indicator function IC(y) introduced earlier to eliminate the contraints of an optimization
problem.

⋆ Recall that ∂IC(y) = NC(y) = {h ∈ ℜn : hTy ≥ hTz for any z ∈ C}
⋆ The subdifferential ∂PROXc(x) = ∂c(y) + y − x which can now be obtained for the special

case c(y) = IC(y).
⋆ We will invoke this when we discuss the proximal gradient descent algorithmSeptember 1, 2018 91 / 402

Proximal
will be done
in details
later


