
More Subgradient Calculus: Proximal Operator
Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

Infimum: If c(x, y) is convex in (x, y) and C is a convex set, then d(x) = inf
y∈C

c(x, y) is
convex. For example:

▶ Let d(x, C) that returns the distance of a point x to a convex set C. That is
d(x, C) = inf

y∈C
||x− y|| = ||x− PC(x,y)||, where, PC(x,y) = argmin d(x, C) . Then d(x, C)

is a convex function and ∇d(x, C) = x− PC(x,y)
∥x− PC(x,y)∥
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....The point of intersection of convex
sets C1, C2,...Cm by minimizing... (Subgradients and Alternating Projections)

▶ argmin
y∈C

d(x, C) is a special case of the proximity operator: proxc(x) = argmin
y

PROXc(x,y) of

a convex function c(x). Here, PROXc(x,y) = c(y) + 1
2 ||x− y|| The special case is when
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y

PROXc(x,y) of

a convex function c(x). Here, PROXc(x,y) = c(y) + 1
2 ||x− y|| The special case is when

c(y) is the indicator function IC(y) introduced earlier to eliminate the contraints of an
optimization problem.

⋆ Recall that ∂IC(y) = NC(y) = {h ∈ ℜn : hTy ≥ hTz for any z ∈ C}
⋆ The subdifferential ∂PROXc(x,y) = ∂c(y) + y − x which can now be obtained for the special

case c(y) = IC(y).
⋆ We will invoke this when we discuss the proximal gradient descent algorithmSeptember 4, 2018 91 / 406



More Subgradient Calculus: Perspective (Advanced)

Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

Perspective Function: The perspective of a function f : ℜn → ℜ is the function
g : Rn × ℜ → ℜ, g(x, t) = tf(x/t). Function g is convex if f is convex on
domg =

{
(x, t)|x/t ∈ domf, t > 0

}
. For example,

▶ The perspective of f(x) = xTx is (quadratic-over-linear) function g(x, t) = xTx
t and is convex.

▶ The perspective of negative logarithm f(x) = − log x is the relative entropy function
g(x, t) = t log t− t log x and is convex.
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Ilustrating the Why and How of (Sub)Gradient on
Lasso
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Recap: Subgradients for the ‘Lasso’ Problem in Machine Learning

Recall Lasso (min
x

f(x)) as an example to illustrate subgradients of affine composition:

f(x) = 1

2
||y− x||2 + λ||x||1

The subgradients of f(x) are
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y is fixed

x - y + lambda s

s.t: s_i = sign(x_i) if x_i != 0
o/w: 0 <= s_i <= 1



Recap: Subgradients for the ‘Lasso’ Problem in Machine Learning

Recall Lasso (min
x

f(x)) as an example to illustrate subgradients of affine composition:

f(x) = 1

2
||y− x||2 + λ||x||1

The subgradients of f(x) are
h = x− y + λs,

where si = sign(xi) if xi ̸= 0 and si ∈ [−1, 1] if xi = 0.
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results from convex hull of union of subdifferentials

Here we only see "HOW" to compute the subdifferential. 



Subgradients in a Lasso sub-problem: Sufficient Condition Test
We illustrate the sufficient condition again using a sub-problem in Lasso as an example.
Consider the simplified Lasso problem (which is a sub-problem in Lasso):

f(x) = 1

2
||y− x||2 + λ||x||1

Recall the subgradients of f(x):
h = x− y + λs,

where si = sign(xi) if xi ̸= 0 and si ∈ [−1, 1] if xi = 0.
A solution to this problem is
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Invoking "WHY" of subdiff..

min_x

x_i = 0 if y_i is between -\lambda and \lambda
and there exists an s_i between -1 and +1 for this case

In fact this s_i = y_i / lambda



Subgradients in a Lasso sub-problem: Sufficient Condition Test
We illustrate the sufficient condition again using a sub-problem in Lasso as an example.
Consider the simplified Lasso problem (which is a sub-problem in Lasso):

f(x) = 1

2
||y− x||2 + λ||x||1

Recall the subgradients of f(x):
h = x− y + λs,

where si = sign(xi) if xi ̸= 0 and si ∈ [−1, 1] if xi = 0.
A solution to this problem is x∗ = Sλ(y), where Sλ(y) is the soft-thresholding operator:

Sλ(y) =





yi − λ if yi > λ

0 if −λ ≤ yi ≤ λ

yi + λ if yi < −λ
Now if x∗ = Sλ(y) then there exists a h(x) = 0. Why? If yi > λ, we have
x∗i − yi = −λ+ λ · 1 = 0. The case of yi < λ is similar. If −λ ≤ yi ≤ λ, we have
x∗i − yi = −yi + λ( yiλ ) = 0. Here, si = yi

λ .
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Proximal Operator and Sufficient Condition Test

Recap: d(x, C) returns the distance of a point x to a convex set C. That is
d(x, C) = inf

y∈C
||x− y||2. Then d(x, C) is a convex function.

Recap: argmin
y∈C

||x− y|| is a special case of the proximal operator:

proxc(x) = argmin
y

PROXc(x,y) of a convex function c(x). Here,

PROXc(x,y) = c(y) + 1
2 ||x− y||2 The special case is when c(y) is the indicator function

IC(y) introduced earlier to eliminate the contraints of an optimization problem.
▶ Recall that ∂IC(y) = NC(y) = {h ∈ ℜn : hTy ≥ hTz for any z ∈ C}
▶ For the special case c(y) = IC(y), the subdifferential

∂PROXc(x,y) = ∂c(y) + y− x = {h− x ∈ ℜn : hTy ≥ hTz for any z ∈ C}
▶ As per sufficient condition for minimum for this special case, proxc(x) =
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Convexity by Restriction to line, (Sub)Gradients and
Monotonicity
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Convexity by Restricting to Line
A useful technique for verifying the convexity of a function is to investigate its convexity, by
restricting the function to a line and checking for the convexity of a function of single variable.

Theorem
A function f : D → ℜ is (strictly) convex if and only if the function ϕ : Dϕ → ℜ defined below,
is (strictly) convex in t for every x ∈ ℜn and for every h ∈ ℜn

ϕ(t) = f(x + th)

with the domain of ϕ given by Dϕ =
{
t|x + th ∈ D

}
.

Thus, we have see that
If a function has a local optimum at x∗, it as a local optimum along each component x∗i
of x∗

If a function is convex in x, it will be convex in each component xi of x
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We saw the connection with
R: convex differentiable fn
iff directional deriv is convex
along every direction

Here we see connection
with direction, independent
of differentiability

Direction vector or line





Convexity by Restricting to Line (contd.)

Proof: We will prove the necessity and sufficiency of the convexity of ϕ for a convex function
f. The proof for necessity and sufficiency of the strict convexity of ϕ for a strictly convex f is
very similar and is left as an exercise.
Proof of Necessity: Assume that f is convex. And we need to prove that ϕ(t) = f(x + th) is
also convex. Let t1, t2 ∈ Dϕ and θ ∈ [0, 1]. Then,

ϕ(θt1 + (1− θ)t2) = f
(
θ(x + t1h) + (1− θ)(x + t2h)

)
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(for any direction h)

<= \theta f(...x_1) + (1-\theta) f(...x_2)



Convexity by Restricting to Line (contd.)

Proof: We will prove the necessity and sufficiency of the convexity of ϕ for a convex function
f. The proof for necessity and sufficiency of the strict convexity of ϕ for a strictly convex f is
very similar and is left as an exercise.
Proof of Necessity: Assume that f is convex. And we need to prove that ϕ(t) = f(x + th) is
also convex. Let t1, t2 ∈ Dϕ and θ ∈ [0, 1]. Then,

ϕ(θt1 + (1− θ)t2) = f
(
θ(x + t1h) + (1− θ)(x + t2h)

)

≤ θf
(
(x + t1h)

)
+ (1− θ)f

(
(x + t2h)

)
= θϕ(t1) + (1− θ)ϕ(t2) (16)

Thus, ϕ is convex.

September 4, 2018 99 / 406



Convexity by Restricting to Line (contd.)

Proof of Sufficiency: Assume that for every h ∈ ℜn and every x ∈ ℜn, ϕ(t) = f(x + th) is
convex. We will prove that f is convex. Let x1,x2 ∈ D. Take, x = x1 and h = x2 − x1. We
know that ϕ(t) = f

(
x1 + t(x2 − x1)

)
is convex, with ϕ(1) = f(x2) and ϕ(0) = f(x1).

Therefore, for any θ ∈ [0, 1]

f
(
θx2 + (1− θ)x1

)
= ϕ(θ)
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<= theta \phi(1) + (1-theta)\phi(0)
   = theta f(x2) + (1-theta) f(x1)



Convexity by Restricting to Line (contd.)

Proof of Sufficiency: Assume that for every h ∈ ℜn and every x ∈ ℜn, ϕ(t) = f(x + th) is
convex. We will prove that f is convex. Let x1,x2 ∈ D. Take, x = x1 and h = x2 − x1. We
know that ϕ(t) = f

(
x1 + t(x2 − x1)

)
is convex, with ϕ(1) = f(x2) and ϕ(0) = f(x1).

Therefore, for any θ ∈ [0, 1]

f
(
θx2 + (1− θ)x1

)
= ϕ(θ)

≤ θϕ(1) + (1− θ)ϕ(0) ≤ θf(x2) + (1− θ)f(x1) (17)

This implies that f is convex.
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More on SubGradient kind of functions: Monotonicity

A differentiable function f : ℜ → ℜ is (strictly) convex, iff and only if f′(x) is (strictly)
increasing. Is there a closer analog for f : ℜn → ℜ?
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Ans: Yes. We need a notion of monotonicity of vectors (subgradients)
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h is monotone iff the dot product of h(x) - h(y) with x-y is non-negative
for all x and y

The component-wise notion of monotonicity of a vector h is a special case
of the above more general monotonicity



More on SubGradient kind of functions: Monotonicity

A differentiable function f : ℜ → ℜ is (strictly) convex, iff and only if f′(x) is (strictly)
increasing. Is there a closer analog for f : ℜn → ℜ? View subgradient as an instance of a
general function h : D → ℜn and D ⊆ ℜn. Then

Definition
1 h is monotone on D if for any x1,x2 ∈ D,

(
h(x1)− h(x2)

)T
(x1 − x2) ≥ 0 (18)
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The component-wise notion of monotonicity of a vector h is a special case
of the above more general monotonicity



More on SubGradient kind of functions: Monotonicity (contd)

Definition
2 h is strictly monotone on D if for any x1,x2 ∈ D with x1 ̸= x2,

(
h(x1)− h(x2)

)T
(x1 − x2) > 0 (19)

3 h is uniformly or strongly monotone on D if for any x1,x2 ∈ D, there is a constant c > 0
such that

(
h(x1)− h(x2)

)T
(x1 − x2) ≥ c||x1 − x2||2 (20)
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Several such lower bounds
are some divergence functions
between x1 and x2

Several other notions of uniform monotonicity can be 
motivated by simply looking at other lower bounds 
(instead of this quadratic L2 norm based lower bound)



(Sub)Gradients and Convexity

Based on the definition of monotonic functions, we next show the relationship between
convexity of a function and monotonicity of its (sub)gradient:

Theorem
Let f : D → ℜ with D ⊆ ℜn be differentiable on the convex set D. Then,

1 f is convex on D iff its gradient ∇f is monotone. That is, for all x,y ∈ ℜ:(
∇f(x)−∇f(y)

)T
(x− y) ≥ 0

2 f is strictly convex on D iff its gradient ∇f is strictly monotone. That is, for all x,y ∈ ℜ
with x ̸= y:

(
∇f(x)−∇f(y)

)T
(x− y) > 0

3 f is uniformly or strongly convex on D iff its gradient ∇f is uniformly monotone. That is,
for all x,y ∈ ℜ,

(
∇f(x)−∇f(y)

)T
(x− y) ≥ c||x− y||2 for some constant c > 0.

While these results also hold for subgradients h, we will show them only for gradients ∇f

September 4, 2018 103 / 406

For proving the equivalence, we invoke the \phi defined previously as well as mean 
value theorem etc on \phi



(Sub)Gradients and Convexity (contd)

Proof:
Necessity: Suppose f is strongly convex on D. Then we know from an earlier result that for
any x,y ∈ D,

f(y) ≥ f(x) +∇Tf(x)(y− x)− 1

2
c||y− x||2

f(x) ≥ f(y) +∇Tf(y)(x− y)− 1

2
c||x− y||2

Adding the two inequalities,
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(Sub)Gradients and Convexity (contd)

Proof:
Necessity: Suppose f is strongly convex on D. Then we know from an earlier result that for
any x,y ∈ D,

f(y) ≥ f(x) +∇Tf(x)(y− x)− 1

2
c||y− x||2

f(x) ≥ f(y) +∇Tf(y)(x− y)− 1

2
c||x− y||2

Adding the two inequalities, we get uniform/strong monotonicity in definition (3). If f is
convex, the inequalities hold with c = 0, yielding monotonicity in definition (1). If f is strictly
convex, the inequalities will be strict, yielding strict monotonicity in definition (2).
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(Sub)Gradients and Convexity (contd)
Sufficiency: Suppose ∇f is monotone. For any fixed x,y ∈ D, consider the function
ϕ(t) = f

(
x + t(y− x)

)
. By the mean value theorem applied to ϕ(t), we should have for some

t ∈ (0, 1),
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(Sub)Gradients and Convexity (contd)
Sufficiency: Suppose ∇f is monotone. For any fixed x,y ∈ D, consider the function
ϕ(t) = f

(
x + t(y− x)

)
. By the mean value theorem applied to ϕ(t), we should have for some

t ∈ (0, 1),

ϕ(1)− ϕ(0) = ϕ′(t) (21)

Letting z = x + t(y− x), (21) translates to

f(y)− f(x) = ∇Tf(z)(y− x) (22)

Also, by definition of monotonicity of ∇f,

(
∇f(z)−∇f(x)

)T
(y− x) = 1

t
(
∇f(z)−∇f(x)

)T
(z− x) ≥ 0 (23)
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(Sub)Gradients and Convexity (contd)

Combining (22) with (23), we get,

f(y)− f(x) =
(
∇f(z)−∇f(x)

)T
(y− x) +∇Tf(x)(y− x)

≥ ∇Tf(x)(y− x) (24)

By a previous foundational result, this inequality proves that f is convex. Strict convexity can
be similarly proved by using the strict inequality in (23) inherited from strict monotonicity, and
letting the strict inequality follow through to (24).
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(Sub)Gradients and Convexity (contd)
For the case of strong convexity, we have

ϕ′(t)− ϕ′(0) =
(
∇f(z)−∇f(x)

)T
(y− x)

=
1

t
(
∇f(z)−∇f(x)

)T
(z− x) ≥ 1

t c||z− x||2 = ct||y− x||2 (25)

Therefore,

September 4, 2018 107 / 406

Some more additional work for strong convexity



(Sub)Gradients and Convexity (contd)
For the case of strong convexity, we have

ϕ′(t)− ϕ′(0) =
(
∇f(z)−∇f(x)

)T
(y− x)

=
1

t
(
∇f(z)−∇f(x)

)T
(z− x) ≥ 1

t c||z− x||2 = ct||y− x||2 (25)

Therefore,

ϕ(1)− ϕ(0)− ϕ′(0) =
∫ 1

0
[ϕ′(t)− ϕ′(0)]dt ≥ 1

2
c||y− x||2 (26)

which translates to
f(y) ≥ f(x) +∇Tf(x)(y− x) + 1

2
c||y− x||2

Thus, f must be strongly convex.
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integrating over this inequality from 
t = 0 to t = 1



Descent Algorithms
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Some insights on why descent algorithms (based on subgradients for example)
will behave well on convex functions
1) Vanishing of subgradient is a sufficient condition for minimization of a convex fn
 ==> This is handy for constrained optimization as well
2) If f is convex and differentiable, the subgradient is unique = gradient.. In general
the convergence rates using gradient are much better than those using subgradients
3) For a convex fn, any point of local min is a point of global min
4) (Sub)gradients exhibit some monotonic behaviour when the function is convex



Descent Algorithms for Optimizing Unconstrained Problems
Techniques relevant for most (convex) optimization problems that do not yield themselves to
closed form solutions. We will start with unconstrained minimization.

min
x∈D

f(x)

For analysis:
Assume that f is convex and differentiable and that it attains a finite optimal value p∗.
Minimization techniques produce a sequence of points x(k) ∈ D, k = 0, 1, . . . such that
f
(

x(k)
)
→ p∗ as k→∞ or, ∇f

(
x(k)
)
→ 0 as k→∞.

Iterative techniques for optimization, further require a starting point x(0) ∈ D and
sometimes that epi(f) is closed. The epi(f) can be inferred to be closed either if D = ℜn
or f(x)→∞ as x → ∂D. The function f(x) = 1

x for x > 0 is an example of a function
whose epi(f) is not closed.
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