More Subgradient Calculus: Proximal Operator

Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?
o Infimum: If ¢(x, y) is convex in (x,y) and C is a convex set, then d(x) = ing c(x,y) is

ye
convex. For example:

» Let d(x,C) that returns the distance of a point x to a convex set C. That is
d(x,C) = |2£ [|x —¥y|| = ||x — Pc(x,y)||, where, Pc(x,y) = argmin d(x,C) . Then d(x,C)
¥

X — PC(X7Y)

is a convex function and Vd(x,C) = |x — Pc(x,y)]|
— Fc\x,
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Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?
o Infimum: If c(x, y) is convex in (x,y) and C is a convex set, then d(x) = inf c(x, y) is
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convex. For example:

» Let d(x,C) that returns the distance of a point x to a convex set C. That is
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More Subgradient Calculus: Proximal Operator
Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

o Infimum: If ¢(x, y) is convex in (x,y) and C is a convex set, then d(x) = ing c(x,y) is
ye
convex. For example:
» Let d(x,C) that returns the distance of a point x to a convex set C. That is
d(x,C) = ing [|x —¥y|| = ||x — Pc(x,y)||, where, Pc(x,y) = argmin d(x,C) . Then d(x,C)
ye

X — PC(X7 Y)
[x — Pc(x, )|l
sets C1, Cy,...Cpy by minimizing... (Subgradients and Alternating Projections)
» argmin d(x,C) is a special case of the proximity operator: prox.(x) = argmin PROX.(x,y) of
yeC y
a convex function ¢(x). Here, PROX.(x,y) = c(y) + 5|[x — y|| The special case is when

is a convex function and Vd(x,C) = ... The point of intersection of convex
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More Subgradient Calculus: Proximal Operator
Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

o Infimum: If ¢(x, y) is convex in (x,y) and C is a convex set, then d(x) = ing c(x,y) is
ye

convex. For example:
» Let d(x,C) that returns the distance of a point x to a convex set C. That is
d(x,C) = ing [lx — ¥yl = ||x — Pc(x,y)]||, where, Pc(x,y) = argmin d(x,C) . Then d(x,C)
ye

— P
is a convex function and Vd(x,C) = X Pelxy) ....The point of intersection of convex
Ix = Pc(x, y)ll
sets C1, Cy,...Cpy by minimizing... (Subgradients and Alternating Projections)
» argmin d(x,C) is a special case of the proximity operator: prox.(x) = argmin PROX.(x,y) of
yeC y
a convex function ¢(x). Here, PROX.(x,y) = c(y) + 5|[x — y|| The special case is when
c(y) is the indicator function Ic(y) introduced earlier to eliminate the contraints of an
optimization problem.

* Recall that dlc(y) = Nc(y) ={h € R": h"y > h'z for any z € C}
* The subdifferential 9PROX.(x,y) = Oc(y) + y — x which can now be obtained for the special

case c(y) = Ic(y).
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More Subgradient Calculus: Perspective (Advanced)

Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

@ Perspective Function: The perspective of a function f: " — R is the function
g: R"x R — R, g(x t) = tfix/t). Function g is convex if fis convex on
domg = {(x, t)|x/t € domf, t > 0}. For example,
-

,
» The perspective of f{x) = x"x is (quadratic-over-linear) function g(x, t) = % and is convex.

» The perspective of negative logarithm f(x) = — log x is the relative entropy function
g(x,t) = tlog t — tlog x and is convex.

relative to t
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llustrating the Why and How of (Sub)Gradient on
Lasso



Recap: Subgradients for the ‘Lasso’ Problem in Machine Learning

Recall Lasso (min f(x)) as an example to illustrate subgradients of affine composition:
X

fix) = 5 lly — xII* + Allx[]x y is fixed

N =

The subgradients of f(x) are
X -y + lambda s

s.t:s_i=sign(x_i)ifx_i!'=0
ow:0<=si<=1
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Recap: Subgradients for the ‘Lasso’ Problem in Machine Learning

Recall Lasso (min f(x)) as an example to illustrate subgradients of affine composition:
X

fx) =

N =

[ly = xII* + Allx]x

The subgradients of f(x) are
h=x-y+ Js,

where s; = sign(x;) if x; 20 and s; € [—1, 1] if x; = 0.
results from convex hull of union of subdifferentic
Here we only see "HOW" to compute the subdifferential.
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Subgradients in a Lasso sub-problem: Sufficient Covdkilog "WstY" of subdiff.
We illustrate the sufficient condition again using a sub-problem in Lasso as an example.
Consider the simplified Lasso problem (which is a sub-problem in Lasso):

min_x 1
X = 2y —xP + Al
Recall the subgradients of f(x):
h=x-y+ s,

where s; = sign(x;) if x; # 0 and s; € [—-1,1] if x; = 0.
A solution to this problem is

x_i=0ify_iis between -\lambda and \lambda
and there exists an s_i between -1 and +1 for this case

In fact thiss_i =y _i/lambda
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Subgradients in a Lasso sub-problem: Sufficient Condition Test

We illustrate the sufficient condition again using a sub-problem in Lasso as an example.
Consider the simplified Lasso problem (which is a sub-problem in Lasso):

1
) = 5y = /12 + Al
Recall the subgradients of f(x):
h=x-y+ s,

where s; = sign(x;) if x; # 0 and s; € [—-1,1] if x; = 0.
A solution to this problem is x* = S\(y), where S)(y) is the soft-thresholding operator:

yi—A ifyi> A
S\(y) =140 if =A<y <A
Yi+)\ ify,-<—)\

Now if x* = 5)(y) then there exists a h(x) = 0. Why? If y; > )\, we have
Xi —Y¥i=—A+A-1=0. The case of y; <\ is similar. If =\ < y; < )\, we have
X; —yi=—yi+ M%) =0. Here, 5, = ¥.
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Proximal Operator and Sufficient Condition Test

@ Recap: d(x,C) returns the distance of a point x to a convex set C. That is
dx,C) = ing [[x — y||%. Then d(x,C) is a convex function.
ye

@ Recap: argmin||x — y|| is a special case of the proximal operator:
yeC
proxc(x) = argmin PROX.(x,y) of a convex function c(x). Here,
y
PROX(x,y) = c(y) + 5|[x — y||> The special case is when c(y) is the indicator function

Ic(y) introduced earlier to eliminate the contraints of an optimization problem.
» Recall that dlc(y) = Nc(y) = {h € R" : hTy > h'z for any z € C}
» For the special case c(y) = Ic(y), the subdifferential
OPROX.(x,y) = W: {h—xeR":h’y >h'zfor any z € C}
» As per sufficient condition for minimum for this special case, prox.(x) = that y in C
that is
closest to x
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Proximal Operator and Sufficient Condition Test

@ Recap: d(x,C) returns the distance of a point x to a convex set C. That is
dx,C) = ing [[x — y||%. Then d(x,C) is a convex function.
ye

@ Recap: argmin||x — y|| is a special case of the proximal operator:
yeC
proxc(x) = argmin PROX.(x,y) of a convex function c(x). Here,
y
PROX(x,y) = c(y) + 5|[x — y||> The special case is when c(y) is the indicator function

Ic(y) introduced earlier to eliminate the contraints of an optimization problem.
» Recall that dlc(y) = Nc(y) = {h € R" : hTy > h'z for any z € C}
» For the special case c(y) = Ic(y), the subdifferential
OPROX (x,y) = 0c(y) +y—x={h—x€ R":hTy > h'z for any z € C}
> As per sufficient condition for minimum for this special case, prox.(x) = argmin ||x — y||
that y in C that is closest to x 2=
@ We will invoke this when we discuss the proximal gradient descent algorithm
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Convexity by Restriction to line, (Sub)Gradients and
Monotonicity
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Convexity by Restricting to Line

A useful technique for verifying the convexity of a function is to investigate its convexity, by
restricting the function to a line and checking for the convexity of a function of single variable.

Theorem

A function f: D — R is (strictly) convex if and only if the function ¢ : Dy — R defined below,

is (strictly) convex in t for every x € R" and for every h € R" Direction vector or line
Here we see connection We saw the connection with
with direction, independent

_ on, i ¢(t) = fix+ th) R: convex differentiable fn
Ofﬁ'ierznt'ak_’"'t}’ o by D — . _p [ directional deriv is convex
with the domain of ¢ given by Dy = {t|x + th € D}. along every direction

’

Thus, we have see that

@ If a function has a local optimum at x*, it as a local optimum along each component x}
of x*

@ If a function is convex in x, it will be convex in each component x; of x
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Convexity by Restricting to Line (contd.)

Proof: We will prove the necessity and sufficiency of the convexity of ¢ for a convex function
f. The proof for necessity and sufficiency of the strict convexity of ¢ for a strictly convex fis

very similar and is left as an exercise.
Proof of Necessity: Assume that fis convex. And we need to prove that ¢(t) = f(x + th) is

also convex. Let t1,ty € Dy and 0 € [0,1]. Then, (for any direction h)

P(0t1 + (1 — ) tz) = F(O(x + t1h) + (1 — 0)(x + &h))
<= \theta f(...x_1) + (1-\theta) f(...x_2)
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Convexity by Restricting to Line (contd.)

Proof: We will prove the necessity and sufficiency of the convexity of ¢ for a convex function
f. The proof for necessity and sufficiency of the strict convexity of ¢ for a strictly convex fis
very similar and is left as an exercise.

Proof of Necessity: Assume that fis convex. And we need to prove that ¢(t) = f{x + th) is
also convex. Let ti,t; € Dy and 6 € [0,1]. Then,

o(0t; + (1 - 9) ) = f(6(x + tih) + (1 — 0)(x + tzh))
< 0f((x+ t1h)) + (1 — O)F((x + t2h)) = Go(t1) + (1 — 6)(t2) (16)

Thus, ¢ is convex.
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Convexity by Restricting to Line (contd.)

Proof of Sufficiency: Assume that for every h € R” and every x € R", ¢(t) = fix + th) is
convex. We will prove that fis convex. Let x;,x9 € D. Take, x = x; and h = x5 — x;. We
know that ¢(t) = f(x1 + t(xz — x1)) is convex, with ¢(1) = fixz) and ¢(0) = f(x1).
Therefore, for any 6 € [0, 1]

f(HXQ —|— 1 — G)Xl)

= theta \phi(l

) + (1-theta)\phi(0)
= theta f(x2) + (

1-theta) f(x1)

e T



Convexity by Restricting to Line (contd.)

Proof of Sufficiency: Assume that for every h € R” and every x € R", ¢(t) = fix + th) is
convex. We will prove that fis convex. Let x1,x9 € D. Take, x = x7 and h = x9 — x7. We
know that ¢(t) = f(x1 + t(xz — x1)) is convex, with ¢(1) = fixz) and ¢(0) = f(xy).
Therefore, for any 6 € [0, 1]

F(0x + (1 — 0)x1) = $(0)
< 06(1) + (1 - 0)6(0) < Ofixz) + (10

~—
A
»
[uiny
~—

(17)

This implies that fis convex.
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More on SubGradient kind of functions: Monotonicity

A differentiable function f: 8 — R is (strictly) convex, iff and only if 7(x) is (strictly)
increasing. Is there a closer analog for f: R" — R?

Ans: Yes. We need a notion of monotonicity of vectors (subgradients)

e T



More on SubGradient kind of functions: Monotonicity

A differentiable function f: 8 — R is (strictly) convex, iff and only if 7(x) is (strictly)
increasing. Is there a closer analog for f: " — R? View subgradient as an instance of a

general function h : D — R" and D C R". Then

h is monotone iff the dot product of h(x) - h(y) with x-y is non-negative
forall x and y

The component-wise notion of monotonicity of a vector h is a special case
of the above more general monotonicity

e T



More on SubGradient kind of functions: Monotonicity

A differentiable function f: 8 — R is (strictly) convex, iff and only if 7(x) is (strictly)

increasing. Is there a closer analog for f: " — R? View subgradient as an instance of a
general function h : D — R" and D C R". Then

Definition

@ h is monotone on D if for any x1,x9 € D,

(h(x1) — h(x2)) " (x1 —xa) >0 (18)

The component-wise notion of monotonicity of a vector h is a special case
of the above more general monotonicity
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More on SubGradient kind of functions: Monotonicity (contd)

Definition

@ h is strictly monotone on D if for any x1,%xs € D with x1 # xo,

(h(x1) — h(x2)) " (x1 — xa) > 0 (19)

© h is uniformly or strongly monotone on D if for any x;,x2 € D, there is a constant ¢ > 0
such that

—
(h(x1) —h(x2))  (x1 —x2) > cl[x1 — xo[? (20)
Several other notions of uniform monotonicity can be |

Several such lower bounds motivated by simply lookKing at other lower bounds
are some divergence functions (instead of this quadratic L2 norm based lower bound)

- belweenxlandx2 I ks




(Sub)Gradients and Convexity

Based on the definition of monotonic functions, we next show the relationship between
convexity of a function and monotonicity of its (sub)gradient:
Theorem
Let f: D — R with D C R" be differentiable on the convex set D. Then,
@ fis convex on D iff its gradient Vf is monotone. That is, for all x,y € R:
(VAx) - VAy)) (x—y) >0
@ f s strictly convex on D iff its gradient Vf is strictly monotone. That is, for all x,y € &
with x # y: (VAx) — Vf(y))T(x ~-y)>0
© fis uniformly or strongly convex on D iff its gradient V f is uniformly monotone. That is,
for all x,y € R, (Vf(x) — Vf(y)) T(x —y) > d|x — yl|? for some constant c > 0.

While these results also hold for subgradients h, we will show them onl%/ for gradients Vf
For proving the equivalence, we invoke the \phi defined previously as well as mean
value theorem etc on \phi

e .



(Sub)Gradients and Convexity (contd)

Proof:

Necessity: Suppose fis strongly convex on D. Then we know from an earlier result that for
any x,y € D,

y) 2 ) + VT Ax)(y = %) — gelly —xIP

1) > fly) + VTfy)(x — y) — gellx 1P

Adding the two inequalities,
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(Sub)Gradients and Convexity (contd)

Proof:

Necessity: Suppose fis strongly convex on D. Then we know from an earlier result that for
any x,y € D,

1
fly) > fx) + VT x)(y - x) - Sclly = x||?
1
fix) > fly) + VT Ry)(x —y) — 5ellx - y|*
Adding the two inequalities, we get uniform/strong monotonicity in definition (3). If fis

convex, the inequalities hold with ¢ = 0, yielding monotonicity in definition (1). If fis strictly
convex, the inequalities will be strict, yielding strict monotonicity in definition (2).

e .



(Sub)Gradients and Convexity (contd)

Sufficiency: Suppose Vfis monotone. For any fixed x,y € D, consider the function

¢(t) = f(x + t(y — x)). By the mean value theorem applied to ¢(t), we should have for some
te€ (0,1),

e .



(Sub)Gradients and Convexity (contd)

Sufficiency: Suppose Vfis monotone. For any fixed x,y € D, consider the function
¢(t) = f(x + t(y — x)). By the mean value theorem applied to ¢(t), we should have for some
te (0,1),

¢(1) = ¢(0) = ¢'(1) (21)

Letting z = x + t(y — x), (21) translates to

fly) — fix) = V' flz)(y - x) (22)
Also, by definition of monotonicity of V1,

(VAz) — VAx)) T(y —x) = lt (VAz) — VAx)) T(z -x)>0 (23)

e .



e September 4, 2018

(Sub)Gradients and Convexity (contd)
Combining (22) with (23), we get,

fly) — fix) = (Vfiz) — VAx)) " (y —x) + VT A(x)(y — x)
> VT fix)(y — x) (24)

By a previous foundational result, this inequality proves that fis convex. Strict convexity can

be similarly proved by using the strict inequality in (23) inherited from strict monotonicity, and
letting the strict inequality follow through to (24).
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(Sub)Gradients and Convexity (contd)

For the case of strong convexity, we have ~Some more additional work for strong convexity

) — VAx)) (y - x)

Ib—ﬂﬁ—ﬂwfﬂf (25)

¢'(t) — ¢'(0)

= (VA
(V) - V) (s~ %) > 2

H-I'—‘

Therefore,

e T



(Sub)Gradients and Convexity (contd)

For the case of strong convexity, we have

¢/(t) = ¢(0) = (VAz) - VAx)) " (y - x)
1 T 1
= = (Vf(z) - VX)) T (2~ x) > ;c||z —x|P? = etlly - x|’ (25)
Therefore, integrating over this inequality from
t=0tot=1
o(1) - / #/(8) — &/(0)]dt > ey — x| (26)

_——f

which translates to 1
fly) > fix) + VT Ax)(y = %) + 5 clly — x|

Thus, f must be strongly convex. I
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Descent Algorithms

Some insights on why descent algorithms (based on subgradients for example)

will behave well on convex functions

1) Vanishing of subgradient is a sufficient condition for minimization of a convex fn
==> This is handy for constrained optimization as well

2) If f is convex and differentiable, the subgradient is unique = gradient.. In general

the convergence rates using gradient are much better than those using subgradients

3) For a convex fn, any point of local min is a point of global min

4) (Sub)gradients exhibit some monotonic behaviour when the function is convex

e .



Descent Algorithms for Optimizing Unconstrained Problems

Techniques relevant for most (convex) optimization problems that do not yield themselves to
closed form solutions. We will start with unconstrained minimization.

in f{
min fx)

For analysis:
@ Assume that fis convex and differentiable and that it attains a finite optimal value p*.
e Minimization techniques produce a sequence of points x(¥ € D, k=0, 1,... such that
f(x(k)) — p*as k— oo or, Vf(x(k)) — 0 as k — o0.

o lterative techniques for optimization, further require a starting point x(©) € D and

sometimes that epi(f) is closed. The epi(f) can be inferred to be closed either if D = R”
or flx) — 0o as x — OD. The function f(x) = 1 for x > 0 is an example of a function
whose epi(f) is not closed.

e .



