
Descent Algorithms
A single iteration of the general descent algorithm consists of two main steps, viz.,

1 determining a good descent direction ∆x(k), which is typically forced to have unit norm and
2 determining the step size using some line search technique.

If the function f is convex, from the necessary and sufficient condition for convexity
restated here for reference:

f(x(k+1)) ≥ f(x(k)) +∇Tf(x(k))(x(k+1) − x(k))

We require that f(x(k+1)) < f(x(k)) and since t(k) > 0, we must have

∇Tf(x(k))∆x(k) < 0

That is, the descent direction ∆x(k) must make (sufficiently) obtuse angle (θ ∈
(
π
2 ,

3π
2

)
)

with the gradient vector
A natural choice of ∆x(k) that satisfies the above necessary condition is
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1 determining a good descent direction ∆x(k), which is typically forced to have unit norm and
2 determining the step size using some line search technique.

If the function f is convex, from the necessary and sufficient condition for convexity
restated here for reference:

f(x(k+1)) ≥ f(x(k)) +∇Tf(x(k))(x(k+1) − x(k))

We require that f(x(k+1)) < f(x(k)) and since t(k) > 0, we must have

∇Tf(x(k))∆x(k) < 0

That is, the descent direction ∆x(k) must make (sufficiently) obtuse angle (θ ∈
(
π
2 ,

3π
2

)
)

with the gradient vector
A natural choice of ∆x(k) that satisfies the above necessary condition is ∇f(x(k))
(gradient descent algorithm)
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Descent Algorithms (contd.)
Find a starting point x(0) ∈ D
repeat
1. Determine ∆x(k).
2. Choose a step size t(k) > 0 using raya search.
3. Obtain x(k+1) = x(k) + t(k)∆x(k).
4. Set k = k+ 1.

until stopping criterion (such as ||∇f(x(k+1))|| < ϵ) is satisfied
aMany textbooks refer to this as line search, but we prefer to call it ray search, since the step

must be positive.

Figure 7: The general descent algorithm.

There are many different empirical techniques for ray search, though it matters much less than
the search for the descent direction. These techniques reduce the n−dimensional problem to a
1−dimensional problem, which can be easy to solve by use of plotting and eyeballing or even
exact search.
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Finding the step size t

If t is too large, we get diverging updates of x
If t is too small, we get a very slow descent
We need to find a t that is just right
We discuss two ways of finding t:

1 Exact ray search
2 Backtracking ray search
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Ray search because we have already firmed up the descent direction
Hence t > 0 



Example illustrating importance of line search

If t is too large, we get diverging updates of x
If t is too small, we get a very slow descent
We need to find a t that is just right
Eg: Let f(x) = x2 for x ∈ ℜ. Let x0 = 2, ∆xk = (−1)k for all k (since it is a valid descent
direction of x > 0) and xk = (−1)k(1 + 2−k). What is the step size tk implicitly being
used?
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f certainly descreases (not sufficient though)



Example illustrating importance of line search

If t is too large, we get diverging updates of x
If t is too small, we get a very slow descent
We need to find a t that is just right
Eg: Let f(x) = x2 for x ∈ ℜ. Let x0 = 2, ∆xk = (−1)k for all k (since it is a valid descent
direction of x > 0) and xk = (−1)k(1 + 2−k). What is the step size tk implicitly being
used? The sequence xk does not converge.
We discussed two ways of determining t:

1 Exact ray search
2 Backtracking ray search
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Exact ray search

tk+1 = argmin
t

f
(

xk + t∆xk)
)

= argmin
t

ϕ(t)

This method gives the most optimal step size in the given descent direction ∆xk
It ensures that f(xk+1) ≤ f(xk). Why?
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Exact ray search

tk+1 = argmin
t

f
(

xk + t∆xk)
)

= argmin
t

ϕ(t)

This method gives the most optimal step size in the given descent direction ∆xk
It ensures that f(xk+1) ≤ f(xk). Why? Because
ϕ(tk+1) = f(xk + tk+1∆xk) = min

t
ϕ(t) = min

t
f
(

xk + t∆xk)
)
≤ ϕ(0) = f(xk)

Homework1: Consider the function

f(x) = x21 − 4x1 + 2x1x2 + 2x22 + 2x2 + 14

This function has a minimum at x = (5,−3). Suppose you are at a point (4,−4)T after
few iterations, and ∆x = −∇f(x) at every x, then using the exact line search
algorithm, find the point for the next iteration. In how many steps will the algorithm
converge?
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Ray Search for Descent: Options
1 Exact ray search: The exact ray search seeks a scaling factor t that satisfies

t = argmin
t>0

f(x + t∆x) (28)
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Ray Search for Descent: Options
1 Exact ray search: The exact ray search seeks a scaling factor t that satisfies

t = argmin
t>0

f(x + t∆x) (28)

2 Backtracking ray search: The exact line search may not be feasible or could be
expensive to compute for complex non-linear functions. A relatively simpler ray search
iterates over values of step size starting from 1 and scaling it down by a factor of
β ∈ (0, 12) after every iteration till the following condition, called the Armijo condition is
satisfied for some 0 < c1 < 1.

f(x + t∆x) ≤ f(x) + c1t∇Tf(x)∆x (29)

Based on first order convexity condition, it can be inferred that when c1 = 1,
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this inequality will not hold (at c1 = 1)
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β ∈ (0, 12) after every iteration till the following condition, called the Armijo condition is
satisfied for some 0 < c1 < 1.
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Based on first order convexity condition, it can be inferred that when c1 = 1, the right
hand side of (29) gives a lower bound on the value of f(x + t∆x) and hence
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Ray Search for Descent: Options
1 Exact ray search: The exact ray search seeks a scaling factor t that satisfies

t = argmin
t>0

f(x + t∆x) (28)

2 Backtracking ray search: The exact line search may not be feasible or could be
expensive to compute for complex non-linear functions. A relatively simpler ray search
iterates over values of step size starting from 1 and scaling it down by a factor of
β ∈ (0, 12) after every iteration till the following condition, called the Armijo condition is
satisfied for some 0 < c1 < 1.

f(x + t∆x) ≤ f(x) + c1t∇Tf(x)∆x (29)

Based on first order convexity condition, it can be inferred that when c1 = 1, the right
hand side of (29) gives a lower bound on the value of f(x + t∆x) and hence (29) can
never hold. The Armijo condition simply ensures that t decreases f sufficiently.

September 19, 2018 116 / 408



Backtracking ray search

The algorithm
▶ Choose a β ∈ (0, 1)
▶ Start with t = 1
▶ Until f(x + t∆x) < f(x) + c1t∇Tf(x)∆x, do

⋆ Update t ← βt
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Interpretation of backtracking line search

∆x = direction of descent = −∇f(xk) for gradient descent
A different way of understanding the varying step size with β: Multiplying t by β causes
the interpolation to tilt as indicated in the figure

Homework 2: Let f(x) = x2 for x ∈ ℜ. Let x0 = 2, ∆xk = −1 for all k (since it is a valid
descent direction of x > 0) and xk = 1 + 2−k. What is the step size tk implicitly being used.
While tk satisifies the Armijo condition (determine a c1) is this choice of step size ok?
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Interpretation of backtracking line search

∆x = direction of descent = −∇f(xk) for gradient descent
A different way of understanding the varying step size with β: Multiplying t by β causes
the interpolation to tilt as indicated in the figure

Homework 2: Let f(x) = x2 for x ∈ ℜ. Let x0 = 2, ∆xk = −1 for all k (since it is a valid
descent direction of x > 0) and xk = 1 + 2−k. What is the step size tk implicitly being used.
While tk satisifies the Armijo condition (determine a c1) is this choice of step size ok? We will
motivate a second condition in the following slides.
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Ray Search for First Order Descent: Strong Wolfe Conditions
Wolfe’s condition: The function should have a sufficient rate of decrease.

September 19, 2018 119 / 408

at the new point

in terms of c1



Ray Search for First Order Descent: Strong Wolfe Conditions
Wolfe’s condition: The function should have a sufficient rate of decrease.

���∆xT∇f(x + t∆x)
��� ≤ c2

���∆xT∇f(x)
��� (30)

where 1 > c2 > c1 > 0. This condition ensures that the slope of the function f(x + t∆x) at t
is less than c2 times that at t = 0.

1 The conditions in (29) and (30) are together called the strong Wolfe conditions. These
conditions are particularly very important for non-convex problems.

2 While (29) ensures guaranteed decrease in f(x +∆x) in terms of the slope, (30)
provides
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Ray Search for First Order Descent: Strong Wolfe Conditions
Wolfe’s condition: The function should have a sufficient rate of decrease.

���∆xT∇f(x + t∆x)
��� ≤ c2

���∆xT∇f(x)
��� (30)

where 1 > c2 > c1 > 0. This condition ensures that the slope of the function f(x + t∆x) at t
is less than c2 times that at t = 0.

1 The conditions in (29) and (30) are together called the strong Wolfe conditions. These
conditions are particularly very important for non-convex problems.

2 While (29) ensures guaranteed decrease in f(x +∆x) in terms of the slope, (30)
provides guaranteed decrease in magnitude of slope and (indirectly) avoids too
small steps.

3 Claim: If 1 > c2 > c1 > 0 and the function f(x) is convex and differentiable, there exists t
such that (29) and (30) are both satisfied for any f. Hint: Use the Mean Value Theorem
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Convexity ⇒ Strong Wolfe Conditions
Let ϕ(t) = f(xk + t∆xk) ≥ f(xk) + t∇Tf(xk)∆xk (where the second inequality is by
virtue of convexity). Remember that ∇Tf(xk)∆xk < 0

Since 0 < c1 < 1, the linear approximation l(t) = f(xk) + tc1∇Tf(xk)∆xk is unbounded
below and it can be shown to
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Convexity ⇒ Strong Wolfe Conditions
Let ϕ(t) = f(xk + t∆xk) ≥ f(xk) + t∇Tf(xk)∆xk (where the second inequality is by
virtue of convexity). Remember that ∇Tf(xk)∆xk < 0

Since 0 < c1 < 1, the linear approximation l(t) = f(xk) + tc1∇Tf(xk)∆xk is unbounded
below and it can be shown to intersect the graph of ϕ atleast once.
Let t′ > 0 be the smallest intersecting value of t, that is:

f(x + t′∆xk) = f(xk) + t′c1∇Tf(xk)∆xk (31)

For all t ∈ [0, t′],
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Convexity ⇒ Strong Wolfe Conditions
Let ϕ(t) = f(xk + t∆xk) ≥ f(xk) + t∇Tf(xk)∆xk (where the second inequality is by
virtue of convexity). Remember that ∇Tf(xk)∆xk < 0

Since 0 < c1 < 1, the linear approximation l(t) = f(xk) + tc1∇Tf(xk)∆xk is unbounded
below and it can be shown to intersect the graph of ϕ atleast once.
Let t′ > 0 be the smallest intersecting value of t, that is:

f(x + t′∆xk) = f(xk) + t′c1∇Tf(xk)∆xk (31)

For all t ∈ [0, t′],
f(xk + t∆xk) ≤ f(xk) + tc1∇Tf(xk)∆xk (32)

That is, there exists a non-empty set of t such that the first Wolfe condition is met.
By the mean value theorem, ∃ t′′ ∈ (0, t′) such that

f(xk + t′∆xk)− f(xk) = t′∇Tf(xk + t′′∆xk)∆xk (33)
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Convexity ⇒ Strong Wolfe Conditions (contd.)

Combining (31) and (33), and using c1 < c2,and ∇Tf(xk)∆xk < 0

∇Tf(xk + t′′∆xk)∆xk = c1∇Tf(xk)∆xk > c2∇Tf(xk)∆xk (34)

Again, since ∇Tf(xk)∆xk < 0, we get the tk = t′′ satisfying (30)

|∇Tf(xk + t′′∆xk)∆xk| < c2|∇Tf(xk)∆xk| (35)

In fact, by continuity of f(.), there exists an interval around t′′ for which Strong Wolfe
conditions hold.
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Empirical Observations on Ray Search

A finding that is borne out of plenty of empirical evidence is that exact ray search does
better than empirical ray search in a few cases only.
Further, the exact choice of the value of c1 and c2 seems to have little effect on the
convergence of the overall descent method.
The trend of specific descent methods has been like a parabola - starting with simple
steepest descent techniques, then accomodating the curvature hessian matrix through a
more sophisticated Newton’s method and finally, trying to simplify the Newton’s method
through approximations to the hessian inverse, culminating in conjugate gradient
techniques, that do away with any curvature matrix whatsoever, and form the internal
combustion engine of many sophisticated optimization techniques today.
We start the thread by describing the steepest descent methods.
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exact search is not often worth it

WE WILL NOW GO BACK TO OPTIONS FOR THE DESCENT DIRECTION



Algorithms: Steepest Descent

The idea of steepest descent is to determine a descent direction such that for a unit step
in that direction, the prediction of decrease in the objective is maximized
However, consider ∆x = argminv

[
−5 10 15

]
v

=⇒ ∆x =



∞
−∞
−∞




which is unacceptable
Thus, there is a necessity to restrict the norm of v
The choice of the descent direction can be stated as:

∆x = argmin
v
∇⊤f(x)v

s.t. ∥v∥ = 1
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on the nature of the steepest descent direction



Algorithms: Steepest Descent
Let v ∈ ℜn be a unit vector under some norm. By first order convexity condition for
convex and differentiable f,

f(x(k))− f(x(k) + v) ≤ −∇Tf(x(k))v

For small v, the inequality turns into approximate equality. The term −∇Tf(x(k))v can
be thought of as (an upper-bound on) the first order prediction of decrease.
The idea in the steepest descent method is to choose a norm and then determine a
descent direction such that for a unit step in that norm, the first order prediction of
decrease is maximized. This choice of the descent direction can be stated as

∆x = argmin
{
∇Tf(x)v | ||v|| = 1

}

Empirical observation: If the norm chosen is aligned with the gross geometry of the
sub-level sets3, the steepest descent method converges faster to the optimal solution.
Else, it often amplifies the effect of oscillations.

3The alignment can be determined by fitting, for instance, a quadratic to a sample of the points.
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Various choices of the norm result in different solutions for ∆x
For 2-norm, ∆x = − ∇f(x(k))

∥∇f(x(k))∥
2

(gradient descent)

For 1-norm, ∆x = − sign
(

∂f(x(k))
∂x(k)i

)
ei, where ei is the ith standard basis vector and i is the

component ∂f(x(k))
∂x(k)i

with the maximum magnitude
(coordinate descent)
For ∞-norm, ∆x = − sign(∇f(x(k)))
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General Algorithm: Steepest Descent (contd)

Find a starting point x(0) ∈ D.
repeat
1. Set ∆x(k) = argmin

{
∇Tf(x(k))v | ||v|| = 1

}
.

2. Choose a step size t(k) > 0 using exact or backtracking ray search.
3. Obtain x(k+1) = x(k) + t(k)∆x(k).
4. Set k = k+ 1.

until stopping criterion (such as ||∇f(x(k+1))|| ≤ ϵ) is satisfied

Figure 8: The steepest descent algorithm.

Two examples of the steepest descent method are the gradient descent method (for the
eucledian or L2 norm) and the coordinate-descent method (for the L1 norm). One fact
however is that no two norms should give exactly opposite steepest descent directions, though
they may point in different directions.
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Convergence of Descent Algorithm

Consider the general descent algorithm (∇Tf(xk)∆xk < 0 for each k) with each step:
xk+1 = xk + tk∆xk.

▶ Suppose f is bounded below in ℜn and
▶ is continuously differentiable in an open set N containing the level set {x|f(x) ≤ f(x0)}
▶ ∇f is Lipschiz continuous.

Then,
∞∑

k=1

(∇Tf(xk)∆xk)2
∥∆xk∥2 <∞ (that is, it is finite)

Thus, limk→∞
∇Tf(xk)∆xk

∥∆xk∥ = 0.
If we additionally assume that the descent direction is not orthogonal to the gradient, i.e.,
− ∇Tf(xk)∆xk

∥∆xk∥|∇f(xk)∥ ≥ Γ for some Γ > 0, then, we can show that limk→∞ ∥∇f(xk)∥ = 0

Before we try and prove this result, let us discuss Lipschitz continuity (recall from
midsem).
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Lipschitz Continuity
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Recall: Lipschitz Continuity of f

Formally, f(x) : D ⊆ ℜn → ℜ is Lipschitz continuous if |f(x)− f(y)| ≤ L∥x− y∥ for all
x,y ∈ D.
A Lipschitz continuous function is limited in how fast it changes: there exists a definite
positive real number L > 0 such that, for every pair of points on the graph of the
function, the absolute value of the slope of the line connecting them is not greater than
this real number. This bound is called the function’s Lipschitz constant, L > 0.
We can show that if a function f : ℜ → ℜ is convex in (α,β) it is Lipschitz continuous in
[γ, δ] where α < γ < δ < β. We do not assume that f is differentiable.
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Convex Function is Lipschitz continuous
f(x) : ℜ → ℜ is Lipschitz continuous in [γ, δ] if |f(x)− f(y)| ≤ L|x− y| for all x, y ∈ [γ, δ]. We
will show that if a function f : ℜ → ℜ is convex in (α,β) it is Lipschitz continuous in [γ, δ]
where α < γ < δ < β. Do not assume that f is differentiable. Fill up the three blanks below.

Let p, q ∈ ℜ such that α < p < γ < δ < q < β and let x1, x2 ∈ [γ, δ]. Then

________________________1 ≤
f(x2)− f(x1)

x2 − x1
≤ ________________________

because of convexity of f.
Take L = ________________________3

to prove Lipschitz continuity of f in the interval [γ, δ].
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