
Ray Search for Descent: Options
1 Exact ray search: The exact ray search seeks a scaling factor t that satisfies

t = argmin
t>0

f(x + t∆x) (28)

2 Backtracking ray search: The exact line search may not be feasible or could be
expensive to compute for complex non-linear functions. A relatively simpler ray search
iterates over values of step size starting from 1 and scaling it down by a factor of
β ∈ (0, 12) after every iteration till the following condition, called the Armijo condition is
satisfied for some 0 < c1 < 1.

f(x + t∆x) ≤ f(x) + c1t∇Tf(x)∆x (29)

Based on first order convexity condition, it can be inferred that when c1 = 1, the right
hand side of (29) gives a lower bound on the value of f(x + t∆x) and hence
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Change in f(x) somewhat fast
but could be faster

Small change in x
Seems to implement Armijo condition

Oscillations in f(x) 
as well as in x



Hope for this behaviour with the combination of the two
conditions



Ray Search for First Order Descent: Strong Wolfe Conditions
Wolfe’s condition: The function should have a sufficient rate of decrease.

���∆xT∇f(x + t∆x)
��� ≤ c2

���∆xT∇f(x)
��� (30)

where 1 > c2 > c1 > 0. This condition ensures that the slope of the function f(x + t∆x) at t
is less than c2 times that at t = 0.

1 The conditions in (29) and (30) are together called the strong Wolfe conditions. These
conditions are particularly very important for non-convex problems.

2 While (29) ensures guaranteed decrease in f(x +∆x) in terms of the slope, (30)
provides guaranteed decrease in magnitude of slope and (indirectly) avoids too
small steps.

3 Claim: If 1 > c2 > c1 > 0 and the function f(x) is convex and differentiable, there exists t
such that (29) and (30) are both satisfied for any f. Hint: Use the Mean Value Theorem
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third plot seemed to be benefiting from this



Algorithms: Steepest Descent

The idea of steepest descent is to determine a descent direction such that for a unit step
in that direction, the prediction of decrease in the objective is maximized
However, consider ∆x = argminv

[
−5 10 15

]
v

=⇒ ∆x =



∞
−∞
−∞




which is unacceptable
Thus, there is a necessity to restrict the norm of v
The choice of the descent direction can be stated as:

∆x = argmin
v
∇⊤f(x)v

s.t. ∥v∥ = 1
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Various choices of the norm result in different solutions for ∆x
For 2-norm, ∆x = − ∇f(x(k))

∥∇f(x(k))∥
2

(gradient descent)

For 1-norm, ∆x = − sign
(

∂f(x(k))
∂x(k)i

)
ei, where ei is the ith standard basis vector and i is the

component ∂f(x(k))
∂x(k)i

with the maximum magnitude
(coordinate descent)
For ∞-norm, ∆x = − sign(∇f(x(k)))
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(No - see function plots and sublevel sets
in the following slides)

Generalizing the Rosenbrock function to n dimensions



after a point, linear convergence
(unacceptable)

Gradient descent on the Rosenbrock function
converges but with a poor rate 



fun: 1.0604663473448339e-08
nfev: 100001
nit: 100000
 success: True
x: array([ 0.9999,  0.9998])

Gradient descent on the Rosenbrock function
converges but with a poor rate 

Too slow! 



Conjugate gradient (gradient adapted according to a quadratic
estimation of the curvature where the quadratic estimation
it itself getting adapted) 

Optional: For understanding CG, see Figure 4.55 (and pages 317-323) of 
https://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvexOptimization.pdf



Conjugate gradient (gradient adapted according to a quadratic
estimation of the curvature where the quadratic estimation
it itself getting adapted) 

fun: 7.976921523473763e-12
     jac: array([ -9.4059e-07,  -2.3516e-06])
 message: 'Optimization terminated successfully.'
    nfev: 70
     nit: 31
    njev: 70
  status: 0
 success: True
       x: array([ 1.,  1.])

Much faster



General Algorithm: Steepest Descent (contd)

Find a starting point x(0) ∈ D.
repeat
1. Set ∆x(k) = argmin

{
∇Tf(x(k))v | ||v|| = 1

}
.

2. Choose a step size t(k) > 0 using exact or backtracking ray search.
3. Obtain x(k+1) = x(k) + t(k)∆x(k).
4. Set k = k+ 1.

until stopping criterion (such as ||∇f(x(k+1))|| ≤ ϵ) is satisfied

Figure 8: The steepest descent algorithm.

Two examples of the steepest descent method are the gradient descent method (for the
eucledian or L2 norm) and the coordinate-descent method (for the L1 norm). One fact
however is that no two norms should give exactly opposite steepest descent directions, though
they may point in different directions.
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As we have seen, choice
of descent direction can
make a big difference! 



Convergence of Descent Algorithm

Consider the general descent algorithm (∇Tf(xk)∆xk < 0 for each k) with each step:
xk+1 = xk + tk∆xk.

▶ Suppose f is bounded below in ℜn and
▶ is continuously differentiable in an open set N containing the level set {x|f(x) ≤ f(x0)}
▶ ∇f is Lipschiz continuous.

Then,
∞∑

k=1

(∇Tf(xk)∆xk)2
∥∆xk∥2 <∞ (that is, it is finite)

Thus, limk→∞
∇Tf(xk)∆xk

∥∆xk∥ = 0.
If we additionally assume that the descent direction is not orthogonal to the gradient, i.e.,
− ∇Tf(xk)∆xk

∥∆xk∥|∇f(xk)∥ ≥ Γ for some Γ > 0, then, we can show that limk→∞ ∥∇f(xk)∥ = 0

Before we try and prove this result, let us discuss Lipschitz continuity (recall from
midsem).

September 22, 2018 127 / 408



Lipschitz Continuity

September 22, 2018 128 / 408



Recall: Lipschitz Continuity of f

Formally, f(x) : D ⊆ ℜn → ℜ is Lipschitz continuous if |f(x)− f(y)| ≤ L∥x− y∥ for all
x,y ∈ D.
A Lipschitz continuous function is limited in how fast it changes: there exists a definite
positive real number L > 0 such that, for every pair of points on the graph of the
function, the absolute value of the slope of the line connecting them is not greater than
this real number. This bound is called the function’s Lipschitz constant, L > 0.
We can show that if a function f : ℜ → ℜ is convex in (α,β) it is Lipschitz continuous in
[γ, δ] where α < γ < δ < β. We do not assume that f is differentiable.
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Lipschitz continuous for a fixed alpha, beta



Convex Function is Lipschitz continuous
f(x) : ℜ → ℜ is Lipschitz continuous in [γ, δ] if |f(x)− f(y)| ≤ L|x− y| for all x, y ∈ [γ, δ]. We
will show that if a function f : ℜ → ℜ is convex in (α,β) it is Lipschitz continuous in [γ, δ]
where α < γ < δ < β. Do not assume that f is differentiable. Fill up the three blanks below.

Let p, q ∈ ℜ such that α < p < γ < δ < q < β and let x1, x2 ∈ [γ, δ]. Then

________________________1 ≤
f(x2)− f(x1)

x2 − x1
≤ ________________________

because of convexity of f.
Take L = ________________________3

to prove Lipschitz continuity of f in the interval [γ, δ].
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Convex Function is Lipschitz continuous
f(x) : ℜ → ℜ is Lipschitz continuous in [γ, δ] if |f(x)− f(y)| ≤ L|x− y| for all x, y ∈ [γ, δ]. We
will show that if a function f : ℜ → ℜ is convex in (α,β) it is Lipschitz continuous in [γ, δ]
where α < γ < δ < β. Do not assume that f is differentiable. Fill up the three blanks below.

Let p, q ∈ ℜ such that α < p < γ < δ < q < β and let x1, x2 ∈ [γ, δ]. Then

________________________1 ≤
f(x2)− f(x1)

x2 − x1
≤ ________________________

because of convexity of f.
Take L = ________________________3

to prove Lipschitz continuity of f in the interval [γ, δ].
1 ________________________1 = f(γ)−f(p)

γ−p
2 ________________________2 = f(q)−f(δ)

q−δ

3 ________________________3 = max
{��� f(γ)−f(p)γ−p

��� ,
��� f(q)−f(δ)q−δ

���
}
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This L is dependent 
on p, q , gamma, delta
(that is on alpha, beta)

L is relative to the interval
Local Lipschitz continuity

(Locally)



Lipschitz continuity

Intuitively, a Lipschitz continuous function is limited in how fast it changes: there exists a
definite real number L such that, for every pair of points on the graph of the gradient, the
absolute value of the slope of the line connecting them is not greater than this real
number

▶ This bound is called the function’s Lipschitz constant, L > 0
▶ The sum of two Lipschitz continuous functions is also Lipschitz continuous with the Lipschitz

constant specified as the sum of the respective Lipschitz constants.
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Lipschitz continuity

Intuitively, a Lipschitz continuous function is limited in how fast it changes: there exists a
definite real number L such that, for every pair of points on the graph of the gradient, the
absolute value of the slope of the line connecting them is not greater than this real
number

▶ This bound is called the function’s Lipschitz constant, L > 0
▶ The sum of two Lipschitz continuous functions is also Lipschitz continuous with the Lipschitz

constant specified as the sum of the respective Lipschitz constants.
▶ The product of two Lipschitz continuous and bounded functions is also Lipschitz continuous

Now, ∇f(x) is Lipschitz continuous if
∇f(x)−∇f(y)

 ≤ L∥x− y∥
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f1(x)=f2(x)=x
are Lipschitz
continuous
But not 
f1*f2 = x^2

Recap how we generalized monotonicity 
from scalar valued to vector valued functions
Something similar here...



Interpretation of Lipschitz continuity of ∇f(x)
Consider ∇f(x) ∈ R, and ∇f(x) = df

dx = f ′(x)
|f ′(x)− f ′(y)| ≤ L|x− y|
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Interpretation of Lipschitz continuity of ∇f(x)
Consider ∇f(x) ∈ R, and ∇f(x) = df

dx = f ′(x)
|f ′(x)− f ′(y)| ≤ L|x− y|
=⇒ f ′(x)−f ′(y)

|x−y| ≤ L
=⇒

��� f
′(x+h)−f ′(x)

h

��� ≤ L (putting y = x+ h)
Taking limit h→ 0, we get

September 22, 2018 132 / 408



Interpretation of Lipschitz continuity of ∇f(x)
Consider ∇f(x) ∈ R, and ∇f(x) = df

dx = f ′(x)
|f ′(x)− f ′(y)| ≤ L|x− y|
=⇒ f ′(x)−f ′(y)

|x−y| ≤ L
=⇒

��� f
′(x+h)−f ′(x)

h

��� ≤ L (putting y = x+ h)
Taking limit h→ 0, we get
|f ′′(x)| ≤ L (assuming the limit exits)
f ′′ represents curvature
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Recap: Strong convexity
was about guatanteed 
lower bounded curvature



Lipschitz Continuity of ∇f(x) and Hessian

Let f(x) have continuous partial derivatives and continuous mixed partial derivatives in an
open ball R containing a point x∗ where ∇f(x∗) = 0.
Let ∇2f(x) denote an n× n matrix of mixed partial derivatives of f evaluated at the point
x, such that the ijth entry of the matrix is fxixj . The matrix ∇2f(x) is called the Hessian
matrix.
The Hessian matrix is symmetric4.

4By Clairaut’s Theorem, if the partial and mixed derivatives of a function are continuous on an open region
containing a point x∗, then fxixj(x∗) = fxjxi(x∗), for all i, j ∈ [1, n].

September 22, 2018 133 / 408



Lipschitz Continuity of ∇f(x) and Hessian

Let f(x) have continuous partial derivatives and continuous mixed partial derivatives in an
open ball R containing a point x∗ where ∇f(x∗) = 0.
Let ∇2f(x) denote an n× n matrix of mixed partial derivatives of f evaluated at the point
x, such that the ijth entry of the matrix is fxixj . The matrix ∇2f(x) is called the Hessian
matrix.
The Hessian matrix is symmetric4.
For a Lipschitz continuous ∇f : Rn → Rn, we can show that for any vector v,

4By Clairaut’s Theorem, if the partial and mixed derivatives of a function are continuous on an open region
containing a point x∗, then fxixj(x∗) = fxjxi(x∗), for all i, j ∈ [1, n].
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Lipschitz Continuity of ∇f(x) and Hessian

Let f(x) have continuous partial derivatives and continuous mixed partial derivatives in an
open ball R containing a point x∗ where ∇f(x∗) = 0.
Let ∇2f(x) denote an n× n matrix of mixed partial derivatives of f evaluated at the point
x, such that the ijth entry of the matrix is fxixj . The matrix ∇2f(x) is called the Hessian
matrix.
The Hessian matrix is symmetric4.
For a Lipschitz continuous ∇f : Rn → Rn, we can show that for any vector v,

▶ v⊤∇2f(x)v ≤ v⊤Lv
=⇒ v⊤(∇2f(x)− LI)v ≤ 0

▶ That is, ∇2f(x)− LI is negative semi-definite
▶ This can be written as:

∇2f(x) ⪯ LI

4By Clairaut’s Theorem, if the partial and mixed derivatives of a function are continuous on an open region
containing a point x∗, then fxixj(x∗) = fxjxi(x∗), for all i, j ∈ [1, n].
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Example: f(x) = x3
3

f(x) = x3
3 =⇒ f ′(x) = x2

Claim: f ′(x) is locally Lipschitz continuous but not globally
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f''(x) = 2x not upper bounded globally
But
In a fixed interval (x-1,x+1), upper bounded by 2|x|



Example: f(x) = x3
3

f(x) = x3
3 =⇒ f ′(x) = x2

Claim: f ′(x) is locally Lipschitz continuous but not globally
Consider x ∈ R
supy∈(x−1,x+1) |f ′′(y)| = supy∈(x−1,x+1) |2y| ≤ 2|x|+ 1

Applying mean value theorem for (y, z) ∈ (x− 1, x+ 1):
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Example: f(x) = x3
3

f(x) = x3
3 =⇒ f ′(x) = x2

Claim: f ′(x) is locally Lipschitz continuous but not globally
Consider x ∈ R
supy∈(x−1,x+1) |f ′′(y)| = supy∈(x−1,x+1) |2y| ≤ 2|x|+ 1

Applying mean value theorem for (y, z) ∈ (x− 1, x+ 1):
∃λ such that f ′′(λ) = f ′(y)−f ′(z)

y−z
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|f ′(y)− f ′(z)| = |f ′′(λ)(y− z)|
≤
��2|x|+ 1

�� |y− x|, ∀(y, z) ∈ (x− 1, x+ 1)2

Thus, L =
��2|x|+ 1

��
Therefore,

September 22, 2018 135 / 408

f is locally Lipschitz continuous



|f ′(y)− f ′(z)| = |f ′′(λ)(y− z)|
≤
��2|x|+ 1

�� |y− x|, ∀(y, z) ∈ (x− 1, x+ 1)2

Thus, L =
��2|x|+ 1

��
Therefore, f′ is Lipschitz continuous in (x− 1, x+ 1)

But as x→∞, L→∞
This implies that f′ may not be Lipschitz continuous everywhere
Consider y ̸= 0, and
f ′(y)−f ′(0)

|y−0| = |y|
|y|→∞ as y→∞
Thus, f′ is proved to not be Lipschitz continuous globally
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Lipschitz Continuity: Another example

Consider

f(x) =




x2sin

(
1
x2
)

if x ̸= 0

0 if x = 0

We can verify that this function is continuous and differentiable everywhere
i.e. f ′′(0) = 0 from left and right
However, we can show that f(x) is not Lipschitz continuous
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Show (H/W)



Lipschitz continuity: Another example

Consider: f ′(x) = |x|
Since |f ′(x)− f ′(y)| =

��|x|− |y|
�� ≤ |x− y|,

f′ is Lipschitz continuous with L = 1

However, it is not differentiable everywhere (not at 0)
In fact, if f is continuously differentiable everywhere, it is also Lipschitz continuous
For functions over a closed and bounded subset of the real line: f is continuous ⊇ f is
differentiable (almost everywhere) ⊇ f is Lipschitz continuous ⊇ f ′ is continuous ⊇ f ′ is
differentiable
Recap (now generalized to f : ℜn → ℜ) that f is locally Lipschitz continuous ⊇ f is convex
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Considering gradients in Lipschitz continuity

If ∇f is Lipschitz continuous, then
∇f(x)−∇f(y)

 ≤ L∥x− y∥

Taylor’s theorem states that if f and its first n derivatives f ′, f ′′, . . . , f (n) are continuous
in the closed interval [a, b], and differentiable in (a, b), then there exists a number
c ∈ (a, b) such that

f(b) = f(a) + f ′(a)(b − a) +
1

2!
f ′′(a)(b − a)2 + . . . +

1

n!
f (n)(a)(b − a)n +

1

(n + 1)!
f (n+1)

(c)(b − a)n+1
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Approximation if you ignore last term
Last term is in terms of a c in (a,b) 



We will invoke Taylor’s theorem up to the second degree:

f(y) = f(x) + f ′(x)(y− x) + 1

2
f ′′(c)(y− x)2

where c ∈ (x, y) and x, y ∈ R
Let us generalize to f : Rn → R:

September 22, 2018 139 / 408



We will invoke Taylor’s theorem up to the second degree:

f(y) = f(x) + f ′(x)(y− x) + 1

2
f ′′(c)(y− x)2

where c ∈ (x, y) and x, y ∈ R
Let us generalize to f : Rn → R:

f(y) = f(x) +∇⊤f(x)(y− x) + 1

2
(y− x)T∇2f(c)(y− x)

where c = x + Γ(y− x), Γ ∈ (0, 1), and x,y ∈ Rn

If ∇f is Lipschitz continuous and f is doubly differentiable,

f(y) ≤ f(x) +∇⊤f(x)(y− x) + L
2
∥y− x∥2 (36)
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All this comes from
the basic mean
value theorem

This inequality can be shown to be 
another condition for Lipschitz continuity
(without requiring double differentiability)

Contrast 
with strong
convexity?



We will invoke Taylor’s theorem up to the second degree:

f(y) = f(x) + f ′(x)(y− x) + 1

2
f ′′(c)(y− x)2

where c ∈ (x, y) and x, y ∈ R
Let us generalize to f : Rn → R:

f(y) = f(x) +∇⊤f(x)(y− x) + 1

2
(y− x)T∇2f(c)(y− x)

where c = x + Γ(y− x), Γ ∈ (0, 1), and x,y ∈ Rn

If ∇f is Lipschitz continuous and f is doubly differentiable,

f(y) ≤ f(x) +∇⊤f(x)(y− x) + L
2
∥y− x∥2 (36)

While we showed (36) assuming f is doubly differentiable, (36) holds for any Lipschitz
continuous ∇f(x).
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Gradient Descent and Lipschitz Continuity

1 Replacing x by xk and y by the gradient descent update xk+1 = xk − t∇f(xk), and
applying necessary condition for Lipschitz continuity:

f(xk+1) ≤ f(xk) +∇Tf(xk)(xk+1 − x) + L
2

xk+1 − xk

2

2 For a descent algorithm, ∇Tf(xk)∆xk = ∇Tf(xk)∆(xk+1 − xk) < 0 for each k
3 Putting together steps 1 and 2 above,
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Gradient Descent and Lipschitz Continuity

1 Replacing x by xk and y by the gradient descent update xk+1 = xk − t∇f(xk), and
applying necessary condition for Lipschitz continuity:

f(xk+1) ≤ f(xk) +∇Tf(xk)(xk+1 − x) + L
2

xk+1 − xk

2

2 For a descent algorithm, ∇Tf(xk)∆xk = ∇Tf(xk)∆(xk+1 − xk) < 0 for each k
3 Putting together steps 1 and 2 above,

f(xk+1) ≤ f(xk) + L
2

xk+1 − xk

2

(37)
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