Convergence of Descent Algorithms: Generic and Specific Cases

Back to: Generic Convergence of Descent Algorithm

- Consider the general descent algorithm $\left(\nabla^{T} f\left(\mathbf{x}^{k}\right) \Delta \mathrm{x}^{k}<0\right.$ for each k) with each step: $\mathrm{x}^{k+1}=\mathrm{x}^{k}+t^{k} \Delta \mathrm{x}^{k}$
- Suppose f is bounded below in \Re^{n} and
- is continuously differentiable in an open set \mathcal{N} containing the level set $\left\{\mathbf{x} \mid f(\mathbf{x}) \leq f\left(\mathbf{x}^{0}\right)\right\}$
- ∇f is Lipschiz continuous.

Then, $\sum_{k=1}^{\infty} \frac{\left(\nabla^{T} f\left(\mathrm{x}^{k}\right) \Delta \mathrm{x}^{k}\right)^{2}}{\left\|\Delta \mathrm{x}^{k}\right\|^{2}}<\infty$ (that is, it is finite)
Overall: Sum of squares of normalized directional Proof: ${ }^{k=1}$ normalized directional derivativederivatives is finite

- For any descent algorithm: $\nabla^{T} f\left(\mathrm{x}^{k}\right) \Delta \mathrm{x}^{k}<0$ for each k with each step: $\mathbf{x}^{k+1}=\mathbf{x}^{k}+t^{k} \Delta \mathbf{x}^{k}$.
- From the second Strong Wolfe condition:

Back to: Generic Convergence of Descent Algorithm

- Consider the general descent algorithm $\left(\nabla^{T} f\left(\mathbf{x}^{k}\right) \Delta \mathrm{x}^{k}<0\right.$ for each k) with each step: $\mathrm{x}^{k+1}=\mathrm{x}^{k}+t^{k} \Delta \mathrm{x}^{k}$.
- Suppose f is bounded below in \Re^{n} and
- is continuously differentiable in an open set \mathcal{N} containing the level set $\left\{\mathbf{x} \mid f(\mathbf{x}) \leq f\left(\mathbf{x}^{0}\right)\right\}$
- ∇f is Lipschiz continuous.

Then, $\sum_{k=1}^{\infty} \frac{\left(\nabla^{T} f\left(\mathrm{x}^{k}\right) \Delta \mathrm{x}^{k}\right)^{2}}{\left\|\Delta \mathrm{x}^{k}\right\|^{2}}<\infty$ (that is, it is finite)

Proof:

- For any descent algorithm: $\nabla^{T} f\left(x^{k}\right) \Delta \mathrm{x}^{k}<0$ for each k with each step:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+t^{k} \Delta \mathbf{x}^{k}
$$

- From the second Strong Wolfe condition:

$$
\begin{equation*}
\left|\nabla^{T} f\left(\mathrm{x}^{k}+t^{k} \Delta \mathrm{x}^{k}\right) \Delta \mathrm{x}^{k}\right| \leq c_{2}\left|\nabla^{T} f\left(\mathrm{x}^{k}\right) \Delta \mathrm{x}^{k}\right| \tag{38}
\end{equation*}
$$

Proving Convergence of Descent Algorithm

- Since $c_{2}>0$ and $\nabla^{T} f\left(x^{k}\right) \Delta \mathrm{x}^{k}<0$,

Proving Convergence of Descent Algorithm

- Since $c_{2}>0$ and $\nabla^{T} f\left(x^{k}\right) \Delta x^{k}<0$,

$$
\begin{equation*}
\nabla^{T} f\left(\mathrm{x}^{k}+t^{k} \Delta \mathrm{x}^{k}\right) \Delta \mathrm{x}^{k} \geq c_{2} \nabla^{T} f\left(\mathrm{x}^{k}\right) \Delta \mathrm{x}^{k} \tag{39}
\end{equation*}
$$

- Subtracting $\nabla^{T} f\left(\mathrm{x}^{k}\right) \Delta \mathrm{x}^{k}$ from both sides of (39)

$$
\begin{equation*}
\left[\nabla f\left(\mathbf{x}^{k}+t^{k} \Delta \mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right]^{T} \Delta \mathrm{x}^{k} \geq\left(c_{2}-1\right) \nabla^{T} f\left(\mathbf{x}^{k}\right) \Delta \mathrm{x}^{k} \tag{40}
\end{equation*}
$$

- By Cauchy Shwarz inequality and from Lipschitz continuity,

Proving Convergence of Descent Algorithm

- Since $c_{2}>0$ and $\nabla^{T} f\left(x^{k}\right) \Delta x^{k}<0$,

$$
\begin{equation*}
\nabla^{T} f\left(\mathrm{x}^{k}+t^{k} \Delta \mathrm{x}^{k}\right) \Delta \mathrm{x}^{k} \geq c_{2} \nabla^{T} f\left(\mathrm{x}^{k}\right) \Delta \mathrm{x}^{k} \tag{39}
\end{equation*}
$$

- Subtracting $\nabla^{T} f\left(\mathrm{x}^{k}\right) \Delta \mathrm{x}^{k}$ from both sides of (39)

$$
\begin{equation*}
\left[\nabla f\left(\mathbf{x}^{k}+t^{k} \Delta \mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right]^{T} \Delta \mathbf{x}^{k} \geq\left(c_{2}-1\right) \nabla^{T} f\left(\mathbf{x}^{k}\right) \Delta \mathbf{x}^{k} \tag{40}
\end{equation*}
$$

- By Cauchy Shwarz inequality and from Lipschitz continuity,

$$
\begin{equation*}
\left[\nabla f\left(\mathbf{x}^{k}+t^{k} \Delta \mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right]^{T} \Delta \mathbf{x}^{k} \leq\left\|\nabla f\left(\mathbf{x}^{k}+t^{k} \Delta \mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right\|\left\|\Delta \mathbf{x}^{k}\right\| \leq L\left\|\Delta \mathbf{x}^{k}\right\|^{2} t^{k} \tag{41}
\end{equation*}
$$

Proving Convergence of Descent Algorithm (contd.)

- Combining (40) and (41),

$$
\begin{equation*}
t^{k} \geq \frac{c_{2}-1}{L} \frac{\nabla^{\top} f\left(x^{k}\right) \Delta x^{k}}{\left\|\Delta x^{k}\right\|^{2}} \tag{42}
\end{equation*}
$$

- Substituting (42) into the first Wolfe condition (while recalling that $\nabla^{\top} f\left(x^{k}\right) \Delta x^{k}<0$),

Proving Convergence of Descent Algorithm (contd.)

- Combining (40) and (41),

$$
\begin{equation*}
t^{k} \geq \frac{c_{2}-1}{L} \frac{\nabla^{\top} f\left(x^{k}\right) \Delta x^{k}}{\left\|\Delta x^{k}\right\|^{2}} \tag{42}
\end{equation*}
$$

- Substituting (42) into the first Wolfe condition (while recalling that $\nabla^{\top} f\left(x^{k}\right) \Delta x^{k}<0$), $f\left(\mathrm{x}^{k}+t \Delta \mathrm{x}^{k}\right)<f\left(\mathrm{x}^{k}\right)+c_{1} t \nabla^{\top} f\left(\mathrm{x}^{k}\right) \Delta \mathrm{x}^{k}$

$$
\begin{equation*}
f\left(\mathbf{x}^{k+1}\right)<f\left(\mathbf{x}^{k}\right)-c_{1} \frac{1-c_{2}}{L} \frac{\left(\nabla^{T} f\left(\mathbf{x}^{k}\right) \Delta \mathrm{x}^{k}\right)^{2}}{\left\|\Delta \mathrm{x}^{k}\right\|^{2}} \tag{43}
\end{equation*}
$$

- Substituting $c=c_{1} \frac{1-c_{2}}{L}$ and applying (43) successively,

Proving Convergence of Descent Algorithm (contd.)

- Combining (40) and (41),

$$
\begin{equation*}
t^{k} \geq \frac{c_{2}-1}{L} \frac{\nabla^{T} f\left(\mathrm{x}^{k}\right) \Delta \mathrm{x}^{k}}{\left\|\Delta \mathrm{x}^{k}\right\|^{2}} \tag{42}
\end{equation*}
$$

- Substituting (42) into the first Wolfe condition (while recalling that $\nabla^{T} f\left(\mathrm{x}^{k}\right) \Delta \mathrm{x}^{k}<0$), $f\left(\mathrm{x}^{k}+t \Delta \mathrm{x}^{k}\right)<f\left(\mathrm{x}^{k}\right)+c_{1} t \nabla^{T} f\left(\mathrm{x}^{k}\right) \Delta \mathrm{x}^{k}$

$$
\begin{equation*}
f\left(\mathbf{x}^{k+1}\right)<f\left(\mathbf{x}^{k}\right)-c_{1} \frac{1-c_{2}}{L} \frac{\left(\nabla^{T} f\left(\mathbf{x}^{k}\right) \Delta \mathbf{x}^{k}\right)^{2}}{\left\|\Delta \mathbf{x}^{k}\right\|^{2}} \tag{43}
\end{equation*}
$$

- Substituting $c=c_{1} \frac{1-c_{2}}{L}$ and applying (43) successively,

$$
\begin{align*}
& c>0 \\
& \qquad f\left(\mathbf{x}^{k+1}\right)<f\left(\mathbf{x}^{0}\right)-c \sum_{i=0}^{k} \frac{\left(\nabla^{T} f\left(\mathbf{x}^{i}\right) \Delta \mathrm{x}^{i}\right)^{2}}{\left\|\Delta \mathbf{x}^{i}\right\|^{2}} \tag{44}
\end{align*}
$$

Proving Convergence of Descent Algorithm (contd.)

- Taking limits of (44) as $k \rightarrow \infty$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} c \sum_{i=0}^{k} \frac{\left(\nabla^{T} f\left(\mathbf{x}^{i}\right) \Delta \mathbf{x}^{i}\right)^{2}}{\left\|\Delta \mathbf{x}^{i}\right\|^{2}}<\lim _{k \rightarrow \infty} f\left(\mathbf{x}^{0}\right)-f\left(\mathbf{x}^{k+1}\right) \leq \infty \tag{45}
\end{equation*}
$$

where the last inequality is because the descent algorithm proceeds only if $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)$, and we have assumed that f is bounded below in \Re^{n}. This proves finiteness of the summation

- Thus, $\lim _{k \rightarrow \infty} \frac{\nabla^{T} f\left(\mathbf{x}^{k}\right) \Delta \mathrm{x}^{k}}{\left\|\Delta \mathrm{x}^{k}\right\|}=0$

[^0]
Proving Convergence of Descent Algorithm (contd.)

- Taking limits of (44) as $k \rightarrow \infty$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} c \sum_{i=0}^{k} \frac{\left(\nabla^{T} f\left(\mathbf{x}^{i}\right) \Delta \mathbf{x}^{i}\right)^{2}}{\left\|\Delta \mathbf{x}^{i}\right\|^{2}}<\lim _{k \rightarrow \infty} f\left(\mathbf{x}^{0}\right)-f\left(\mathbf{x}^{k+1}\right) \leq \infty \tag{45}
\end{equation*}
$$

where the last inequality is because the descent algorithm proceeds only if $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)$, and we have assumed that f is bounded below in \Re^{n}. This proves finiteness of the summation

- Thus, $\lim _{k \rightarrow \infty} \frac{\nabla^{T} f\left(\mathbf{x}^{k}\right) \Delta \mathrm{x}^{k}}{\left\|\Delta \mathrm{x}^{k}\right\|}=0$.
- If we additionally assume that the descent direction is never orthogonal to the gradient, i.e., $-\frac{\nabla^{\top} f\left(\mathbf{x}^{k}\right) \Delta \mathbf{x}^{k}}{\left\|\Delta \mathbf{x}^{k}\right\| \nabla \nabla\left(\mathbf{x}^{k}\right) \|} \geq \Gamma$ for some $\Gamma>0$, then, we can show ${ }^{5}$ that

[^1]
Proving Convergence of Descent Algorithm (contd.)

- Taking limits of (44) as $k \rightarrow \infty$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} c \sum_{i=0}^{k} \frac{\left(\nabla^{T} f\left(\mathbf{x}^{i}\right) \Delta \mathbf{x}^{i}\right)^{2}}{\left\|\Delta \mathbf{x}^{i}\right\|^{2}}<\lim _{k \rightarrow \infty} f\left(\mathbf{x}^{0}\right)-f\left(\mathbf{x}^{k+1}\right) \leq \infty \tag{45}
\end{equation*}
$$

where the last inequality is because the descent algorithm proceeds only if $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)$, and we have assumed that f is bounded below in \Re^{n}. This proves finiteness of the summation

- Thus, $\lim _{k \rightarrow \infty} \frac{\nabla^{T} f\left(\mathbf{x}^{k}\right) \Delta \mathrm{x}^{k}}{\left\|\Delta \mathrm{x}^{k}\right\|}=0$.
- If we additionally assume that the descent direction is never orthogonal to the gradient, i.e., $-\frac{\nabla^{\top} f\left(\mathbf{x}^{k}\right) \Delta \mathbf{x}^{k}}{\left\|\Delta x^{k}\right\| \nabla f\left(\mathbf{x}^{k}\right) \|} \geq \Gamma$ for some $\Gamma>0$, then, we can show ${ }^{5}$ that $\lim _{k \rightarrow 0}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|=0$
- This shows convergence for a generic descent algorithm. What we are more interested in however, is the rate of convergence of specific descent algorithms. nothing about

[^2]

General Algorithm: Steepest Descent (contd)

Find a starting point $\mathbf{x}^{(0)} \in \mathcal{D}$.

repeat

1. Set $\Delta \mathbf{x}^{(k)}=\operatorname{argmin}\left\{\nabla^{\top} f\left(\mathbf{x}^{(k)}\right) \mathbf{v} \mid\|\mathbf{v}\|=1\right\}$.
2. Choose a step size $t^{(k)}>0$ using exact or backtracking ray search.
3. Obtain $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+t^{(k)} \Delta \mathbf{x}^{(k)}$.
4. Set $k=k+1$.
until stopping criterion (such as $\left\|\nabla f\left(\mathbf{x}^{(k+1)}\right)\right\| \leq \epsilon$) is satisfied
Figure 9: The steepest descent algorithm.

Two examples of the steepest descent method are the gradient descent method (for the eucledian or L_{2} norm) and the coordinate-descent method (for the L_{1} norm). One fact however is that no two norms should give exactly opposite steepest descent directions, though they may point in different directions.

Algorithms: Coordinate-Descent Method

- Corresponds exactly to the choice of L_{1} norm for the steepest descent method. The steepest descent direction using the L_{1} norm is given by $\Delta \mathbf{x}=-\frac{\partial f(\mathbf{x})}{\partial x_{i}} \mathbf{u}^{i}$ where, $\frac{\partial f(\mathbf{x})}{\partial x_{i}}=\|\nabla f(\mathbf{x})\|_{\infty}$ and \mathbf{u}^{i} is defined as the unit vector pointing along the $i^{\text {th }}$ axis.
- Thus each iteration of the coordinate descent method involves optimizing over one component of the vector $\mathbf{x}^{(k)}$ (having the largest absolute value in the gradient vector).

Find a starting point $\mathbf{x}^{(0)} \in \mathcal{D}$.
Select an appropriate norm \|.\|.
repeat

1. Let $\frac{\partial f\left(\mathbf{x}^{(k)}\right)}{\partial x_{i}^{(k)}}=\| \nabla f\left(\mathbf{x} \|_{\infty}\right)$.
2. Set $\Delta \mathbf{x}^{(k)}=-\frac{\partial f\left(\mathbf{x}^{(k)}\right)}{\partial x_{i}^{(k)}} \mathbf{u}^{i}$.
3. Choose a step size $t^{(k)}>0$ using exact or backtracking ray search.
4. Obtain $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+t^{(k)} \Delta \mathbf{x}^{(k)}$.
5. Set $k=k+1$.
until stopping criterion (such as $\left\|\nabla f\left(\mathbf{x}^{(k+1)}\right)\right\|_{\infty} \leq \epsilon$) is satisfied

Algorithms: Gradient Descent

- This classic greedy algorithm for minimization uses the negative of the gradient of the function at the current point x^{*} as the descent direction $\Delta \mathrm{x}^{*}$.
- This choice of $\Delta \mathrm{x}^{*}$ corresponds to the direction of steepest descent under the L_{2} (eucledian) norm and follows from

Algorithms: Gradient Descent

- This classic greedy algorithm for minimization uses the negative of the gradient of the function at the current point x^{*} as the descent direction $\Delta \mathrm{x}^{*}$.
- This choice of $\Delta \mathrm{x}^{*}$ corresponds to the direction of steepest descent under the L_{2} (eucledian) norm and follows from the Cauchy Shwarz inequality

Find a starting point $\mathbf{x}^{(0)} \in \mathcal{D}$

repeat

1. Set $\Delta \mathbf{x}^{(k)}=-\nabla f\left(\mathbf{x}^{(k)}\right)$.
2. Choose a step size $t^{(k)}>0$ using exact or backtracking ray search.
3. Obtain $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+t^{(k)} \Delta \mathbf{x}^{(k)}$.
4. Set $k=k+1$.
until stopping criterion (such as $\left\|\nabla f\left(\mathbf{x}^{(k+1)}\right)\right\|_{2} \leq \epsilon$) is satisfied
The steepest descent method can be thought of as changing the coordinate system in a particular way and then applying the gradient descent method in the changed coordinate system.

Convergence of the Gradient Descent Algorithm

- We recap the (necessary) inequality (36) resulting from Lipschitz continuity of $\nabla f(\mathbf{x})$: $f(\mathbf{y}) \leq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$
- Considering $\mathrm{x}^{k} \equiv \mathrm{x}$, and $\mathrm{x}^{k+1}=\mathrm{x}^{k}-t^{k} \nabla f\left(\mathrm{x}^{k}\right) \equiv \mathrm{y}$, we get

Convergence of the Gradient Descent Algorithm

- We recap the (necessary) inequality (36) resulting from Lipschitz continuity of $\nabla f(\mathbf{x})$: $f(\mathbf{y}) \leq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{\llcorner }{2}\|\mathbf{y}-\mathbf{x}\|^{2}$
- Considering $\mathrm{x}^{k} \equiv \mathrm{x}$, and $\mathrm{x}^{k+1}=\mathrm{x}^{k}-t^{k} \nabla f\left(\mathrm{x}^{k}\right) \equiv \mathbf{y}$, we get

$$
\begin{aligned}
f\left(\mathbf{x}^{k+1}\right) & \leq f\left(\mathbf{x}^{k}\right)-t^{k} \nabla^{\top} f\left(\mathbf{x}^{k}\right) \nabla f\left(\mathbf{x}^{k}\right)+\frac{L\left(t^{k}\right)^{2}}{2}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)-\left(1-\frac{L t^{k}}{2}\right) t\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2}
\end{aligned}
$$

- We desire to have the following (46). It holds if....

$$
\begin{equation*}
f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)-\frac{\widehat{t}}{2}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \tag{46}
\end{equation*}
$$

Convergence of the Gradient Descent Algorithm

- We recap the (necessary) inequality (36) resulting from Lipschitz continuity of $\nabla f(\mathbf{x})$: $f(\mathbf{y}) \leq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$
- Considering $\mathrm{x}^{k} \equiv \mathrm{x}$, and $\mathrm{x}^{k+1}=\mathrm{x}^{k}-t^{k} \nabla f\left(\mathrm{x}^{k}\right) \equiv \mathbf{y}$, we get

$$
\begin{aligned}
f\left(\mathbf{x}^{k+1}\right) & \leq f\left(\mathbf{x}^{k}\right)-t^{k} \nabla^{\top} f\left(\mathbf{x}^{k}\right) \nabla f\left(\mathbf{x}^{k}\right)+\frac{L\left(t^{k}\right)^{2}}{2}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathbf{x}^{k+1}\right) \leq f\left(\mathbf{x}^{k}\right)-\left(1-\frac{L t^{k}}{2}\right) t\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}
\end{aligned}
$$

- We desire to have the following (46). It holds if....

$$
\begin{equation*}
f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)-\frac{\widehat{t}}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2} \tag{46}
\end{equation*}
$$

for general descent algos,

- With fixed step size $t^{k}=\widehat{t}$, we ensure that $0<\widehat{t} \leq \frac{1}{L}$ exact and backtracking sear For gradient descent with Lipschitz for t were motivated continuity on gradient, here is another way of choosing te.

Convergence of the Gradient Descent Algorithm

- We recap the (necessary) inequality (36) resulting from Lipschitz continuity of $\nabla f(\mathbf{x})$: $f(\mathbf{y}) \leq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$
- Considering $\mathrm{x}^{k} \equiv \mathrm{x}$, and $\mathrm{x}^{k+1}=\mathrm{x}^{k}-t^{k} \nabla f\left(\mathrm{x}^{k}\right) \equiv \mathbf{y}$, we get

$$
\begin{aligned}
f\left(\mathbf{x}^{k+1}\right) & \leq f\left(\mathbf{x}^{k}\right)-t^{k} \nabla^{\top} f\left(\mathbf{x}^{k}\right) \nabla f\left(\mathbf{x}^{k}\right)+\frac{L\left(t^{k}\right)^{2}}{2}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathbf{x}^{k+1}\right) \leq f\left(\mathbf{x}^{k}\right)-\left(1-\frac{L t^{k}}{2}\right) t\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}
\end{aligned}
$$

- We desire to have the following (46). It holds if....

$$
\begin{equation*}
f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)-\frac{\widehat{t}}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2} \tag{46}
\end{equation*}
$$

- With fixed step size $t^{k}=\widehat{t}$, we ensure that $0<\widehat{t} \leq \frac{1}{L} \Longrightarrow 1-\frac{L \widehat{t}}{2} \geq \frac{1}{2}$.

Convergence of the Gradient Descent Algorithm

- We recap the (necessary) inequality (36) resulting from Lipschitz continuity of $\nabla f(\mathbf{x})$: $f(\mathbf{y}) \leq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$
- Considering $\mathrm{x}^{k} \equiv \mathrm{x}$, and $\mathrm{x}^{k+1}=\mathrm{x}^{k}-t^{k} \nabla f\left(\mathrm{x}^{k}\right) \equiv \mathbf{y}$, we get

$$
\begin{aligned}
f\left(\mathbf{x}^{k+1}\right) & \leq f\left(\mathbf{x}^{k}\right)-t^{k} \nabla^{\top} f\left(\mathbf{x}^{k}\right) \nabla f\left(\mathbf{x}^{k}\right)+\frac{L\left(t^{k}\right)^{2}}{2}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathbf{x}^{k+1}\right) \leq f\left(\mathbf{x}^{k}\right)-\left(1-\frac{L t^{k}}{2}\right) t\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}
\end{aligned}
$$

- We desire to have the following (46). It holds if....

$$
\begin{equation*}
f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)-\frac{\widehat{t}}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2} \tag{46}
\end{equation*}
$$

- With fixed step size $t^{k}=\widehat{t}$, we ensure that $0<\widehat{t} \leq \frac{1}{L} \Longrightarrow 1-\frac{L \widehat{t}}{2} \geq \frac{1}{2}$.
- With backtracking step seach, (46) holds with $\widehat{t}=\min \left\{1, \beta \frac{2\left(1-c_{1}\right)}{L}\right\}$
- Using convexity, we have $f\left(x^{*}\right) \geq f\left(x^{k}\right)+\nabla^{\top} f\left(x^{k}\right)\left(x^{*}-x^{k}\right)$
$\Longrightarrow f\left(\mathbf{x}^{k}\right) \leq f\left(\mathbf{x}^{*}\right)+\nabla^{\top} f\left(\mathbf{x}^{k}\right)\left(\mathrm{x}^{k}-\mathrm{x}^{*}\right)$
- Thus,

$$
\begin{aligned}
& f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)-\frac{t}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{*}\right)+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{k}-\mathrm{x}^{*}\right)-\frac{t}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{*}\right)+\frac{1}{2 t}\left\|\mathrm{x}^{k}-\mathrm{x}^{*}\right\|^{2}+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{k}-\mathrm{x}^{*}\right)-\frac{t}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2}-\frac{1}{2 t}\left\|\mathrm{x}^{k}-\mathrm{x}^{*}\right\|^{2}
\end{aligned}
$$

- Using convexity, we have $f\left(\mathrm{x}^{*}\right) \geq f\left(\mathrm{x}^{k}\right)+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{*}-\mathrm{x}^{k}\right)$

$$
\Longrightarrow f\left(\mathrm{x}^{k}\right) \leq f\left(\mathrm{x}^{*}\right)+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{k}-\mathrm{x}^{*}\right)
$$

- Thus,

$$
\begin{aligned}
& f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)-\frac{t}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{*}\right)+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{k}-\mathrm{x}^{*}\right)-\frac{t}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{*}\right)+\frac{1}{2 t}\left\|\mathrm{x}^{k}-\mathrm{x}^{*}\right\|^{2}+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{k}-\mathrm{x}^{*}\right)-\frac{t}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2}-\frac{1}{2 t}\left\|\mathrm{x}^{k}-\mathrm{x}^{*}\right\|^{2} \\
& \Longrightarrow f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{*}\right)+\frac{1}{2 t}\left(\left\|\mathrm{x}^{k}-\mathrm{x}^{*}\right\|^{2}-\left\|\mathrm{x}^{k}-\mathrm{x}^{*}-t \nabla f\left(\mathrm{x}^{k}\right)\right\|^{2}\right) \\
& \Longrightarrow f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{*}\right)+\frac{1}{2 t}\left(\left\|\mathrm{x}^{k}-\mathrm{x}^{*}\right\|^{2}-\left\|\mathrm{x}^{k+1}-\mathrm{x}^{*}\right\|^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
\Longrightarrow f\left(\mathrm{x}^{k+1}\right)-f\left(\mathrm{x}^{*}\right) \leq \frac{1}{2 t}\left(\left\|\mathrm{x}^{k}-\mathrm{x}^{*}\right\|^{2}-\left\|\mathrm{x}^{k+1}-\mathrm{x}^{*}\right\|^{2}\right) \tag{47}
\end{equation*}
$$

[^0]: ${ }^{5}$ Making use of the Cauchy Schwarz inequality

[^1]: ${ }^{5}$ Making use of the Cauchy Schwarz inequality

[^2]: ${ }^{5}$ Making use of the Cauchy Schwarz inequality

