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Back to: Generic Convergence of Descent Algorithm
Consider the general descent algorithm (∇Tf(xk)∆xk < 0 for each k) with each step:
xk+1 = xk + tk∆xk.

▶ Suppose f is bounded below in ℜn and
▶ is continuously differentiable in an open set N containing the level set {x|f(x) ≤ f(x0)}
▶ ∇f is Lipschiz continuous.

Then,
∞∑

k=1

(∇Tf(xk)∆xk)2
∥∆xk∥2 <∞ (that is, it is finite)

Proof:
For any descent algorithm: ∇Tf(xk)∆xk < 0 for each k with each step:
xk+1 = xk + tk∆xk.
From the second Strong Wolfe condition:
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Back to: Generic Convergence of Descent Algorithm
Consider the general descent algorithm (∇Tf(xk)∆xk < 0 for each k) with each step:
xk+1 = xk + tk∆xk.

▶ Suppose f is bounded below in ℜn and
▶ is continuously differentiable in an open set N containing the level set {x|f(x) ≤ f(x0)}
▶ ∇f is Lipschiz continuous.

Then,
∞∑

k=1

(∇Tf(xk)∆xk)2
∥∆xk∥2 <∞ (that is, it is finite)

Proof:
For any descent algorithm: ∇Tf(xk)∆xk < 0 for each k with each step:
xk+1 = xk + tk∆xk.
From the second Strong Wolfe condition:

���∇Tf(xk + tk∆xk)∆xk
��� ≤ c2

���∇Tf(xk)∆xk
��� (38)
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Proving Convergence of Descent Algorithm
Since c2 > 0 and ∇Tf(xk)∆xk < 0,
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Proving Convergence of Descent Algorithm
Since c2 > 0 and ∇Tf(xk)∆xk < 0,

∇Tf(xk + tk∆xk)∆xk ≥ c2∇Tf(xk)∆xk (39)

Subtracting ∇Tf(xk)∆xk from both sides of (39)

[
∇f(xk + tk∆xk)−∇f(xk)

]T
∆xk ≥ (c2 − 1)∇Tf(xk)∆xk (40)

By Cauchy Shwarz inequality and from Lipschitz continuity,
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Since c2 > 0 and ∇Tf(xk)∆xk < 0,

∇Tf(xk + tk∆xk)∆xk ≥ c2∇Tf(xk)∆xk (39)

Subtracting ∇Tf(xk)∆xk from both sides of (39)

[
∇f(xk + tk∆xk)−∇f(xk)

]T
∆xk ≥ (c2 − 1)∇Tf(xk)∆xk (40)

By Cauchy Shwarz inequality and from Lipschitz continuity,

[
∇f(xk + tk∆xk)−∇f(xk)

]T
∆xk ≤ ∥∇f(xk + tk∆xk)−∇f(xk)∥∥∆xk∥ ≤ L∥∆xk∥2tk

(41)
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Proving Convergence of Descent Algorithm (contd.)
Combining (40) and (41),

tk ≥ c2 − 1

L
∇Tf(xk)∆xk
∥∆xk∥2 (42)

Substituting (42) into the first Wolfe condition (while recalling that ∇Tf(xk)∆xk < 0),
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Proving Convergence of Descent Algorithm (contd.)
Combining (40) and (41),

tk ≥ c2 − 1

L
∇Tf(xk)∆xk
∥∆xk∥2 (42)

Substituting (42) into the first Wolfe condition (while recalling that ∇Tf(xk)∆xk < 0),
f(xk + t∆xk) < f(xk) + c1t∇Tf(xk)∆xk

f(xk+1) < f(xk)− c1
1− c2

L

(
∇Tf(xk)∆xk

)2

∥∆xk∥2 (43)

Substituting c = c1 1−c2L and applying (43) successively,
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Proving Convergence of Descent Algorithm (contd.)
Combining (40) and (41),

tk ≥ c2 − 1

L
∇Tf(xk)∆xk
∥∆xk∥2 (42)

Substituting (42) into the first Wolfe condition (while recalling that ∇Tf(xk)∆xk < 0),
f(xk + t∆xk) < f(xk) + c1t∇Tf(xk)∆xk

f(xk+1) < f(xk)− c1
1− c2

L

(
∇Tf(xk)∆xk

)2

∥∆xk∥2 (43)

Substituting c = c1 1−c2L and applying (43) successively,

f(xk+1) < f(x0)− c
k∑

i=0

(
∇Tf(xi)∆xi

)2

∥∆xi∥2 (44)
September 28, 2018 144 / 408

c>0



Proving Convergence of Descent Algorithm (contd.)
Taking limits of (44) as k→∞,

lim
k→∞

c
k∑

i=0

(
∇Tf(xi)∆xi

)2

∥∆xi∥2 < lim
k→∞

f(x0)− f(xk+1)≤ ∞ (45)

where the last inequality is because the descent algorithm proceeds only if
f(xk+1) ≤ f(xk), and we have assumed that f is bounded below in ℜn. This proves
finiteness of the summation
Thus, lim

k→∞
∇Tf(xk)∆xk
∥∆xk∥

5Making use of the Cauchy Schwarz inequality
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Proving Convergence of Descent Algorithm (contd.)
Taking limits of (44) as k→∞,

lim
k→∞

c
k∑

i=0

(
∇Tf(xi)∆xi

)2

∥∆xi∥2 < lim
k→∞

f(x0)− f(xk+1)≤ ∞ (45)

where the last inequality is because the descent algorithm proceeds only if
f(xk+1) ≤ f(xk), and we have assumed that f is bounded below in ℜn. This proves
finiteness of the summation
Thus, lim

k→∞
∇Tf(xk)∆xk
∥∆xk∥ = 0.

If we additionally assume that the descent direction is never orthogonal to the gradient,
i.e., − ∇Tf(xk)∆xk

∥∆xk∥|∇f(xk)∥ ≥ Γ for some Γ > 0, then, we can show5 that

5Making use of the Cauchy Schwarz inequality
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Proving Convergence of Descent Algorithm (contd.)
Taking limits of (44) as k→∞,

lim
k→∞

c
k∑

i=0

(
∇Tf(xi)∆xi

)2

∥∆xi∥2 < lim
k→∞

f(x0)− f(xk+1)≤ ∞ (45)

where the last inequality is because the descent algorithm proceeds only if
f(xk+1) ≤ f(xk), and we have assumed that f is bounded below in ℜn. This proves
finiteness of the summation
Thus, lim

k→∞
∇Tf(xk)∆xk
∥∆xk∥ = 0.

If we additionally assume that the descent direction is never orthogonal to the gradient,
i.e., − ∇Tf(xk)∆xk

∥∆xk∥|∇f(xk)∥ ≥ Γ for some Γ > 0, then, we can show5 that lim
k→0

∥∇f(xk)∥ = 0

This shows convergence for a generic descent algorithm. What we are more interested in
however, is the rate of convergence of specific descent algorithms.

5Making use of the Cauchy Schwarz inequality
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We desire the second 
rate of convergence
But to discuss rate
of convergence (as against
an abstract notion of
convergence), we will need
to assume
a) convexity and b) specific
form of descent algorithm

We wil first look at the
rate of convergence of
GRADIENT DESCENT
for convex functions
under Strong Wolfe 
conditions,
Lipschitz continuity
on the gradient



General Algorithm: Steepest Descent (contd)

Find a starting point x(0) ∈ D.
repeat
1. Set ∆x(k) = argmin

{
∇Tf(x(k))v | ||v|| = 1

}
.

2. Choose a step size t(k) > 0 using exact or backtracking ray search.
3. Obtain x(k+1) = x(k) + t(k)∆x(k).
4. Set k = k+ 1.

until stopping criterion (such as ||∇f(x(k+1))|| ≤ ϵ) is satisfied

Figure 9: The steepest descent algorithm.

Two examples of the steepest descent method are the gradient descent method (for the
eucledian or L2 norm) and the coordinate-descent method (for the L1 norm). One fact
however is that no two norms should give exactly opposite steepest descent directions, though
they may point in different directions.
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Algorithms: Coordinate-Descent Method
Corresponds exactly to the choice of L1 norm for the steepest descent method. The
steepest descent direction using the L1 norm is given by ∆x = −∂f(x)

∂xi ui where,
∂f(x)
∂xi = ||∇f(x)||∞ and ui is defined as the unit vector pointing along the ith axis.
Thus each iteration of the coordinate descent method involves optimizing over one
component of the vector x(k) (having the largest absolute value in the gradient vector).

Find a starting point x(0) ∈ D.
Select an appropriate norm ||.||.
repeat

1. Let ∂f(x(k))

∂x(k)i
= ||∇f(x||∞) .

2. Set ∆x(k) = − ∂f(x(k))

∂x(k)i
ui.

3. Choose a step size t(k) > 0 using exact or backtracking ray search.
4. Obtain x(k+1) = x(k) + t(k)∆x(k).
5. Set k = k+ 1.

until stopping criterion (such as ||∇f(x(k+1))||∞ ≤ ϵ) is satisfied
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Algorithms: Gradient Descent
This classic greedy algorithm for minimization uses the negative of the gradient of the
function at the current point x∗ as the descent direction ∆x∗.
This choice of ∆x∗ corresponds to the direction of steepest descent under the L2
(eucledian) norm and follows from
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Algorithms: Gradient Descent
This classic greedy algorithm for minimization uses the negative of the gradient of the
function at the current point x∗ as the descent direction ∆x∗.
This choice of ∆x∗ corresponds to the direction of steepest descent under the L2
(eucledian) norm and follows from the Cauchy Shwarz inequality

Find a starting point x(0) ∈ D
repeat
1. Set ∆x(k) = −∇f(x(k)).
2. Choose a step size t(k) > 0 using exact or backtracking ray search.
3. Obtain x(k+1) = x(k) + t(k)∆x(k).
4. Set k = k+ 1.

until stopping criterion (such as ||∇f(x(k+1))||2 ≤ ϵ) is satisfied

The steepest descent method can be thought of as changing the coordinate system in a
particular way and then applying the gradient descent method in the changed coordinate
system.
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Convergence of the Gradient Descent Algorithm
We recap the (necessary) inequality (36) resulting from Lipschitz continuity of ∇f(x):
f(y) ≤ f(x) +∇⊤f(x)(y− x) + L

2∥y− x∥2
Considering xk ≡ x, and xk+1 = xk − tk∇f(xk) ≡ y, we get
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Convergence of the Gradient Descent Algorithm
We recap the (necessary) inequality (36) resulting from Lipschitz continuity of ∇f(x):
f(y) ≤ f(x) +∇⊤f(x)(y− x) + L

2∥y− x∥2
Considering xk ≡ x, and xk+1 = xk − tk∇f(xk) ≡ y, we get

f(xk+1) ≤ f(xk)− tk∇⊤f(xk)∇f(xk) +
L
(
tk
)2

2

∇f(xk)

2

=⇒ f(xk+1) ≤ f(xk)− (1− Ltk
2

)t
∇f(xk)


2

We desire to have the following (46). It holds if....

f(xk+1) ≤ f(xk)−
bt
2

∇f(xk)

2

(46)
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We desire to have the following (46). It holds if....

f(xk+1) ≤ f(xk)−
bt
2

∇f(xk)

2

(46)

▶ With fixed step size tk = bt, we ensure that 0 < bt ≤ 1
L
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Convergence of the Gradient Descent Algorithm
We recap the (necessary) inequality (36) resulting from Lipschitz continuity of ∇f(x):
f(y) ≤ f(x) +∇⊤f(x)(y− x) + L

2∥y− x∥2
Considering xk ≡ x, and xk+1 = xk − tk∇f(xk) ≡ y, we get

f(xk+1) ≤ f(xk)− tk∇⊤f(xk)∇f(xk) +
L
(
tk
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2

∇f(xk)

2

=⇒ f(xk+1) ≤ f(xk)− (1− Ltk
2

)t
∇f(xk)


2

We desire to have the following (46). It holds if....

f(xk+1) ≤ f(xk)−
bt
2

∇f(xk)

2

(46)

▶ With fixed step size tk = bt, we ensure that 0 < bt ≤ 1
L =⇒ 1− Lbt

2 ≥ 1
2 .

▶ With backtracking step seach, (46) holds with bt = min
{
1,β 2(1−c1)

L

}
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Using convexity, we have f(x∗) ≥ f(xk) +∇⊤f(xk)(x∗ − xk)
=⇒ f(xk) ≤ f(x∗) +∇⊤f(xk)(xk − x∗)

Thus,
f(xk+1) ≤ f(xk)− t

2

∇f(xk)

2

=⇒ f(xk+1) ≤ f(x∗) +∇⊤f(xk)(xk − x∗)− t
2

∇f(xk)

2

=⇒ f(xk+1) ≤ f(x∗)+ 1
2t

xk − x∗

2
+∇Tf(xk)(xk − x∗)− t

2

∇f(xk)

2
− 1

2t

xk − x∗

2
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Using convexity, we have f(x∗) ≥ f(xk) +∇⊤f(xk)(x∗ − xk)
=⇒ f(xk) ≤ f(x∗) +∇⊤f(xk)(xk − x∗)

Thus,
f(xk+1) ≤ f(xk)− t

2

∇f(xk)

2

=⇒ f(xk+1) ≤ f(x∗) +∇⊤f(xk)(xk − x∗)− t
2

∇f(xk)

2

=⇒ f(xk+1) ≤ f(x∗)+ 1
2t

xk − x∗

2
+∇Tf(xk)(xk − x∗)− t

2

∇f(xk)

2
− 1

2t

xk − x∗

2

=⇒ f(xk+1) ≤ f(x∗) + 1
2t(
xk − x∗


2
−
xk − x∗ − t∇f(xk)


2
)

=⇒ f(xk+1) ≤ f(x∗) + 1
2t(
xk − x∗


2
−
xk+1 − x∗


2
)

=⇒ f(xk+1)− f(x∗) ≤ 1

2t(
xk − x∗


2
−
xk+1 − x∗


2
) (47)
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