Convergence of Descent Algorithms: Generic and
Specific Cases
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Back to: Generic Convergence of Descent Algorithm

o Consider the general descent algorithm (V7Ax*)Ax < 0 for each k) with each step:
kL — xk 4 tfAxk
» Suppose fis bounded below in 1" and

» is continuously differentiable in an open set A containing the level set {x|f(x) < f(x°)}
» Vfis Lipschiz continuous.
o

Then, 3 (VT f(xk) Axk)?

< oo (that is, it is finite) Overall: Sum of squares
o0 IS, 1T 1| ni
[ Axk|2

p of normalized directional
Proof: normalized directional derivativederivatives is finite

e For any descent algorithm: VTf(x¥)Ax* < 0 for each k with each step:
xktl = xk 4 tkAxk

@ From the second Strong Wolfe condition:
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Back to: Generic Convergence of Descent Algorithm

o Consider the general descent algorithm (V7Ax*)Ax < 0 for each k) with each step:
xk = xk 4 thAxk,

» Suppose fis bounded below in ®" and

» is continuously differentiable in an open set A containing the level set {x|f(x) < f(x°)}
» Vfis Lipschiz continuous.
o

T k k\2
Then, > v ‘T(Axx)kﬁf L« (that is, it is finite)

k=1
Proof:

e For any descent algorithm: VTf(x¥)Ax* < 0 for each k with each step:
xFH = xk 4 thAxk,

@ From the second Strong Wolfe condition:
VT xk + K AxK) Axk ‘ <o ‘VTf(xk)Axk (38)
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Proving Convergence of Descent Algorithm

@ Since ¢ > 0 and VTfxM) Axk <0,



Proving Convergence of Descent Algorithm

@ Since ¢ > 0 and V' f(xK)Axk < 0,

VTAxk + trAx) AxF > o VT AxF) AxK (39)

o Subtracting V7 f(x¥)Ax* from both sides of (39)

[V 4 ax) — VA Axk > (e~ 1)V THx) Axt (40)

o By Cauchy Shwarz inequality and from Lipschitz continuity,

e R



Proving Convergence of Descent Algorithm

@ Since ¢ > 0 and V' f(xK)Axk < 0,

VTAxk + trAx) AxF > o VT AxF) AxK (39)

o Subtracting V7 f(x¥)Ax* from both sides of (39)

-
[Vf(xk + FAXK) — Vf(xk)] AxF > (6 — 1)V T Axk) Axk (40)
e By Cauchy Shwarz inequality and from Lipschitz continuity,

.
[Vf(xk + tfAxK) — Vf(xk)] AxF < ||[VAxXK 4 t*AxK) — VAXY)|||Ax| < L] axk)2 ¢
(41)

e R



Proving Convergence of Descent Algorithm (contd.)
e Combining (40) and (41),

L — 1VTAxKAxK
t >
R
o Substituting (42) into the first Wolfe condition (while recalling that Vf(x¥)Ax* < 0),

(42)

e R



Proving Convergence of Descent Algorithm (contd.)
e Combining (40) and (41),

L — 1VTAxKAxK
t >
R
o Substituting (42) into the first Wolfe condition (while recalling that Vf(x¥)Ax* < 0),
fixk + tAx¥) < AxX) + c tVTAXK) Axk

(42)

2
1— o (VTf(Xk)Axk>
L | AxKJ?

@ Substituting ¢ = cll;l_c2 and applying (43) successively,

fix' ) < x*) — a (43)

e R



Proving Convergence of Descent Algorithm (contd.)
e Combining (40) and (41),

L — 1VTAxKAxK
t >
R
o Substituting (42) into the first Wolfe condition (while recalling that V7 Ax*)Ax* < 0),
fixk + tAx¥) < AxX) + c tVTAXK) Axk

(42)

2
1— o (VTf(xk)AXk>
L | AxKJ?

@ Substituting ¢ = cll;l_c2 and applying (43) successively,

fix' ) < x*) — a (43)

c>0 Y
oty iy - 3o (T02)
fxH) < Ax%) =) e (44)
i=0

e 4 R




Proving Convergence of Descent Algorithm (contd.)
e Taking limits of (44) as k — oo,

. N 2
k (V Tf(x’)Ax’) o o
. . . _ -
klltgo Ci:O IIE < kh—[go fix") — ix)< 00 (45)

where the last inequality is because the descent algorithm proceeds only if
fixk+1) < f(x¥), and we have assumed that fis bounded below in R". This proves
finiteness of th,_e sukmmaEion
VI x")Ax
e Thus, lim —————— =
e T [AXK| :

5Making use of the Cauchy Schwarz inequality
BEEE— September 28, 2018 145 / 408



Proving Convergence of Descent Algorithm (contd.)
e Taking limits of (44) as k — oo,

. A\ 2
(VT ax) o ke
li . < lim f{ - < 45
ks e AT Jim A7) — AxT)< 00 (45)
where the last inequality is because the descent algorithm proceeds only if
fixk+1) < f(x¥), and we have assumed that fis bounded below in R". This proves
finiteness of thTe sukmmaEion
VI x")Ax
@ Thus, lim ————— =0.
e T A
o If we additionally assume that the descent direction is never orthogonal to the gradient,

T k k
ie., — v X)X > T for some I > 0, then, we can show® that
[IAXK[[V AR

5Making use of the Cauchy Schwarz inequality
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Proving Convergence of Descent Algorithm (contd.)
e Taking limits of (44) as k — oo,

. A\ 2
(VT ax) o ke
li . < lim f{ - < 45
ks e AT Jim A7) — AxT)< 00 (45)
where the last inequality is because the descent algorithm proceeds only if
fixk+1) < f(x¥), and we have assumed that fis bounded below in R". This proves
finiteness of thTe sukmmaEion
VI x")Ax
@ Thus, lim ————— =0.
e T A
o If we additionally assume that the descent direction is never orthogonal to the gradient,

. VTHxK) Axk 5 . Ko
AT I for some I' > 0, then, we can show” that /ILno IVAX)|| =0

@ This shows convergence for a generic descent algorithm. What we are more interested in
however, is the rate of convergence of specific descent algorithms. NOthing about

®Making use of the Cauchy Schwarz inequality for what k?
e 4 ST R T

ie.,




We wil first look at the
rate of convergence of
GRADIENT DESCENT
for convex functions
under Strong Wolfe
conditions,
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on the gradient

We desire the second

—rate of convergence ——
But to discuss rate

, an abstract notion of

4 5 b 3 i I S R T T convergence), we will nee

to assume

a) convexity and b) specifi




General Algorithm: Steepest Descent (contd)

Find a starting point x(9) € D.
repeat
1. Set Ax = argmin {VTf(x(k))v | V]| = 1}.
2. Choose a step size tK) > 0 using exact or backtracking ray search.
3. Obtain x(kH1) = x(0) 4 () Ax(K).
4. Set k= k+ 1.
until stopping criterion (such as ||[VAx(k1D)|| < €) is satisfied

Figure 9: The steepest descent algorithm.

Two examples of the steepest descent method are the gradient descent method (for the
eucledian or Ly norm) and the coordinate-descent method (for the L; norm). One fact
however is that no two norms should give exactly opposite steepest descent directions, though
they may point in different directions.

e Saptenbr 38 2018 1461 408



Algorithms: Coordinate-Descent Method

@ Corresponds exactly to the choice of Ly norm for the steepest descent method. The

steepest descent direction using the L; norm is given by Ax = —Q%u" where,

%f(y’f) = ||[VAx)||oo and u’ is defined as the unit vector pointing along the it axis.

@ Thus each iteration of the coordinate descent method involves optimizing over one
component of the vector x(¥ (having the largest absolute value in the gradient vector).

Find a starting point x(0 e D,
Select an appropriate norm ||.||.
repeat

Af(xk)
1. Let ?(rr) = |VAX||oo) -

oK)y
2. Set Ax(K = 7()'3 T Jul,
('X’.
3. Choose a step size tK) > 0 using exact or backtracking ray search.
4. Obtain x(kr1) = x(K) 4 (k) Ax (k)
5. Set k= k+ 1.
until stopping criterion (such as || VAx*t1)||o < €) is satisfied
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Algorithms: Gradient Descent

@ This classic greedy algorithm for minimization uses the negative of the gradient of the
function at the current point x* as the descent direction Ax*.

@ This choice of Ax* corresponds to the direction of steepest descent under the Ly
(eucledian) norm and follows from
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Algorithms: Gradient Descent

@ This classic greedy algorithm for minimization uses the negative of the gradient of the
function at the current point x* as the descent direction Ax*.

@ This choice of Ax* corresponds to the direction of steepest descent under the Ly
(eucledian) norm and follows from the Cauchy Shwarz inequality

Find a starting point x(9) € D
repeat
1. Set Ax(W = —VAx®).
2. Choose a step size t¥) > 0 using exact or backtracking ray search.
3. Obtain x(k1) = x(K 4 K Ax (k)
4. Set k=k+ 1.
until stopping criterion (such as ||[VAx(k*1D)||5 <€) is satisfied

The steepest descent method can be thought of as changing the coordinate system in a
particular way and then applying the gradient descent method in the changed coordinate
system.
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Convergence of the Gradient Descent Algorithm

@ We recap the (necessary) inequality (36) resulting from Lipschitz continuity of Vf(x):
fly) < flx) + V' x)(y — x) + ]y — x|
e Considering x* = x, and x*T! = x* — "V f(x") = y, we get
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Convergence of the Gradient Descent Algorithm

@ We recap the (necessary) inequality (36) resulting from Lipschitz continuity of Vf(x):
fly) < fix) + V' fix)(y —x) + §lly — x||”
o Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get

L (tk)2 9
A1) < k) — VTR V) + == V)|

Ltk 2
— x4 < x4 - (1 - )t oA
o We desire to have the following (46). It holds if....
k+1 k /E k 2
Ax1) < Ax¥) - 5|V | (46)
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Convergence of the Gradient Descent Algorithm
@ We recap the (necessary) inequality (36) resulting from Lipschitz continuity of Vf(x):

fly) < flx) + VT fix)(y — x) + §lly — x|
o Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get
2
ki1 ky ko T gk o, b (tk) NE
Ax) < ) — BV AX VAR, + — | VA

Ltk

— k) < k) — (1 - o) k)|
o We desire to have the following (46). It holds if....
T 2
fixkt) < k) — <[V (46)

for general descent algos,
» With fixed step size t* =, we ensure that 0 < t < + exact and backtracking sear
For gradient descent with Lipschitz ~ for t were motivated
continuity on gradient, here is another way ofchaosing t
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Convergence of the Gradient Descent Algorithm

@ We recap the (necessary) inequality (36) resulting from Lipschitz continuity of Vf(x):
fly) < fix) + V' fix)(y —x) + §lly — x||”
o Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get

xR < fixk) — VT AxF)VAxE) + L (tk) va H2

— xR < xR - (1 — Hvr( H
o We desire to have the following (46). It holds if....
T 2
fixkt) < k) — <[V (46)
» With fixed step size t* =7, we ensure that 0 < t< § = 1— %At > 2
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Convergence of the Gradient Descent Algorithm

@ We recap the (necessary) inequality (36) resulting from Lipschitz continuity of Vf(x):
fly) < fix) + V' fix)(y —x) + §lly — x||”
o Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get

xR < fixk) — VT AxF)VAxE) + L (tk) va H2

— XM < Ax) - (1 - = Hvr( |
o We desire to have the following (46). It holds if....

A1) < ) - £ vt (46)

N [

» With fixed step size t =%, we ensure that 0 < t < i = 1-
» With backtracking step seach, (46) holds with t = min {1 62(1

Z

l\)l»—t
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o Using convexity, we have f(x*) > f(x") + V' fx")(x* — x%)
— fxk) < Ax*) + VI AXF)(xK - x¥)

@ Thus,
f(xk—&-l) < f(xk) _ﬁt

VA(xH) H2

— AxF) < Axt) + VT A (xK - x) - & i

Vf(xk)‘

2
VTR (k= x) — 4

K 2

— f(xk—I—l) < f(X*)‘f‘QLt xk — x*

e -



o Using convexity, we have f(x*) > fix¥) + VT fx¥)(x* — x¥)
— fx¥) < Ax*) + VT AX)(xF - x¥)
e Thus,

xt) < fixk) — 4| vixs |
= ) < M)+ VA ) Sl
— AR < A ok - x +va(x )k =) = [V - e x|
— k) < Ax) + R ([xk - ka—x - x| )
— XA < Ax) + HX i IS 2)
= k) — ) < o ek - x| [t | (47)

e -



