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Optimization Principles for
Univariate Functions

January 8, 2018 1 / 51



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Maximum and Minimum values of univariate
functions
Let f : D → ℜ. Now f has

An absolute maximum (or global maximum) value at point
c ∈ D if

f(x) ≤ f(c), ∀x ∈ D
An absolute minimum (or global minimum) value at c ∈ D if

f(x) ≥ f(c), ∀x ∈ D
A local maximum value at c if there is an open interval I
containing c in which f(c) ≥ f(x), ∀x ∈ I
A local minimum value at c if there is an open interval I
containing c in which f(c) ≤ f(x), ∀x ∈ I
A local extreme value at c, if f(c) is either a local maximum or
local minimum value of f in an open interval I with c ∈ I
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First Derivative Test
First derivative test for local extreme value of f, when f is
differentiable at the extremum.
Claim
If f(c) is a local extreme value and if f is differentiable at x = c, then
f′(c) = 0.

Proof: Suppose f(c) ≥ f(x) for all x in an open interval I containing
c and that f′(c) exists. Then the difference quotient f(c+h)−f(c)

h ≤ 0
for small h ≥ 0 (so that c + h ∈ I). This inequality remains true as
h → 0 from the right. In the limit, f′(c) ≤ 0. Also, the difference
quotient f(c+h)−f(c)

h ≥ 0 for small h ≤ 0 (so that c + h ∈ I). This
inequality remains true as h → 0 from the left. In the limit, f′(c) ≥ 0.
Since f′(c) ≤ 0 as well as f′(c) ≥ 0, we must have f′(c) = 01.

1By virtue of the squeeze or sandwich theorem
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The Extreme Value Theorem

A most fundamental theorems in calculus concerning continuous
functions on closed intervals.
Claim
A continuous function f(x) on a closed and bounded interval [a, b]
attains a minimum value f(c) for some c ∈ [a, b] and a maximum
value f(d) for some d ∈ [a, b]. That is, a continuous function on a
closed, bounded interval attains a minimum and a maximum value.
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The Extreme Value Theorem (contd.)

We must point out that either or both of the values c and d may be
attained at the end points of the interval [a, b]. Based on theorem
(1), the extreme value theorem can extended as:

Claim
A continuous function f(x) on a closed and bounded interval [a, b]
attains a minimum value f(c) for some c ∈ [a, b] and a maximum
value f(d) for some d ∈ [a, b]. If a < c < b and f′(c) exists, then
f′(c) = 0. If a < d < b and f′(d) exists, then f′(d) = 0.

Proof sketch: In 4 parts. In ℜn, one additionally needs compactness
of the set in order to get this result.
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Rolle’s Theorem
Claim
If f is continuous on [a, b] and differentiable at all x ∈ (a, b) and if
f(a) = f(b), then f′(c) = 0 for some c ∈ (a, b).

This result can be easily proved using the Extreme value theorem.
Figure 1 illustrates Rolle’s theorem with an example function
f(x) = 9− x2 on the interval [−3,+3].

Figure 1:
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Mean Value Theorem

A generalization of the Rolle’s theorem and proved using the Rolle’s
theorem:
Claim
If f is continuous on [a, b] and differentiable at all x ∈ (a, b), then
there is some c ∈ (a, b) such that, f′(c) = f(b)−f(a)

b−a .

Proof: Define g(x) = f(x)− f(b)−f(a)
b−a (x − a) on [a, b]. We note

rightaway that g(a) = g(b) and g′(x) = f′(x)− f(b)−f(a)
b−a . Applying

Rolle’s theorem on g(x), we know that there exists c ∈ (a, b) such
that g′(c) = 0. Which implies that f′(c) = f(b)−f(a)

b−a .
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Mean Value Theorem (contd.)
Figure 2 illustrates the mean value theorem for f(x) = 9− x2 on the
interval [−3, 1]. We observe that the tanget at x = −1 is parallel to
the secant joining −3 to 1. That is, f′(−1) = f(1)−f(−3)

4
One could

think of the mean value theorem as a slanted version of Rolle’s
theorem.

Figure 2: January 8, 2018 8 / 51
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Corollary and Approximations

A natural corollary of Mean Value Theorem is as follows:

Corollary
Let f be continuous on [a, b] and differentiable on (a, b) with
m ≤ f′(x) ≤ M, ∀x ∈ (a, b). Then,
m(x − t) ≤ f(x)− f(t) ≤ M(x − t), if a ≤ t ≤ x ≤ b.
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Corollary and Approximations (contd.)

Let D be the domain of function f. We define
1 the linear approximation of a differentiable function f(x) as

La(x) = f(a) + f′(a)(x − a) for some a ∈ D. We note that La(x)
and its first derivative at a agree with f(a) and f′(a) respectively.

2 the quadratic approximatin of a twice differentiable function f(x)
as the parabola Qa(x) = f(a) + f′(a)(x− a) + 1

2
f′′(a)(x− a)2. We

note that Qa(x) and its first and second derivatives at a agree
with f(a), f′(a) and f′′(a) respectively.

3 the cubic approximation of a thrice differentiable function f(x) is
Ca(x) = f(a) + f′(a)(x − a) + 1

2
f′′(a)(x − a)2 + 1

6
f′′′(a)(x − a)3.

Ca(x) and its first, second and third derivatives at a agree with
f(a), f′(a), f′′(a) and f′′′(a) respectively.
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Convexity and Concavity of Approximations
The parabola given by Qa(x) is strictly convex if f′′(a) > 0 and is
strictly concave if f′′(a) < 0. The coefficient of x2 in Qa(x) is 1

2
f′′(a).

Figure 3 illustrates the linear, quadratic and cubic approximations to
the function f(x) = 1

x with a = 1.

Figure 3:
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Taylor’s Theorem and nth degree polynomial
approximation
The nth degree polynomial approximation of a function is used to
prove a generalization of the mean value theorem, called the Taylor’s
theorem.
Claim
The Taylor’s theorem states that if f and its first n derivatives
f′, f′′, . . . , f(n) are continuous on the closed interval [a, b], and
differentiable on (a, b), then there exists a number c ∈ (a, b) such
that

f(b) = f(a)+f′(a)(b−a)+ 1

2!
f′′(a)(b−a)2+ . . .+

1

n!
f(n)(a)(b−a)n+

1

(n + 1)!
f(n+1)(c)(b−a)n+1
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Proof:
Define

pn(x) = f(a) + f′(a)(x − a) + 1

2!
f′′(a)(x − a)2 + . . .+

1

n! f
(n)(a)(x − a)n

and

ϕn(x) = pn(x) + Γ(x − a)n+1

The polynomials pn(x) as well as ϕn(x) and their first n derivatives
match f and its first n derivatives at x = a. We will choose a value of
Γ so that

f(b) = pn(b) + Γ(b − a)n+1

This requires that Γ = f(b)−pn(b)
(b−a)n+1 .
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Taylor’s Theorem and nth degree polynomial
approximation
Define the function g(x) = f(x)− ϕn(x) that measures the difference
between function f and the approximating function ϕn(x) for each
x ∈ [a, b].

Since g(a) = g(b) = 0 and since g and g′ are both continuous
on [a, b], we can apply the Rolle’s theorem to conclude that
there exists c1 ∈ [a, b] such that g′(c1) = 0.
Similarly, since g′(a) = g′(c1) = 0, and since g′ and g′′ are
continuous on [a, c1], we can apply the Rolle’s theorem to
conclude that there exists c2 ∈ [a, c1] such that g′′(c2) = 0.
In this way, Rolle’s theorem can be applied successively to
g′′, g′′′, . . . , g(n+1) to imply the existence of ci ∈ (a, ci−1) such
that g(i)(ci) = 0 for i = 3, 4, . . . , n + 1. Note however that
g(n+1)(x) = f(n+1)(x)− 0− (n + 1)!Γ which gives us another
representation ‘of Γ as f(n+1)(cn+1)

(n+1)!
.

Thus,

f(b) = f(a)+f′(a)(b−a)+ 1

2!
f′′(a)(b−a)2+. . .+

1

n! f
(n)(a)(b−a)n+

f(n+1)(cn+1)

(n + 1)!
(x−a)n+1
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Mean Value, Taylor’s Theorem and words of
caution
Note that if f fails to be differentiable at even one number in the
interval, then the conclusion of the mean value theorem may be false.
For example, if f(x) = x2/3, then f′(x) = 2

3 3√x and the theorem does
not hold in the interval [−3, 3], since f is not differentiable at s0 as
can be seen in Figure 4.

Figure 4:
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Sufficient Conditions for Increasing and decreasing
functions
A function f is said to be ...

increasing on an interval I in its domain D if f(t) < f(x)
whenever t < x.
decreasing on an interval I ∈ D if f(t) > f(x) whenever t < x.

Consequently:

Claim
Let I be an interval and suppose f is continuous on I and
differentiable on int(I). Then:

1 if f′(x) > 0 for all x ∈ int(I), then f is increasing on I;
2 if f′(x) < 0 for all x ∈ int(I), then f is decreasing on I;
3 if f′(x) = 0 for all x ∈ int(I), iff, f is constant on I.

January 8, 2018 16 / 51



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof

Proof:
Let t ∈ I and x ∈ I with t < x. By virtue of the mean value
theorem, ∃c ∈ (t, x) such that f′(c) = f(x)−f(t)

x−t .
If f′(x) > 0 for all x ∈ int(I), f′(c) > 0, which implies that
f(x)− f(t) > 0 and we can conclude that f is increasing on I.
If f′(x) < 0 for all x ∈ int(I), f′(c) < 0, which implies that
f(x)− f(t) < 0 and we can conclude that f is decreasing on I.
If f′(x) = 0 for all x ∈ int(I), f′(c) = 0, which implies that
f(x)− f(t) = 0, and since x and t are arbitrary, we can conclude
that f is constant on I.
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Illustration
Figure 5 illustrates the intervals in (−∞,∞) on which the function
f(x) = 3x4 + 4x3 − 36x2 is decreasing and increasing. First we note
that f(x) is differentiable everywhere on (−∞,∞) and compute
f′(x) = 12(x3 + x2 − 6x) = 12(x− 2)(x+ 3)x, which is negative in the
intervals (−∞,−3] and [0, 2] and positive in the intervals [−3, 0] and
[2,∞). We observe that f is decreasing in the intervals (−∞,−3]
and [0, 2] and while it is increasing in the intervals [−3, 0] and [2,∞).

Figure 5:

January 8, 2018 18 / 51



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Another sufficient condition for
increasing/decreasing function
A related sufficient condition for a function f to be
increasing/decreasing on an interval I:

Claim
Let I be an interval and suppose f is continuous on I and
differentiable on int(I). Then:

1 if f′(x) ≥ 0 for all x ∈ int(I), and if f′(x) = 0 at only finitely
many x ∈ I, then f is increasing on I;

2 if f′(x) ≤ 0 for all x ∈ int(I), and if f′(x) = 0 at only finitely
many x ∈ I, then f is decreasing on I.

For example, the derivative of the function f(x) = 6x5 − 15x4 + 10x3
vanishes at 0, and 1 and f′(x) > 0 elsewhere. So f(x) is increasing on
(−∞,∞).
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Necessary conditions for increasing/decreasing
function
The conditions for increasing and decreasing properties of f(x) in
theorem 7 are not necesssary. Figure 6 shows that for the function
f(x) = x5, though f(x) is increasing in (−∞,∞), f′(0) = 0.

Figure 6:
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Necessary conditions for increasing/decreasing
function (contd.)
We have a slightly different necessary condition..

Claim
Let I be an interval, and suppose f is continuous on I and
differentiable in int(I). Then:

1 if f is increasing on I, then f′(x) ≥ 0 for all x ∈ int(I);
2 if f is decreasing on I, then f′(x) ≤ 0 for all x ∈ int(I).

Proof:

Suppose f is increasing on I, and let x ∈ int(I). Then
f(x+h)−f(x)

h > 0 for all h such that x + h ∈ int(I). This implies that
f′(x) = lim

h→0

f(x+h)−f(x)
h ≥ 0. For the case when f is decreasing on I, it

can be similarly proved that f′(x) = lim
h→0

f(x+h)−f(x)
h ≤ 0.
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Critical Point
This concept will help us derive the general condition for local
extrema.
Definition
[Critical Point]: A point c in the domain D of f is called a critical

point of f if either f′(c) = 0 or f′(c) does not exist.

The following general condition for local extrema extends the result
in theorem 1 to general non-differentiable functions.

Claim
If f(c) is a local extreme value, then c is a critical number of f.

The converse of theorem 10 does not hold (see Figure 6); 0 is a
critical number (f′(0) = 0), although f(0) is not a local extreme value.
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Critical Point and Local Extreme Value

Given a critical point c, the following test helps determine if f(c) is a
local extreme value:
Procedure
[Local Extreme Value]: Let c be an isolated critical point of f

1 f(c) is a local minimum if f(x) is decreasing in an
interval [c − ϵ1, c] and increasing in an interval
[c, c + ϵ2] with ϵ1, ϵ2 > 0.

2 f(c) is a local maximum if f(x) is increasing in an
interval [c − ϵ1, c] and decreasing in an interval
[c, c + ϵ2] with ϵ1, ϵ2 > 0.
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Given a critical point c, first derivative test (sufficient condition)
helps determine if f(c) is a local extreme value:

Procedure
[First derivative test]: Let c be an isolated critical point of f

1 f(c) is a local minimum if the sign of f′(x) changes
from negative in [c − ϵ1, c] to positive in [c, c + ϵ2]
with ϵ1, ϵ2 > 0.

2 f(c) is a local maximum if f(x) the sign of f′(x)
changes from positive in [c − ϵ1, c] to negative in
[c, c + ϵ2] with ϵ1, ϵ2 > 0.

3 If f′(x) is positive in an interval [c − ϵ1, c] and also
positive in an interval [c, c − ϵ2], or f′(x) is negative
in an interval [c − ϵ1, c] and also negative in an
interval [c, c − ϵ2] with ϵ1, ϵ2 > 0, then f(c) is not a
local extremum.
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First Derivative Test: Critical Point and Local
Extreme Value
As an example, the function f(x) = 3x5 − 5x3 has the derivative
f′(x) = 15x2(x + 1)(x − 1). The critical points are 0, 1 and −1. Of
the three, the sign of f′(x) changes at 1 and −1, which are local
minimum and maximum respectively. The sign does not change at 0,
which is therefore not a local supremum.

Figure 7:
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First Derivative Test: Critical Point and Local
Extreme Value
As another example, consider the function

f(x) =

{
−x if x ≤ 0
1 if x > 0

Then,

f′(x) =

{
−1 if x < 0
0 if x > 0

Note that f(x) is discontinuous at x = 0, and therefore f′(x) is not
defined at x = 0. All numbers x ≥ 0 are critical numbers. f(0) = 0 is
a local minimum, whereas f(x) = 1 is a local minimum as well as a
local maximum ∀x > 0.
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Strict Convexity and Extremum
A differentiable function f is said to be strictly convex (or strictly
concave up) on an open interval I, iff, f′(x) is increasing on I.
Recall from theorem 7, the graphical interpretation of the first
derivative f′(x); f′(x) > 0 implies that f(x) is increasing at x.
Similarly, f′(x) is increasing when f′′(x) > 0. This gives us a
sufficient condition for the strict convexity of a function:

Claim
If at all points in an open interval I, f(x) is doubly differentiable and
if f′′(x) > 0, ∀x ∈ I, then the slope of the function is always
increasing with x and the graph is strictly convex. This is illustrated
in Figure 8.

On the other hand, if the function is strictly convex and doubly
differentiable in I, then f′′(x) ≥ 0, ∀x ∈ I.
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Strict Convexity and Extremum (Illustrated)

Figure 8:
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Strict Convexity and Extremum: Slopeless
interpretation (SI)

Claim
A function f is strictly convex on an open interval I, iff

f(ax1 + (1− a)x2) < af(x1) + (1− a)f(x2) (1)

whenver x1, x2 ∈ I, x1 ̸= x2 and 0 < a < 1.
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SI: Necessity when f is differentiable
First we will prove the necessity.

Suppose f′ is increasing on I. Let
0 < a < 1, x1, x2 ∈ I and x1 ̸= x2. Without loss of generality assume
that x1 < x22. Then, x1 < ax1 + (1− a)x2 < x2 and therefore
ax1 + (1− a)x2 ∈ I. By the mean value theorem, there exist s and t
with x1 < s < ax1 + (1− a)x2 < t < x2, such that
f(ax1 + (1− a)x2)− f(x1) = f′(s)(x2 − x1)(1− a) and
f(x2)− f(ax1 + (1− a)x2) = f′(t)(x2 − x1)a. Therefore,

(1 − a)f(x1) − f(ax1 + (1 − a)x2) + af(x2) =

a
[
f(x2) − f(ax1 + (1 − a)x2)

]
− (1 − a)

[
f(ax1 + (1 − a)x2) − f(x1)

]
=

a(1 − a)(x2 − x1)
[
f′(t) − f′(s)

]

Since f(x) is strictly convex on I, f′(x) is increasing I and therefore,
f′(t)− f′(s) > 0. Moreover, x2 − x1 > 0 and 0 < a < 1. This implies
that (1− a)f(x1)− f(ax1 + (1− a)x2) + af(x2) > 0, or equivalently,
f(ax1 + (1− a)x2) < af(x1) + (1− a)f(x2), which is what we wanted
to prove in 1.

2For the case x2 < x1, the proof is very similar.
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SI: Necessity when f is differentiable
First we will prove the necessity. Suppose f′ is increasing on I. Let
0 < a < 1, x1, x2 ∈ I and x1 ̸= x2. Without loss of generality assume
that x1 < x22. Then, x1 < ax1 + (1− a)x2 < x2 and therefore
ax1 + (1− a)x2 ∈ I. By the mean value theorem, there exist s and t
with x1 < s < ax1 + (1− a)x2 < t < x2, such that
f(ax1 + (1− a)x2)− f(x1) = f′(s)(x2 − x1)(1− a) and
f(x2)− f(ax1 + (1− a)x2) = f′(t)(x2 − x1)a. Therefore,

(1 − a)f(x1) − f(ax1 + (1 − a)x2) + af(x2) =

a
[
f(x2) − f(ax1 + (1 − a)x2)

]
− (1 − a)

[
f(ax1 + (1 − a)x2) − f(x1)

]
=

a(1 − a)(x2 − x1)
[
f′(t) − f′(s)

]

Since f(x) is strictly convex on I, f′(x) is increasing I and therefore,
f′(t)− f′(s) > 0. Moreover, x2 − x1 > 0 and 0 < a < 1. This implies
that (1− a)f(x1)− f(ax1 + (1− a)x2) + af(x2) > 0, or equivalently,
f(ax1 + (1− a)x2) < af(x1) + (1− a)f(x2), which is what we wanted
to prove in 1.

2For the case x2 < x1, the proof is very similar.
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SI: Sufficiency when f is differentiable
Suppose the inequality in 1 holds. Therefore,
lim
a→0

f(x2+a(x1−x2))−f(x2)
a ≤ f(x1)− f(x2). That is,

f′(x2)(x1 − x2) ≤ f(x1)− f(x2) (2)

Similarly, we can show that

f′(x1)(x2 − x1) ≤ f(x2)− f(x1) (3)

Adding the left and right hand sides of inequalities in (2) and (3),
and multiplying the resultant inequality by −1 gives us

(
f′(x2)− f′(x1)

)
(x2 − x1) ≥ 0 (4)
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SI: Sufficiency when f is differentiable (contd)
Using the mean value theorem, ∃z = x1 + t(x2 − x1) for t ∈ (0, 1)
such that

f(x2)− f(x1) = f′(z)(x2 − x1) (5)

Since 4 holds for any x1, x2 ∈ I, it also hold for x2 = z. Therefore,

(f′(z)− f′(x1))(x2 − x1) =
1

t (f
′(z)− f′(x1))(z − x1) ≥ 0

Additionally using 5, we get

f(x2)−f(x1) = (f′(z)−f′(x1))(x2−x1)+f′(x1)(x2−x1) ≥ f′(x1)(x2−x1)
(6)
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SI: Sufficiency when f is differentiable (contd)
Suppose equality holds in 4 for some x1 ̸= x2. Then equality holds in
6 for the same x1 and x2. That is, f(x2)− f(x1) = f′(x1)(x2 − x1).
Applying 6 we can conclude that

f(x1) + af′(x1)(x2 − x1) ≤ f(x1 + a(x2 − x1)) (7)

From 1 and ??, we can derive that

f(x1+a(x2−x1)) < (1−a)f(x1)+af(x2) = f(x1)+af′(x1)(x2−x1) (8)

However, equations 7 and 8 contradict each other. Therefore,
equality in 4 cannot hold for any x1 ̸= x2, implying that(

f′(x2)− f′(x1)
)
(x2 − x1) > 0

that is, f′(x) is increasing and therefore f is convex on I.
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Strict Concavity

A differentiable function f is said to be strictly concave on an
open interval I, iff, f′(x) is decreasing on I.
Recall from theorem 7, the graphical interpretation of the first
derivative f′(x); f′(x) < 0 implies that f(x) is decreasing at x.
Similarly, f′(x) is monotonically decreasing when f′′(x) > 0. This
gives us a sufficient condition for the concavity of a function:

Claim
If at all points in an open interval I, f(x) is doubly differentiable and
if f′′(x) < 0, ∀x ∈ I, then the slope of the function is always
decreasing with x and the graph is strictly concave.
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Strict Concavity
On the other hand, if the function is strictly concave and doubly
differentiable in I, then f′′(x) ≤ 0, ∀x ∈ I. This is illustrated in
Figure 9.

Figure 9:
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Strict Concavity (slopeless interpretation)

There is also a slopeless interpretation of concavity as stated in the
following theorem:

Claim
A differentiable function f is strictly concave on an open interval I, iff

f(ax1 + (1− a)x2) > af(x1) + (1− a)f(x2) (9)

whenver x1, x2 ∈ I, x1 ̸= x2 and 0 < a < 1.

The proof is similar to that for theorem 12.

January 8, 2018 36 / 51



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Convex & Concave Regions and Inflection Point
Figure 10 illustrates a function f(x) = x3 − x + 2, whose slope
decreases as x increases to 0 (f′′(x) < 0) and then the slope increases
beyond x = 0 (f′′(x) > 0). The point 0, where the f′′(x) changes sign
is called the inflection point; the graph is strictly concave for x < 0
and strictly convex for x > 0.

Figure 10: January 8, 2018 37 / 51
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Convex & Concave Regions and Inflection Point

Along similar lines, we can diagnose the function
f(x) = 1

20
x5 − 7

12
x4 + 7

6
x3 − 15

2
x2

It is strictly concave on (−∞,−1] and [3, 5] and strictly convex on
[−1, 3] and [5,∞].
The inflection points for this function are at x = −1, x = 3 and
x = 5.

January 8, 2018 38 / 51



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

First Derivative Test: Restated using Strict
Convexity

The first derivative test for local extrema can be restated in terms of
strict convexity and concavity of functions.

Procedure
[First derivative test in terms of strict convexity]: Let c be a

critical number of f and f′(c) = 0. Then,
1 f(c) is a local minimum if the graph of f(x) is

strictly convex on an open interval containing c.
2 f(c) is a local maximum if the graph of f(x) is

strictly concave on an open interval containing c.
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Strict Convexity: Restated using Second Derivative

If the second derivative f′′(c) exists, then the strict convexity
conditions for the critical number can be stated in terms of the sign
of of f′′(c), making use of theorems 11 and 13. This is called the
second derivative test.
Procedure
[Second derivative test]: Let c be a critical number of f where

f′(c) = 0 and f′′(c) exists.
1 If f′′(c) > 0 then f(c) is a local minimum.
2 If f′′(c) < 0 then f(c) is a local maximum.
3 If f′′(c) = 0 then f(c) could be a local maximum, a

local minimum, neither or both. That is, the test
fails.
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Convexity, Minima and Maxima: Illustrations

If f(x) = x4, then f′(0) = 0 and f′′(0) = 0 and we can see that
f(0) is a local minimum.
If f(x) = −x4, then f′(0) = 0 and f′′(0) = 0 and we can see that
f(0) is a local maximum.
If f(x) = x3, then f′(0) = 0 and f′′(0) = 0 and we can see that
f(0) is neither a local minimum nor a local maximum. (0, 0) is
an inflection point in this case.
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Convexity, Minima and Maxima: Illustrations
(contd.)

If f(x) = x + 2 sin x, then f′(x) = 1 + 2 cos x. f′(x) = 0 for
x = 2π

3
, 4π

3
, which are the critical numbers.

f′′
(
2π
3

)
= −2 sin 2π

3
= −

√
3 < 0 ⇒ f

(
2π
3

)
= 2π

3
+
√
3 is a local

maximum value. On the other hand, f′′
(
4π
3

)
=

√
3 > 0 ⇒

f
(
4π
3

)
= 4π

3
−

√
3 is a local minimum value.

If f(x) = x + 1
x , then f′(x) = 1− 1

x2 . The critical numbers are
x = ±1. Note that x = 0 is not a critical number, even though
f′(0) does not exist, because 0 is not in the domain of f.
f′′(x) = 2

x3 . f′′(−1) = −2 < 0 and therefore f(−1) = −2 is a
local maximum. f′′(1) = 2 > 0 and therefore f(1) = 2 is a local
minimum.
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Global Extrema on Closed Intervals
Recall the extreme value theorem (theorem 2). An outcome of the
extreme value theorem is that

if either of c or d lies in (a, b), then it is a critical number of f;
else each of c and d must lie on one of the boundaries of [a, b].

This gives us a procedure for finding the maximum and minimum of
a continuous function f on a closed bounded interval I:
Procedure

[Finding extreme values on closed, bounded
intervals]:

1 Find the critical points in int(I).
2 Compute the values of f at the critical points and

at the endpoints of the interval.
3 Select the least and greatest of the computed

values.
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Global Extrema on Closed Intervals (contd)

To compute the maximum and minimum values of
f(x) = 4x3 − 8x2 + 5x on the interval [0, 1], we first compute
f′(x) = 12x2 − 16x + 5 which is 0 at x = 1

2
, 5
6
.

Values at the critical points are f(1
2
) = 1, f(5

6
) = 25

27
.

The values at the end points are f(0) = 0 and f(1) = 1.
Therefore, the minimum value is f(0) = 0 and the maximum value is
f(1) = f(1

2
) = 1.

In this context, it is relevant to discuss the one-sided derivatives of a
function at the endpoints of the closed interval on which it is defined.
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Global Extrema on Closed Intervals (contd)
Definition
[One-sided derivatives at endpoints]: Let f be defined on a

closed bounded interval [a, b]. The (right-sided)
derivative of f at x = a is defined as

f′(a) = lim
h→0+

f(a + h)− f(a)
h

Similarly, the (left-sided) derivative of f at x = b is
defined as

f′(b) = lim
h→0−

f(b + h)− f(b)
h

Essentially, each of the one-sided derivatives defines one-sided slopes
at the endpoints.
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Global Extrema on Closed Intervals (contd)
Based on these definitions, the following result can be derived.
Claim
If f is continuous on [a, b] and f′(a) exists as a real number or as ±∞,
then we have the following necessary conditions for extremum at a.

If f(a) is the maximum value of f on [a, b], then f′(a) ≤ 0 or
f′(a) = −∞.
If f(a) is the minimum value of f on [a, b], then f′(a) ≥ 0 or
f′(a) = ∞.

If f is continuous on [a, b] and f′(b) exists as a real number or as ±∞,
then we have the following necessary conditions for extremum at b.

If f(b) is the maximum value of f on [a, b], then f′(b) ≥ 0 or
f′(b) = ∞.
If f(b) is the minimum value of f on [a, b], then f′(b) ≤ 0 or
f′(b) = −∞.
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Global Extrema on Closed Intervals (contd)

The following theorem gives a useful procedure for finding extrema
on closed intervals.
Claim
If f is continuous on [a, b] and f′′(x) exists for all x ∈ (a, b). Then,

If f′′(x) ≤ 0, ∀x ∈ (a, b), then the minimum value of f on [a, b]
is either f(a) or f(b). If, in addition, f has a critical number
c ∈ (a, b), then f(c) is the maximum value of f on [a, b].
If f′′(x) ≥ 0, ∀x ∈ (a, b), then the maximum value of f on [a, b]
is either f(a) or f(b). If, in addition, f has a critical number
c ∈ (a, b), then f(c) is the minimum value of f on [a, b].
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Global Extrema on Open Intervals
The next theorem is very useful for finding global extrema values on
open intervals.

Claim
Let I be an open interval and let f′′(x) exist ∀x ∈ I.

If f′′(x) ≥ 0, ∀x ∈ I, and if there is a number c ∈ I where
f′(c) = 0, then f(c) is the global minimum value of f on I.
If f′′(x) ≤ 0, ∀x ∈ I, and if there is a number c ∈ I where
f′(c) = 0, then f(c) is the global maximum value of f on I.

For example, let f(x) = 2
3
x − sec x and I = (−π

2
, π
2
).

f′(x) = 2
3
− sec x tan x = 2

3
− sin x

cos2 x = 0 ⇒ x = π
6
. Further,

f′′(x) = − sec x(tan2 x + sec2 x) < 0 on (−π
2
, π
2
). Therefore, f attains

the maximum value f(π
6
) = π

9
− 2√

3
on I.
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Global Extrema on Open Intervals (contd)
As another example, let us find the dimensions of the cone with
minimum volume that can contain a sphere with radius R. Let h be
the height of the cone and r the radius of its base. The objective to
be minimized is the volume f(r, h) = 1

3
πr2h. The constraint betwen r

and h is shown in Figure 11. The traingle AEF is similar to traingle
ADB and therefore, h−R

R =
√

h2+r2
r .

Figure 11:
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Global Extrema on Open Intervals (contd)
Our first step is to reduce the volume formula to involve only one of
r23 or h.
The algebra involved will be the simplest if we solved for h.
The constraint gives us r2 = R2h

h−2R . Substituting this expression for r2
into the volume formula, we get g(h) = πR2

3
h2

(h−2R) with the domain
given by D =

{
h|2R < h < ∞

}
.

Note that D is an open interval.
g′ = πR2

3
2h(h−2R)−h2

(h−2R)2 = πR2

3
h(h−4R)
(h−2R)2 which is 0 in its domain D if and

only if h = 4R.
g′′ = πR2

3
2(h−2R)3−2h(h−4R)(h−2R)2

(h−2R)4 = πR2

3
2(h2−4Rh+4R2−h2+4Rh)

(h−2R)3 =
πR2

3
8R2

(h−2R)3 , which is greater than 0 in D.
Therefore, g (and consequently f) has a unique minimum at h = 4R
and correspondingly, r2 = R2h

h−2R = 2R2.
3Since r appears in the volume formula only in terms of r2.
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