References

- Convex Optimization by Stephen Boyd and Lieven Vandenberghe
- Lectures on Modern Convex Optimization by Aharon Ben-Tal and Arkadi Nemirovski
- Convex Analysis by R. T. Rockafellar, Vol. 28 of Princeton Math. Series, Princeton Univ. Press, 1970 (470 pages)
- Numerical Optimization by Nocedal, Jorge, Wright, Stephen
- Introduction to Nonlinear Optimization - Theory, Algorithms and Applications by Amir Beck

More exhaustive list at www.cse.iitb.ac.in/~cs709
Please check calendar page for all notes/specific references www.cse.iitb.ac.in/~cs709/calendar.html

Developing Tools for Convexity Analysis of $f\left(x_{1}, x_{2}, . . x_{n}\right)$ Instructor: Prof. Ganesh Ramakrishnan

Summary of Optimization Principles for Univariate Functions

Detailed slides at https://www.cse.iitb.ac.in/~cs709/notes/enotes/ 2-08-01-2018-univariateprinciples.pdf, video at https://tinyurl.com/yc4d2aqg and Section 4.1.1 (pages 213 to 214) of the notes at https://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvexOptimization.pdf.

Maximum and Minimum values of univariate functions

Let $f: \mathcal{D} \rightarrow \Re$. Now f has

- An absolute maximum (or global maximum) value at point $c \in \mathcal{D}$ if

$$
f(x) \leq f(c), \forall x \in \mathcal{D}
$$

- An absolute minimum (or global minimum) value at $c \in \mathcal{D}$ if

$$
f(x) \geq f(c), \forall x \in \mathcal{D}
$$

- A local maximum value at c if there is an open interval \mathcal{I} containing c in which $f(c) \geq f(x), \forall x \in \mathcal{I}$
- A local minimum value at c if there is an open interval \mathcal{I} containing c in which $f(c) \leq f(x), \forall x \in \mathcal{I}$
- A local extreme value at c, if $f(c)$ is either a local maximum or local minimum value of f in an open interval \mathcal{I} with $c \in \mathcal{I}$

First Derivative Test \& Extreme Value Theorem

First derivative test for local extreme value of f, when f is differentiable at the extremum.

$$
f^{\prime}(x)=0 \text { for all local extreme values }
$$

First Derivative Test \& Extreme Value Theorem

First derivative test for local extreme value of f, when f is differentiable at the extremum.

Claim

If $f(c)$ is a local extreme value and if f is differentiable at $x=c$, then $f(c)=0$.
The Extreme Value Theorem
Function has global extremes if (a) it is continuous
(b) the domain is bounded
(c) the domain is closed

First Derivative Test \& Extreme Value Theorem

First derivative test for local extreme value of f, when f is differentiable at the extremum.

Claim

If $f(c)$ is a local extreme value and if f is differentiable at $x=c$, then $f(c)=0$.
The Extreme Value Theorem

Claim

A continuous function $f(x)$ on a closed and bounded interval $[a, b]$ attains a minimum value $f(c)$ for some $c \in[a, b]$ and a maximum value $f(d)$ for some $d \in[a, b]$. That is, a continuous function on a closed, bounded interval attains a minimum and a maximum value.

We must point out that either or both of the values c and d may be attained at the end points of the interval $[a, b]$.

Taylor's Theorem and $n^{\text {th }}$ degree polynomial approximation

The $n^{\text {th }}$ degree polynomial approximation of a function is used to prove a generalization of the mean value theorem, called the Taylor's theorem.

Claim

The Taylor's theorem states that if f and its first n derivatives $\left.f^{\prime}, f^{\prime \prime}, \ldots, f^{n}\right)$ are continuous on the closed interval $[a, b]$, and differentiable on (a, b), then there exists a number $c \in(a, b)$ such that

$$
f(b)=f(a)+f(a)(b-a)+\frac{1}{2!} f^{\prime}(a)(b-a)^{2}+\ldots+\frac{1}{n!} f^{n}(a)(b-a)^{n}+\frac{1}{(n+1)!}\{\underbrace{n+1)}(c)(b-a)^{n+1}
$$

Mean Value Theorem $=$ Taylor's theorem with $n=0 \quad$ approximation involves dropping last term

Taylor's Theorem and $n^{\text {th }}$ degree polynomial approximation

The $n^{\text {th }}$ degree polynomial approximation of a function is used to prove a generalization of the mean value theorem, called the Taylor's theorem.

Claim

The Taylor's theorem states that if f and its first n derivatives $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on the closed interval $[a, b]$, and differentiable on (a, b), then there exists a number $c \in(a, b)$ such that

$$
f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{1}{2!} f^{\prime}(a)(b-a)^{2}+\ldots+\frac{1}{n!} f^{n)}(a)(b-a)^{n}+\frac{1}{(n+1)!} f^{f n+1)}(c)(b-a)^{n+1}
$$

Mean Value Theorem $=$ Taylor's theorem with $n=0$

Mean Value, Taylor's Theorem and words of caution

Note that if f fails to be differentiable at even one number in the interval, then the conclusion of the mean value theorem may be false. For example, if $f(x)=x^{2 / 3}$, then $f(x)=\frac{2}{3 \sqrt[3]{x}}$ and

Mean Value, Taylor's Theorem and words of caution

Note that if f fails to be differentiable at even one number in the interval, then the conclusion of the mean value theorem may be false. For example, if $f(x)=x^{2 / 3}$, then $f(x)=\frac{2}{3 \sqrt[3]{x}}$ and the theorem does not hold in the interval $[-3,3]$, since f is not differentiable at 0 as can be seen in Figure 1.

Sufficient Conditions for Increasing and decreasing functions

A function f is said to be ...

- increasing on an interval \mathcal{I} in its domain \mathcal{D} if $f(t)<f(x)$ whenever $t<x$.
- decreasing on an interval $\mathcal{I} \in \mathcal{D}$ if $f(t)>f(x)$ whenever $t<x$.

Consequently:

Claim

Let \mathcal{I} be an interval and suppose f is continuous on \mathcal{I} and differentiable on $\operatorname{int}(\mathcal{I})$. Then:
(1) if $f^{\prime}(x)>0$ for all $x \in \operatorname{int}(\mathcal{I})$, then f is (strictly) increasing

Sufficient Conditions for Increasing and decreasing functions

A function f is said to be ...

- increasing on an interval \mathcal{I} in its domain \mathcal{D} if $f(t)<f(x)$ whenever $t<x$.
- decreasing on an interval $\mathcal{I} \in \mathcal{D}$ if $f(t)>f(x)$ whenever $t<x$.

Consequently:

Claim

Let \mathcal{I} be an interval and suppose f is continuous on \mathcal{I} and differentiable on $\operatorname{int}(\mathcal{I})$. Then:
(1) if $f(x)>0$ for all $x \in \operatorname{int}(\mathcal{I})$, then f is increasing on \mathcal{I};
(2) if $f(x)<0$ for all $x \in \operatorname{int}(\mathcal{I})$, then f is decreasing on \mathcal{I};
(3) if $f(x)=0$ for all $x \in \operatorname{int}(\mathcal{I})$, iff, f is constant on \mathcal{I}.

Illustration of Sufficient Conditions

Figure 2 illustrates the intervals in $(-\infty, \infty)$ on which the function $f(x)=3 x^{4}+4 x^{3}-36 x^{2}$ is decreasing and increasing. First we note that $f(x)$ is differentiable everywhere on $(-\infty, \infty)$ and compute $f(x)=12\left(x^{3}+x^{2}-6 x\right)=12(x-2)(x+3) x$, which is negative in the intervals $(-\infty,-3]$ and $[0,2]$ and positive in the intervals $[-3,0]$ and $[2, \infty)$. We observe that f is decreasing in the intervals $(-\infty,-3]$ and $[0,2]$ and while it is increasing in the intervals $[-3,0]$ and $[2, \infty)$.

Necessary conditions for increasing/decreasing function
The conditions for increasing and decreasing properties of $f(x)$ stated so far are

Necessary conditions for increasing/decreasing function

The conditions for increasing and decreasing properties of $f(x)$ stated so far are not necesssary.

Figure 3:

Figure 3 shows that for the function $f(x)=x^{5}$, though $f(x)$ is increasing in $(-\infty, \infty), f(0)=0$.

Another sufficient condition for increasing/decreasing function

Thus, a modified sufficient condition for a function f to be increasing/decreasing on an interval \mathcal{I} can be stated as follows:

$$
\begin{gathered}
f^{\prime}(.)>0 \text { everywhere except at a finite number of points } \\
\text { where } f^{\prime}(.)=0
\end{gathered}
$$

Another sufficient condition for increasing/decreasing function

Thus, a modified sufficient condition for a function f to be increasing/decreasing on an interval \mathcal{I} can be stated as follows:

Claim

Let \mathcal{I} be an interval and suppose f is continuous on \mathcal{I} and differentiable on $\operatorname{int}(\mathcal{I})$. Then:
(1) if $f(x) \geq 0$ for all $x \in \operatorname{int}(\mathcal{I})$, and if $f(x)=0$ at only finitely many $x \in \mathcal{I}$, then f is increasing on \mathcal{I};
(2) if $f(x) \leq 0$ for all $x \in \operatorname{int}(\mathcal{I})$, and if $f(x)=0$ at only finitely many $x \in \mathcal{I}$, then f is decreasing on \mathcal{I}.

For example, the derivative of the function $f(x)=6 x^{5}-15 x^{4}+10 x^{3}$ vanishes at 0 , and 1 and $f(x)>0$ elsewhere. So $f(x)$ is increasing on $(-\infty, \infty)$.

Necessary conditions for increasing/decreasing function (contd.)

We have a slightly different necessary condition..

Claim

Let \mathcal{I} be an interval, and suppose f is continuous on \mathcal{I} and differentiable in $\operatorname{int}(\mathcal{I})$. Then:
(1) if f is increasing on \mathcal{I}, then $f(x) \geq 0$ for all $x \in \operatorname{int}(\mathcal{I})$;
(2) if f is decreasing on \mathcal{I}, then $\overline{f(x) \leq 0}$ for all $x \in \operatorname{int}(\mathcal{I})$.

Critical Point

This concept will help us derive the general condition for local extrema.

Definition

[Critical Point]: A point c in the domain \mathcal{D} of f is called a critical point of f if either $f(c)=0$ or $f(c)$ does not exist.

The following general condition for local extrema extends the result in theorem 1 to general non-differentiable functions.

Claim

If $f(c)$ is a local extreme value, then c is a critical number of f.
The converse of above statement does not hold (see Figure 3); 0 is a critical number ($f(0)=0)$, although $f(0)$ is not a local extreme value.

Critical Point and Local Extreme Value

Given a critical point c, the following test helps determine if $f(c)$ is a local extreme value:

Procedure

[Local Extreme Value]: Let c be an isolated critical point of f
(1) $f(c)$ is a local minimum if $f(x)$ is decreasing in an interval $\left[c-\epsilon_{1}, c\right]$ and increasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
(2) $f(c)$ is a local maximum if $f(x)$ is increasing in an interval $\left[c-\epsilon_{1}, c\right]$ and decreasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.

First Derivative Test: Critical Point and Local Extreme Value As an example, the function $f(x)=3 x^{5}-5 x^{3}$ has

First Derivative Test: Critical Point and Local Extreme Value

As an example, the function $f(x)=3 x^{5}-5 x^{3}$ has the derivative $f(x)=15 x^{2}(x+1)(x-1)$. The critical points are

First Derivative Test: Critical Point and Local Extreme Value

As an example, the function $f(x)=3 x^{5}-5 x^{3}$ has the derivative $f(x)=15 x^{2}(x+1)(x-1)$. The critical points are 0,1 and -1 . Of the three, the sign of $f(x)$ changes at 1 and -1 , which are local minimum and maximum respectively. The sign does not change at 0 , which is therefore not a local supremum.

First Derivative Test: Critical Point and Local Extreme Value

As another example, consider the function

$$
f(x)=\left\{\begin{array}{cl}
-x & \text { if } x \leq 0 \\
1 & \text { if } x>0
\end{array}\right.
$$

Then,

First Derivative Test: Critical Point and Local Extreme Value

As another example, consider the function

$$
f(x)=\left\{\begin{array}{cl}
-x & \text { if } x \leq 0 \\
1 & \text { if } x>0
\end{array}\right.
$$

Then,

$$
f^{\prime}(x)=\left\{\begin{array}{cl}
-1 & \text { if } x<0 \\
0 & \text { if } x>0
\end{array}\right.
$$

Note that $f(x)$ is discontinuous at $x=0$, and therefore $f(x)$ is not defined at $x=0$. All numbers $x \geq 0$ are critical numbers. $f(0)=0$ is a local minimum, whereas $f(x)=1$ is a local minimum as well as a local maximum $\forall x>0$.

Strict Convexity and Extremum

- A differentiable function f is said to be strictly convex (or strictly concave up) on an open interval \mathcal{I}, iff, $f(x)$ is increasing on \mathcal{I}.

Strict Convexity and Extremum

- A differentiable function f is said to be strictly convex (or strictly concave up) on an open interval \mathcal{I}, iff, $f^{\prime}(x)$ is increasing on \mathcal{I}.
- Recall the graphical interpretation of the first derivative $f(x) ; f(x)>0$ implies that $f(x)$ is increasing at x.
- Similarly, $f(x)$ is increasing when

$$
\begin{aligned}
& \text { Sufficient condition }==>f^{\prime \prime}(x)>0 \\
& \text { Sufficient condition }==>f^{\prime \prime}(x)>=0 \\
& \text { and } f^{\prime \prime}(x) \text { vanishes at a finite no. } \\
& \text { of points }
\end{aligned}
$$

Necessary condition $==>f^{\prime \prime}(x)>=0$

Strict Convexity and Extremum

- A differentiable function f is said to be strictly convex (or strictly concave up) on an open interval \mathcal{I}, iff, $f(x)$ is increasing on \mathcal{I}. Definition (for a differentiable function)
- Recall the graphical interpretation of the first derivative $f(x) ; f(x)>0$ implies that $f(x)$ is increasing at x.
- Similarly, $f(x)$ is increasing when $f^{\prime}(x)>0$. This gives us a sufficient condition for the strict convexity of a function.

Claim

If at all points in an open interval $\mathcal{I}, f(x)$ is doubly differentiable and if $f^{\prime}(x)>0, \forall x \in \mathcal{I}$, then the slope of the function is always increasing with x and the graph is strictly convex. This is illustrated in Figure 5.

- On the other hand, if the function is strictly convex and doubly differentiable in \mathcal{I}, then $\underline{f^{\prime}(x) \geq 0,} \forall x \in \mathcal{I}$. Necessary conditon for strict convexity for a differentiable function

Strict Convexity and Extremum (Illustrated)

Figure 5:
The function in $[x 1, x 2]$ lies completely (strictly) below the line segment joining $x 1$ to $x 2$

Strict Convexity and Extremum: Slopeless interpretation (SI)

Claim

A function f is strictly convex on an open interval \mathcal{I}, iff

$$
\begin{equation*}
f\left(\underline{a x_{1}}+\left(\underline{(1-a) x_{2}}\right)<\underline{a f\left(x_{1}\right.}\right)+\left(\underline{1-a) f\left(x_{2}\right)}\right. \tag{1}
\end{equation*}
$$

whenver $x_{1}, x_{2} \in \mathcal{I}, x_{1} \neq x_{2}$ and $0<a<1$.

Strict Concavity

- A differentiable function f is said to be strictly concave on an open interval \mathcal{I}, iff, $f(x)$ is decreasing on \mathcal{I}.
- Recall from theorem 4, the graphical interpretation of the first derivative $f(x) ; f(x)<0$ implies that $f(x)$ is decreasing at x.
- Similarly, $f(x)$ is (strictly) monotonically decreasing when

$$
f^{\prime \prime}(x)<0
$$

Strict Concavity

- A differentiable function f is said to be strictly concave on an open interval \mathcal{I}, iff, $f(x)$ is decreasing on \mathcal{I}.
- Recall from theorem 4, the graphical interpretation of the first derivative $f(x) ; f(x)<0$ implies that $f(x)$ is decreasing at x.
- Similarly, $f^{\prime}(x)$ is (strictly) monotonically decreasing when $f^{\prime}(x)<0$. This gives us a sufficient condition for the concavity of a function:

Claim

If at all points in an open interval $\mathcal{I}, f(x)$ is doubly differentiable and if $f^{\prime}(x)<0, \forall x \in \mathcal{I}$, then the slope of the function is always decreasing with x and the graph is strictly concave.

Strict Concavity

On the other hand, if the function is strictly concave and doubly differentiable in \mathcal{I}, then $f^{\prime}(x) \leq 0, \forall x \in \mathcal{I}$. This is illustrated in Figure 6.

Figure 6:

Strict Concavity (slopeless interpretation)

There is also a slopeless interpretation of concavity as stated below:

Claim

A differentiable function f is strictly concave on an open interval \mathcal{I}, iff

$$
\begin{equation*}
\underline{f\left(a x_{1}+(1-a) x_{2}\right)>a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right)} \tag{2}
\end{equation*}
$$

whenver $x_{1}, x_{2} \in \mathcal{I}, x_{1} \neq x_{2}$ and $0<a<1$.
The proof is similar to that for the slopeless interpretation of convexity.

Convex \& Concave Regions and Inflection Point

 Study the function $f(x)=x^{3}-x+2$.
Convex \& Concave Regions and Inflection Point

Study the function $f(x)=x^{3}-x+2$. It's slope decreases as x increases to $0\left(f^{\prime}(x)<0\right)$ and then the slope increases beyond $x=0\left(f^{\prime}(x)>0\right)$. The point 0 , where the $f^{\prime}(x)$ changes sign is called the inflection point; the graph is strictly concave for $x<0$ and strictly convex for $x>0$. See Figure 7 .

Convex \& Concave Regions and Inflection Point

Along similar lines, study the function $f(x)=\frac{1}{20} x^{5}-\frac{7}{12} x^{4}+\frac{7}{6} x^{3}-\frac{15}{2} x^{2}$.

Convex \& Concave Regions and Inflection Point

Along similar lines, study the function $f(x)=\frac{1}{20} x^{5}-\frac{7}{12} x^{4}+\frac{7}{6} x^{3}-\frac{15}{2} x^{2}$. It is strictly concave on $(-\infty,-1]$ and $[3,5]$ and strictly convex on $[-1,3]$ and $[5, \infty]$. The inflection points for this function are at $x=-1, x=3$ and $x=5$.

First Derivative Test: Restated using Strict Convexity

The first derivative test for local extrema can be restated in terms of strict convexity and concavity of functions.

> Expect convexity around a point of (local) minimum And
> Expect concavity around a point of (local) maximum

First Derivative Test: Restated using Strict Convexity

The first derivative test for local extrema can be restated in terms of strict convexity and concavity of functions.

Procedure

[First derivative test in terms of strict convexity]: Let c be a critical number of f and $f(c)=0$. Then,
(1) $f(c)$ is a local minimum if

First Derivative Test: Restated using Strict Convexity

The first derivative test for local extrema can be restated in terms of strict convexity and concavity of functions.

Procedure

[First derivative test in terms of strict convexity]: Let c be a critical number of f and $f(c)=0$. Then,
(1) $f(c)$ is a local minimum if the graph of $f(x)$ is strictly convex on an open interval containing c. sufficient condition for local min
(2) $f(c)$ is a local maximum if the graph of $f(x)$ is strictly concave on an open interval containing c. sufficient condition for local max

Intuitively, relaxing strictness should give you sufficient conditions for local min/max ==> Revising with proofs for $\mathrm{R}^{\wedge} \mathrm{n}$ case

Strict Convexity: Restated using Second Derivative

If the second derivative $f^{\prime}(c)$ exists, then the strict convexity conditions for the critical number can be stated in terms of the sign of of $f^{\prime}(c)$, making use of previous results. This is called the second derivative test.

Strict Convexity: Restated using Second Derivative

If the second derivative $f^{\prime}(c)$ exists, then the strict convexity conditions for the critical number can be stated in terms of the sign of of $f^{\prime}(c)$, making use of previous results. This is called the second derivative test.

Procedure

[Second derivative test]: Let c be a critical number of f where $f(c)=0$ and $f^{\prime}(c)$ exists.
(1) If $f^{\prime}(c)>0$ then

Strict Convexity: Restated using Second Derivative

If the second derivative $f^{\prime}(c)$ exists, then the strict convexity conditions for the critical number can be stated in terms of the sign of of $f^{\prime}(c)$, making use of previous results. This is called the second derivative test.

Procedure

[Second derivative test]: Let c be a critical number of f where $f(c)=0$ and $f^{\prime}(c)$ exists.
(1) If $f^{\prime}(c)>0$ then $f(c)$ is a local minimum. strict convexity
(2) If $f^{\prime}(c)<0$ then $f(c)$ is a local maximum.
(3) If $f^{\prime \prime}(c)=0$ then $f(c)$ could be a local maximum, a local minimum, neither or both. That is, the test fails.

Convexity, Minima and Maxima: Illustrations

Study the functions $f(x)=x^{4}, f(x)=-x^{4}$ and $f(x)=x^{3}$:

Convexity, Minima and Maxima: Illustrations

Study the functions $f(x)=x^{4}, f(x)=-x^{4}$ and $f(x)=x^{3}$:

- If $f(x)=x^{4}$, then $f(0)=0$ and $f^{\prime}(0)=0$ and we can see that $f(0)$ is a local minimum.
- If $f(x)=-x^{4}$, then $f(0)=0$ and $f^{\prime}(0)=0$ and we can see that $f(0)$ is a local maximum.
- If $f(x)=x^{3}$, then $f^{\prime}(0)=0$ and $f^{\prime}(0)=0$ and we can see that $f(0)$ is neither a local minimum nor a local maximum. $(0,0)$ is an inflection point in this case.

Convexity, Minima and Maxima: Illustrations (contd.)

Study the functions: $f(x)=x+2 \sin x$ and $f(x)=x+\frac{1}{x}$:

- If $f(x)=x+2 \sin x$, then $f(x)=1+2 \cos x . f(x)=0$ for $x=\frac{2 \pi}{3}, \frac{4 \pi}{3}$, which are the critical numbers. $f^{\prime}\left(\frac{2 \pi}{3}\right)=-2 \sin \frac{2 \pi}{3}=-\sqrt{3}<0 \Rightarrow f\left(\frac{2 \pi}{3}\right)=\frac{2 \pi}{3}+\sqrt{3}$ is a local maximum value. On the other hand, $f^{\prime}\left(\frac{4 \pi}{3}\right)=\sqrt{3}>0 \Rightarrow f\left(\frac{4 \pi}{3}\right)=\frac{4 \pi}{3}-\sqrt{3}$ is a local minimum value.
- If $f(x)=x+\frac{1}{x}$, then $f(x)=1-\frac{1}{x^{2}}$. The critical numbers are $x= \pm 1$. Note that $x=0$ is not a critical number, even though $f(0)$ does not exist, because 0 is not in the domain of f. $f^{\prime}(x)=\frac{2}{x^{3}} . f^{\prime}(-1)=-2<0$ and therefore $f(-1)=-2$ is a local maximum. $f^{\prime}(1)=2>0$ and therefore $f(1)=2$ is a local minimum.

