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Summary of Optimization Principles for Univariate
Functions

Detailed slides at https://www.cse.iitb.ac.in/~cs709/notes/enotes/
2-08-01-2018-univariateprinciples.pdf, video at https://tinyurl.com/yc4d2aqg

and Section 4.1.1 (pages 213 to 214) of the notes at
https://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvexOptimization.pdf.
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Maximum and Minimum values of univariate functions
Let f : D → ℜ. Now f has

An absolute maximum (or global maximum) value at point c ∈ D if

f(x) ≤ f(c), ∀x ∈ D

An absolute minimum (or global minimum) value at c ∈ D if

f(x) ≥ f(c), ∀x ∈ D
A local maximum value at c if there is an open interval I containing c in which
f(c) ≥ f(x), ∀x ∈ I
A local minimum value at c if there is an open interval I containing c in which
f(c) ≤ f(x), ∀x ∈ I
A local extreme value at c, if f(c) is either a local maximum or local minimum value of f
in an open interval I with c ∈ I
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First Derivative Test & Extreme Value Theorem

First derivative test for local extreme value of f, when f is differentiable at the extremum.
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f'(x) = 0 for all local extreme values



First Derivative Test & Extreme Value Theorem

First derivative test for local extreme value of f, when f is differentiable at the extremum.

Claim
If f(c) is a local extreme value and if f is differentiable at x = c, then f′(c) = 0.

The Extreme Value Theorem

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 5 / 210

Function has global extremes if (a) it is continuous
(b) the domain is bounded
(c) the domain is closed



First Derivative Test & Extreme Value Theorem

First derivative test for local extreme value of f, when f is differentiable at the extremum.

Claim
If f(c) is a local extreme value and if f is differentiable at x = c, then f′(c) = 0.

The Extreme Value Theorem
Claim
A continuous function f(x) on a closed and bounded interval [a, b] attains a minimum value
f(c) for some c ∈ [a, b] and a maximum value f(d) for some d ∈ [a, b]. That is, a continuous
function on a closed, bounded interval attains a minimum and a maximum value.

We must point out that either or both of the values c and d may be attained at the end points
of the interval [a, b].
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Taylor’s Theorem and nth degree polynomial approximation

The nth degree polynomial approximation of a function is used to prove a generalization of the
mean value theorem, called the Taylor’s theorem.

Claim
The Taylor’s theorem states that if f and its first n derivatives f′, f′′, . . . , f(n) are continuous on
the closed interval [a, b], and differentiable on (a, b), then there exists a number c ∈ (a, b)
such that

f(b) = f(a) + f′(a)(b− a) + 1

2!
f′′(a)(b− a)2 + . . .+

1

n!
f(n)(a)(b− a)n + 1

(n+ 1)!
f(n+1)(c)(b− a)n+1

Mean Value Theorem = Taylor’s theorem with n =
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Taylor’s Theorem and nth degree polynomial approximation

The nth degree polynomial approximation of a function is used to prove a generalization of the
mean value theorem, called the Taylor’s theorem.

Claim
The Taylor’s theorem states that if f and its first n derivatives f′, f′′, . . . , f(n) are continuous on
the closed interval [a, b], and differentiable on (a, b), then there exists a number c ∈ (a, b)
such that

f(b) = f(a) + f′(a)(b− a) + 1

2!
f′′(a)(b− a)2 + . . .+

1

n!
f(n)(a)(b− a)n + 1

(n+ 1)!
f(n+1)(c)(b− a)n+1

Mean Value Theorem = Taylor’s theorem with n =0
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Mean Value, Taylor’s Theorem and words of caution
Note that if f fails to be differentiable at even one number in the interval, then the conclusion
of the mean value theorem may be false. For example, if f(x) = x2/3, then f′(x) = 2

3 3√x and
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Mean Value, Taylor’s Theorem and words of caution
Note that if f fails to be differentiable at even one number in the interval, then the conclusion
of the mean value theorem may be false. For example, if f(x) = x2/3, then f′(x) = 2

3 3√x and the
theorem does not hold in the interval [−3, 3], since f is not differentiable at 0 as can be seen in
Figure 1.
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Sufficient Conditions for Increasing and decreasing functions

A function f is said to be ...
increasing on an interval I in its domain D if f(t) < f(x) whenever t < x.
decreasing on an interval I ∈ D if f(t) > f(x) whenever t < x.

Consequently:

Claim
Let I be an interval and suppose f is continuous on I and differentiable on int(I). Then:

1 if f′(x) > 0 for all x ∈ int(I), then f is
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Sufficient Conditions for Increasing and decreasing functions

A function f is said to be ...
increasing on an interval I in its domain D if f(t) < f(x) whenever t < x.
decreasing on an interval I ∈ D if f(t) > f(x) whenever t < x.

Consequently:

Claim
Let I be an interval and suppose f is continuous on I and differentiable on int(I). Then:

1 if f′(x) > 0 for all x ∈ int(I), then f is increasing on I;
2 if f′(x) < 0 for all x ∈ int(I), then f is decreasing on I;
3 if f′(x) = 0 for all x ∈ int(I), iff, f is constant on I.
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Illustration of Sufficient Conditions
Figure 2 illustrates the intervals in (−∞,∞) on which the function f(x) = 3x4 + 4x3 − 36x2 is
decreasing and increasing. First we note that f(x) is differentiable everywhere on (−∞,∞)
and compute f′(x) = 12(x3 + x2 − 6x) = 12(x− 2)(x+ 3)x, which is negative in the intervals
(−∞,−3] and [0, 2] and positive in the intervals [−3, 0] and [2,∞). We observe that f is
decreasing in the intervals (−∞,−3] and [0, 2] and while it is increasing in the intervals [−3, 0]
and [2,∞).
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Necessary conditions for increasing/decreasing function
The conditions for increasing and decreasing properties of f(x) stated so far are
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Necessary conditions for increasing/decreasing function
The conditions for increasing and decreasing properties of f(x) stated so far are not necesssary.

Figure 3:

Figure 3 shows that for the function f(x) = x5, though f(x) is increasing in (−∞,∞), f′(0) = 0.
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Another sufficient condition for increasing/decreasing function

Thus, a modified sufficient condition for a function f to be increasing/decreasing on an interval
I can be stated as follows:
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f'(.) > 0 everywhere except at a finite number of points
where f'(.) = 0



Another sufficient condition for increasing/decreasing function

Thus, a modified sufficient condition for a function f to be increasing/decreasing on an interval
I can be stated as follows:
Claim
Let I be an interval and suppose f is continuous on I and differentiable on int(I). Then:

1 if f′(x) ≥ 0 for all x ∈ int(I), and if f′(x) = 0 at only finitely many x ∈ I, then f is
increasing on I;

2 if f′(x) ≤ 0 for all x ∈ int(I), and if f′(x) = 0 at only finitely many x ∈ I, then f is
decreasing on I.

For example, the derivative of the function f(x) = 6x5 − 15x4 + 10x3 vanishes at 0, and 1 and
f′(x) > 0 elsewhere. So f(x) is increasing on (−∞,∞).
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Necessary conditions for increasing/decreasing function (contd.)

We have a slightly different necessary condition..

Claim
Let I be an interval, and suppose f is continuous on I and differentiable in int(I). Then:

1 if f is increasing on I, then f′(x) ≥ 0 for all x ∈ int(I);
2 if f is decreasing on I, then f′(x) ≤ 0 for all x ∈ int(I).
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Critical Point

This concept will help us derive the general condition for local extrema.

Definition
[Critical Point]: A point c in the domain D of f is called a critical point of f if either f′(c) = 0

or f′(c) does not exist.

The following general condition for local extrema extends the result in theorem 1 to general
non-differentiable functions.
Claim
If f(c) is a local extreme value, then c is a critical number of f.

The converse of above statement does not hold (see Figure 3); 0 is a critical number
(f′(0) = 0), although f(0) is not a local extreme value.
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Critical Point and Local Extreme Value

Given a critical point c, the following test helps determine if f(c) is a local extreme value:

Procedure
[Local Extreme Value]: Let c be an isolated critical point of f

1 f(c) is a local minimum if f(x) is decreasing in an interval [c− ϵ1, c] and
increasing in an interval [c, c+ ϵ2] with ϵ1, ϵ2 > 0.

2 f(c) is a local maximum if f(x) is increasing in an interval [c− ϵ1, c] and
decreasing in an interval [c, c+ ϵ2] with ϵ1, ϵ2 > 0.
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First Derivative Test: Critical Point and Local Extreme Value
As an example, the function f(x) = 3x5 − 5x3 has
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First Derivative Test: Critical Point and Local Extreme Value
As an example, the function f(x) = 3x5 − 5x3 has the derivative f′(x) = 15x2(x+ 1)(x− 1).
The critical points are
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First Derivative Test: Critical Point and Local Extreme Value
As an example, the function f(x) = 3x5 − 5x3 has the derivative f′(x) = 15x2(x+ 1)(x− 1).
The critical points are 0, 1 and −1. Of the three, the sign of f′(x) changes at 1 and −1, which
are local minimum and maximum respectively. The sign does not change at 0, which is
therefore not a local supremum.
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First Derivative Test: Critical Point and Local Extreme Value

As another example, consider the function

f(x) =

{
−x if x ≤ 0
1 if x > 0

Then,
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First Derivative Test: Critical Point and Local Extreme Value

As another example, consider the function

f(x) =

{
−x if x ≤ 0
1 if x > 0

Then,

f′(x) =

{
−1 if x < 0
0 if x > 0

Note that f(x) is discontinuous at x = 0, and therefore f′(x) is not defined at x = 0. All
numbers x ≥ 0 are critical numbers. f(0) = 0 is a local minimum, whereas f(x) = 1 is a local
minimum as well as a local maximum ∀x > 0.
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Strict Convexity and Extremum
A differentiable function f is said to be strictly convex (or strictly concave up) on an open
interval I, iff, f′(x) is increasing on I.
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Strict Convexity and Extremum
A differentiable function f is said to be strictly convex (or strictly concave up) on an open
interval I, iff, f′(x) is increasing on I.
Recall the graphical interpretation of the first derivative f′(x); f′(x) > 0 implies that f(x) is
increasing at x.
Similarly, f′(x) is increasing when
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Sufficient condition ==> f''(x) >= 0

and f''(x) vanishes at a finite no.
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Necessary condition ==> f''(x) >=0 



Strict Convexity and Extremum
A differentiable function f is said to be strictly convex (or strictly concave up) on an open
interval I, iff, f′(x) is increasing on I.
Recall the graphical interpretation of the first derivative f′(x); f′(x) > 0 implies that f(x) is
increasing at x.
Similarly, f′(x) is increasing when f′′(x) > 0. This gives us a sufficient condition for the
strict convexity of a function:

Claim
If at all points in an open interval I, f(x) is doubly differentiable and if f′′(x) > 0, ∀x ∈ I,
then the slope of the function is always increasing with x and the graph is strictly convex. This
is illustrated in Figure 5.

On the other hand, if the function is strictly convex and doubly differentiable in I, then
f′′(x) ≥ 0, ∀x ∈ I.
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Strict Convexity and Extremum (Illustrated)

Figure 5:
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The function in [x1,x2] lies completely (strictly) below the line segment
joining x1 to x2



Strict Convexity and Extremum: Slopeless interpretation (SI)

Claim
A function f is strictly convex on an open interval I, iff

f(ax1 + (1− a)x2) < af(x1) + (1− a)f(x2) (1)

whenver x1, x2 ∈ I, x1 ̸= x2 and 0 < a < 1.
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Strict Concavity

A differentiable function f is said to be strictly concave on an open interval I, iff, f′(x) is
decreasing on I.
Recall from theorem 4, the graphical interpretation of the first derivative f′(x); f′(x) < 0
implies that f(x) is decreasing at x.
Similarly, f′(x) is (strictly) monotonically decreasing when
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Strict Concavity

A differentiable function f is said to be strictly concave on an open interval I, iff, f′(x) is
decreasing on I.
Recall from theorem 4, the graphical interpretation of the first derivative f′(x); f′(x) < 0
implies that f(x) is decreasing at x.
Similarly, f′(x) is (strictly) monotonically decreasing when f′′(x) < 0. This gives us a
sufficient condition for the concavity of a function:

Claim
If at all points in an open interval I, f(x) is doubly differentiable and if f′′(x) < 0, ∀x ∈ I,
then the slope of the function is always decreasing with x and the graph is strictly concave.
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Strict Concavity
On the other hand, if the function is strictly concave and doubly differentiable in I, then
f′′(x) ≤ 0, ∀x ∈ I. This is illustrated in Figure 6.

Figure 6:
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Strict Concavity (slopeless interpretation)

There is also a slopeless interpretation of concavity as stated below:

Claim
A differentiable function f is strictly concave on an open interval I, iff

f(ax1 + (1− a)x2) > af(x1) + (1− a)f(x2) (2)

whenver x1, x2 ∈ I, x1 ̸= x2 and 0 < a < 1.

The proof is similar to that for the slopeless interpretation of convexity.
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Convex & Concave Regions and Inflection Point
Study the function f(x) = x3 − x+ 2.
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Convex & Concave Regions and Inflection Point
Study the function f(x) = x3 − x+ 2. It’s slope decreases as x increases to 0 (f′′(x) < 0) and
then the slope increases beyond x = 0 (f′′(x) > 0). The point 0, where the f′′(x) changes sign
is called the inflection point; the graph is strictly concave for x < 0 and strictly convex for
x > 0. See Figure 7.
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Convex & Concave Regions and Inflection Point

Along similar lines, study the function f(x) = 1
20x5 − 7

12x4 +
7
6x3 − 15

2 x2.
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Convex & Concave Regions and Inflection Point

Along similar lines, study the function f(x) = 1
20x5 − 7

12x4 +
7
6x3 − 15

2 x2.
It is strictly concave on (−∞,−1] and [3, 5] and strictly convex on [−1, 3] and [5,∞].
The inflection points for this function are at x = −1, x = 3 and x = 5.
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First Derivative Test: Restated using Strict Convexity

The first derivative test for local extrema can be restated in terms of strict convexity and
concavity of functions.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 25 / 210

Expect convexity around a point of (local) minimum
And
Expect concavity around a point of (local) maximum



First Derivative Test: Restated using Strict Convexity

The first derivative test for local extrema can be restated in terms of strict convexity and
concavity of functions.

Procedure
[First derivative test in terms of strict convexity]: Let c be a critical number of f and

f′(c) = 0. Then,
1 f(c) is a local minimum if
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First Derivative Test: Restated using Strict Convexity

The first derivative test for local extrema can be restated in terms of strict convexity and
concavity of functions.

Procedure
[First derivative test in terms of strict convexity]: Let c be a critical number of f and

f′(c) = 0. Then,
1 f(c) is a local minimum if the graph of f(x) is strictly convex on an open

interval containing c.
2 f(c) is a local maximum if the graph of f(x) is strictly concave on an open

interval containing c.
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Strict Convexity: Restated using Second Derivative

If the second derivative f′′(c) exists, then the strict convexity conditions for the critical number
can be stated in terms of the sign of of f′′(c), making use of previous results. This is called the
second derivative test.
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Strict Convexity: Restated using Second Derivative

If the second derivative f′′(c) exists, then the strict convexity conditions for the critical number
can be stated in terms of the sign of of f′′(c), making use of previous results. This is called the
second derivative test.
Procedure
[Second derivative test]: Let c be a critical number of f where f′(c) = 0 and f′′(c) exists.

1 If f′′(c) > 0 then
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Strict Convexity: Restated using Second Derivative

If the second derivative f′′(c) exists, then the strict convexity conditions for the critical number
can be stated in terms of the sign of of f′′(c), making use of previous results. This is called the
second derivative test.
Procedure
[Second derivative test]: Let c be a critical number of f where f′(c) = 0 and f′′(c) exists.

1 If f′′(c) > 0 then f(c) is a local minimum.
2 If f′′(c) < 0 then f(c) is a local maximum.
3 If f′′(c) = 0 then f(c) could be a local maximum, a local minimum, neither

or both. That is, the test fails.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 26 / 210

strict convexity



Convexity, Minima and Maxima: Illustrations

Study the functions f(x) = x4, f(x) = −x4 and f(x) = x3:
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Convexity, Minima and Maxima: Illustrations

Study the functions f(x) = x4, f(x) = −x4 and f(x) = x3:
If f(x) = x4, then f′(0) = 0 and f′′(0) = 0 and we can see that f(0) is a local minimum.
If f(x) = −x4, then f′(0) = 0 and f′′(0) = 0 and we can see that f(0) is a local maximum.
If f(x) = x3, then f′(0) = 0 and f′′(0) = 0 and we can see that f(0) is neither a local
minimum nor a local maximum. (0, 0) is an inflection point in this case.
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Convexity, Minima and Maxima: Illustrations (contd.)

Study the functions: f(x) = x+ 2 sin x and f(x) = x+ 1
x :

If f(x) = x+ 2 sin x, then f′(x) = 1 + 2 cos x. f′(x) = 0 for x = 2π
3 , 4π3 , which are the

critical numbers. f′′
(
2π
3

)
= −2 sin 2π

3 = −
√
3 < 0 ⇒ f

(
2π
3

)
= 2π

3 +
√
3 is a local

maximum value. On the other hand, f′′
(
4π
3

)
=

√
3 > 0 ⇒ f

(
4π
3

)
= 4π

3 −
√
3 is a local

minimum value.
If f(x) = x+ 1

x , then f′(x) = 1− 1
x2 . The critical numbers are x = ±1. Note that x = 0 is

not a critical number, even though f′(0) does not exist, because 0 is not in the domain of
f. f′′(x) = 2

x3 . f
′′(−1) = −2 < 0 and therefore f(−1) = −2 is a local maximum.

f′′(1) = 2 > 0 and therefore f(1) = 2 is a local minimum.
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