
References

Convex Optimization by Stephen Boyd and Lieven Vandenberghe
Lectures on Modern Convex Optimization by Aharon Ben-Tal and Arkadi Nemirovski
Convex Analysis by R. T. Rockafellar, Vol. 28 of Princeton Math. Series, Princeton Univ.
Press, 1970 (470 pages)
Numerical Optimization by Nocedal, Jorge, Wright, Stephen
Introduction to Nonlinear Optimization - Theory, Algorithms and Applications by Amir
Beck

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 1 / 210



Developing Tools for Convexity Analysis of
f(x1, x2, ..xn)

Instructor: Prof. Ganesh Ramakrishnan

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 2 / 210



Summary of Optimization Principles for Univariate
Functions

Detailed slides at https://www.cse.iitb.ac.in/~cs709/notes/enotes/
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and Section 4.1.1 (pages 213 to 214) of the notes at
https://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvexOptimization.pdf.
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Maximum and Minimum values of univariate functions
Let f : D → ℜ. Now f has

An absolute maximum (or global maximum) value at point c ∈ D if

f(x) ≤ f(c), ∀x ∈ D

An absolute minimum (or global minimum) value at c ∈ D if

f(x) ≥ f(c), ∀x ∈ D

A local maximum value at c if there is an open interval I containing c in which
f(c) ≥ f(x), ∀x ∈ I
A local minimum value at c if there is an open interval I containing c in which
f(c) ≤ f(x), ∀x ∈ I
A local extreme value at c, if f(c) is either a local maximum or local minimum value of f
in an open interval I with c ∈ I
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First Derivative Test & Extreme Value Theorem

First derivative test for local extreme value of f, when f is differentiable at the extremum.

Claim
If f(c) is a local extreme value and if f is differentiable at x = c, then f′(c) = 0.

The Extreme Value Theorem
Claim
A continuous function f(x) on a closed and bounded interval [a, b] attains a minimum value
f(c) for some c ∈ [a, b] and a maximum value f(d) for some d ∈ [a, b]. That is, a continuous
function on a closed, bounded interval attains a minimum and a maximum value.

We must point out that either or both of the values c and d may be attained at the end points
of the interval [a, b].
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Taylor’s Theorem and nth degree polynomial approximation

The nth degree polynomial approximation of a function is used to prove a generalization of the
mean value theorem, called the Taylor’s theorem.

Claim
The Taylor’s theorem states that if f and its first n derivatives f′, f′′, . . . , f(n) are continuous on
the closed interval [a, b], and differentiable on (a, b), then there exists a number c ∈ (a, b)
such that

f(b) = f(a) + f′(a)(b − a) + 1

2!
f′′(a)(b − a)2 + . . .+

1

n!
f(n)(a)(b − a)n +

1

(n + 1)!
f(n+1)(c)(b − a)n+1

Mean Value Theorem = Taylor’s theorem with n =

0
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Mean Value, Taylor’s Theorem and words of caution
Note that if f fails to be differentiable at even one number in the interval, then the conclusion
of the mean value theorem may be false. For example, if f(x) = x2/3, then f′(x) = 2

3 3√x and

the
theorem does not hold in the interval [−3, 3], since f is not differentiable at 0 as can be seen in
Figure 1.

Figure 1:
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Sufficient Conditions for Increasing and decreasing functions

A function f is said to be ...
increasing on an interval I in its domain D if f(t) < f(x) whenever t < x.
decreasing on an interval I ∈ D if f(t) > f(x) whenever t < x.

Consequently:

Claim
Let I be an interval and suppose f is continuous on I and differentiable on int(I). Then:

1 if f′(x) > 0 for all x ∈ int(I), then f is

increasing on I;
2 if f′(x) < 0 for all x ∈ int(I), then f is decreasing on I;
3 if f′(x) = 0 for all x ∈ int(I), iff, f is constant on I.
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Illustration of Sufficient Conditions
Figure 2 illustrates the intervals in (−∞,∞) on which the function f(x) = 3x4 + 4x3 − 36x2 is
decreasing and increasing. First we note that f(x) is differentiable everywhere on (−∞,∞)
and compute f′(x) = 12(x3 + x2 − 6x) = 12(x − 2)(x + 3)x, which is negative in the intervals
(−∞,−3] and [0, 2] and positive in the intervals [−3, 0] and [2,∞). We observe that f is
decreasing in the intervals (−∞,−3] and [0, 2] and while it is increasing in the intervals [−3, 0]
and [2,∞).

Figure 2:
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Necessary conditions for increasing/decreasing function
The conditions for increasing and decreasing properties of f(x) stated so far are

not necesssary.

Figure 3:

Figure 3 shows that for the function f(x) = x5, though f(x) is increasing in (−∞,∞), f′(0) = 0.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 10 / 210



Necessary conditions for increasing/decreasing function
The conditions for increasing and decreasing properties of f(x) stated so far are not necesssary.

Figure 3:

Figure 3 shows that for the function f(x) = x5, though f(x) is increasing in (−∞,∞), f′(0) = 0.
Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 10 / 210



Another sufficient condition for increasing/decreasing function

Thus, a modified sufficient condition for a function f to be increasing/decreasing on an interval
I can be stated as follows:

Claim
Let I be an interval and suppose f is continuous on I and differentiable on int(I). Then:

1 if f′(x) ≥ 0 for all x ∈ int(I), and if f′(x) = 0 at only finitely many x ∈ I, then f is
increasing on I;

2 if f′(x) ≤ 0 for all x ∈ int(I), and if f′(x) = 0 at only finitely many x ∈ I, then f is
decreasing on I.

For example, the derivative of the function f(x) = 6x5 − 15x4 + 10x3 vanishes at 0, and 1 and
f′(x) > 0 elsewhere. So f(x) is increasing on (−∞,∞).
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Necessary conditions for increasing/decreasing function (contd.)

We have a slightly different necessary condition..

Claim
Let I be an interval, and suppose f is continuous on I and differentiable in int(I). Then:

1 if f is increasing on I, then f′(x) ≥ 0 for all x ∈ int(I);
2 if f is decreasing on I, then f′(x) ≤ 0 for all x ∈ int(I).
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Critical Point

This concept will help us derive the general condition for local extrema.

Definition
[Critical Point]: A point c in the domain D of f is called a critical point of f if either f′(c) = 0

or f′(c) does not exist.

The following general condition for local extrema extends the result in theorem 1 to general
non-differentiable functions.
Claim
If f(c) is a local extreme value, then c is a critical number of f.

The converse of above statement does not hold (see Figure 3); 0 is a critical number
(f′(0) = 0), although f(0) is not a local extreme value.
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Critical Point and Local Extreme Value

Given a critical point c, the following test helps determine if f(c) is a local extreme value:

Procedure
[Local Extreme Value]: Let c be an isolated critical point of f

1 f(c) is a local minimum if f(x) is decreasing in an interval [c − ϵ1, c] and
increasing in an interval [c, c + ϵ2] with ϵ1, ϵ2 > 0.

2 f(c) is a local maximum if f(x) is increasing in an interval [c − ϵ1, c] and
decreasing in an interval [c, c + ϵ2] with ϵ1, ϵ2 > 0.
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First Derivative Test: Critical Point and Local Extreme Value
As an example, the function f(x) = 3x5 − 5x3 has

the derivative f′(x) = 15x2(x + 1)(x − 1).
The critical points are 0, 1 and −1. Of the three, the sign of f′(x) changes at 1 and −1, which
are local minimum and maximum respectively. The sign does not change at 0, which is
therefore not a local supremum.

Figure 4:
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First Derivative Test: Critical Point and Local Extreme Value

As another example, consider the function

f(x) =

{
−x if x ≤ 0
1 if x > 0

Then,

f′(x) =

{
−1 if x < 0
0 if x > 0

Note that f(x) is discontinuous at x = 0, and therefore f′(x) is not defined at x = 0. All
numbers x ≥ 0 are critical numbers. f(0) = 0 is a local minimum, whereas f(x) = 1 is a local
minimum as well as a local maximum ∀x > 0.
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Strict Convexity and Extremum
A differentiable function f is said to be strictly convex (or strictly concave up) on an open
interval I, iff, f′(x) is increasing on I.

Recall the graphical interpretation of the first derivative f′(x); f′(x) > 0 implies that f(x) is
increasing at x.
Similarly, f′(x) is increasing when f′′(x) > 0. This gives us a sufficient condition for the
strict convexity of a function:

Claim
If at all points in an open interval I, f(x) is doubly differentiable and if f′′(x) > 0, ∀x ∈ I,
then the slope of the function is always increasing with x and the graph is strictly convex. This
is illustrated in Figure 5.

On the other hand, if the function is strictly convex and doubly differentiable in I, then
f′′(x) ≥ 0, ∀x ∈ I.
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Strict Convexity and Extremum (Illustrated)

Figure 5:
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Strict Convexity and Extremum: Slopeless interpretation (SI)

Claim
A function f is strictly convex on an open interval I, iff

f(ax1 + (1− a)x2) < af(x1) + (1− a)f(x2) (1)

whenver x1, x2 ∈ I, x1 ̸= x2 and 0 < a < 1.
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Strict Concavity

A differentiable function f is said to be strictly concave on an open interval I, iff, f′(x) is
decreasing on I.
Recall from theorem 4, the graphical interpretation of the first derivative f′(x); f′(x) < 0
implies that f(x) is decreasing at x.
Similarly, f′(x) is (strictly) monotonically decreasing when

f′′(x) < 0. This gives us a
sufficient condition for the concavity of a function:

Claim
If at all points in an open interval I, f(x) is doubly differentiable and if f′′(x) < 0, ∀x ∈ I,
then the slope of the function is always decreasing with x and the graph is strictly concave.
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Strict Concavity
On the other hand, if the function is strictly concave and doubly differentiable in I, then
f′′(x) ≤ 0, ∀x ∈ I. This is illustrated in Figure 6.

Figure 6:
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Strict Concavity (slopeless interpretation)

There is also a slopeless interpretation of concavity as stated below:

Claim
A differentiable function f is strictly concave on an open interval I, iff

f(ax1 + (1− a)x2) > af(x1) + (1− a)f(x2) (2)

whenver x1, x2 ∈ I, x1 ̸= x2 and 0 < a < 1.

The proof is similar to that for the slopeless interpretation of convexity.
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Convex & Concave Regions and Inflection Point
Study the function f(x) = x3 − x + 2.

It’s slope decreases as x increases to 0 (f′′(x) < 0) and
then the slope increases beyond x = 0 (f′′(x) > 0). The point 0, where the f′′(x) changes sign
is called the inflection point; the graph is strictly concave for x < 0 and strictly convex for
x > 0. See Figure 7.

Figure 7:
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Convex & Concave Regions and Inflection Point

Along similar lines, study the function f(x) = 1
20x5 − 7

12x4 + 7
6x3 − 15

2 x2.

It is strictly concave on (−∞,−1] and [3, 5] and strictly convex on [−1, 3] and [5,∞].
The inflection points for this function are at x = −1, x = 3 and x = 5.
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First Derivative Test: Restated using Strict Convexity

The first derivative test for local extrema can be restated in terms of strict convexity and
concavity of functions.

Procedure
[First derivative test in terms of strict convexity]: Let c be a critical number of f and

f′(c) = 0. Then,
1 f(c) is a local minimum if the graph of f(x) is strictly convex on an open

interval containing c.
2 f(c) is a local maximum if the graph of f(x) is strictly concave on an open

interval containing c.
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Strict Convexity: Restated using Second Derivative

If the second derivative f′′(c) exists, then the strict convexity conditions for the critical number
can be stated in terms of the sign of of f′′(c), making use of previous results. This is called the
second derivative test.

Procedure
[Second derivative test]: Let c be a critical number of f where f′(c) = 0 and f′′(c) exists.

1 If f′′(c) > 0 then f(c) is a local minimum.
2 If f′′(c) < 0 then f(c) is a local maximum.
3 If f′′(c) = 0 then f(c) could be a local maximum, a local minimum, neither

or both. That is, the test fails.
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can be stated in terms of the sign of of f′′(c), making use of previous results. This is called the
second derivative test.
Procedure
[Second derivative test]: Let c be a critical number of f where f′(c) = 0 and f′′(c) exists.

1 If f′′(c) > 0 then

f(c) is a local minimum.
2 If f′′(c) < 0 then f(c) is a local maximum.
3 If f′′(c) = 0 then f(c) could be a local maximum, a local minimum, neither

or both. That is, the test fails.
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Convexity, Minima and Maxima: Illustrations

Study the functions f(x) = x4, f(x) = −x4 and f(x) = x3:

If f(x) = x4, then f′(0) = 0 and f′′(0) = 0 and we can see that f(0) is a local minimum.
If f(x) = −x4, then f′(0) = 0 and f′′(0) = 0 and we can see that f(0) is a local maximum.
If f(x) = x3, then f′(0) = 0 and f′′(0) = 0 and we can see that f(0) is neither a local
minimum nor a local maximum. (0, 0) is an inflection point in this case.
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Convexity, Minima and Maxima: Illustrations (contd.)

Study the functions: f(x) = x + 2 sin x and f(x) = x + 1
x :

If f(x) = x + 2 sin x, then f′(x) = 1 + 2 cos x. f′(x) = 0 for x = 2π
3 , 4π3 , which are the

critical numbers. f′′
(
2π
3

)
= −2 sin 2π

3 = −
√
3 < 0 ⇒ f

(
2π
3

)
= 2π

3 +
√
3 is a local

maximum value. On the other hand, f′′
(
4π
3

)
=

√
3 > 0 ⇒ f

(
4π
3

)
= 4π

3 −
√
3 is a local

minimum value.
If f(x) = x + 1

x , then f′(x) = 1− 1
x2 . The critical numbers are x = ±1. Note that x = 0 is

not a critical number, even though f′(0) does not exist, because 0 is not in the domain of
f. f′′(x) = 2

x3 . f′′(−1) = −2 < 0 and therefore f(−1) = −2 is a local maximum.
f′′(1) = 2 > 0 and therefore f(1) = 2 is a local minimum.
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Global Extrema on Closed Intervals

Recall the extreme value theorem. A consequence is that:
if either of c or d lies in (a, b), then it is a critical number of f;
else each of c and d must lie on one of the boundaries of [a, b].

This gives us a procedure for finding the maximum and minimum of a continuous function f
on a closed bounded interval I:
Procedure

[Finding extreme values on closed, bounded intervals]:
1 Find the critical points in int(I).
2 Compute the values of f at the critical points and at the endpoints of the

interval.
3 Select the least and greatest of the computed values.
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Global Extrema on Closed Intervals (contd)

To compute the maximum and minimum values of f(x) = 4x3 − 8x2 + 5x on the interval
[0, 1],

▶ We first compute f′(x) = 12x2 − 16x + 5 which is 0 at x = 1
2 ,

5
6 .

▶ Values at the critical points are f( 12 ) = 1, f( 56 ) =
25
27 .

▶ The values at the end points are f(0) = 0 and f(1) = 1.
▶ Therefore, the minimum value is f(0) = 0 and the maximum value is f(1) = f( 12 ) = 1.

In this context, it is relevant to discuss the one-sided derivatives of a function at the
endpoints of the closed interval on which it is defined.
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Global Extrema on Closed Intervals (contd)

Definition
[One-sided derivatives at endpoints]: Let f be defined on a closed bounded interval [a, b].

The (right-sided) derivative of f at x = a is defined as

f′(a) = lim
h→0+

f(a + h)− f(a)
h

Similarly, the (left-sided) derivative of f at x = b is defined as

f′(b) = lim
h→0−

f(b + h)− f(b)
h

Essentially, each of the one-sided derivatives defines one-sided slopes at the endpoints.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 31 / 210



Global Extrema on Closed Intervals (contd)

Based on these definitions, the following result can be derived.

Claim
If f is continuous on [a, b] and f′(a) exists as a real number or as ±∞, then we have the
following necessary conditions for extremum at a.

If f(a) is the maximum value of f on [a, b], then f′(a) ≤ 0 or f′(a) = −∞.
If f(a) is the minimum value of f on [a, b], then f′(a) ≥ 0 or f′(a) = ∞.

If f is continuous on [a, b] and f′(b) exists as a real number or as ±∞, then we have the
following necessary conditions for extremum at b

If f(b) is the maximum value of f on [a, b], then f′(b) ≥ 0 or f′(b) = ∞.
If f(b) is the minimum value of f on [a, b], then f′(b) ≤ 0 or f′(b) = −∞.
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Global Extrema on Closed Intervals (contd)

The following result gives a useful procedure for finding extrema on closed intervals.

Claim
If f is continuous on [a, b] and f′′(x) exists for all x ∈ (a, b). Then,

If f′′(x) ≤ 0, ∀x ∈ (a, b), then the minimum value of f on [a, b] is either f(a) or f(b). If, in
addition, f has a critical point c ∈ (a, b), then f(c) is the maximum value of f on [a, b].
If f′′(x) ≥ 0, ∀x ∈ (a, b), then the maximum value of f on [a, b] is either f(a) or f(b). If, in
addition, f has a critical point c ∈ (a, b), then f(c) is the minimum value of f on [a, b].
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Global Extrema on Open Intervals

The next result is very useful for finding extrema on open intervals.

Claim
Let I be an open interval and let f′′(x) exist ∀x ∈ I.

If f′′(x) ≥ 0, ∀x ∈ I, and if there is a number c ∈ I where f′(c) = 0, then f(c) is the
global minimum value of f on I.
If f′′(x) ≤ 0, ∀x ∈ I, and if there is a number c ∈ I where f′(c) = 0, then f(c) is the
global maximum value of f on I.

For example, let f(x) = 2
3x − sec x and

I = (−π
2 , π2 ).

f′(x) = 2
3 − sec x tan x = 2

3 − sin x
cos2 x = 0 ⇒ x = π

6 . Further,
f′′(x) = − sec x(tan2 x + sec2 x) < 0 on (−π

2 , π2 ). Therefore, f attains the maximum value
f(π6 ) =

π
9 − 2√

3
on I.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 34 / 210



Global Extrema on Open Intervals

The next result is very useful for finding extrema on open intervals.

Claim
Let I be an open interval and let f′′(x) exist ∀x ∈ I.

If f′′(x) ≥ 0, ∀x ∈ I, and if there is a number c ∈ I where f′(c) = 0, then f(c) is the
global minimum value of f on I.
If f′′(x) ≤ 0, ∀x ∈ I, and if there is a number c ∈ I where f′(c) = 0, then f(c) is the
global maximum value of f on I.

For example, let f(x) = 2
3x − sec x and

I = (−π
2 , π2 ).f′(x) =

2
3 − sec x tan x = 2

3 − sin x
cos2 x = 0 ⇒ x = π

6 . Further,
f′′(x) = − sec x(tan2 x + sec2 x) < 0 on (−π

2 , π2 ). Therefore, f attains the maximum value
f(π6 ) =

π
9 − 2√

3
on I.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 34 / 210



Global Extrema on Open Intervals (contd)
As another example, let us find the dimensions of the cone with minimum volume that can
contain a sphere with radius R. Let h be the height of the cone and r the radius of its base.
The objective to be minimized is the volume f(r, h) = 1

3πr2h. The constraint betwen r and h is
shown in Figure 8. The traingle AEF is similar to traingle ADB and therefore, h−R

R =
√

h2+r2
r .
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Global Extrema on Open Intervals (contd)

Our first step is to reduce the volume formula to involve only one of r21 or h.
The algebra involved will be the simplest if we solved for h.
The constraint gives us r2 = R2h

h−2R . Substituting this expression for r2 into the volume formula,
we get g(h) = πR2

3
h2

(h−2R) with the domain given by D =
{

h|2R < h < ∞
}
.

Note that D is an open interval.
g′ = πR2

3
2h(h−2R)−h2

(h−2R)2 = πR2

3
h(h−4R)
(h−2R)2 which is 0 in its domain D if and only if h = 4R.

g′′ = πR2

3
2(h−2R)3−2h(h−4R)(h−2R)2

(h−2R)4 = πR2

3
2(h2−4Rh+4R2−h2+4Rh)

(h−2R)3 = πR2

3
8R2

(h−2R)3 , which is greater
than 0 in D.
Therefore, g (and consequently f) has a unique minimum at h = 4R and correspondingly,
r2 = R2h

h−2R = 2R2.

1Since r appears in the volume formula only in terms of r2.
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From ℜ to ℜn.
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Local Extrema for f(x1, x2.., xn)

Definition
[Local minimum]: A function f : D → ℜ of n variables has a local minimum at x0 if ∃N (x0)

such that ∀ x ∈ N (x0), f(x0) ≤ f(x). In other words, f(x0) ≤ f(x) whenever x
lies in some neighborhood around x0. An example neighborhood is the circular
disc when D = ℜn.

Definition
[Local maximum]: ......................... f(x0) ≥ f(x).

General Reference: Stories About Maxima and Minima (Mathematical World) by Vladimir M.
Tikhomirov
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Local Extrema
These definitions are exactly analogous to the definitions for a function of single variable.
Figure 9 shows the plot of f(x1, x2) = 3x21 − x31 − 2x22 + x42. As can be seen in the plot, the
function has several local maxima and minima.

Figure 9:
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Convexity and Extremum: Slopeless interpretation (SI)

Definition
A function f is convex on D, iff

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) (3)

and is strictly convex on D, iff

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2) (4)

whenever x1,x2 ∈ D, x1 ̸= x2 and 0 < α < 1.

Note: This implicitly assumes that whenever x1,x2 ∈ D,

αx1 + (1− α)x2 ∈ D
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Local Extrema
Figure 10 shows the plot of f(x1, x2) = 3x21 + 3x22 − 9. As can be seen in the plot, the function
is cup shaped and appears to be convex everywhere in ℜ2.

Figure 10:
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From f(x) : ℜ → ℜ to f(x1, x2 . . . xn) : D → ℜ

Need to also extend
Extreme Value Theorem
Rolle’s theorem, Mean Value Theorem, Taylor Expansion
Necessary and Sufficient first and second order conditions for local/extrema
First and second order conditions for Convexity

Need following notions/definitions in D
Neighborhood and open sets/balls (⇐ Local extremum)
Bounded, Closed Sets (⇐ Extreme value theorem)
Convex Sets (⇐ Convex functions of n variables)
Directional Derivatives and Gradients (⇐ Taylor Expansion, all first order conditions)
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Spaces The Mathematical Structures)
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Contents: The Mathematical Structures called Spaces
Topological Spaces: Notion of neighbourhood of points.
Metric Spaces: Notion of positive distance between two points.
Normed Vector Spaces: Notion of positive length of each point.
Inner Product Spaces: Notion of projection of one point on another, both positive and
negative.
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Topological Spaces
Set of points X along with the set of neighbors (N(x)) of each point (x ∈ X), with certain
axioms required to be satisfied by the points and their neighbors.

Definition 1: A topological space is an ordered pair (X,N ), where:
▶ X is a set
▶ N is a collection of subsets of X, satisfying the following axioms:

⋆ The empty set and X itself belong to N .
⋆ Any (finite or infinite) union of members of N still belongs to N .
⋆ The intersection of any finite number of members of N still belongs to N .

As per above example, which out of following are toplogies with X = {1, 2, 3} and N =
▶ {{}, {1, 2, 3}}
▶ {{}, {1}, {1, 2, 3}}
▶ {{}, {1}, {2}, {1, 2}, {1, 2, 3}}
▶ {{}, {2}, {1, 2}, {2, 3}, {1, 2, 3}}
▶ {{}, {1}, {2}, {1, 2, 3}}
▶ {{}, {1, 2}, {2, 3}, {1, 2, 3}}

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 45 / 210



Metric Spaces

Set of points (X) along with a notion of distance d(x1,x2) between any two
points(x1,x2 ∈ X) such that:

1 d(x1,x2) ≥ 0 (non-negativity).
2 d(x1,x2) = 0 iff x1 = x2 (identity).
3 d(x1,x2) = d(x2,x1) (symmetry).
4 d(x1,x2) + d(x2,x3) ≥ d(x1,x3) (triangle inequality).
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Metric Spaces
Examples:

1-metric d1: The plane with the taxi cab metric
▶ d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|

2-metric d2: The plane ℜ2 with the ‘usual distance’ (measured using Pythagoras’s
theorem):

▶ d((x1, y1), (x2, y2)) =
√
(x1 − x2)2 + (y1 − y2)2.

Infinity metric d∞: The plane with the maximum metric
▶ d((x1, y1), (x2, y2)) = max(|x1 − x2|, |y1 − y2|)
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Normed Vector Spaces

Vector Space: A space consisting of vectors, together with the
1 associative and commutative operation of addition of vectors,
2 associative and distributive operation of multiplication of vectors by scalars.

Norm: A function that assigns a strictly positive length or size to each vector in a vector
space — save for the zero vector, which is assigned a length of zero.
Normed Vector Space: A vector space on which a norm is defined.
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Normed Vector Spaces
A vector space on which a norm is defined.

In any real vector space ℜn, the length of a vector has the following properties:
1 The zero vector, 0, has zero length; every other vector has a positive length.

⋆ ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 Multiplying a vector by a positive number changes its length without changing its direction.

Moreover,
⋆ ∥αx∥ = |α|∥x∥ for any scalar α.

3 The triangle inequality holds. That is, taking norms as distances, the distance from point A
through B to C is never shorter than going directly from A to C, or the shortest distance
between any two points is a straight line.

⋆ ||x1 + x2|| ≤ ||x1|| + ||x2|| for any vectors x1 and x2.

The generalization of these three properties to more abstract vector spaces leads to the
notion of norm. For example: A matrix norm.
Additionally, in the case of square matrices (thus, m = n), some (but not all) matrix
norms satisfy the following condition, which is related to the fact that matrices are more
than just vectors: ||AB|| ≤ ||A|| ||B|| for all matrices A and B in Knxn.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 49 / 210



Contrasting the Spaces discussed so far
Topological Spaces: Notion of neighbourhood of points.
Metric Spaces: Notion of positive distance between two points.
Normed Vector Spaces: Notion of positive length of each point.
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Topological Spaces
Set of points X along with the set of open sets (N ) with certain axioms required to be
satisfied by sets in N :

Definition 1: A topological space is an ordered pair (X,N ), where:
▶ X is a set
▶ N is a collection of subsets of X, satisfying the following axioms:

⋆ The empty set and X itself belong to N .
⋆ Any (finite or infinite) union of members of N still belongs to N .
⋆ The intersection of any finite number of members of N still belongs to N .

We already saw examples that are (and are not) toplogies for X = {1, 2, 3} and N =
▶ {{}, {1, 2, 3}} Yes
▶ {{}, {1}, {1, 2, 3}} Yes
▶ {{}, {1}, {2}, {1, 2}, {1, 2, 3}} Yes
▶ {{}, {2}, {1, 2}, {2, 3}, {1, 2, 3}} Yes
▶ {{}, {1}, {2}, {1, 2, 3}} No as {1} ∪ {2} /∈ N
▶ {{}, {1, 2}, {2, 3}, {1, 2, 3}} No as {1,2} ∩ {2,3} /∈ N
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Topological Spaces and Open Sets
The neighbourhoods can be recovered by defining N(x) to be a neighbourhood of x if N
includes a set O such that x ∈ O. The sets O ∈ N are basically the open sets. For example

with X = {1, 2, 3} and N = {{}, {1, 2, 3}, each of {} and {1, 2, 3} is an open set O and
N(1) ∈ {{1, 2, 3}}
N(2) ∈ {{1, 2, 3}}
N(3) ∈ {{1, 2, 3}}
with X = {1, 2, 3} and N = {{}, {1}, {1, 2, 3}}, each of {},{1} and {1, 2, 3} is an open
set O and
N(1) ∈ {{1}, {1, 2, 3}}
N(2) ∈ {{1, 2, 3}}
N(3) ∈ {{1, 2, 3}}
with X = {1, 2, 3} and N = {{}, {1}, {2}, {1, 2}, {1, 2, 3}}, each of {}, {1}, {2}, {1, 2}
and {1, 2, 3} is an open set O and
N(1) ∈ {{1}, {1, 2}, {1, 2, 3}}
N(2) ∈ {{2}, {1, 2}, {1, 2, 3}}
N(3) ∈ {{1, 2, 3}}
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Topological Spaces and Open Sets

with X = {1, 2, 3} and N = {{}, {2}, {1, 2}, {2, 3}, {1, 2, 3}} each of
{}, {2}, {1, 2}, {2, 3} and {1, 2, 3} is an open set O and
N(1) ∈ {{1, 2}, {1, 2, 3}}
N(2) ∈ {{1, 2}, {2, 3}, {1, 2, 3}}
N(3) ∈ {{2, 3}, {1, 2, 3}}

(Alternative) Definition 2: A topological space is an ordered pair (X,N(.)), where X is a set
and N(.) is a neighborhood function such that for each x ∈ X, if N(x) is a

neighbourhood of x then x ∈ N(x).
subset of X and includes a neighbourhood of x, then N(bfx) is a neighbourhood of x.
neighbourhood of x, then for any other neighborhood N′(x), N(x) ∩ N′(x) is also a
neighbourhood of x.
neighbourhood of x, then it includes a neighbourhood N′(x) such that N(x) is a
neighbourhood of each point of N′(x).
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What topological spaces (and their special cases) give us

Definition 1: A topological space is an ordered pair (X,N ), where.....
Definition 2: A topological space is an ordered pair (X,N(.)), where....
Definition 1 allows for understanding open sets as elements of N .

▶ We can define an open ball B(x) to be any element of N(x).
▶ If additionally, we have metric d(., .) on the space, we can define an open ball B(x, r) of

radius r as {y|d(x,y) < r}
▶ A norm ball B(x, r) = {y|∥x − y∥ < r} also should have homogenity! That is,

∥αx − αy∥ = α∥x − y∥

Definition 2 allows for continuity of function f definied from a topology X,N(.) to another
topology Y,M(.). Function f is continuous if for every x ∈ X and every neighbourhood
M(f(x)) of f(x) there is a neighbourhood N(x) of x such that f(N(x)) ⊆ M(x).
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HW1: A Topological space that does not have metric

Consider X = {0, 1} and N = {∅, {0}, {0, 1}},
Consider some metric d(., .) which is 0 if both its arguments are the same and 1 otherwise. If
d would be such a metric, a neighborhood (ball) of radius 0.5 around 1, that is B(1, 0.5) would
equal {1}, which should have been open. However, {1} /∈ N . Contradiction!

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 55 / 210



HW2: A metric space that does not have norm

Consider (again) the discrete metric d(., .) over a vector space V. We define d(., .) to be 0 if
both its arguments are the same and 1 otherwise. While one can verify that this metric
satisifies the triangle inequality, what one requires from an equivalent norm ∥.∥n is that for any
x,y ∈ V, with x ̸= y, for any scalar α ̸= 0, we must have ∥αx − αy∥n = α∥x − y∥n. This
measure using the norm can clearly not correspond to the discrete distance metric.
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Inner Product Space

It is a vector space over a field of scalars along with an inner product.
Field of scalars: e.g. IR algebraic structure with:-

1 Addition: must be multiplicative and associative.
2 Subtraction.
3 Multiplication: must be commutative, associative and distributive.
4 Division: multiplicative inverse must exist.

Inner Product:
1 (Conjugate) Symmetry: <x1,x2> = < x2,x1 >.
2 Linearity in the first argument.

⋆ < ax1,x2 >= a < x1,x2 >
⋆ < x1 + x2,x3 >=< x1,x3 > + < x3,x3 >

3 Positive definiteness: < x,x >≥ 0, with equality iff x = 0.
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Proof: Normed Vector Space is a Metric Space
1 Normed Vector Space: A vector space on which a norm is defined. In any real vector

space ℜn, the length of a vector has the following properties:
1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

2 Metric Space: Set of points (X) along with a notion of distance d(x1,x2) between any
two points (x1,x2 ∈ X) such that:

1 d(x1,x2) ≥ 0 (non-negativity).
2 d(x1,x2) = 0 iff x1 = x2 (identity).
3 d(x1,x2) = d(x2,x1) (symmetry).
4 d(x1,x2) + d(x2,x3) ≥ d(x1,x3) (triangle inequality).

3 Proof:

1 In vector space, a vector x = x1 − x2 can be defined by subtraction. Define
d(x1,x2) = ∥x1 − x2∥, so 1.1 ⇒ ∥x1 − x2∥ ≥ 0; ∥x1 − x2∥ = 0 iff x1 − x2 = 0, hence 2.1
and 2.2 are proved.

2 1.2 ⇒ ∥− 1(x1 − x2)∥ = | − 1|∥x1 − x2∥. So, ∥x2 − x1∥ = ∥x1 − x2∥, so 2.3 is proved.
3 Take x1 = z1 − z0 and x2 = z0 − z2, put in 1.3 to get ∥z1 − z0∥+ ∥z0 − z2∥ ≥ ∥z1 − z2∥ so

2.4 is prooved.
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The Mathematical Structures & Spaces: Some Proofs
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Some Proofs For Mathematical Structures & Spaces

Under what conditions on P, is
√

xTPx a valid Norm?
Prove that inner product space is a normed vector space.
What is an example of normed vector space that is not an inner product space?
Prove that | < u, v > | ≤ ∥u∥P∥v∥P for any norm P.
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Under what conditions on P is
√

xTPx a valid Norm?
Assume x ∈ ℜn and P ∈ ℜn×n.

1 P is symmetric positive definite iff:
1 Symmetric: PT = P
2 Positive Definite: ∀x ̸= 0, xTPx ≥ 0

Proof:

If P is symmetric positive definite (SPD), then P can be written as:
▶ P = LDLT, where ...

⋆ L is lower triangular matrix with a 1 in each diagonal entry.
⋆ D is diagonal matrix with positive values.

So, we can write P = RRT where R = L
√

D.
Thus we have xTPx = xTRRTx = (RTx)T(RTx) = yTy

▶ where y = (RTx) and thus y ∈ ℜn.

So, xTPx ≥ 0.
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Under what conditions on P is
√

xTPx a valid Norm?

Recall:
1 Normed Vector Space: A vector space on which a norm is defined. In any real vector

space ℜn, the length of a vector has the following properties:
1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

Proof:

1 By definition of PST: ∥xTPx∥ ≥ 0, and ∥xTPx∥ = 0 iff x = 0.
2 For any scalar α: ∥αx∥P =

√
(αx)TP(αx) =

√
(α2)(xTPx) = α

√
xTPx = |α|||x||P.

3 ∥x1 + x2∥P ≤ ∥x1∥P + ∥x2∥P for any vectors x1 and x2. Next Slide.
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Under what conditions on P is
√

xTPx a valid Norm?

Proof for ∥x1 + x2∥P ≤ ∥x1∥P∥x2∥P

For any vectors x1 and x2:
1 ∥x1 + x2∥2P =

▶ (x1 + x2)
TP(x1 + x2)

▶ xT
1 Px1 + xT

2 Px2 + xT
1 Px2 + xT

2 Px1

▶ uTu + vTv + uTv + vTu (Using P = RRT, u = RTx1 and v = RTx2)
▶ uTu + vTv + 2uTv, since uTv = vTu

2 (∥x1∥P + ∥x2∥P)2 =
▶ ∥x1∥2P + ∥x2∥2P + 2∥x1∥P∥x2∥P
▶ xT

1 Px1 + xT
2 Px2 + 2

√
(xT

1 Px1)(xT
2 Px2)

▶ uTu + vTv + 2
√
(uTu)(vTv)

3 By Cauchy Schwarz Inequality: uTv ≤
√

(uTu)(vTv) (Cos(θ) ≤ 1)
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Recall: Inner Product Space

It is a vector space over a field of scalars along with an inner product.
Field of scalars: e.g. IR algebraic structure with:-

1 Addition: must be multiplicative and associative.
2 Subtraction.
3 Multiplication: must be commutative, associative and distributive.
4 Division: multiplicative inverse must exist.

Inner Product:
1 (Conjugate) Symmetry: <x1,x2> = < x2,x1 >.
2 Linearity in the first argument.

⋆ < ax1,x2 >= a < x1,x2 >
⋆ < x1 + x2,x3 >=< x1,x3 > + < x3,x3 >

3 Positive definiteness: < x,x >≥ 0, with equality iff x = 0.
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Prove that inner product space is a normed vector space.

Q) Why field of scalers?
A) By conjugate symmetry, we have < x,x >= < x,x >. So < x,x > must be real.
So, we can define ∥x∥ =

√
< x,x >.

We need to prove that ∥x∥ is a valid norm:-
1 By positive definiteness: < x,x >≥ 0, with equality iff x = 0. So ∥x∥ ≥ 0 (= iff x = 0).
2 For any complex t, ∥tx∥ =

√
< tx, tx > =

√
t ∗ t < x,x > = |t|√< x,x > ( as

|t| =
√

t ∗ t ) So ∥tx∥ == |t|∥x∥
3 ∥x1 + x2∥ =

√
< x1 + x2,x1 + x2 > =√

< x1,x1 > + < x2,x2 > + < x1,x2 > + < x2,x1 >
≤

√
< x1,x1 > + < x2,x2 > +2

√
< x1,x1 >< x2,x2 > (by Cauchy Schwartz

inequality)
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Example of normed vector space that is not an inner product space.

∥x∥p = [
∑∞

i=1 |xi|p ]
1
p
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Prove that | < u,v > | ≤ ∥u∥P∥v∥P for any norm P

Proof:
If u = 0 or v = 0, then L.H.S. = R.H.S = 0. Hence the equality holds.
Assume u,v ̸= 0. Let z = u − <u,v>

<v,v>v.
By linearity of inner product in first argument, we have:
< z,v >=< u − <u,v>

<v,v>v,v >=< u,v > −<u,v>
<v,v> < v,v >= 0

Therefore, < u,u >=< z + <u,v>
<v,v>v, z + <u,v>

<v,v>v >=< z, z > +(<u,v>
<v,v> )2 < v,v > +0

So < u,u >≥ |<u,v>|2
<v,v>
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HW: In ℜn, why ∥u∥p may not have an inner product for p ̸= 2?
Motivation:

Consider the following inner product on ℜ2: For any x,y ∈ ℜ2, let
< x,y >= 2x1y1 − x1y2 − x2y1 + 4x2y2. It can be easily verified that this in an inner
product (by checking for linearity, symmetry and positive definiteness by expressing it as a
sum of squares).
This inner product is certainly different from the conventional (Eucledian) dot product
< x,y >E= x1y1 + x2y2 which corredponds to the ∥.∥2 norm.
Is it possible that the < x,y > defined in step 1 (or some other such inner product)
corresponds to ∥.∥p norm for p ̸= 2?

In ℜn, it can be proved that for any inner product vector space (V, < ., . >), the inner product
< ., . > (including the Eucledian one) can be represented as

< u,v >=
n∑

i=1

n∑
j=1

aibj < ei, ej >=
n∑

i=1

n∑
j=1

aTEb =< aT,b >E
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Recap: Basis and Dimensions from Linear
Algebra wrt < ., . >E (Eucledian Inner

Product) (For your homework)
Instructor: Prof. Ganesh Ramakrishnan
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Recap: Basis and Dimensions from Linear Algebra (For your homework)
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Recap: Basis in Linear Algebra
Basis for a space: The basis for a space is a set of vectors v1,v2, . . . ,vn with two

properties, viz., (1) The vectors v1,v2, . . . ,vn are independent and (2) These
vectors span the space.

Set of vectors that is necessary and sufficient for spanning the space.
Eg: A (standard) basis for the four dimensional space ℜ4 is:


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 (5)

It is easy to verify that the above vectors are independent; if a combination of the vectors using
the scalars in [c1, c2, c3, c4] should yield the zero vector, we must have c1 = c2 = c3 = c4 = 0.
Another way of proving this is by making the four vectors the columns of a matrix. The
resultant matrix will be an identity matrix. The null space of an identity matrix is the zero
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Recap: Basis in Linear Algebra (contd.)
This is not the only basis of ℜ4. Consider the following three vectors


2
0
0
0

 ,


0
0
2
0

 ,


0
0
0
2

 (6)

These vectors are certainly independent. But they do not span ℜ4.
This can be proved by showing that the following vector in ℜ4 cannot be expressed as a linear
combination of these vectors.


0
2
0
0

 (7)
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Recap: Basis in Linear Algebra (contd.)

In fact, if the last vector on the previous slide is added to the set of three vectors in (6),
together, they define another basis for ℜ4.
This could be proved by introducing them as columns of a matrix A, subject A to row
reduction and check if there are any free variables (or equivalently, whether all columns
are pivot columns). If there are no free variables, we can conclude that the vectors form a
basis for ℜ4.
This is also equivalent to the statement that if the matrix A is invertible, its columns form
a basis for its column space.
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Recap: Basis in Linear Algebra (contd.)

We can generalize our observations to ℜn: if an n × n matrix A is invertible, its coulumns
for a basis for ℜn.
While there can be many bases for a space, a commonality between all the bases is that
they have exactly the same number of vectors.
This unique size of the basis is called the dimension of the space.

Dimension: The number of vectors in any basis of a vector space is called the dimension of
the space.
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Recap: Basis in Linear Algebra (contd.)
Do the vectors in (6), form a basis for any space at all?
The vectors are independent and therefore span the space of all linear combinations of the
three vectors.
The space spanned by these vectors is a hyperplane in ℜ4.
Let A be any matrix. By definition, the columns of A span the column space C(A) of A. If
there exists a c ̸= 0 such that, Ac = 0, then the columns of A are not linearly independent.
For example, the columns of the matrix A given below are not linearly independent.

A =

 1 2 3 1
2 3 5 2
3 4 7 3

 (8)

A choice of c = [−1 0 0 1]T gives Ac = 0. Thus, the columns of A do not form a basis for its
columns space.
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Recap: Basis in Linear Algebra (contd.)
What is a basis for C(A)? A most natural choice is the first two columns of A; the thid
column is the sum of the first and second columns, while the fourth column is the same as the
first column. Also, column elimination2 on A yields pivots on the first two columns. Thus, a
basis for C(A) is

 1
2
3

 ,

 2
3
4

 (9)

Another basis for C(A) consists of the first and third columns. We note that the dimension of
C(A) is 2. We also note that the rank of A is the number of its pivots columns, which is
exactly the dimension of C(A).

2Column elimination operations are very similar to row elimination operations.
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Recap: Basis in Linear Algebra (contd.)
All of this gives us a nice result.

Theorem
The rank of a matrix is the same as the dimension of its column space. That is,
rank(A) = dimension

(
C(A)

)
.

What about the dimension of the null space? We already saw that c = [−1 0 0 1]T is in
the null space.
Another element of the null space is c′ = [1 1 − 1 0]T. These vectors in the null space
specify combinations of the columns that yield zeroes. The two vectors c and c′ are
obviously independent. Do these two vectors span the entire null space?
The dimension of the null space is the same as the number of free variables, which
happens to be 4− 2 = 2 in this example. Thus the two vectors c and c′ must indeed span
the null space. In fact, it can be proved that the dimension of the null space of an m × n
matrix A is n − rank(A).
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Recap: Row Space and Column Space in Linear Algebra (contd.)

The space spanned by the rows of a matrix is called the row space. We can also define
the row space of a matrix A as the column space of its transpose AT. Thus the row space
of A can be specified as C(AT).
The null space of A, N(A) is often called the right null space of A, while the null space of
AT, N(AT) is often referred to as its left null space.
How do we visualize these four spaces? N(A) and C(AT) of an m × n matrix A are in ℜn,
while C(A) and N(AT) are in ℜm.
How can we construct bases for each of the four subspaces? We note that dimensions of
C(A) and the rank of C(AT) should be the same, since row rank of a matrix is its column
rank. The bases of C(A) can be obtained as the set of the pivot columns.
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Recap: The Four Subspaces and their Bases (contd.)

Let r be the rank of A. Recall that the null space is constructed by linear combinations of
the special solutions of the null space (??) and there is one special solution for each
assignment of the free variables. In fact, the number of special solutions exactly equals
the number of free variables, which is n − r. Thus, the dimension of N(A) will be n − r.
Similarly, the dimension of N(AT) will be m − r.

Let us illustrate all this on the sample matrix in (8).

 1 2 3 1
2 3 5 2
3 4 7 3

 E2,1,E3,1=⇒

 1 2 3 1
0 −1 −1 0
0 −2 −2 0

 E3,2=⇒ (R =)

 1 2 3 1
0 −1 −1 0
0 0 0 0

 (10)
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Recap: The Four Subspaces and their Bases (contd.)

The reduced matrix R has the same row space as A, by virtue of the nature of row
reduction. In fact, the rows of A can be retrieved from the rows of R by reversing the
linear operations involved in row elimination. The first two rows give a basis for the row
space of A.
The dimension of C(AT) is 2, which is also the rank of A.
To find the left null space of A, we look at the system yTA = 0. Recall the Gauss-Jordan
elimination method from Section ?? that augments A with an m × m identity matrix, and
performs row elimination on the augmented matrix.

[A Im×m]
rref=⇒ [R Em×m]

The rref will consist of the reduced matrix augmented with the elimination matrix
reproduced on its right.
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Recap: The Four Subspaces and their Bases (contd.)

For the example case in 10, we apply the same elimination steps to obtain the matrix E below:

 1 0 0
0 1 0
0 0 1

 E2,1,E3,1=⇒

 1 0 0
−2 1 0
−3 0 1

 E3,2=⇒ (E =)

 1 0 0
−2 1 0
1 −2 1

 (11)
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Recap: The Four Subspaces and their Bases (contd.)

Writing down EA = R,

 1 0 0
−2 1 0
1 −2 1


 1 2 3 1

2 3 5 2
3 4 7 3

 =

 1 2 3 1
0 −1 −1 0
0 0 0 0

 (12)

We observe that the last row of E specifies a linear combination of the rows of A that yields a
zero vector (corresponding to the last row of R). This is the only vector that yields a zero row
in R and is therefore the only element in the basis of the left null space of A, that is, N(AT).
The dimension of N(AT) is 1.
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Recap: The Four Subspaces and their Bases (contd.)

As another example, consider the space S of vectors v ∈ ℜ3 where v = [v1 v2 v3]T such
that v1 + v2 + v3 = 0. What is the dimension of this subspace?
Note that this subspace is the right null space N(A) of a 1× 3 matrix A = [1 1 1], since
Av = 0. The rank, r = rank(A) is 1, implying that the dimension of the right null space is
n − r = 3− 1 = 2.
One set of basis vectors for S is [−1 1 0], [−1 0 1]. The column space C(A) is ℜ1 with
dimension 1. The left null space N(AT) is the singleton set {0} and as expected, has a
dimension of m − r = 1− 1 = 0.
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Recap: Matrix Spaces
We will extend the set of examples of vector spaces discussed in Section ?? with a new vector
space, that of all m × n matrices with real entries, denoted by ℜm×n.

It is easy to verify that the space of all matrices is closed under operations of addition and
scalar multiplication. Additionally, there are interesting subspaces in the entire matrix
space ℜm×n, viz.,

▶ set S of all n × n symmetric matrices
▶ set U of all n × n upper triangular matrices
▶ set L of all n × n lower triangular matrices
▶ set D of all n × n diagonal matrices

Let M = ℜ3×3 be the space of all 3× 3 matrices. The dimension of M is 9. Each
element of this basis has a 1 in one of the 9 positions and the remaining entries as zeroes.
Of these basis elements, three are symmetric (those having a 1 in any of the diagonal
positions). These three matrices form the basis for the subspace of diagonal matrices.
Six of the nine basis elements of M form the basis of U while six of them form the basis
of L.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 84 / 210



Recap: Matrix Spaces (contd.)

The intersection of any two matrix spaces is also a matrix space. For example, S ∩ U is
D, the set of diagonal matrices.
However the union of any two matrix spaces need not be a matrix space. For example,
S ∪ U is not a matrix space; the sum S + U, S ∈ S, U ∈ U need not belong to S ∪ U .
We will discuss a special set comprising all linear combinations of the elements of union of
two vector spaces V1 and V2 (i.e., V1 ∪V2), and denote this set by V1 ⊕V2. By definition,
this set is a vector space. For example, S + U = M, which is a vector space.
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Recap: Matrix Spaces (contd.)

A property fundamental to many properties of matrices is the expression for a rank 1 matrix.
A rank 1 matrix can be expressed as the product of a column vector with a row vector (the
row vector forming a basis for the matrix). Thus, any rank 1 matrix X can be expressed as

Xm×n = uTv =



u1
u2
u3
.
.

um


[

v1 v2 . . . vn
]

(13)
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Recap: Matrix Spaces (contd.)

Let Mm×n be the set of all m × n matrices. Is the subset of Mm×n matrices with rank k, a
subspace? For k = 1, this space is obviously not a vector space as is evident from the sum of
rank 1 matrices, A1 and B1, which is not a rank 1 matrix. In fact, the subset of Mm×n
matrices with rank k is not a subspace.

A1 + B1 =

 1 2 1
2 4 1
1 2 1

+

 4 4 2
2 2 1
4 4 2

 =

 5 6 3
4 6 2
5 6 3

 (14)
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Orthogonality and Projection

Two vectors x and y are said to be orthogonal iff, their dot product (more generally, the
inner product) is 0. In the eucledian space, the dot product of the two vectors is xTy.
The condition xTy = 0 is equivalent to the pythagorous condition between the vectors x
and y that form the perpendicular sides of a right triangle with the hypotenuse given by
x + y. The pythagorous condition is ||x||2 + ||y||2 = ||x + y||2, where the norm is the
eucledian norm, given by ||x||2 = xTx.
This equivalence can be easily proved and is left to the reader as an exercise. By
definition, the vector 0 is orthogonal to every other vector.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 88 / 210



Orthogonality and Projection

We will extend the definition of orthogonality to subspaces; a subspace U is orthogonal to
subspace V iff, every vector in U is orthogonal to every vector in V. As an example:

Theorem
The row space C(AT) of an m × n matrix A is orthogonal to its right null space N(A).

Proof: Ax = 0, ∀x ∈ N(A). On the other hand, ∀ y ∈ C(AT), ∃ z ∈ ℜm, s.t., y = ATz.
Therefore, ∀ y ∈ C(AT), x ∈ N(A),yTx = zTAx = z.0 = 0.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 89 / 210



Orthogonality and Projection

Not only are C(AT) and the right null space N(A) orthogonal to each other, but they are also
orthogonal complements in ℜn, that is, N(A) contains all vectors that are orthogonal to some
vector in C(AT).

Theorem
The null space of A and its row space are orthogonal complements.

Proof: We note, based on our discussion earlier that the dimensions of the row space and the
(right) null space add up to n, which is the number of columns of A. For any vector
y ∈ C(AT), we have ∃ z ∈ ℜm, s.t., y = ATz. Suppose ∀ y ∈ C(AT), yTx = 0. That is,
∀ z ∈ ℜm, zTAx = 0. This is possible only if Ax = 0. Thus, necessarily, x ∈ N(A).
Along similar lines, we could prove that the column space C(A) and the left null space N(AT)
are orthogonal complements in ℜm.
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Orthogonality and Projection

Based on preceeding theorem,we prove that there is a one-to-one mapping between the
elements of row space and column space.

Theorem
If x ∈ C(AT), y ∈ C(AT) and x ̸= y, then, Ax ̸= Ay.

Proof: Note that Ax and Ay are both elements of C(A). Next, observe that x − y ∈ C(AT),
which by theorem 8, implies that x − y /∈ N(A). Therefore, Ax − Ay ̸= 0 or in other words,
Ax ̸= Ay.
Similarly, it can be proved that if x ∈ C(A), y ∈ C(A) and x ̸= y, then, ATx ̸= ATy. The two
properties together imply a one-to-one mapping between the row and column spaces.
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Projection Matrices
The projection of a vector t on a vector s is a vector p = cs, c ∈ ℜ (in the same direction as
s), such that t − cs is orthogonal to s. That is, sT(t − cs) = 0 or sTt = csTs). Thus, the
scaling factor c is given by c = sTt

sTs . The projection of the vector t on a vector s is then

p = stTs
sTs (15)

Using the associative property of matrix multiplication, the expression for p can be re-written
as

p = Pt (16)

where, P = ssT 1
sTs is called the projection matrix.
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Projection Matrices (contd.)

The rank of the projection matrix is 1 (since it is a column mutiplied by a row).
The projection matrix is symmetric and its column space is a line through s.
For any d ∈ ℜ, P(ds) = ds, that is, the projection of any vector in the direction of s is
the same vector. Thus, P2 = P.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 93 / 210



Least Squares

We earlier saw a method for solving the system Ax = b (A being an m × n matrix), when
a solution exists. Howevever, a solution may not exist, especially when m > n, that is
when the number of equations is greater than the number of variables.
We also saw that the rref looks like [I 0]T, where I is an n × n identity matrix. It could
happen that the row reduction yields a zero submatrix in the lower part of A, but the
corresponding elements in b are not zeroes.
In other words, b may not be in the column space of A. In such cases, we are often
interested in finding a ‘best fit’ for the system; a solution x̂ that satisfies Ax = b as well
as possible.
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Projection Matrices (contd.)

We define the best fit in terms of a vector p which is the projection of b onto C(A) and
solve Ax̂ = p. We require that b − p is orthogonal to C(A), which means

AT (b − Ax̂) = 0 (17)

The vector e = b − Ax̂ is the error vector and is in N(AT). The equation (95) can be
rewritten as

(ATA)x̂ = ATb (18)
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Projection Matrices (contd.)
A matrix that plays a key role in this problem is ATA. It is an n × n symmetric matrix (since
(ATA)T = ATA). The right null space N(ATA) is the same as N(A)3. It naturally follows that
the ranks of ATA and A are the same (since, the sum of the rank and dimension of null space
equal n in either case). Thus, ATA is invertible exactly if N(A) has dimension 0, or
equivalently, A is a full column rank.
Theorem
If A is a full column rank matrix (that is, its columns are independent), ATA is invertible.

Proof: We will show that the null space of ATA is {0}, which implies that the square matrix
ATA is full column (as well as row) rank is invertible. That is, if ATAx = 0, then x = 0. Note
that if ATAx = 0, then xTATAx = ||Ax|| = 0 which implies that Ax = 0. Since the columns
of A are linearly independent, its null space is 0 and therefore, x = 0.
Assuming that A is full column rank, the equation (18) can be rewritten as

x̂ = (ATA)−1ATb. (19)

3The proof is left as an exercise.
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Projection Matrices (contd.)
Therefore the expression for the projection p will be

p = A(ATA)−1ATb (20)

This expression is the n-dimensional equivalent of the one dimensional expression for projection
in (92). The projection matrix in (20) is given by P = A(ATA)−1AT.
We will list the solution for some special cases:

If A is an n × n square invertible matrix, its column space is the entire ℜn and the
projection matrix will turn out to be the identity matrix.
Also, if b is in the column space C(A), then b = At for some t inℜn and consequently,
Pb = A(ATA)−1(ATA)t = At = b.
On the other hand, if b is orthogonal to C(A), it will lie in N(AT), and therefore,
ATb = 0, implying that p = 0.
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Projection Matrices (contd.)

Another equivalent way of looking at the best fit solution x̂ is a solution that minimizes the
square of the norm of the error vector

e(x̂) = ||Ax − b||2 (21)

Setting de(x̂)
dx = 0, we get the same expression for x̂ as in (96). The solution in 96 is therefore

often called the least squares solution. Thus, we saw two views of finding a best fit; first was
the view of projecting into the column space while the second concerned itself with minimizing
the norm squared of the error vector.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 98 / 210



Projection Matrices (contd.)

We will take an example. Consider the data matrix A and the coefficient matrix b as in (22).

Ax =

 2 −1
−1 2
1 1

[
x̂1
x̂2

]
=

 1
3
3

 (22)
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Projection Matrices (contd.)
The matrix A is full column rank and therefore ATA will be invertible. The matrix ATA is
given as

ATA =

[
6 −3
−3 6

]

Substituting the value of ATA in the system of equations (18), we get,

6x̂1 − 3x̂2 = 2 (23)
−3x̂1 + 6x̂2 = 8 (24)

The solution of which is, x1 = 4
5 , x2 = 26

15 .
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Orthonormal Vectors

A collection of vectors q1,q2, . . . ,qn is said to be orthonormal iff the following condition holds
∀ i, j:

qT
i qj

{
0 if i ̸= j
1 if i = j (25)

A large part of numerical linear algebra is built around working with orthonormal matrices,
since they do not overflow or underflow. Let Q be a matrix comprising the columns q1

through qn. It can be easily shown that

QTQ = In×n
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Orthonormal Vectors (contd.)

When Q is square, Q−1 = QT. Some examples of matrices with orthonormal columns are:

Qrotation =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, Qreflection =

[
cos(θ) sin(θ)
sin(θ) −cos(θ)

]
,

QHadamard =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , Qrect =

 1 0
0 1
0 0

 (26)

The matrix Qrotation when multiplied to a vector, rotates it by an angle θ, whereas Qreflection
reflects the vector at an angle of θ/2.
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Orthonormal Vectors (contd.)

These matrices present standard varieties of linear transformation, but in general,
premultiplication by an m × n matrix transforms from an input space in ℜm to an input space
in ℜn.
The matrix QHadamard is an orthonormal matrix consisting of only 1’s and −1’s. Matrices of
this form exist only for specific dimensions such as 2, 4, 8, 16, etc., and are called Hadamard
matrices4.
The matrix Qrect is an example rectangular matrix whose columns are orthonormal.

4An exhaustive listing of different types of matrices can be found at
http://en.wikipedia.org/wiki/List_of_matrices.
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Orthonormal Vectors (contd.)
Suppose a matrix Q has orthonormal columns. What happens when we project any vector
onto the column space of Q? Substituting A = Q in (20), we get5:

p = Q(QTQ)−1QTb = QQTb (27)

Making the same substitution in (96),

x̂ = (ATQ)−1QTb = QTb (28)

The ith component of x, is given by xi = qT
i b.

Let Q1 be one orthonormal basis and Q2 be another orthonormal basis for the same space. Let
A be the coefficient matrix for a set of points represented using Q1 and B be the coefficient
matrix for the same set of points represented using Q2. Then Q1A = Q2B, which implies that
B can be computed as B = QT

2 Q1A. This gives us the formula for changing basis.
5Note that QTQ = I. However, QQT = I only if Q is a square matrix.
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Gram-Schmidt Orthonormalization
The goal of the Gram-Schmidt orthonormalization process is to generate a set of
orthonormal vectors q1,q2, . . . ,qn, given a set of independent vectors a1,a2, . . . ,an.
The first step in this process is to generate a set of orthogonal vectors t1, t2, . . . , tn from
a1,a2, . . . ,•an. To start with, t1 is chosen to be a1.
Next, the vector t2 is obtained by removing the projection of a2 on t1, from a2, based on
(92). That is,

t2 = a2 −
1

aT
1 a1

a1aT
1 a2 (29)

This is carried out iteratively for i = 1, 2, . . . , n, using the expression below:

ti = ai −
1

tT
1 t1

t1tT
1 ai −

1

tT
2 t2

t2tT
2 ai − . . .− 1

tT
i−1ti−1

ti−1tT
i−1ai (30)
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Gram-Schmidt Orthonormalization (contd.)
This iterative procedure gives us the orthogonal vectors t1, t2, . . . , tn.
Finally, the orthonormal vectors q1,q2, . . . ,qn are obtained by the simple expression

qi =
1

||ti||
ti (31)

Let A be the matrix with columns a1,a2, . . . ,an and Q, the matrix with columns
q1,q2, . . . ,qn.
It can be proved that C(V) = C(Q), that is, the matrices V and Q have the same column
space. The vector ai can be expressed as

ai =
n∑

k=1

(aT
i qk)qk (32)

The ith column of A is a linear combination of the columns of Q, with the scalar
coefficient aT

i qk for the kth column of Q.
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Gram-Schmidt Orthonormalization (contd.)

By the very construction procedure of the Gram-Schmidt orthonormalization process, ai is
orthogonal to qk for all k > i. Therefore, (32) can be expressed more precisely as

ai =
i∑

k=1

(aT
i qk)qk (33)

Therefore, matrix A can be decomposed into the product of Q with a upper triangular
matrix R; A = QR, with Rk,i = aT

i qk. Since aT
i qk = 0, ∀ k > i, we can easily see that R

is upper traingular.
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End Recap: Basis and Dimensions from
Linear Algebra wrt < ., . >E (Eucledian
Inner Product) (For your homework)
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HW: In ℜn, why ∥u∥p may not have an inner product for p ̸= 2?

Proof:
And here is how you can create a basis for V, < ., . >:

▶ If u = 0 or v = 0, then < u,v >= 0.
▶ Assume u,v ̸= 0. Let z = u − <u,v>

<v,v>v.
▶ By linearity of inner product in first argument, we have:

< z,v >=< u − <u,v>
<v,v>v,v >=< u,v > −<u,v>

<v,v> < v,v >= 0

▶ Therefore, < u,u >=< z + <u,v>
<v,v>v, z + <u,v>

<v,v>v >=< z, z > +(<u,v>
<v,v> )2 < v,v > +0

▶ So < u,u >≥ |<u,v>|2
<v,v>
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Compact representation of Inner Product Space

Let the linear subspace S ⊆ V be associated with an inner product < ., . >

Let B = basis(S) with respect to the arbitrary inner product < ., . > (extending results
from the eucledian inner product)
Let dim(V) = n, and dim(S) = m ≤ n.
Define S⊥; the orthogonal complement (S⊥ ∈ V) of S as:
S⊥ = {v ∈ V | < v, u >= 0 ∀ u ∈ S }
This implies:-

▶ Both S and S⊥ are linear subspaces of V.
▶ S ∩ S⊥ = {0}, dim(S) + dim(S⊥) = n
▶ (S⊥)⊥ = S.
▶ If B⊥ is the basis for S⊥, then B ∪ B⊥ is the basis for V.
▶ S = {v ∈ V| < v,u >= 0, ∀ u ∈ B⊥ }
▶ S⊥ = {v ∈ V | < v,u >= 0 ∀ u ∈ B }
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HW: In ℜn, why ∥u∥p may not have an inner product for p ̸= 2?
Motivation:

Consider the following inner product on ℜ2: For any x,y ∈ ℜ2, let
< x,y >= 2x1y1 − x1y2 − x2y1 + 4x2y2. It can be easily verified that this in an inner
product (by checking for linearity, symmetry and positive definiteness by expressing it as a
sum of squares).
This inner product is certainly different from the conventional (Eucledian) dot product
< x,y >E= x1y1 + x2y2 which corredponds to the ∥.∥2 norm.
Is it possible that the < x,y > defined in step 1 (or some other such inner product)
corresponds to ∥.∥p norm for p ̸= 2?

In ℜn, it can be proved that for any inner product vector space (V, < ., . >), the inner product
< ., . > (including the Eucledian one) can be represented as

< u,v >=
n∑

i=1

n∑
j=1

aibj < ei, ej >=
n∑

i=1

n∑
j=1

aTEb =< aT,b >E
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HW: In ℜn, why ∥u∥p may not have an inner product for p ̸= 2?
Motivation:

Consider the following inner product on ℜ2: For any x,y ∈ ℜ2, let
< x,y >= 2x1y1 − x1y2 − x2y1 + 4x2y2. It can be easily verified that this in an inner
product (by checking for linearity, symmetry and positive definiteness by expressing it as a
sum of squares).
This inner product is certainly different from the conventional (Eucledian) dot product
< x,y >E= x1y1 + x2y2 which corredponds to the ∥.∥2 norm.
Is it possible that the < x,y > defined in step 1 (or some other such inner product)
corresponds to ∥.∥p norm for p ̸= 2?

In ℜn, it can be proved that for any inner product vector space (V, < ., . >), the inner product
< ., . > (including the Eucledian one) can be represented as

< u,v >=
n∑

i=1

n∑
j=1

aibj < ei, ej >=
n∑

i=1

n∑
j=1

aTEb =< aT,b >E

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 111 / 210



HW: In ℜn, why ∥u∥p may not have an inner product for p ̸= 2?
Proof:

In ℜn, it can be proved that for any inner product vector space (V, < ., . >), the inner
product < ., . > (including the Eucledian one) can be represented as

< u,v >=

n∑
i=1

n∑
j=1

aibj < ei, ej >=

n∑
i=1

n∑
j=1

aTEb =< aT,b >E

▶ Here, e1, e2, . . . , en is a basis for the inner product vector space.
▶ The inner product < ., . >E is the eucledian inner product. That is, < ., . >E=

n∑
i=1

n∑
j=1

aibj.

The (positive definite) matrix E is defined as

E =

 < e1, e1 > < e1, e2 > ...... < e1, en >
.

< en, e1 > < en, e2 > ...... < en, en >

 (34)

▶ Note that in any ℜn, any inner product vector space (V, < ., . >) will have a basis of size at
most n.
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HW: In ℜn, why ∥u∥p may not have an inner product for p ̸= 2?

Thus, any inner product < ., . > in ℜn can be expressed as a Eucledian inner product
< ., . >E, with possible rotation using a matrix R where E = RRT is a positive definite matrix6

6Recall from slides 25 to 27 that xPx is a norm if P is positive definite
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Dual Representation: Explained with Analogy

If S ⊆ ℜn and {a1, a2, ..., aK} is finite spanning set in S⊥, then:-
S = (S⊥)⊥ = {x|aix = 0; i = 1, ..., k}
A dual representation of linear subspace S(in ℜn): {x|Ax = 0; aT

i is the ith row of A}

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 114 / 210



Dual Representations of Affine Sets

Recall affine sets(say A ⊆ ℜn).
A is affine iff ∀u,v ∈ A: θu + (1− θ)v ∈ A, ∀ θ ∈ ℜ.
For some vector space V ⊆ ℜn, A is affine iff:
A(= V shifted by u) = { u + v|u ∈ ℜn is fixed and v ∈ V }.
For some P with rank = n - dim(V) and b, A is affine iff:
A = {x|Px = b} i.e. solution set of linear equations represented by Px = b.
Example: In 3-d if P has rank 1, we will get either a plane as solution or no solution. If P
has rank 2, we can get a plane, a line or no solution.
Thus hyperplanes are affine spaces of dimension n − 1 with Px = b given by pTx = b.
For 3-d we have P
We will soon see the duality of convex cones, and in general convex sets.
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Convex Sets
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Convex sets

affine and convex sets.
some important examples
operations that preserve convexity
generalized inequalities
separating and supporting hyperplanes
dual cones and generalized inequalities
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Affine set
In 2D, a line through any two distinct points x1,x2: That is, all points x s.t.

x = αx1 + βx2 where α+ β = 1, α ≥ 0, β ≥ 0

In general, A is affine iff ∀u,v ∈ A: θu + (1− θ)v ∈ A, ∀ θ ∈ ℜ.
For some vector space V ⊆ ℜn, A is affine iff:
A(= V shifted by u) = { u + v|u ∈ ℜn is fixed and v ∈ V }.
For some P with rank = n − dim(V) and b, A is affine iff:
A = {x|Px = b} i.e. solution set of linear equations represented by Px = b.

▶ No Solution: x = ϕ. Is that affine?
▶ Unique Solution: x is a point.
▶ Infinitely Many Solutions: x is a line, or a plane, etc.

(conversely every affine set can be expressed as solution set of system of linear equations )
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Convex set

In 2D, a line segment between distinct points x1,x2: That is, all points x s.t.

x = αx1 + βx2
where α+ β = 1, 0 ≤ α ≤ 1(also, 0 ≤ β ≤ 1).

Convex set : x1,x2 ∈ C, 0 ≤ α ≤ 1 ⇒ αx1 + (1− α)x2 ∈ C

▶ Convex set is connected. Convex set can but not necessarily contains ’O’

Is every affine set convex? Is the reverse true?
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Cone, conic combination and convex cone

Cone A set C is a cone if ∀x ∈ C, αx ∈ C for α ≥ 0.
Conic (nonnegative) combination of points x1,x2 is any point x of the form

x = αx1 + βx2

with α, β ≥ 0.

Example : Diagonal vector of a parallelogram is a conic combination of the two vectors
(points) x1 and x2 forming the sides of the parallelogram.
Convex cone: The set that contains all conic combinations of points in the set.
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Homework: Structure of Mathematical Spaces Discussed (arrow means
‘instance’)
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Convex combination and convex hull
Convex combination of points x1,x2, ...,xk is any point x of the form

x = θ1x1 + θ2x2 + ...+ θkxk = conv({x1,x2, ...,xk})

with θ1 + θ2 + ...+ θk = 1, θi ≥ 0.

Convex hull or conv(S) is the set of all convex combinations of point in the set S.

▶

Should S be always convex?
What about the convexity of conv(S)?

Should S be always convex? No.
What about the convexity of conv(S)? It’s always convex.
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More Convex Sets (illustrated in ℜn)
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More Convex Sets (illustrated in ℜn)

Euclidean balls and ellipsoids.
Norm balls and norm cones.
Compact representation of vector space.
Dual Representation.
Different Representations of Affine Sets
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Euclidean balls and ellipsoids
Euclidean ball with center xc and radius r is given by:
B(xc, r) = {x | ∥x − xc∥2 ≤ r} = {xc + ru | ∥u∥2 ≤ 1 }
Ellipsoid is a set of form:
{x | (x − xc)TP−1(x − xc) ≤ 1 }, where P ∈ Sn

++ i.e. P is SPD matrix.
▶ Other representation: {xc + A u | ∥u∥2 ≤ 1} with A square and non-singular(i.e. A−1 exists).

▶
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Norm balls
Recap Norm: A function7 ∥.∥ that satisfies:

1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α ∈ ℜ.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set. Why?

▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x ̸=0

N(Ax)
N(x)

Here, sup
s∈S

f(s) = f̂ if f̂ is the minimum upper bound for f(s) over s ∈ S.
▶ Eg: MN(I) = MN(A) = 1 irrespective of N

▶ If N = ∥.∥1, MN(A) = max
j

n∑
i=1

|aij|

▶ If N = ∥.∥2, MN(A) =
√
σ1 , where σ1 is the dominant eigenvalue of ATA

▶ If N = ∥.∥∞, MN(A) = max
i

m∑
j=1

|aij|

7(∥.∥ is a general (unspecified) norm; ∥.∥symb is particular norm.)Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 126 / 210
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N = ∥.∥1, MN(A) = sup
x ̸=0

N(Ax)
N(x)

1 If N(x) =
m∑

i=1

|xj| then N(Ax) =
n∑

i=1

|
m∑

j=1

aijxj| ≤
n∑

i=1

m∑
j=1

|aij||xj|

2 Changing the order of summation:

N(Ax) ≤
m∑

j=1

n∑
i=1

|aij||xj| =
m∑

j=1

|xj|
n∑

i=1

|aij|

3 Let C = max
j

n∑
i=1

|aij| =
n∑

i=1

|aik|. Then ∥Ax∥1 ≤ C∥x∥1 ⇒ ∥A∥1 = sup
x ̸=0

∥Ax∥1
∥x∥1 ≤ C

4 Now consider a x = [0, 0..1, 0...0] which has 1 only in the kth position and a 0 everywhere
else. Then ∥x∥1 = 1 and ∥Ax∥1 = C

5 Thus, there exists x = [0, 0..1, 0...0] for which the inequalities in steps (2) and (3)
become equalities! That is,

MN(A) = ∥Ax∥1 = max
j

n∑
i=1

|aij|
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If N = ∥.∥2, MN(A) = sup
x ̸=0

N(Ax)
N(x)

1 MN(A) = sup
x̸=0

∥Ax∥2
∥x∥2 . We know that ∥Ax∥2 =

√
(Ax)T(Ax) =

√
xTATAx.

2 (From basic notes on Linear Algebra8):

ATA ∈ Sn
+ is symmetric positive semi-definite

3 By spectral decomposition, there exists orthonormal U with column vectors ui and
diagonal matrix Σ of non-negative eigenvalues σi of ATA such that ATA = UTΣU with
(ATA)ui = σiui

4 Without loss of generality, let σ1 ≥ σ2.. ≥ σn.

5 Since columns of U form an orthonormal basis for ℜn, let x =

n∑
i=1

αiui

6 Then, ∥x∥2 =
√∑

i α
2
i and ∥Ax∥2 =

√
xT(ATAx) =

√√√√(
n∑

i=1

αiui)
T(

n∑
i=1

σiαiui).

7 If α1 = 1 and αj = 0 for all j ̸= 1, the maximum value in (7) will be attained. Thus,
MN(A) =

√
σ1 , where σ1 is the dominant eigenvalue of ATA
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Norm balls: Summary
Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set.

▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x ̸=0

N(Ax)
N(x)

▶ Eg: MN(I) = MN(A) = 1 irrespective of N

▶ If N = ∥.∥1, MN(A) = max
j

n∑
i=1

|aij|

▶ If N = ∥.∥2, MN(A) =
√
σ1 , where σ1 is the dominant eigenvalue of ATA

▶ If N = ∥.∥∞, MN(A) = max
i

m∑
j=1

|aij|

Matrix norm with an inner product: ∥A∥F =

√∑
i,j

a2ij =
√

trace(ATA) is the Frobenius

norm.
Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 129 / 210



HW: Dual Representation

If vector space V ⊆ ℜn and {q1,q2, ...,qK} is finite spanning set in V⊥, then:-
V = (V⊥)⊥ = {x|qT

i x = 0; i = 1, ...,K}, where K = dim(V)
A dual representation of vector subspace V (in ℜn): {x|Qx = 0; qT

i is the ith row of Q}
What about dual representations for Affine Sets, Convex Sets, Convex Cones, etc?
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HW: Dual Representations of Affine Sets

Recall affine sets(say A ⊆ ℜn).
A is affine iff ∀u,v ∈ A: θu + (1− θ)v ∈ A, ∀ θ ∈ ℜ.
For some vector space V ⊆ ℜn, A is affine iff:
A(= V shifted by u) = { u + v|u ∈ ℜn is fixed and v ∈ V }.
Procedure: Let u be some element in the affine set A. Then V(= A shifted by −u) = {
v − u|v ∈ A } is a vector space which has a dual representation {x|Qx = 0}
The dual representation for A is therefore

{x|Qx = Qu}
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HW: Dual Representations of Affine Sets

For some Q with rank = n − dim(V) and u, A is affine iff:
A = {x|Qx = Qu} i.e. solution set of linear equations represented by Qx = b where
b = Qu.
Example: In 3-d if Q has rank 1, we will get either a plane as solution or no solution. If Q
has rank 2, we can get a plane, a line or no solution.
Thus hyperplanes are affine spaces of dimension n − 1 with Qx = b given by pTx = b.
We will soon see the duality of convex cones, and in general convex sets.
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Examples of Convex Cones
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More on Convex Sets and Cones

Half-spaces as cones (induced by hyperplanes)
Norm Cones
Positive Semi-definite cone.
Positive Semi-definite cone: Example and Notes.
Convexity Preserving Operations on Sets

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 134 / 210



Hyperplanes and halfspaces.

Hyperplane: Set of the form {x|aTx = b} (a ̸= 0)

where b = xT
0 a

Alternatively: {x|(x − x0) ⊥ a}, where a is normal and x0 ∈ H
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Hyperplanes and halfspaces.

halfspace: Set of the form {x|aTx ≤ b} (a ̸= 0)

where b = xT
0 a
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Norm cones
Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r}.
Norm cone: A set of form: {(x, t) ∈ ℜn+1|∥x∥ ≤ t}.

▶ Norm balls and cones are convex.
▶ Euclidean norm cone is called-second order cone. If x ∈ ℜ2, it is shown in ℜ3 as:-
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Positive semidefinite cone: Primal Description

Notation
Sn is set of symmetric n × n matrices.
Sn
+ = {X ∈ Sn | X ⪰ 0}: positive semidefinite n × n matrices.
▶ X ∈ Sn

+ ⇐⇒ zTXz ≥ 0 for all z
▶ Sn

+ is a convex cone.

Sn
++ = {X ∈ Sn | X ≻ 0}: positive definite n × n matrices.
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Positive semidefinite cone: Primal Description
Consider a positive semi-definite matrix S in ℜ2. Then S must be of the form

S =

[
x y
y z

]
(35)

We can represent the space of matrices S2
+ of the form S ∈ S2

+ as a three dimensional space
with non-negative x, y and z coordinates and a non-negative determinant. This space

corresponds to a cone as shown in the Figure above.
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Positive semidefinite cone: Dual Description
Instead of all vectors z ∈ ℜn, we can, without loss of generality, only require the above
inequality to hold for all y with ∥y∥2 = 1.

1 Sn
+ = {A ∈ Sn|A ⪰ 0} = {A ∈ Sn|yTAy ⪰ 0, ∀∥y∥2 = 1}

2 So, Sn
+ = ∩∥y∥=1 {A ∈ S| < yTy,A >⪰ 0}

3 yTAy =
∑

i
∑

j yiaijyj =
∑

i
∑

j(yiyj)aij = < yyT,A > = tr((yyT)TA) = tr(yyTA)
▶ One parametrization for y such that ∥y∥2 = 1 is

y =

[
Cos(θ)
Sin(θ)

]
(36)

yyT =

[
Cos2(θ) Cos(θ)Sin(θ)

Cos(θ)Sin(θ) Sin2(θ)

]
(37)

▶ Assignment 1: Plot a finite # of halfspaces parameterized by (θ).

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 140 / 210



Positive semidefinite cone: Dual Description

1 Sn
+ = intersection of infinite # of half spaces belonging to Rn(n+1)/2 [Dual

Representation]
1 Cone boundary consists of all singular p.s.d. matrices having at-least one 0 eigenvalue.
2 Origin = O = matrix with all 0 eigenvalues.
3 Interior consists of all full rank matrices A (rank A = m) i.e. A ≻ 0.
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HW: N = ∥.∥∞, MN(A) = sup
x̸=0

N(Ax)
N(x) = sup

∥x∥=1

N(Ax)

1 If N(x) = max
i

|xi| then N(Ax) = max
i

|
m∑

j=1

aijxj| ≤ max
i

m∑
j=1

|aij||xj| ≤≤ max
i

m∑
j=1

|aij|

where the last inequality is attained by considering a x = [1, 1..1, 1...1] which has 1 in all
positions. Then ∥x∥∞ = 1 and for such an x, the upper bounded on the supremum in
indeed attained.

2 Therefore, it must be that ∥Ax∥1 = maxi
∑m

j=1 |aij| (the maximum absolute row sum)
3 That is,

MN(A) = ∥Ax∥1 = max
i

m∑
j=1

|aij|
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Convex Polyhedron
Solution set of finitely many inequalities or equalities: Ax ⪯ b , Cx ≡ d

▶ A ∈ ℜm×n

▶ C ∈ ℜp×n

▶ ⪯ is component wise inequality

This is a Dual or H Description: Intersection of finite number of half-spaces and
hyperplanes.
Primal or V Description: Can you define convex polyhedra in terms of convex hull?

1 Convex hull of finite # of points ⇒ Convex Polytope
2 Conic hull of finite # of points ⇒ Polyhedral Cone
3 Convex hull of n + 1 affinely independent points ⇒ Simplex
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Convex combinations and Convex Hull
Convex combination of points x1,x2, ...,xk is any point x of the form

x = θ1x1 + θ2x2 + ...+ θkxk = conv({x1,x2, ...,xk})

with θ1 + θ2 + ...+ θk = 1, θi ≥ 0.

Equivalent Definition of Convex Set: C is convex iff it is closed under generalized convex
combinations.
Convex hull or conv(S) is the set of all convex combinations of points in the set S.
conv(S) = The smallest convex set that contains S. S may not be convex but conv(S) is.

▶ Prove by contradiction that if a point lies in another smallest convex set , and not in
conv(S), then it must be in conv(S).

The idea of convex combination can be generalized to include infinite sums, integrals,
and, in most general form, probability distributions.
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Basic Prerequisite Topological Concepts in ℜn

Definition
[Balls in ℜn]: Consider a point x ∈ ℜn. Then the closed ball around x of radius ϵ is

B[x, ϵ] =
{

y ∈ ℜn|||y − x|| ≤ ϵ
}

Likewise, the open ball around x of radius ϵ is defined as

B(x, ϵ) =
{

y ∈ ℜn|||y − x|| < ϵ
}

For the 1-D case, open and closed balls degenerate to open and closed intervals respectively.
Definition
[Boundedness in ℜn]: We say that a set S ⊂ ℜn is bounded when there exists an ϵ > 0 such

that S ⊆ B[0, ϵ].

In other words, a set S ⊆ ℜn is bounded means that there exists a number ϵ > 0 such that for
all x ∈ S, ||x|| ≤ ϵ.
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Convex Polytope: Primal and Dual Descriptions

Dual or H Description: A Convex Polytope P is a Bounded Convex Polyhedron. That is,
is solution set of finitely many inequalities or equalities: P = {x|Ax ⪯ b ,
Cx = d} where A ∈ ℜm×n, C ∈ ℜp×n such that P is also bounded.

Primal or V Description : If ∃ S ⊂ P s.t. |S| is finite and P = conv(S), then P is a Convex
Polytope.
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Conic combinations and Conic Hull

Recap Cone: A set C is a cone if ∀x ∈ C, θx ∈ C for θ ≥ 0.
Conic (nonnegative) Combination of points x1,x2, ...,xk is any point x of the form

x = θ1x1 + θ2x2 + ...+ θkxk

with θi ≥ 0.

Conic hull or conic(S): The set that contains all conic combinations of points in set S.

conic(S) = Smallest conic set that contains S.
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Polyhedral Cone: Primal and Dual Descriptions

Dual or H Description : A Polyhedral Cone P is a Convex Polyhedron with b = 0. That is,
{x|Ax ⪰ 0} where A ∈ ℜm×n and ⪰ is component wise inequality.

Primal of V Description : If ∃ S ⊂ P s.t. |S| is finite and P = cone(S), then P is a
Polyhedral Cone.
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Affine combinations, Affine hull and Dimension of a set S
Affine Combination of points x1,x2, ...,xk is any point x of the form

x = θ1x1 + θ2x2 + ...+ θkxk

with
∑

i
θi = 1

Affine hull or aff(S): The set that contains all affine combinations of points in set S =
Smallest affine set that contains S.

Dimension of a set S = dimension of aff(S) = dimension of vector space V such that
aff(S) = v + V for some v ∈ aff(S).
S = {x0,x1, . . . ,xn+1} is set of n + 1 affinely independent points if
{x1 − x0,x2 − x0, . . . ,xn+1 − x0} are linearly independent.
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Simplex (plural: simplexes) Polytope: Primal and Dual Descriptions

Dual or H Description: An n Simplex S is a convex Polytope with of affine dimension n and
having n + 1 corners. That is, is solution set of finitely many inequalities or
equalities: S = {x|Ax ⪯ b , Cx = d} where A ∈ ℜm×n, C ∈ ℜp×n such that S
with affine dimension n and having n + 1 corners.

Primal or V Description: Convex hull of n + 1 affinely independent points. Specifically, let
S = {x0,x1, . . . ,xn+1} be a set of n + 1 affinely independent points, then an
n-dimensional simplex is conv(S).
Simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary
dimensions.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 150 / 210



Convexity preserving operations

In practice if you want to establish the convexity of a set C, you could either
1 prove it from first principles, i.e., using the definition of convexity or
2 prove that C can be built from simpler convex sets through some basic operations which

preserve convexity.
Some of the important operations that preserve complexity are:

1 Intersection
2 Affine Transform
3 Perspective and Linear Fractional Function
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Closure under Intersection
The intersection of any number of convex sets is convex. Consider the set S:

S =

{
x ∈ ℜn | |p(t)| ≤ 1 for |t| ≤ π

3

}
(38)

where
p(t) = x1 cos t + x2 cos 2t + . . .+ xm cosmt (39)

Figure 11: Plot for the function in (39)
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Closure under Intersection (contd.)

Any value of t that satisfies |p(t)| ≤ 1, defines two regions, viz.,

ℜ≤(t) =
{

x | x1 cos t + x2 cos 2t + . . .+ xm cosmt ≤ 1
}

and

ℜ≥(t) =
{

x | x1 cos t + x2 cos 2t + . . .+ xm cosmt ≥ −1
}

Each of the these regions is convex and for a given value of t, the set of points that may lie in
S is given by ℜ(t) = ℜ≤(t) ∩ ℜ≥(t)
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Closure under Intersection (contd.)
ℜ(t) is also convex. However, not all the points in ℜ(t) lie in S, since the points that lie in S
satisfy the inequalities for every value of t. Thus, S can be given as:

S = ∩|t|≤π
3
ℜ(t)

Figure 12: Illustration of the closure property for S defined in (38), for m = 2.Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 154 / 210



Closure under Affine transform

An affine transform is one that preserves
Collinearity between points, i.e., three points which lie on a line continue to be collinear
after the transformation.
Ratios of distances along a line, i.e., for distinct colinear points p1,p2,p3, ||p2−p1||

||p3−p2|| is
preserved.

An affine transformation or affine map between two vector spaces f : ℜn → ℜm consists of a
linear transformation followed by a translation:

x 7→ Ax + b

where A ∈ ℜn×m and b ∈ ℜm.
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Closure under Affine transform (contd.)
In the finite-dimensional case each affine transformation is given by a matrix A and a vector b.
The image and pre-image of convex sets under an affine transformation defined as

f(x) =
n∑
i

xiai + b

yield convex sets9. Here ai is the ith row of A. The following are examples of convex sets that
are either images or inverse images of convex sets under affine transformations:

1 the solution set of linear matrix inequality (Ai,B ∈ Sm){
x ∈ ℜn | x1A1 + . . .+ xnAn ⪯ B

}
is a convex set. Here A ⪯ B means B − A is positive semi-definite10. This set is the
inverse image under an affine mapping of the

spositive semi-definite cone. That is,
f−1 (cone) =

{
x ∈ ℜn |B − (x1A1 + . . .+ xnAn) ∈ Sm

+

}
={

x ∈ ℜn|B ≥ (x1A1 + . . .+ xnAn)
}
.

9Exercise: Prove.
10The inequality induced by positive semi-definiteness corresponds to a generalized inequality ⪯K with

K = Sn
+.
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Closure under Affine transform (contd.)
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10The inequality induced by positive semi-definiteness corresponds to a generalized inequality ⪯K with

K = Sn
+.
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Closure under Affine transform (contd.)

2 hyperbolic cone (P ∈ Sn
+), which is the inverse image of the

norm cone
Cm+1 =

{
(z, u)|||z|| ≤ u, u ≥ 0, z ∈ ℜm} =

{
(z, u)|zTz − u2 ≤ 0, u ≥ 0, z ∈ ℜm

}
is a

convex set. The inverse image is given by
f−1 (Cm+1) =

{
x ∈ ℜn |

(
Ax, cTx

)
∈ Cm+1

}
=

{
x ∈ ℜn|xTATAx − (cTx)2 ≤ 0

}
.

Setting, P = ATA, we get the equation of the hyperbolic cone:{
x | xTPx ≤ (cTx)2, cTx ≥ 0

}
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Closure under Perspective and linear-fractional functions
The perspective function P : ℜn+1 → ℜn is defined as follows:

P : ℜn+1 → ℜn such that
P(x, t) = x/t dom P = {(x, t) | t > 0} (40)

The linear-fractional function f is a generalization of the perspective function and is defined as:
ℜn → ℜm:

f : ℜn → ℜm such that
f(x) = Ax+b

cTx+d dom f = {x | cTx + d > 0} (41)

The images and inverse images of convex sets under perspective and linear-fractional functions
are convex11.

11Exercise: Prove.
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Closure under Perspective and linear-fractional functions (contd)

The Figure below shows an example set.
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Closure under Perspective and linear-fractional functions (contd)
Consider the linear-fractional function f = 1

x1+x2+1x. The following Figure shows the image of
the set (from the prevous slide) under the linear-fractional function f.
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Convex Functions, Epigraphs, Sublevel sets, Separating and Supporting
Hyperplane Theorems and required tools
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Convex Functions: Extending Slopeless Definition from ℜ :→ ℜ

A function f : D → ℜ is convex if D is a convex set and

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y) ∀ x,y ∈ D 0 ≤ θ ≤ 1 (42)
A function f : D → ℜ is strictly convex if D is convex and

f(θx + (1− θ)y) < θf(x) + (1− θ)f(y)) ∀ x,y ∈ D 0 ≤ θ ≤ 1 (43)
A function f : D → ℜ is strongly convex if D is convex and for some constant c > 0

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y))− 1
2cθ(1− θ)||x − y||2 ∀ x,y ∈ D 0 ≤ θ ≤ 1 (44)

A function f : D → ℜ is uniformly convex wrt function c(x) ≥ 0 (vanishing only at 0) if
D is convex and

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y))− c(∥x − y∥)θ(1− θ) ∀ x,y ∈ D 0 ≤ θ ≤ 1 (45)
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Figure 13: Example of convex function.
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Examples of Convex Functions

Examples of convex functions on the set of reals ℜ as well as on ℜn and ℜm×n are shown
below.

Function type Domain Additional Constraints
The affine function: ax + b ℜ Any a, b ∈ ℜ
The exponential function: eax ℜ Any a ∈ ℜ
Powers: xα ℜ++ α ≥ 1 or α ≤ 1

Powers of absolute value: |x|p ℜ p ≥ 1

Negative entropy: x log x ℜ++

Affine functions of vectors: aTx + b ℜn

p-norms of vectors: ||x||p =

 n∑
i=1

|xi|p
1/p

ℜn p ≥ 1

inf norms of vectors: ||x||∞ = maxk |xk| ℜn

Affine functions of matrices: tr(ATX) + b =

m∑
i=1

n∑
j=1

AijXij + b ℜm×n

Spectral (maximum singular value) matrix norm: ||X||2 = σmax(X) = (λmax(XTX))1/2 ℜm×n

Table 1: Examples of convex functions on ℜ, ℜn and ℜm×n.
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Strict, Strong and Uniform Convexity for f : ℜ → ℜ

Strictly, Strongly Convex Function:

▶ f(x) = x2
▶ f(x) = x2 − cos(x)
▶ For f : ℜn → ℜ, f(x) = xTAx + bTx + c

Strictly Convex but not Strongly Convex:
▶ f(x) = x4
▶ f(x) = x4

Convex but not Strictly Convex:
▶ f(x) = |x|
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A function f : ℜn → ℜ is said to be concave if the function −f is convex. Examples of concave
functions on the set of reals ℜ are shown below. If a function is both convex and concave, it
must be affine, as can be seen in the two tables.

Function type Domain Additional Constraints
The affine function: ax + b ℜ Any a, b ∈ ℜ
Powers: xα ℜ++ 0 ≤ α ≤ 1

logarithm: log x ℜ++

Table 2: Examples of concave functions on ℜ.
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Convexity and Global Minimum

Fundamental chracteristics:
1 Any point of local minimum point is also a point of global minimum.
2 For any stricly convex function, the point corresponding to the gobal minimum is also

unique.
To discuss these further, we need to extend the defitions of Local Minima/Maxima to arbitrary
sets D
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Illustrating Local Extrema for f : ℜ2 → ℜ
These definitions are exactly analogous to the definitions for a function of single variable.
Figure below shows the plot of f(x1, x2) = 3x21 − x31 − 2x22 + x42. As can be seen in the plot, the
function has several local maxima and minima.

Figure 14:
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Local Extrema in Normed Spaces: Extending from ℜ → ℜ

Definition
[Local maximum]: A function f of n variables has a local maximum at x0 ∈ D in a normed

space D if ∃ϵ > 0 such that ∀ ||x − x0|| < ϵ. f(x) ≤ f(x0). In other words,
f(x) ≤ f(x0) whenever x lies in the interior of some norm ball around x0.

Definition
[Local minimum]: A function f of n variables has a local minimum at x0 ∈ D in a normed

space D if ∃ϵ > 0 such that ∀ ||x − x0|| < ϵ. f(x) ≥ f(x0). In other words,
f(x) ≥ f(x0) whenever x lies in the interior of some norm ball around x0.

1 These definitions can be easily extended to metric spaces or topological spaces. But we
need definitions of open sets and interior in those spaces (and in fact some other
foundations will also help).

2 We will first provide these defintions in ℜn and then provide the idea for extending them
to more abstract topological/metric/normed spaces.
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Recap: Basic Prerequisite Topological Concepts in ℜn

Definition
[Balls in ℜn]: Consider a point x ∈ ℜn. Then the closed norm ball around x of radius ϵ is

B[x, ϵ] =
{

y ∈ ℜn|||y − x|| ≤ ϵ
}

Likewise, the open nborm all around x of radius ϵ is defined as

B(x, ϵ) =
{

y ∈ ℜn|||y − x|| < ϵ
}

For the 1-D case, open and closed balls degenerate to open and closed intervals respectively.
Definition
[Boundedness in ℜn]: We say that a set S ⊂ ℜn is bounded when

there exists an ϵ > 0 such
that S ⊆ B[0, ϵ].

In other words, a set S ⊆ ℜn is bounded means that there exists a number ϵ > 0 such that for
all x ∈ S, ||x|| ≤ ϵ.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 170 / 210



Recap: Basic Prerequisite Topological Concepts in ℜn

Definition
[Balls in ℜn]: Consider a point x ∈ ℜn. Then the closed norm ball around x of radius ϵ is

B[x, ϵ] =
{

y ∈ ℜn|||y − x|| ≤ ϵ
}

Likewise, the open nborm all around x of radius ϵ is defined as

B(x, ϵ) =
{

y ∈ ℜn|||y − x|| < ϵ
}

For the 1-D case, open and closed balls degenerate to open and closed intervals respectively.
Definition
[Boundedness in ℜn]: We say that a set S ⊂ ℜn is bounded when there exists an ϵ > 0 such

that S ⊆ B[0, ϵ].

In other words, a set S ⊆ ℜn is bounded means that there exists a number ϵ > 0 such that for
all x ∈ S, ||x|| ≤ ϵ.

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 170 / 210



More Basic Prerequisite Topological Concepts in ℜn

Definition
[Interior and Boundary points]: A point x is called an interior point of a set S if

there
exists an ϵ > 0 such that B(x, ϵ) ⊆ S.

In other words, a point x ∈ S is called an interior point of a set S if there exists an open ball
of non-zero radius around x such that the ball is completely contained within S.

Definition
[Interior of a set]: Let S ⊆ ℜn. The set of all points lying in the interior of S is denoted by

int(S) and is called the interior of S. That is,

int(S) =
{

x|∃ϵ > 0 s.t. B(x, ϵ) ⊂ S
}

In the 1−D case, the open interval obtained by excluding endpoints from an interval I is the
interior of I, denoted by int(I). For example, int([a, b]) = (a, b) and int([0,∞)) = (0,∞).
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More Basic Prerequisite Topological Concepts in ℜn

Definition
[Boundary of a set]: Let S ⊆ ℜn. The boundary of S, denoted by ∂(S) is defined as

∂(S) =
{

y|∀ ϵ > 0, B(y, ϵ) ∩ S ̸= ∅ and B(y, ϵ) ∩ SC ̸= ∅
}

For example, partial([a, b]) = {a, b}.

Definition
[Open Set]: Let S ⊆ ℜn. We say that S is an open set when, for every x ∈ S, there exists

an ϵ > 0 such that B(x, ϵ) ⊂ S.

1 The simplest examples of an open set are the open ball, the empty set ∅ and ℜn.
2 Further, arbitrary union of opens sets is open. Also, finite intersection of open sets is

open.
3 The interior of any set is always open. It can be proved that a set S is open if and only if

int(S) = S.
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More Basic Prerequisite Topological Concepts in ℜn

The complement of an open set is the closed set.

Definition
[Closed Set]: Let S ⊆ ℜn. We say that S is a closed set when

SC (that is the complement
of S) is an open set. It can be proved that ∂S ⊆ S, that is, a closed set contains
its boundary.

The closed ball, the empty set ∅ and ℜn are three simple examples of closed sets. Arbitrary
intersection of closed sets is closed. Furthermore, finite union of closed sets is closed.

Definition
[Closure of a Set]: Let S ⊆ ℜn. The closure of S, denoted by closure(S) is given by

closure(S) =
{

y ∈ ℜn|∀ ϵ > 0,B(y, ϵ) ∩ S ̸= ∅
}
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SHT: Separating hyperplane theorem (a fundamental theorem)

If C and D are disjoint convex sets, i.e., C ∩D = ϕ, then there exists a ̸= 0, with a b ∈ ℜ such
that
aTx ≤ b for x ∈ C,
aTx ≥ b for x ∈ D.
That is, the hyperplane

{
x|aTx = b

}
separates C and D.

The seperating hyperplane need not be unique though.
Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).
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SHT: Separating hyperplane theorem (restated)

If C and D are disjoint convex sets, i.e., C ∩D = ϕ, then there exists a ̸= 0, with a b ∈ ℜ such
that
aTx ≤ b for x ∈ C,
aTx ≥ b for x ∈ D.
That is, the hyperplane

{
x|aTx = b

}
separates C and D.

The seperating hyperplane need not be unique though.
Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).
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Proof of the Separating Hyperplane Theorem

We first note that the set S =
{

x − y|x ∈ C,y ∈ D
}
is convex, since it is the sum of two

convex sets. Since C and D are disjoint, 0 /∈ S. Consider two cases:
1 Suppose 0 /∈ closure(S). Let E = {0} and F = closure(S). Then, the euclidean distance

between E and F , defined as
dist(E ;F) = inf

{
||u − v||2|u ∈ E ,v ∈ F

}
is positive, and there exists a point f ∈ F that achieves the minimum distance, i.e.,
||f||2 = dist(E ,F). Define a = f, b = ||f||2. Then a ̸= 0 and the affine function
f(x) = aTx − b = fT(x − 1

2 f) is nonpositive on E and nonnegative on F , i.e., that the
hyperplane

{
x|aTx = b

}
separates E and F . Thus, aT(x − y) > 0 for all

x − y ∈ S ⊆ closure(S), which implies that, aTx ≥ aTy for all x ∈ C and y ∈ D.
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Proof of the Separating Hyperplane Theorem

2 Suppose, 0 ∈ closure(S). Since 0 /∈ S, it must be in the boundary of S.
▶ If S has empty interior, it must lie in an affine set of dimension less than n, and any

hyperplane containing that affine set contains S and is a hyperplane. In other words, S is
contained in a hyperplane

{
z|aTz = b

}
, which must include the origin and therefore b = 0.

In other words, aTx = aTy for all x ∈ C and all y ∈ D gives us a trivial separating
hyperplane.
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Proof of the Separating Hyperplane Theorem

2 Suppose, 0 ∈ closure(S). Since 0 /∈ S, it must be in the boundary of S.
▶ If S has a nonempty interior, consider the set

S−ϵ =
{

z|B(z, ϵ) ⊆ S
}

where B(z, ϵ) is the Euclidean ball with center z and radius ϵ > 0. S−ϵ is the set S, shrunk
by ϵ. closure (S−ϵ) is closed and convex, and does not contain 0, so as argued before, it is
separated from {0} by atleast one hyperplane with normal vector a(ϵ) such that
a(ϵ)Tz ≥ 0 for all z ∈ Sϵ

Without loss of generality assume ||a(ϵ)||2 = 1. Let ϵk, for k = 1, 2, . . . be a sequence of
positive values of ϵk with lim

k→∞
ϵk = 0. Since ||a(ϵk)||2 = 1 for all k, the sequence a(ϵk)

contains a convergent subsequence, and let a be its limit. We have
a(ϵk)Tz ≥ 0 for all z ∈ S−ϵk

and therefore aTz ≥ 0 for all z ∈ interior(S), and aTz ≥ 0 for all z ∈ S, which means
aTx ≥ aTy for all x ∈ C, and y ∈ D.
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Supporting hyperplane theorem (consequence of separating hyperplane
theorem)
Supporting hyperplane to set C at boundary point xo:{

x|aTx = aTxo
}

where a ̸= 0 and aTx ≤ aTxo for all x ∈ C

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at
every boundary point of C.
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Positive Semidefinite Cone and Convex Analysis
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More on Convex Sets and Advanced Material on Convex Analysis

Positive Semi-definite cone.
Positive Semi-definite cone: Example and Notes.
Linear program and dual of LP.
Properties of dual cones.
Conic Program.
Generalized Inequalities.
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Positive semidefinite cone: Notes

1 Claim : (Sn
+)

∗ = (Sn
+)

2 i.e. <X,Y> = tr(XTY) = tr(XY) ≥ 0 ∀ X ∈ (Sn
+) iff Y ∈ (Sn

+)

Proof:
1 1 Let us say Y /∈ Sn

+. That is ∃ z ∈ ℜn s.t. zTYz = tr(zzTY) < 0
2 i.e. ∃ X = zzT ∈ Sn

+ s.t. <X,Y> < 0
3 =⇒ Y /∈ (Sn

+)
∗

2 1 Suppose Y,X ∈ Sn
+. Any X ∈ Sn

+ can be written in terms of eignvalue decomposition as:
2 X =

∑
i=1:n λiuiuT

i (λi ≥ 0)
3 ∴ <Y,X> = tr(YX) = tr(Y

∑
i=1:n λiuiuT

i ) =
∑

i=1:n λitr(YuiuT
i ) =

∑
i=1:n λiuT

i Yui ≥ 0.
4 Since (λi ≥ 0) and (uT

i Yui ≥ 0 as Y ∈ Sn
+)

5 =⇒ Y ∈ (Sn
+)

∗
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Positive semidefinite cone: Questions

1 Q) Is there some connection between Y = yyT used for Sn
+ = {X ∈ Sn | <yyT,X> ≥ 0}

and (Sn
+)

∗ = (Sn
+).

- (To be revisited as H/W)
2 Q) (Sn

++)
∗ = ?, int(Sn

+) = (Sn
++)

- Ans: (Sn
++)

∗ = (Sn
+), (will be done formally for general case of convex cones)

- C = convex cone, C∗∗ = cl(C)
3 Q) Consider an application of psd cone for optimization. (thru LP)

1 We will first see (weak) duality in a linear optimization problem (LP).
2 Next we look at generalized (conic) inequalities and the properties that the cone must satisfy

for the inequality to be a valid inequality.
3 Next, we generalize LP to conic program (CP) using generalized inequality and realize weak

duality for CP thru dual cones.
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Linear program (LP) & dual of LP.
We will first see (weak) duality in a linear optimization problem (LP).

1 LP: minx∈ℜn cTx (Affine Objective)
subjected to −Ax + b ≤ 0

▶ Let λ ≥ 0 (i.e. λ ∈ Rn
+)

▶ Then λT(−Ax + b) ≤ 0
▶ =⇒ cTx ≥ cTx + λT(−Ax + b)
▶ =⇒ cTx ≥ λTb + (c − ATλ)Tx
▶ So, cTx ≥ minx λTb + (c − ATλ)Tx
▶ Thus,

cTx ≥

{
λTb, if ATλ = c
−∞, otherwise

▶ Note: LHS (cTx) is independent of λ and R.H.S (λTb) is independent of x.

2 Weak duality theorem for Linear Program:
Primal LP (lower bounded) ≥ Dual LP (upper bounded):
(minx∈ℜn cTx, s.t. Ax ≥ b) ≥ (maxλ≥0bTλ, s.t. ATλ = c)
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Conic program

We will motivate through linear programming (LP), generalized inequalities:
1 LP: minx∈ℜn cTx (Affine Objective)

subjected to −Ax + b ≤ 0
▶ Note: −Ax + b ≤ 0 can be rewritten as Ax ≥ 0.
▶ So, constraint is Ax − b ∈ Rn

+
▶ Note: Rn

+ is a CONE. How about defining generalized inequality for a cone K as:
c ≥K d iff c − d ∈ K

2 So, a generalized conic program can be defined as:
minx∈ℜn cTx
subjected to −Ax + b ≤K 0

▶ That is, constraint is Ax − b ∈ K.
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Properties of dual cones
1 If X is a Hilbert space & C ⊆ X then C∗ is a closed convex cone.

▶ We have already proven that C∗ is a closed convex cone.
▶ C∗ = intersection of infinite topological half spaces.
▶ C∗ = ∩x∈C {y|y ∈ X, < y,x >≥ 0}
▶ =⇒ C∗ is closed.

2 C1 ⊆ C2 =⇒ C∗
2 ⊆ C∗

1.
3 interior(C∗) = {y ∈ X| < y,x >> 0}
4 If C is cone and has int(C) ̸= ∅ then C∗ is pointed.

▶ Since; if y ∈ C∗ & −y ∈ C∗, then y = 0.
5 If C is cone then closure(C) = C∗*

▶ If C = open half space, then C∗* = closed half space.
6 If closure of C is pointed, then interior(C∗) ̸= ϕ.

S is called conically spanning set of cone K iff conic(S) = K.
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Generalized Inequalities
a convex cone K ⊆ ℜn is a proper cone (or regular cone) if:
(Some restrictions on K that we will require, H/W Why?)

K is closed (contains its boundary)
K is solid (has nonempty interior)
K is pointed (contains no line)

▶ i.e. K has no straight lines passing through O.
▶ i.e. if −a, a ∈ K, then a = 0

examples
non-negative orthant K = Rn

+ = {x ∈ ℜn|xi ≥ 0, i = 1, ..., n}
positive semidefinite cone K = Sn

+

nonnegative polynomials on [0,1]:
K = {x ∈ ℜn|x1 + x2t + x3t2 + ....+ xntn−1 ≥ 0 for t ∈ [0, 1]}
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Valid Inequality and Partial Order

To prove that K being closed, solid and pointed are necessary & sufficient conditions for ≥K to
be a valid inequality, reall that any partial order ≥ should satisfy the following properties:(refer
page 51 of www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf):

1 Reflexivity: a ≥ a;
2 Anti-symmetry: if both a ≥ b and b ≥ a, then a = b;
3 Transitivity: if both a ≥ b and b ≥ c, then a ≥ c;
4 Compatibility with linear operations:

1 Homogeneity: If a ≥ b and λ is a nonnegative real, then λa ≥ λb, i.e. one can multiply both
sides of an inequaility by a nonnegative real.

2 Addititvity: if both a ≥ b abd c ≥ d, then a + c ≥ b + d, i.e. One can add two inequalities of
the same sign.
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Example of Partial Order

Example of Partial Order ⊆ over sets
The Hasse diagram of the set of all subsets of a three-element set {x, y, z}, ordered by
inclusion(Inclusion, i.e. the Partial Order ⊆):

(source http://en.wikipedia.org/wiki/Partially_ordered_set)
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Dual Cones and Generalized Inequalities
Instructor: Prof. Ganesh Ramakrishnan
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Contents: Vector Spaces beyond ℜn

Recap: Linear program (LP) & dual of LP.
Recap: Conic program.
Recap: Linear program (LP) & dual of LP.
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Linear program (LP) & dual of LP.
We will first see (weak) duality in a linear optimization problem (LP).

1 LP: minx∈ℜn cTx (Affine Objective)
subjected to −Ax + b ≤ 0

▶ Let λ ≥ 0 (i.e. λ ∈ ℜn
+)

▶ Then λT(−Ax + b) ≤ 0
▶ =⇒ cTx ≥ cTx + λT(−Ax + b)
▶ =⇒ cTx ≥ λTb + (c − ATλ)Tx
▶ So, cTx ≥ minx λTb + (c − ATλ)Tx
▶ Thus,

cTx ≥

{
λTb, if ATλ = c
−∞, otherwise

▶ Note: LHS (cTx) is independent of λ and R.H.S (λTb) is independent of x.

2 Weak duality theorem for Linear Program:
Primal LP (lower bounded by dual) ≥ Dual LP (upper bounded by primal):
(minx∈ℜn cTx, s.t.Ax ≥ b) ≥ (maxλ≥0bTλ, s.t.ATλ = c)
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Conic program

We will motivate through linear programming (LP), generalized inequalities:
1 A generalized conic program can be defined as:

minx∈ℜn cTx
subjected to −Ax + b ≤K 0

▶ That is, constraint is Ax − b ∈ K.
2 Q: Has to generalize −Ax + b ≤ 0 to −Ax + b ≤K 0 s.t. ≤K is a generalized inequality &

K some set?
3 What properties should K satisfy so that ≤K satisfies properties of generalized

inequalities?
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Valid Inequality and Partial Order

To prove that K being closed, solid and pointed are necessary & sufficient conditions for ≥K to
be a valid inequality, reall that any partial order ≥ should satisfy the following properties:(refer
page 51 of www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf):

1 Reflexivity: a ≥ a;
2 Anti-symmetry: if both a ≥ b and b ≥ a, then a = b;
3 Transitivity: if both a ≥ b and b ≥ c, then a ≥ c;
4 Compatibility with linear operations:

1 Homogeneity: If a ≥ b and λ is a nonnegative real, then λa ≥ λb, i.e. one can multiply both
sides of an inequaility by a nonnegative real.

2 Addititvity: if both a ≥ b abd c ≥ d, then a + c ≥ b + d, i.e. One can add two inequalities of
the same sign.
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Example of Partial Order

Example of Partial Order ⊆ over sets
The Hasse diagram of the set of all subsets of a three-element set {x, y, z}, ordered by
inclusion(Inclusion, i.e. the Partial Order ⊆):

(source http://en.wikipedia.org/wiki/Partially_ordered_set)
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Proof of generalized inequality

To prove that K being closed, solid and pointed are necessary & sufficient conditions for ≥K to
be a valid inequality.
Proof:

1 K being pointed convex cone =⇒ ≥K is a partial order
1 Reflexivity: a ≥K a, since a − a = 0 ∈ K (∵ K is cone)
2 Anti-symmetry: If a ≥K b & b ≥K a then a = b, since a - b ∈ K & b -a ∈ K =⇒ a - b = 0

(∵ K is pointed)
3 Transitivity: If both a ≥K b & b ≥K c then a ≥K c, since a - b ∈ K & b -c ∈ K =⇒ (a - b)

+ (b - c) ∈ K (∵ K is a convex cone i.e. contain all conic combinations of points in the set)
4 Homogeneity: If both a ≥K b & λ ≥ 0 then λa ≥K λb, since a - b ∈ K & λ ≥ 0 =⇒ λ(a -

b) ∈ K (∵ K is a cone)
5 Additivity: If a ≥K b & c ≥K d then a + c ≥K b + d, since a - b ∈ K & c -d ∈ K =⇒ (a +

c) - (b + d) ∈ K (∵ K is a convex cone)
2 ≥K is a partial order =⇒ K being pointed convex cone
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Proof of generalized inequality

To prove that K being closed, solid and pointed are necessary & sufficient conditions for ≥K to
be a valid inequality.
Proof:

1 ≥K is a partial order =⇒ K being pointed convex cone
1 K is convex cone: If x,y ∈ K then θ1x + θ2y ∈ K∀ θ1, θ2 ≥ 0, since x ≥K 0 & y ≥K 0 =⇒

θ1x ≥K 0 & θ2y ≥K 0 ∀ θ1, θ2 ≥ 0 (Homogeneity of ≥K) and thus θ1x + θ2y ≥ 0 (Additivity
of ≥K)

2 K is pointed: If x ∈ K & −x ∈ K then x = 0, since x ≥K x & −x ≥K 0 =⇒ 0 ≥K x
(reflectivity x ≥K x, and adding x ≥K x&−x ≥K 0 by additivity) and −x ≥K x (additivity
on −x ≥K 0 & 0 ≥K x) and similarly x ≥K −x, and by applying anti-symmetry on −x ≥K x
& x ≥K −x we get x = −x i.e. x = 0.
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Additional properties over & above K being pointed convex cone

1 Que: Suppose ai ≥K bi ∀ i & ai → a & bi → b, then for a ≥K b what more is required of
K?

2 Ans: Necessary condition is that ai - bi → a − b ∈ K. i.e. K is closed(Also happens to be
a sufficient condition).

3 Que: What is required so that ∃ a >K b (i.e. b ≱K a)?
4 Ans: Sufficient condition is that a − b ∈ int(K) i.e. int(K) ̸= ϕ OR K has non-empty

interior.
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Linear program (LP) & Conic program.

We will first see (weak) duality in a linear optimization problem (LP).
1 LP: minx∈ℜn cTx (Affine Objective)

subjected to −Ax + b ≤ 0

−Ax + b ≤ 0 can be rewritten as Ax ≥ b or Ax − b ∈ ℜn
+ Note: ℜn

+ is a CONE. How about
defining generalized inequality for a cone C as c >K d iff c − d ∈ K and a generl conic program
as:

1 minx∈ℜn cTx
subjected to −Ax + b ≤K 0

That is, constraint is Ax − b ∈ K.
K is a proper cone.
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Generalized Inequalities
a convex cone K ⊆ ℜn is a proper cone (or regular cone) if:
(Some restrictions on K that we will require, H/W Why?)

K is closed (contains its boundary)
K is solid (has nonempty interior)
K is pointed (contains no line)

▶ i.e. K has no straight lines passing through O.
▶ i.e. if −a, a ∈ K, then a = 0

examples
non-negative orthant K = Rn

+ = {x ∈ ℜn|xi ≥ 0, i = 1, ..., n}
psitive semidefinite cone K = Sn

+

nonnegative polynomials on [0,1]:
K = {x ∈ ℜn|x1 + x2t + x3t2 + ....+ xntn−1 ≥ 0 for t ∈ [0, 1]}
Que: What if n → ∞, can you get proper cones under additional constraints?
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Linear program & its dual To Conic program and its dual.
Consider LP and its dual:

1 LP: minx∈ℜn cTx (Affine Objective)
subjected to −Ax + b ≤ 0

▶ Let λ ≥ 0 (i.e. λ ∈ Rn
+)

▶ Then λT(−Ax + b) ≤ 0
▶ =⇒ cTx ≥ cTx + λT(−Ax + b)
▶ =⇒ cTx ≥ λTb + (c − ATλ)Tx
▶ So, cTx ≥ minx λTb + (c − ATλ)Tx
▶ Thus,

cTx ≥

{
λTb, if ATλ = c
−∞, otherwise

▶ Note: LHS (cTx) is independent of λ and R.H.S (λTb) is independent of x.

2 Weak duality theorem for Linear Program:
Primal LP (lower bounded by dual) ≥ Dual LP (upper bounded by primal):
(minx∈ℜn cTx, s.t.Ax ≥ b) ≥ (maxλ≥0bTλ, s.t.ATλ = c)
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Conic program
Refer page 5 of http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf:

1 Conic program:
minx∈ℜn cTx
subjected to −Ax + b ≤K 0

2 Generalized conic program:
minx∈V < c,x >V
subjected to Ax − b ∈ K

3 K is a regular/proper cone.
4 We need an equivalent λ ∈ D ⊇ K∗ s.t.

<λ,Ax − b >≥ 0.
5 This K∗ s.t.

D = {λ| < λ,Ax − b >≥ 0, λ ∈ V ∀ Ax − b ∈ K}
& D ⊇ K∗ is dual cone of K

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 202 / 210

http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf


Dual of Conic program

1 Refer page 7 of http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf:
K∗ = {λ : λTξ ≥ 0 ∀ξ ∈ K} is the cone dual to K.

2 With this follows weak duality theorem for CONIC PROGRAM:
Primal CP (lower bounded by dual) ≥ Dual CP (upper bounded by primal):
(minx∈V < c,x >V, s.t. < λ,Ax − b >≥ 0.) ≥ (maxλ∈K∗ < b, λ >, s.t.ATλ = c)
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Notes: LP and CP

1 Both LP and CP dealt with affine objectives.
2 CP dealt with the generalized conic inequalities.
3 Later, in convex optimization, we will deal with the more general convex functions in the

objective.
Some Generalizations:

1 If K = Rn
+, the CP is an LP.

2 If K = Sn
+ (Set of all nXn SPD matrices), the CP is an SDP (Semi-definite program).

3 Any generic convex program can be expressed as a cone program (CP).

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 204 / 210



Dual of dual

1 If K is a closed convex cone then K∗∗ = K.
2 More generally, if K is just a convex cone, K∗∗ = closure(K) (abbreviated as Cl(K))

We will prove that if K is closed, then K∗∗ = K:
1 K ⊆ K∗∗, since x ∈ K =⇒ < x,y >≥ 0 ∀ y ∈ K∗ =⇒ x ∈ K∗∗.
2 K∗∗ ⊆ K, we will prove by contradiction. Suppose x ∈ K∗∗ but x /∈ K:

1 K∗∗ is closed since any dual cone is intersection of half spaces that are closed.
2 {x} is a singleton set.
3 =⇒ by ”strict hyperplane theorem” (on next page and proved later):

∃a ∈ V & b ∈ ℜ s.t. < a,x >< b& < a,y >≥ b∀ y ∈ K.
4 =⇒ < a,x >< 0 ≤< a,y > ∀y ∈ K. (Since y = 0 ∈ K∗∗, Claim: b = 0 if V is a closed

convex cone)
5 =⇒ a ∈ K∗ & x /∈ K∗∗ [contradiction]
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Separating hyperplane theorem (a fundamental theorem)

If C and D are disjoint convex sets, i.e., C ∩D = ϕ, then there exists a ̸= 0, with a b ∈ ℜ such
that
aTx ≤ b for x ∈ C,
aTx ≥ b for x ∈ D.
That is, the hyperplane

{
x|aTx = b

}
separates C and D.

The seperating hyperplane need not be unique though.
Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).
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Supporting hyperplane theorem (consequence of separating hyperplane
theorem)
Supporting hyperplane to set C at boundary point xo:{

x|aTx = aTxo
}

where a ̸= 0 and aTx ≤ aTxo for all x ∈ C

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at
every boundary point of C.
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Dual cones and generalized inequalities

In-fact, if K is a proper cone then K∗ is also proper.
K∗ = {λ : λTξ ≥ 0, ∀ξ ∈ K} is the cone dual to K.
Examples:

Self-dual cones
▶ K = ℜn

+: K∗ = ℜn
+

▶ K = Sn
+: K∗ = Sn

+
▶ K = {(x, t)|∥x∥2 ≤ t}: K∗ = {(x, t)|∥x∥2 ≤ t}

K = {(x, t)|∥x∥1 ≤ t}: K∗ = {(x, t)|∥x∥∞ ≤ t}
Dual cones of proper cones are proper, hence define generalized inequalities:
y ⪰K∗ 0 ⇐⇒ yTx ≥ 0 for all x ⪰K 0
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Minimum and minimal elements via dual inequalities

minimum element w.r.t ⪯K:
x is minimum element of S iff for all λ ≻K∗ 0, x is unique minimizer of λTz over S.

minimal element w.r.t ⪯K:
If x minimizes λTz over S for some λ ≻K∗ 0 then x is minimal
If x is minimal element of convex set S, then there exists a nonzero λ ⪰K∗ 0 such that x
minimizes λTz over S
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From Dual of Norm Cone to Dual Norm

Let ∥.∥ be a norm on ℜn The dual of K = {(x, t) ∈ ℜn+1|∥x∥ ≤ t} is:
K∗ = {(u, v)| ∈ ℜn+1|∥u∥∗ ≤ v}
where ∥u∥∗ = sup{uTx|∥x∥ ≤ 1}
Proof: We need to show that
xTu + tv ≥ 0 whenever ∥x∥ ≤ t ⇐⇒ ∥u∥∗ ≤ v
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