Algorithms: Gradient Descent

- This classic greedy algorithm for minimization uses the negative of the gradient of the function at the current point x^{*} as the descent direction $\Delta \mathrm{x}^{*}$.
- This choice of $\Delta \mathrm{x}^{*}$ corresponds to the direction of steepest descent under the L_{2} (eucledian) norm and follows from the Cauchy Shwarz inequality

Find a starting point $\mathbf{x}^{(0)} \in \mathcal{D}$

repeat

1. Set $\Delta \mathrm{x}^{(k)}=-\nabla f\left(\mathrm{x}^{(k)}\right)$.
2. Choose a step size $t^{(k)}>0$ using exact or backtracking ray search.
3. Obtain $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+t^{(k)} \Delta \mathbf{x}^{(k)}$.
4. Set $k=k+1$.
until stopping criterion (such as $\left\|\nabla f\left(\mathbf{x}^{(k+1)}\right)\right\|_{2} \leq \epsilon$) is satisfied
The steepest descent method can be thought of as changing the coordinate system in a particular way and then applying the gradient descent method in the changed coordinate system.

Convergence of the Gradient Descent Algorithm

- We recap the (necessary) inequality (36) resulting from Lipschitz continuity of $\nabla f(\mathbf{x})$: $f(\mathbf{y}) \leq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$
- Considering $\mathbf{x}^{k} \equiv \mathbf{x}$, and $\mathbf{x}^{k+1}=\mathbf{x}^{k}-t^{k} \nabla f\left(\mathbf{x}^{k}\right) \equiv \mathbf{y}$, we get

Convergence of the Gradient Descent Algorithm

- We recap the (necessary) inequality (36) resulting from Lipschitz continuity of $\nabla f(\mathbf{x})$: $f(\mathbf{y}) \leq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$
- Considering $\mathbf{x}^{k} \equiv \mathbf{x}$, and $\mathbf{x}^{k+1}=\mathbf{x}^{k}-t^{k} \nabla f\left(\mathbf{x}^{k}\right) \equiv \mathbf{y}$, we get

$$
\begin{aligned}
f\left(\mathbf{x}^{k+1}\right) & \leq f\left(\mathbf{x}^{k}\right)-t^{k} \nabla^{\top} f\left(\mathbf{x}^{k}\right) \nabla f\left(\mathbf{x}^{k}\right)+\frac{L\left(t^{k}\right)^{2}}{2}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathbf{x}^{k+1}\right) \leq f\left(\mathbf{x}^{k}\right)-\left(1-\frac{L t^{k}}{2}\right) t\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}
\end{aligned}
$$

- We desire to have the following (46). It holds if....

$$
\begin{equation*}
f\left(\mathbf{x}^{k+1}\right) \leq f\left(\mathbf{x}^{k}\right)-\frac{\widehat{t}}{2}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \tag{46}
\end{equation*}
$$

Convergence of the Gradient Descent Algorithm

- We recap the (necessary) inequality (36) resulting from Lipschitz continuity of $\nabla f(\mathbf{x})$: $f(\mathbf{y}) \leq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$
- Considering $\mathbf{x}^{k} \equiv \mathbf{x}$, and $\mathbf{x}^{k+1}=\mathbf{x}^{k}-t^{k} \nabla f\left(\mathbf{x}^{k}\right) \equiv \mathbf{y}$, we get

$$
\begin{aligned}
f\left(\mathbf{x}^{k+1}\right) & \leq f\left(\mathbf{x}^{k}\right)-t^{k} \nabla^{\top} f\left(\mathbf{x}^{k}\right) \nabla f\left(\mathbf{x}^{k}\right)+\frac{L\left(t^{k}\right)^{2}}{2}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathbf{x}^{k+1}\right) \leq f\left(\mathbf{x}^{k}\right)-\left(1-\frac{L t^{k}}{2}\right) t\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}
\end{aligned}
$$

- We desire to have the following (46). It holds if....

$$
\begin{equation*}
f\left(\mathbf{x}^{k+1}\right) \leq f\left(\mathbf{x}^{k}\right)-\frac{\widehat{t}}{2}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \tag{46}
\end{equation*}
$$

- With fixed step size $t^{k}=\hat{t}$, we ensure that $0<\hat{t} \leq \frac{1}{L}$

Convergence of the Gradient Descent Algorithm

- We recap the (necessary) inequality (36) resulting from Lipschitz continuity of $\nabla f(\mathbf{x})$: $f(\mathbf{y}) \leq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$
- Considering $\mathbf{x}^{k} \equiv \mathbf{x}$, and $\mathbf{x}^{k+1}=\mathbf{x}^{k}-t^{k} \nabla f\left(\mathbf{x}^{k}\right) \equiv \mathbf{y}$, we get

$$
\begin{aligned}
f\left(\mathbf{x}^{k+1}\right) & \leq f\left(\mathbf{x}^{k}\right)-t^{k} \nabla^{\top} f\left(\mathbf{x}^{k}\right) \nabla f\left(\mathbf{x}^{k}\right)+\frac{L\left(t^{k}\right)^{2}}{2}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathbf{x}^{k+1}\right) \leq f\left(\mathbf{x}^{k}\right)-\left(1-\frac{L t^{k}}{2}\right) t\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}
\end{aligned}
$$

- We desire to have the following (46). It holds if....

$$
\begin{equation*}
f\left(\mathbf{x}^{k+1}\right) \leq f\left(\mathbf{x}^{k}\right)-\frac{\widehat{t}}{2}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \tag{46}
\end{equation*}
$$

- With fixed step size $t^{k}=\widehat{t}$, we ensure that $0<\hat{t} \leq \frac{1}{L} \Longrightarrow 1-\frac{L \widehat{t}}{2} \geq \frac{1}{2}$.

Convergence of the Gradient Descent Algorithm

- We recap the (necessary) inequality (36) resulting from Lipschitz continuity of $\nabla f(\mathbf{x})$: $f(\mathbf{y}) \leq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$
- Considering $\mathbf{x}^{k} \equiv \mathbf{x}$, and $\mathbf{x}^{k+1}=\mathbf{x}^{k}-t^{k} \nabla f\left(\mathbf{x}^{k}\right) \equiv \mathbf{y}$, we get

$$
\begin{aligned}
f\left(\mathbf{x}^{k+1}\right) & \leq f\left(\mathbf{x}^{k}\right)-t^{k} \nabla^{\top} f\left(\mathbf{x}^{k}\right) \nabla f\left(\mathbf{x}^{k}\right)+\frac{L\left(t^{k}\right)^{2}}{2}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathbf{x}^{k+1}\right) \leq f\left(\mathbf{x}^{k}\right)-\left(1-\frac{L t^{k}}{2}\right) t\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}
\end{aligned}
$$

- We desire to have the following (46). It holds if....

$$
\begin{equation*}
f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)-\frac{\widehat{t}}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2} \tag{46}
\end{equation*}
$$

the drop in the value of the objective will be atleast order of

- With fixed step size $t^{k}=\widehat{t}$, we ensure that $0<\hat{t} \leq \frac{1}{L} \Longrightarrow 1-\frac{L \hat{t}}{2} \geq \frac{1}{2}$. square of norm
- With backtracking step seach, (46) holds with $\widehat{t}=\min \left\{1, \beta \frac{2\left(1-c_{1}\right)}{L}\right\} \quad$ of gradient derivation provided a'few slides later
- Using convexity, we have $f\left(\mathrm{x}^{*}\right) \geq f\left(\mathrm{x}^{k}\right)+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{*}-\mathrm{x}^{k}\right)$

$$
\Longrightarrow f\left(\mathrm{x}^{k}\right) \leq f\left(\mathrm{x}^{*}\right)+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{k}-\mathrm{x}^{*}\right)
$$

- Thus,

$$
\begin{aligned}
& f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)-\frac{t}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{*}\right)+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{k}-\mathrm{x}^{*}\right)-\frac{t}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{*}\right)+\frac{1}{2 t}\left\|\mathrm{x}^{k}-\mathrm{x}^{*}\right\|^{2}+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{k}-\mathrm{x}^{*}\right)-\frac{t}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2}-\frac{1}{2 t}\left\|\mathrm{x}^{k}-\mathrm{x}^{*}\right\|^{2}
\end{aligned}
$$

- Using convexity, we have $f\left(\mathrm{x}^{*}\right) \geq f\left(\mathrm{x}^{k}\right)+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{*}-\mathrm{x}^{k}\right)$

$$
\Longrightarrow f\left(\mathrm{x}^{k}\right) \leq f\left(\mathrm{x}^{*}\right)+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{k}-\mathrm{x}^{*}\right)
$$

- Thus,

$$
\begin{aligned}
& f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)-\frac{t}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{*}\right)+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{k}-\mathrm{x}^{*}\right)-\frac{t}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2} \\
& \Longrightarrow f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{*}\right)+\frac{1}{2 t}\left\|\mathrm{x}^{k}-\mathrm{x}^{*}\right\|^{2}+\nabla^{T} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}^{k}-\mathrm{x}^{*}\right)-\frac{t}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2}-\frac{1}{2 t}\left\|\mathrm{x}^{k}-\mathrm{x}^{*}\right\|^{2} \\
& \Longrightarrow f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{*}\right)+\frac{1}{2 t}\left(\left\|\mathrm{x}^{k}-\mathrm{x}^{*}\right\|^{2}-\left\|\mathrm{x}^{k}-\mathrm{x}^{*}-t \nabla f\left(\mathrm{x}^{k}\right)\right\|^{2}\right) \\
& \Longrightarrow f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{*}\right)+\frac{1}{2 t}\left(\left\|\mathrm{x}^{k}-\mathrm{x}^{*}\right\|^{2}-\left\|\mathrm{x}^{k+1}-\mathrm{x}^{*}\right\|^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
\left.\Longrightarrow f\left(x^{k+1}\right)-f\left(x^{*}\right) \leq \frac{1}{2 t}\left\|x^{k}-x^{*}\right\|^{2}-\left\|x^{k+1}-x^{*}\right\|^{2}\right) \tag{47}
\end{equation*}
$$

- Summing (47) over all iterations (since $-\left\|\mathrm{x}^{k+1}-\mathrm{x}^{*}\right\|^{2}<0$), we have

$$
\left.\sum_{i=1}\left(f\left(\mathbf{x}^{i}\right)-f\left(\mathbf{x}^{*}\right)\right) \leq \frac{1}{2 t}\left(\left\|\mathbf{x}^{(0)}-\mathbf{x}^{*}\right\|^{2}\right)\right)
$$

- The ray ${ }^{6}$ and line search ensure that $f\left(\mathrm{x}^{i+1}\right) \leq f\left(\mathrm{x}^{i}\right) \forall i=0,1, \ldots, k$. We thus get

[^0]- Summing (47) over all iterations (since $-\left\|\mathrm{x}^{k+1}-\mathrm{x}^{*}\right\|^{2}<0$), we have

$$
\left.\sum_{i=1}\left(f\left(\mathbf{x}^{i}\right)-f\left(\mathbf{x}^{*}\right)\right) \leq \frac{1}{2 t}\left(\left\|\mathbf{x}^{(0)}-\mathbf{x}^{*}\right\|^{2}\right)\right)
$$

- The ray ${ }^{6}$ and line search ensure that $f\left(\mathbf{x}^{i+1}\right) \leq f\left(\mathbf{x}^{i}\right) \forall i=0,1, \ldots, k$. We thus get

$$
f\left(\mathrm{x}^{k}\right)-f\left(\mathrm{x}^{*}\right) \leq \frac{1}{k} \sum_{i=1}^{k}\left(f\left(\mathrm{x}^{i}\right)-f\left(\mathrm{x}^{*}\right)\right) \leq \frac{\left\|\mathrm{x}^{(0)}-\mathrm{x}^{*}\right\|^{2}}{2 t k}
$$

- Thus, as $k \rightarrow \infty, f\left(x^{k}\right) \rightarrow f\left(x^{*}\right)$. This shows convergence for gradient descent.

To get epsilon close to $f\left(x^{*}\right)$, it is sufficient for k to be O (1/epsilon)
${ }^{6}$ By Armijo condition in (29), for some $0<c_{1}<1, f\left(\mathbf{x}^{i+1}\right) \leq f\left(\mathbf{x}^{i}\right)+c_{1} t^{i} \nabla^{T} f\left(\mathbf{x}^{i}\right) \Delta \mathbf{x}^{i}$

- Summing (47) over all iterations (since $-\left\|\mathrm{x}^{k+1}-\mathrm{x}^{*}\right\|^{2}<0$), we have

$$
\left.\sum_{i=1}\left(f\left(\mathbf{x}^{i}\right)-f\left(\mathbf{x}^{*}\right)\right) \leq \frac{1}{2 t}\left(\left\|\mathbf{x}^{(0)}-\mathbf{x}^{*}\right\|^{2}\right)\right)
$$

- The ray ${ }^{6}$ and line search ensure that $f\left(\mathrm{x}^{i+1}\right) \leq f\left(\mathrm{x}^{i}\right) \forall i=0,1, \ldots, k$. We thus get

$$
f\left(\mathrm{x}^{k}\right)-f\left(\mathrm{x}^{*}\right) \leq \frac{1}{k} \sum_{i=1}^{k}\left(f\left(\mathrm{x}^{i}\right)-f\left(\mathrm{x}^{*}\right)\right) \leq \frac{\left\|\mathrm{x}^{(0)}-\mathrm{x}^{*}\right\|^{2}}{2 t k}
$$

- Thus, as $k \rightarrow \infty, f\left(\mathrm{x}^{k}\right) \rightarrow f\left(\mathrm{x}^{*}\right)$. This shows convergence for gradient descent.
- What we are more interested in however, is the rate of convergence of the gradient descent algorithm.

[^1]
Aside: Backtracking ray search and Lipschitz Continuity

- Recap the Backtracking ray search algorithm
- Choose a $\beta \in(0,1)$
- Start with $t=1$
- While $f(\mathbf{x}+t \Delta \mathbf{x})>f(\mathbf{x})+c_{1} t \nabla^{\top} f(\mathbf{x}) \Delta \mathbf{x}$, do
\star Update $t \leftarrow \beta t$

Aside: Backtracking ray search and Lipschitz Continuity

- Recap the Backtracking ray search algorithm
- Choose a $\beta \in(0,1)$
- Start with $t=1$
- While $f(\mathbf{x}+t \Delta \mathbf{x})>f(\mathbf{x})+c_{1} t \nabla^{\top} f(\mathbf{x}) \Delta \mathbf{x}$, do
\star Update $t \leftarrow \beta t$
- On convergence, $f(\mathbf{x}+t \Delta \mathbf{x}) \leq f(\mathbf{x})+c_{1} t \nabla^{\top} f(\mathbf{x}) \Delta \mathrm{x}$
- For gradient descent, this means $f(\mathbf{x}+t \Delta \mathbf{x}) \leq f(\mathbf{x})-c_{1} t\|\nabla f(\mathbf{x})\|^{2}$
- For a function f with Lipschitz continuous $\nabla f(\mathbf{x})$ we have that $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)-\frac{\hat{t}}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2}$ is satisfied if $\widehat{t}=\min \left\{1, \beta \frac{2\left(1-c_{1}\right)}{L}\right\}$
- Reason: With backtracking step seach, if $1-\frac{L t^{k}}{2} \geq c_{1}$, the Armijo rule will be satisfied. That is, $0<t^{k} \leq \frac{2\left(1-c_{1}\right)}{L}$

Aside: Backtracking ray search and Lipschitz Continuity

- Recap the Backtracking ray search algorithm
- Choose a $\beta \in(0,1)$
- Start with $t=1$
- While $f(\mathbf{x}+t \Delta \mathbf{x})>f(\mathbf{x})+c_{1} t \nabla^{\top} f(\mathbf{x}) \Delta \mathbf{x}$, do
\star Update $t \leftarrow \beta t$
- On convergence, $f(\mathrm{x}+t \Delta \mathrm{x}) \leq f(\mathrm{x})+c_{1} t \nabla^{\top} f(\mathrm{x}) \Delta \mathrm{x}$
- For gradient descent, this means $f(\mathbf{x}+t \Delta \mathbf{x}) \leq f(\mathbf{x})-c_{1} t\|\nabla f(\mathbf{x})\|^{2}$
- For a function f with Lipschitz continuous $\nabla f(\mathbf{x})$ we have that $f\left(\mathrm{x}^{k+1}\right) \leq f\left(\mathrm{x}^{k}\right)-\frac{\widehat{t}}{2}\left\|\nabla f\left(\mathrm{x}^{k}\right)\right\|^{2}$ is satisfied if $\widehat{t}=\min \left\{1, \beta \frac{2\left(1-c_{1}\right)}{L}\right\}$
- Reason: With backtracking step seach, if $1-\frac{L t^{k}}{2} \geq c_{1}$, the Armijo rule will be satisfied. That is, $0<t^{k} \leq \frac{2\left(1-c_{1}\right)}{L} \Longrightarrow 1-\frac{L t^{k}}{2} \geq c_{1}$. If not, there must exist an interger j for which $\beta \frac{2\left(1-c_{1}\right)}{L} \leq \beta^{j} \leq \frac{2\left(1-c_{1}\right)}{L}$, we take $\hat{t}=\min \left\{1, \beta \frac{2\left(1-c_{1}\right)}{L}\right\}$

Rates of Convergence

Convergence
 rate of convergence $=$ slope

Linear Convergence

- v^{1}, \ldots, v^{k} is Linearly (or specifically, Q-linearly) convergent if

$$
\frac{\left\|v^{k+1}-v^{*}\right\|}{\left\|v^{k}-v^{*}\right\|} \leq r
$$

for some $k \geq \theta$, and $r \in(0,1)$

- 'Q' here stands for 'quotient' of the norms as shown above

Q-convergence

- v^{1}, \ldots, v^{k} is Q-linearly convergent if

$$
\frac{\left\|v^{k+1}-v^{*}\right\|}{\left\|v^{k}-v^{*}\right\|} \leq r
$$

for some $k \geq \theta$, and $r \in(0,1)$

- 'Q' here stands for 'quotient' of the norms as shown above
- Consider the sequence $\mathbf{s}_{1} \mathbf{s}_{1}=\left[\frac{11}{2}, \frac{21}{4}, \frac{41}{8}, \ldots, 5+\frac{1}{2^{n}}, \ldots\right]$ The sequence converges to 5

Q-convergence

- v^{1}, \ldots, v^{k} is Q -linearly convergent if

$$
\frac{\left\|v^{k+1}-v^{*}\right\|}{\left\|v^{k}-v^{*}\right\|} \leq r
$$

for some $k \geq \theta$, and $r \in(0,1)$

- 'Q' here stands for 'quotient' of the norms as shown above
- Consider the sequence $\mathbf{s}_{1} \mathbf{s}_{1}=\left[\frac{11}{2}, \frac{21}{4}, \frac{41}{8}, \ldots, 5+\frac{1}{2^{n}}, \ldots\right]$ The sequence converges to $s_{1}^{*}=5$ and it is Q -linearly convergent

Q-convergence

- v^{1}, \ldots, v^{k} is Q-linearly convergent if

$$
\frac{\left\|v^{k+1}-v^{*}\right\|}{\left\|v^{k}-v^{*}\right\|} \leq r
$$

for some $k \geq \theta$, and $r \in(0,1)$

- 'Q' here stands for 'quotient' of the norms as shown above
- Consider the sequence $\mathbf{s}_{1} \mathbf{s}_{1}=\left[\frac{11}{2}, \frac{21}{4}, \frac{41}{8}, \ldots, 5+\frac{1}{2^{n}}, \ldots\right]$

The sequence converges to $s_{1}^{*}=5$ and it is Q -linear convergence because:

$$
\frac{\left\|s_{1}^{k+1}-s_{1}^{*}\right\|}{\left\|s_{1}^{k}-s_{1}^{*}\right\|^{1}}=\frac{\left\|\frac{1}{2^{k+1}}\right\|}{\left\|\frac{1}{2^{k}}\right\|}=\frac{1}{2}<0.6(=M)
$$

- How about the convergence result we got by assuming Lipschitz continuity with backtracking and exact line searches?

Generalizing Q -convergence to R -convergence

- Consider the sequence $\mathbf{r}_{1} \mathbf{r}_{1}=\left[5, \frac{21}{4}, \frac{21}{4}, \ldots, 5+\frac{1}{4^{\left\lfloor\frac{n}{2}\right\rfloor}}, \ldots\right]$

The sequence converges to 5

Generalizing Q -convergence to R -convergence

- Consider the sequence $\mathbf{r}_{1} \mathbf{r}_{1}=\left[5, \frac{21}{4}, \frac{21}{4}, \ldots, 5+\frac{1}{4\left\lfloor\frac{n}{2}\right\rfloor}, \ldots\right]$

The sequence converges to $s_{1}^{*}=5$ but not Q-linearly!

- Let us consider the convergence result we got by assuming Lipschitz continuity with backtracking and exact line searches:

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq \frac{\left\|x^{(0)}-x^{*}\right\|^{2}}{2 t k}
$$

Generalizing Q -convergence to R -convergence

- Consider the sequence $\mathbf{r}_{1} \mathbf{r}_{1}=\left[5, \frac{21}{4}, \frac{21}{4}, \ldots, 5+\frac{1}{{ }_{4}\left\lfloor\frac{n}{2}\right\rfloor}, \ldots\right]$

The sequence converges to $s_{1}^{*}=5$ but not Q-linearly!

- Let us consider the convergence result we got by assuming Lipschitz continuity with backtracking and exact line searches:

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq \frac{\left\|x^{(0)}-x^{*}\right\|^{2}}{2 t k}
$$

- Q-convergence by itself insufficient. We will generalize it to R-convergence.
- ' R ' here stands for 'root', as we are looking at convergence rooted at x^{*}
- We say that the sequence s^{1}, \ldots, s^{k} is \mathbf{R}-linearly convergent if $\left\|s^{k}-s^{*}\right\| \leq v^{k}, \forall k$, and $\left\{v^{k}\right\}$ converges \mathbf{Q}-linearly to zero

R-convergence assuming Lipschitz continuity

- Consider $v^{k}=\frac{\left\|x^{(0)}-x^{*}\right\|^{2}}{2 t k}=\frac{\alpha}{k}$, where α is a constant
- Here, we have $\frac{\left\|v^{k+1}-v^{*}\right\|}{\left\|v^{k}-v^{*}\right\|}<=k /(k+1)-->1$ as k tends to infinity

R-convergence assuming Lipschitz continuity

- Consider $v^{k}=\frac{\left\|x^{(0)}-x^{*}\right\|^{2}}{2 t k}=\frac{\alpha}{k}$, where α is a constant
- Here, we have $\frac{\left\|v^{k+1}-v^{*}\right\|}{\left\|v^{k}-v^{*}\right\|} \leq \frac{K}{K+1}$, where K is the final number of iterations
- $\frac{K}{K+1}<1$, but we don't have $\frac{k}{K+1}<r$
- Thus, $v^{k}=\frac{\alpha}{k}$ is approximately Q-linearly convergent

R-convergence assuming Lipschitz continuity

- Consider $v^{k}=\frac{\left\|x^{(0)}-x^{*}\right\|^{2}}{2 t k}=\frac{\alpha}{k}$, where α is a constant
- Here, we have $\frac{\left\|v^{k+1}-v^{*}\right\|}{\left\|v^{k}-v^{*}\right\|} \leq \frac{K}{K+1}$, where K is the final number of iterations
- $\frac{K}{K+1}<1$, but we don't have $\frac{K}{K+1}<r$
- Thus, $v^{k}=\frac{\alpha}{k}$ is not Q-linearly convergent as

R-convergence assuming Lipschitz continuity

- Consider $v^{k}=\frac{\left\|x^{(0)}-x^{*}\right\|^{2}}{2 t k}=\frac{\alpha}{k}$, where α is a constant
- Here, we have $\frac{\left\|v^{k+1}-v^{*}\right\|}{\left\|v^{k}-v^{*}\right\|} \leq \frac{K}{K+1}$, where K is the final number of iterations
- $\frac{K}{K+1}<1$, but we don't have $\frac{K}{K+1}<r$
- Thus, $v^{k}=\frac{\alpha}{k}$ is not Q-linearly convergent as there exist no $v<1$ s.t.

$$
\frac{\alpha /(k+1)}{\alpha / k}=\frac{\hat{k}}{k+1} \leq v, \forall k \geq \theta
$$

- Strictly speaking, for Lipschitz continuity alone, gradient descent is not guaranteed to give R-linear convergence
- In practice, Lipschitz continuity gives "almost" R-linear convergence - not too bad!
- We say that gradient descent with Lipschtiz continuity has convergence rate $O(1 / k)$, that is,

R-convergence assuming Lipschitz continuity

- Consider $v^{k}=\frac{\left\|x^{(0)}-x^{*}\right\|^{2}}{2 t k}=\frac{\alpha}{k}$, where α is a constant
- Here, we have $\frac{\left\|v^{k+1}-v^{*}\right\|}{\left\|v^{k}-v^{*}\right\|} \leq \frac{K}{K+1}$, where K is the final number of iterations
- $\frac{K}{K+1}<1$, but we don't have $\frac{K}{K+1}<r$
- Thus, $v^{k}=\frac{\alpha}{k}$ is not Q-linearly convergent as there exist no $v<1$ s.t.

$$
\frac{\alpha /(k+1)}{\alpha / k}=\frac{k}{k+1} \leq v, \forall k \geq \theta
$$

- Strictly speaking, for Lipschitz continuity alone, gradient descent is not guaranteed to give R-linear convergence
- In practice, Lipschitz continuity gives "almost" R-linear convergence - not too bad!
- We say that gradient descent with Lipschtiz continuity has convergence rate $O(1 / k)$, that is, to obtain $f\left(\mathrm{x}^{k}\right)-f\left(\mathrm{x}^{*}\right) \leq \epsilon$, we need $O\left(\frac{1}{\epsilon}\right)$ iterations.
- Taking hint from this analysis, if Q-linear,

$$
\frac{\left\|s^{k+1}-s^{*}\right\|}{\left\|s^{k}-s^{*}\right\|} \leq \begin{gathered}
\text { sequence IS } \\
\text { convergent } \\
\text { re }(0,1)
\end{gathered}
$$

then,

$$
\begin{aligned}
& \left\|s^{k+1}-s^{*}\right\| \leq r\left\|s^{k}-s^{*}\right\| \\
& \leq r^{2}\left\|s^{k-1}-s^{*}\right\|
\end{aligned}
$$

$\leq r^{k}\left\|s^{(0)}-s^{*}\right\|$, which is v^{k} for R-linear

- Thus, Q-linear convergence \Longrightarrow R-linear convergence
- Q-linear is a special case of R-linear
- R-linear gives a more general way of characterizing linear convergence
- Q-linear is an 'order of convergence' r is the 'rate of convergence'
- Q-superlinear convergence:

$$
\lim _{k \rightarrow \infty} \frac{\left\|s^{k+1}-s^{*}\right\|}{\left\|s^{k}-s^{*}\right\|}=0
$$

If order of convergence is >1, you also expect superlinear behaviour to hold

- Q-sublinear convergence: Gradient descent with Lipschitz continuity is R-sublinearly convergent

$$
\lim _{k \rightarrow \infty} \frac{\left\|s^{k+1}-s^{*}\right\|}{\left\|s^{k}-s^{*}\right\|}=\underline{1}
$$

- e.g. For Lipschitz continuity, v^{k} in gradient descent is Q-sublinear: $\lim _{k \rightarrow \infty} \frac{k}{k+1}=1$
- Q-convergence of order p :

$$
\forall k \geq \theta, \frac{\left\|s^{k+1}-s^{*}\right\|}{\left\|s^{k}-s^{*}\right\|^{\underline{P}}} \leq M
$$

- e.g. $p=2$ for Q -quadratic, $p=3$ for Q-cubic, etc.
- M is called the asymptotic error constant

Illustrating Order Convergence

- Consider the two sequences \mathbf{s}_{1} and \mathbf{s}_{2}.
$\mathbf{s}_{1}=\left[\frac{11}{2}, \frac{21}{4}, \frac{41}{8}, \ldots, 5+\frac{1}{2^{n}}, \ldots\right]$
$\mathbf{s}_{2}=\left[\frac{11}{2}, \frac{41}{8}, \frac{641}{128}, \ldots, 5+\frac{1}{2^{2^{n}-1}}, \ldots\right]$
Both sequences converge to 5 . However, it seems that the second converges faster to 5 than the first one. because s2 seems to be hopping across s1
- For $\mathbf{s}_{1}, s_{1}^{*}=5$ and Q-convergence is of order $p=1$ because:

$$
\frac{\left\|s_{1}^{k+1}-s_{1}^{*}\right\|}{\left\|s_{1}^{k}-s_{1}^{*}\right\|^{1}}=\frac{\left\|\frac{1}{2^{k+1}}\right\|}{\left\|\frac{1}{2^{k}}\right\|}=\frac{1}{2}<0.6(=M)
$$

- For $\mathbf{s}_{2}, s_{2}^{*}=5$ and Q -convergence is of order $p=2$ because:

H/w

$$
\frac{\left\|s_{2}^{k+1}-s_{2}^{*}\right\|}{\left\|s_{2}^{k}-s_{2}^{*}\right\|^{2}}=\frac{\left\|\frac{1}{2^{2^{k+1}-1}}\right\|}{\left\|\frac{1}{2^{2^{k}-1}}\right\|^{2}}=\frac{1}{2}<0.6(=M)
$$

- Claim: Q-convergences of the order p are special cases of Q-superlinear convergence
- $\forall k \geq \theta$,

$$
\begin{aligned}
& \frac{\left\|s^{k+1}-s^{*}\right\|}{\left\|s^{k}-s^{*}\right\|^{P}} \leq M \\
& \quad \Longrightarrow \lim _{k \rightarrow \infty} \frac{\left\|s^{k+1}-s^{*}\right\|}{\left\|s^{k}-s^{*}\right\|} \leq \lim _{k \rightarrow \infty} M\left\|s^{k}-s^{*}\right\|^{p-1}=0
\end{aligned}
$$

- Therefore, irrespective of the value of M (as long as $M \geq 0$), order $p>1$ implies Q-superlinear convergence

Could we either look at more conditions (strong convexity) for better order of convergence for existing gradient descent?

Question: Could we analyze Gradient descent more specifically?

- Assume backtracking line search
- Continue assuming Lipschitz continuity

Without strong convexity

- Curvature is upper bounded: $\nabla^{2} f(x) \preceq L I$
- Assume strong convexity
- Curvature is lower bounded: $\nabla^{2} f(x) \succeq m /$ grad descent $=R$ sublinear With strong convexity, grad descent also Q linear
- For instance, we might not want to use gradient descent for a quadratic function (curvature is not accounted for)

Could we either look at completely different algorithms for better order of convergence?

There exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient. That is, with a good understanding of one, we can easily understand the other one. See http://xingyuzhou.org/talks/Fenchel_duality.pdf for a quick summary! (Better) Convergence Using Strong Convexity

Second Order Conditions for Convexity Analogous to Lipschitz continuity conditions in terms of Hessian

Theorem

A twice differential function $f: \mathcal{D} \rightarrow \Re$ for a nonempty open convex set \mathcal{D}
(1) is convex if and only if its domain is convex and its Hessian matrix is positive semidefinite at each point in \mathcal{D}. That is $\nabla^{2} f(\mathbf{x}) \succeq 0 \quad \forall \mathbf{x} \in \mathcal{D}$
(2) is strictly convex if its domain is convex and its Hessian matrix is positive definite at each point in \mathcal{D}. That is $\nabla^{2} f(\mathbf{x}) \succ 0 \quad \forall \mathbf{x} \in \mathcal{D}$
(3) is uniformly convex if and only if its domain is convex and its Hessian matrix is uniformly positive definite at each point in \mathcal{D}. That is, for any $\mathbf{v} \in \Re^{n}$ and any $\mathbf{x} \in \mathcal{D}$, there exists a $c>0$ such that $\mathbf{v}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{v} \geq c\|\mathbf{v}\|^{2}$

Proof of Second Order Conditions for Convexity

In other words

$$
\nabla^{2} f(\mathrm{x}) \succeq c l_{n \times n}
$$

where $I_{n \times n}$ is the $n \times n$ identity matrix and \succeq corresponds to the positive semidefinite inequality. That is, the function f is strongly convex iff $\nabla^{2} f(\mathbf{x})-c l_{n \times n}$ is positive semidefinite, for all $\mathrm{x} \in \mathcal{D}$ and for some constant $c>0$, which corresponds to the positive minimum curvature of f.
PROOF: We will prove only the first statement; the other two statements are proved in a similar manner.
Necessity: Suppose f is a convex function, and consider a point $\mathbf{x} \in \mathcal{D}$. We will prove that for any $\mathbf{h} \in \Re^{n}, \mathbf{h}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h} \geq 0$. Since f is convex, we have

$$
\begin{equation*}
f(\mathbf{x}+t \mathbf{h}) \geq f(\mathbf{x})+t \nabla^{\top} f(\mathbf{x}) \mathbf{h} \tag{48}
\end{equation*}
$$

Consider the function $\phi(t)=f(\mathbf{x}+\boldsymbol{t h})$ defined on the domain $\mathcal{D}_{\phi}=[0,1]$.

Proof of Second Order Conditions for Convexity (contd.)

Using the chain rule,

$$
\phi^{\prime}(t)=\sum_{i=1}^{n} f_{x_{i}}(\mathbf{x}+t \mathbf{h}) \frac{d x_{i}}{d t}=\mathbf{h}^{T} . \nabla f(\mathbf{x}+t \mathbf{h})
$$

Since f has partial and mixed partial derivatives, ϕ^{\prime} is a differentiable function of t on \mathcal{D}_{ϕ} and

$$
\phi^{\prime \prime}(t)=\mathbf{h}^{T} \nabla^{2} f(\mathbf{x}+t \mathbf{h}) \mathbf{h}
$$

Since ϕ and ϕ^{\prime} are continous on \mathcal{D}_{ϕ} and ϕ^{\prime} is differentiable on $\operatorname{int}\left(\mathcal{D}_{\phi}\right)$, we can make use of the Taylor's theorem with $n=3$ to obtain:

$$
\phi(t)=\phi(0)+t \cdot \phi^{\prime}(0)+t^{2} \cdot \frac{1}{2} \phi^{\prime \prime}(0)+O\left(t^{3}\right)
$$

Writing this equation in terms of f gives

Proof of Second Order Conditions for Convexity (contd.)

Using the chain rule,

$$
\phi^{\prime}(t)=\sum_{i=1}^{n} f_{x_{i}}(\mathbf{x}+t \mathbf{h}) \frac{d x_{i}}{d t}=\mathbf{h}^{T} . \nabla f(\mathbf{x}+t \mathbf{h})
$$

Since f has partial and mixed partial derivatives, ϕ^{\prime} is a differentiable function of t on \mathcal{D}_{ϕ} and

$$
\phi^{\prime \prime}(t)=\mathbf{h}^{T} \nabla^{2} f(\mathbf{x}+t \mathbf{h}) \mathbf{h}
$$

Since ϕ and ϕ^{\prime} are continous on \mathcal{D}_{ϕ} and ϕ^{\prime} is differentiable on $\operatorname{int}\left(\mathcal{D}_{\phi}\right)$, we can make use of the Taylor's theorem with $n=3$ to obtain:

$$
\phi(t)=\phi(0)+t \cdot \phi^{\prime}(0)+t^{2} \cdot \frac{1}{2} \phi^{\prime \prime}(0)+O\left(t^{3}\right)
$$

Writing this equation in terms of f gives

$$
f(\mathbf{x}+t \mathbf{h})=f(\mathbf{x})+t \mathbf{h}^{T} \nabla f(\mathbf{x})+t^{2} \frac{1}{2} h^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h}+O\left(t^{3}\right)
$$

Proof of Second Order Conditions for Convexity (contd.)

In conjunction with (48), the above equation implies that

$$
\frac{t^{2}}{2} h^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h}+O\left(t^{3}\right) \geq 0
$$

Dividing by t^{2} and taking limits as $t \rightarrow 0$, we get

$$
h^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h} \geq 0
$$

Proof of Second Order Conditions for Convexity (contd.)

Sufficiency: Suppose that the Hessian matrix is positive semidefinite at each point $\mathbf{x} \in \mathcal{D}$. Consider the same function $\phi(t)$ defined above with $\mathbf{h}=\mathbf{y}-\mathbf{x}$ for $\mathbf{y}, \mathbf{x} \in \mathcal{D}$. Applying Taylor's theorem with $n=2$ and $a=0$, we obtain,

$$
\phi(1)=\phi(0)+t \cdot \phi^{\prime}(0)+t^{2} \cdot \frac{1}{2} \phi^{\prime \prime}(c)
$$

for some $c \in(0,1)$. Writing this equation in terms of f gives

$$
f(\mathbf{x})=f(\mathbf{y})+(\mathbf{x}-\mathbf{y})^{T} \nabla f(\mathbf{y})+\frac{1}{2}(\mathbf{x}-\mathbf{y})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{x}-\mathbf{y})
$$

where $\mathbf{z}=\mathbf{y}+c(\mathbf{x}-\mathbf{y})$. Since \mathcal{D} is convex, $\mathbf{z} \in \mathcal{D}$. Thus, $\nabla^{2} f(\mathbf{z}) \succeq 0$. It follows that

$$
f(\mathbf{x}) \geq f(\mathbf{y})+(\mathbf{x}-\mathbf{y})^{T} \nabla f(\mathbf{y})
$$

By a previous result, the function f is convex.

Lipschitz Continuity vs. Strong Convexity

- Lipschitz continuity of gradient (references to ∇^{2} assume double differentiability)

$$
\begin{gathered}
\frac{\nabla^{2} f(x) \preceq L I}{} \\
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\| \\
f(y) \leq f(x)+\nabla^{\top} f(x)(y-x)+\frac{L}{2}\|y-x\|^{2}
\end{gathered}
$$

- Strong convexity: Curvature should be atleast somewhat positive

$$
f(y) \geq f(x)+\nabla^{\nabla^{\top} f(x) \succeq m I}
$$

- $m=0$ corresponds to (sufficient condition for) normal convexity.
- Later: For example, augmented Lagrangian is used to introduce strong convexity

[^0]: ${ }^{6}$ By Armijo condition in (29), for some $0<c_{1}<1, f\left(\mathbf{x}^{i+1}\right) \leq f\left(\mathbf{x}^{i}\right)+c_{1} t^{i} \nabla^{\top} f\left(\mathbf{x}^{i}\right) \Delta \mathbf{x}^{i}$

[^1]: ${ }^{6}$ By Armijo condition in (29), for some $0<c_{1}<1, f\left(\mathbf{x}^{i+1}\right) \leq f\left(\mathbf{x}^{i}\right)+c_{1} t^{i} \nabla^{T} f\left(\mathbf{x}^{i}\right) \Delta \mathbf{x}^{i}$

