Algorithms: Gradient Descent

@ This classic greedy algorithm for minimization uses the negative of the gradient of the
function at the current point x* as the descent direction Ax*.

@ This choice of Ax* corresponds to the direction of steepest descent under the Ly
(eucledian) norm and follows from the Cauchy Shwarz inequality

Find a starting point x(9) € D
repeat
1. Set Ax(W = —VAx®).
2. Choose a step size ¥ > 0 using exact or backtracking ray search.
3. Obtain x(k1) = x(K 4 K Ax (k)
4. Set k=k+ 1.
until stopping criterion (such as ||[VAx(k*1D)||5 <€) is satisfied

The steepest descent method can be thought of as changing the coordinate system in a
particular way and then applying the gradient descent method in the changed coordinate
system.
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Convergence of the Gradient Descent Algorithm

@ We recap the (necessary) inequality (36) resulting from Lipschitz continuity of Vf(x):

fly) < flx) + VT fix)(y — x) + §lly — x|
o Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get
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Convergence of the Gradient Descent Algorithm

@ We recap the (necessary) inequality (36) resulting from Lipschitz continuity of Vf(x):

fly) < fix) + VI Ax)(y — x) + §[ly — x||*
o Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get

Ak < Aixk) — 0T AxA) VAxK) + L(tk) va(x H2

— fxM) < fixh) - (1 — HVf(x H
@ We desire to have the following (46). It holds if...

k1) < x¥) Hw | (46)
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Convergence of the Gradient Descent Algorithm
@ We recap the (necessary) inequality (36) resulting from Lipschitz continuity of Vf(x):
fly) < fix) + V' fix)(y —x) + §lly — x||”
o Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get

2
Ak < Aixk) — 0T AxA) VAxK) + @HVﬂxk)HQ

— o) < ) - (1 Ee| o

@ We desire to have the following (46). It holds if....

k1) < fixck) — ;HVf(xk)HQ (46)

» With fixed step size t =, we ensure that 0 <t < 7
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Convergence of the Gradient Descent Algorithm
@ We recap the (necessary) inequality (36) resulting from Lipschitz continuity of Vf(x):
fly) < fix) + V' fix)(y —x) + §lly — x||”
o Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get

2
Ak < Aixk) — 0T AxA) VAxK) + @HVﬂxk)HQ

— o) < ) - (1 Ee| o

@ We desire to have the following (46). It holds if....

k1) < fixck) — gHVf(xk)’r (46)

» With fixed step size t* =, we ensure that 0 <t< 7 = 1— L; > 1

e e 0



Convergence of the Gradient Descent Algorithm

@ We recap the (necessary) inequality (36) resulting from Lipschitz continuity of Vf(x):

fly) < fix) + VI Ax)(y — x) + §[ly — x||*
o Considering x¥ = x, and x*T! = xk — thVAxK) = y, we get

2
Ak < Aixk) — 0T AxA) VAxK) + @HVﬂxk)HQ

— o) < ) - (1 Ee| o

@ We desire to have the following (46). It holds if...

l\-')lH-)

2
X1 < fix) - ﬂw 9 (46)

the drop in the value of the objective will be atleast order of
> With fixed step size t“ =7, we ensure that 0 < 1< + — 1— & > 1 square of norm

» With backtracking ste seach (46) holds with t = m/n{l B~ Cl)} of gradient
derivation provided a few slides later

See https://www.youtube.com/watch?v=SGZdsQviFYs&list=PLsd82ngobrvcYfCdnSngM71KLqE9qUUpX&index=17
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o Using convexity, we have f(x*) > fix¥) + VT fx¥)(x* — x¥)
— fx¥) < Ax*) + VT AX)(xF - x¥)

@ Thus,
f(xk—&-l) < f(xk) _ﬁt

VA(xH) H2

— AxF) < Axt) + VT A (xK - x) - & i

Vf(xk)‘

2
VTR ok — ) — &

K 2

— f(xk—I—l) < f(X*)‘f‘Qit xk — x*
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o Using convexity, we have f(x*) > fix¥) + VT fx¥)(x* — x¥)
— fx¥) < Ax*) + VT AX)(xF - x¥)
e Thus,

xt) < fixk) — 4| vixs |
— f(xk+1) < f(x*) +va(Xk)(Xk_x*) _ 2 k)‘ 2
— ARt < Axt) ik xk - x +va(x )k =) — 4] )| - & ’
— Axk) < fx) o+ g |x - ka—x — tVAx4)||)
— f(xk+1>3f<x*>+2in —x [ e )
— fx) — fx) S%(ka—x 2 ka+1 <* 2) (47)
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2
e Summing (47) over all iterations (since —ka+1 “Il < 0), we have

;(ﬂ x) — flx’ )_Qt(H ))

@ The ray® and line search ensure that f(x'"!) < f(x/) Vi=0,1,..., k. We thus get

®By Armijo condition in (29), for some 0 < ¢; < 1, fix'™) < f(x') + ci 'V Ax)AX'
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2
k+1 x*

e Summing (47) over all iterations (since —Hx < 0), we have

;(ﬂ x) — fix* )_Zt(H )

@ The ray® and line search ensure that {x 1) < fx/) Vi=0,1,..., k. We thus get

e Thus, as k — oo, xK) — f(x*). This shows convergence for gradient descent.

To get epsilon close to f(x*), it is sufficient for k to be O(1/epsilon)

®By Armijo condition in (29), for some 0 < ¢; < 1, fix'™) < f(x') + ci 'V Ax)AX'
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2
k+1 x*

e Summing (47) over all iterations (since —Hx < 0), we have

;(K x) — flx* )_2t<H )

@ The ray® and line search ensure that {x 1) < fx/) Vi=0,1,..., k. We thus get

e Thus, as k — oo, (xK) — f(x*). This shows convergence for gradient descent.

@ What we are more interested in however, is the rate of convergence of the gradient
descent algorithm.

®By Armijo condition in (29), for some 0 < ¢; < 1, fix'™) < f(x') + ci 'V Ax)AX'
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Aside: Backtracking ray search and Lipschitz Continuity

@ Recap the Backtracking ray search algorithm
» Choose a € (0,1)
» Start with t=1
» While {x + tAx) > f{x) + ¢tV Tf{x)Ax, do

* Update t + §t
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Aside: Backtracking ray search and Lipschitz Continuity

@ Recap the Backtracking ray search algorithm
» Choose a € (0,1)
» Start with t =1
» While {x + tAx) > f{x) + ¢tV Tf{x)Ax, do

* Update t + §t

On convergence, f{x + tAx) < f{x) + c1tV T f{x)Ax
For gradient descent, this means f{x + tAx) < f(x) — c1t|| VAx)|?

For a function fwith Lipschitz continuous Vf(x) we have that

-~ 2 -
AxA) < fixk) — & Vf(xk)H is satisfied if t = min {1,5&?—1)}

Reason: With backtracking step seach, if 1 — LTtk > ¢y, the Armijo rule will be satisfied.
That is, 0 < ¢k < 20
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Aside: Backtracking ray search and Lipschitz Continuity

@ Recap the Backtracking ray search algorithm
» Choose a € (0,1)
» Start with t=1
» While {x + tAx) > f{x) + ¢tV Tf{x)Ax, do

* Update t + §t

On convergence, f{x + tAx) < f{x) + c1tV T f{x)Ax
For gradient descent, this means f(x + tAx) < f(x) — c1t||VAx)||?
@ For a function fwith Lipschitz continuous Vf(x) we have that

o 2 ~ ;
X < Aixk) — |V AxK) | is satisfied if 2= min { 1, 527}

Reason: With backtracking step seach, if 1 — LTtk > ¢y, the Armijo rule will be satisfied.
. _ k . . .
That is, 0 < tk < %H—qz = 1- LTt > cy. If not, there must exist an interger j for

which 5&?_1) <p< Q—L—(lfq), we take t = min {1,5_2(1?1)}
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Rates of Convergence
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Convergence

rate of convergence = slope

f(x")

Linear convergence

Superlinear convergence

f(x") f(x")
increasing
erder _
k observé&acceleration

Sublinear convergence

k

(this is what we observed for the better

algo for Rosenbrack function)
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Linear Convergence

o vl ...,V is Linearly (or specifically, Q-linearly) convergent if
Hvk+l —
— <
[ve—vil =

for some k> 6, and re (0,1)
» ‘Q’ here stands for ‘quotient’ of the norms as shown above
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Q-convergence

o vl ..., v is Q-linearly convergent if

[+ v

—_— <r
F—v =
for some k> 6, and re (0,1)
» ‘Q’ here stands for ‘quotient’ of the norms as shown above
» Consider the sequence sy s; = |2 21 &b . 5+ & ]
The sequence converges to 5§
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Q-convergence

o vl ..., vKis Q-linearly convergent if

[+ v

—Sr
v = v

for some k> 6, and re (0,1)
» ‘Q’ here stands for ‘quotient’ of the norms as shown above

» Consider the sequence s; s; = [t 2L & . 54+ 4 ]

The sequence converges to s; =5 and itis Q-linearly convergent
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Q-convergence

o vl ..., vKis Q-linearly convergent if

[+ v

T =

for some k> 6, and re (0,1)
> ‘Q’ here stands for ‘quotient’ of the norms as shown above

» Consider the sequence sy s; = [t 2L & . 54 4 ]

The sequence converges to s; = 5 and it is Q-linear convergence because:

i ] o]
1 - o 5 <06=M
EEET

» How about the convergence result we got by assuming Lipschitz continuity with backtracking
and exact line searches?
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Generalizing Q-convergence to R-convergence

@ Consider the sequence r; r; = |5, T T ,D+ —m-

The sequence converges to 5



Generalizing Q-convergence to R-convergence

o Consider the sequence ry ry = [5, < 4 N R —m- ]

The sequence converges to sj = 5 but not Q-linearly!

@ Let us consider the convergence result we got by assuming Lipschitz continuity with
backtracking and exact line searches:

k) = x) < [ <
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Generalizing Q-convergence to R-convergence

o Consider the sequence r; ry = [5, < 4 R —n- ]
The sequence converges to sj = 5 but not Q-linearly!

@ Let us consider the convergence result we got by assuming Lipschitz continuity with
backtracking and exact line searches:

fx) — fix') <

@ Q-convergence by itself insufficient. We will generalize it to R-convergence.
@ ‘R’ here stands for ‘root’ as we are looking at convergence rooted at x*

e We say that the sequence s', ..., s" is R-linearly convergent if Hsk —s*

—

{vk} converges Q-linearly to zero

e October 2, 2018 157 / 409



R-convergence assuming Lipschitz continuity

(0) _y*||?
e Consider V% = wa,ii = % where « is a constant
VAL yx o
lZ=l <= kik+1) > 1 as k tends to infinity

@ Here, we have
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R-convergence assuming Lipschitz continuity

. ||><(0)—><*||2 o .
e Consider V% = —s =T where « is a constant

VAL yx . . . .
@ Here, we have uﬂmﬂﬂ < -K’i— where K is the final number of iterations

> .K:(__l < 1, but we don't have mK_—l <r
e Thus, v =% is approximately Q-linearly convergent
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R-convergence assuming Lipschitz continuity

(0) _yx [|2
o Consider v, = wa,ii = % where « is a constant
@ Here, we have HHVM—‘/kHﬂ -KK— where K is the final number of iterations
1 Vk— 1

> -R%<1, butwedonthavem_—l<r

e Thus, VK = Z is not Q-linearly convergent as
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R-convergence assuming Lipschitz continuity

(0)
e Consider V% = IS tx H = % where « is a constant
VAL yx . . . )
@ Here, we have uﬂrﬂﬂ WK— where K is the final number of iterations

> -R%<1, butwedonthavem<r

e Thus, VK = Z is not Q-linearly convergent as there exist no v <1 s.t.

S A ALEL.

o Strictly speaking, for Lipschitz continuity alone, gradient descent is not guaranteed to
give R-linear convergence

@ In practice, Lipschitz continuity gives “almost” R-linear convergence — not too bad!

e We say that gradient descent with Lipschtiz continuity has convergence rate O(1/k), that
is,
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R-convergence assuming Lipschitz continuity

0|

t

[ < K where K is the final number of iterations

e Consider V% = | = % where « is a constant

@ Here, we have

> za7 <1, but we don't have g5y < r

@ Thus, vk = £ is not Q-linearly convergent as there exist no v < 1 s.t.

k
a/(k+1) Kk
L =R S v vk 0

@ Strictly speaking, for Lipschitz continuity alone, gradient descent is not guaranteed to
give R-linear convergence

@ In practice, Lipschitz continuity gives “almost” R-linear convergence — not too bad!

e We say that gradient descent with Lipschtiz continuity has convergence rate O(1/k), that
is, to obtain f({x) — fix*) < ¢, we need O(1) iterations.
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@ Taking hint from this analysis, if Q-linear, Any Q-linearly convergent
sequence is also R-linearly

Hs’“rl —s*|| convergent
Y < re (0,1)
s ==

then,

| Hs_;ﬂL

< PHSk—

< /*Hs(o) -5

@ Thus, Q-linear convergence = R-linear convergence

» Q-linear is a special case of R-linear
> R-linear gives a more general way of characterizing linear convergence

@ Q-linear is an ‘order of convergence’
ris the ‘rate of convergence'’
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@ Q-superlinear convergence: If order of convergence

H5k+1 &

T

_ to hold
@ Q-sublinear convergence:
Gradient descent with
: . AR im _
LIpSCh'ItZ continuity is Jim_ —Hsk— e
R-sublinearly convergent
» e.g. For Lipschitz continuity, V¥ in gradient descent is Q-sublinear: lim_, oo Fkl =1

Hsk+1 _ &

@ Q-convergence of order p:
E— H Skl _ o

Yk > 0,

<M

sk = s> — =

> e.g. p=2 for Q-quadratic, p = 3 for Q-cubic, etc.
» M_is called the asymptotic error constant

I 4 a4 October 2, 2018
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lllustrating Order Convergence

@ Consider the two sequences s; and ss.

si=[3.8.4, 5+, ]
So = [%,%,%,...,54——"—221_1,...}
Both sequences converge to 5. However, it seems that the second converges faster to 5
than the first one. because s2 seems to be hopping across sl
e For sy, s] =5 and Q-convergence is of order p = 1 because:
41| 2]
il = 1 = 5 < 06(_ M)
EREE

@ For sy, s5 =5 and Q-convergence is of order p = 2 because:

k1« 1
HSQ -5

‘ g2kt1-1 1
‘ —2 =3 < 0.6( )

2272 -1
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e Claim: Q-convergences of the order p are special cases of Q-superlinear convergence

o Vk> 0,
Sk+1_s=«
= ="
Hsk+1 _ g pe1
— lim < lim I\/IHsk—s* —0
k—o0 Hsk H k— 00

@ Therefore, irrespective of the value of M (as long as M > 0), order p > 1 implies
Q-superlinear convergence
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Could we either look at more conditions (strong convexity) for
better order of convergence for existing gradient descent?

Question: Could we analyze Gradient descent more specifically?

@ Assume backtracking line search Without strong convexity

@ Continue assuming Lipschitz continuity grad descent = R sublinear
» Curvature is upper bounded: V?f(x) < L/

e Assume strong convexity With strong convexity,
» Curvature is lower bounded: V?f(x) = ml grad descent also Q linear

» For instance, we might not want to use gradient descent for a quadratic function (curvature
is not accounted for)

Could we either look at completely different algorithms for
better order of convergence?
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There exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient.
That is, with a good understanding of one, we can easily understand the other one. See
http://xingyuzhou.org/talks/Fenchel_duality.pdf for a quick summary!

(Better) Convergence Using Strong Convexity

e TR



Second Order Conditions for Convexity Analogous to Lipschitz
continuity conditions
in terms of Hessian

Theorem

A twice differential function f: D — R for a nonempty open convex set D

@ s convex if and only if its domain is convex and its Hessian matrix is positive semidefinite
at each point in D. That is V?fix) =0 Vx €D

@ s strictly convex if its domain is convex and its Hessian matrix is positive definite at each
point in D. That is V*f(x) =0 Vx€D

© is uniformly convex if and only if its domain is convex and its Hessian matrix is uniformly
positive definite at each point in D. That is, for any v € R" and any x € D, there exists
a ¢ > 0 such that vIV2f(x)v > ||v||?
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Proof of Second Order Conditions for Convexity
In other words
VQf(x) = clyxn

where I, is the n X n identity matrix and > corresponds to the positive semidefinite
inequality. That is, the function fis strongly convex iff V2f(x) — clnx, is positive semidefinite,

for all x € D and for some constant ¢ > 0, which corresponds to the positive minimum
curvature of f.

PROOF: We will prove only the first statement; the other two statements are proved in a
similar manner.

Necessity: Suppose fis a convex function, and consider a point x € D. We will prove that for
any h € ", h"V2f(x)h > 0. Since fis convex, we have

fix + th) > f(x) + tVf(x)h (48)

Consider the function ¢(t) = fix + th) defined on the domain Dy = [0, 1].
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Proof of Second Order Conditions for Convexity (contd.)
Using the chain rule,

50 =3 flx+ th)%i — hT.VAx + th)

Since f has partial and mixed partial derivatives, ¢ is a differentiable function of t on Dy and
¢"(t) = h"V*f(x + th)h

Since ¢ and ¢ are continous on Dy, and ¢’ is differentiable on int(Dy), we can make use of
the Taylor's theorem with n = 3 to obtain:

8(8) = 6(0) + £(0) + £.56"(0) + O(F)

Writing this equation in terms of f gives
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Proof of Second Order Conditions for Convexity (contd.)
Using the chain rule,

50 =3 flx+ th)%i — hT.VAx + th)

Since f has partial and mixed partial derivatives, ¢ is a differentiable function of t on Dy and
¢"(t) = h"V*f(x + th)h

Since ¢ and ¢ are continous on Dy, and ¢’ is differentiable on int(Dy), we can make use of
the Taylor's theorem with n = 3 to obtain:

H(8) = 9(0) + £4/(0) + £.56"(0) + O(F)
Writing this equation in terms of f gives
fix + th) = f(ix) + th Vf(x) + tZ%thzf(x)h + 0(t%)
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Proof of Second Order Conditions for Convexity (contd.)

In conjunction with (48), the above equation implies that

;hTVQf(x)h +0(t*) >0

Dividing by t? and taking limits as t — 0, we get

h"V2f(x)h > 0

I 4 a4 October 2, 2018
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Proof of Second Order Conditions for Convexity (contd.)

Sufficiency: Suppose that the Hessian matrix is positive semidefinite at each point x € D.

Consider the same function ¢(t) defined above with h = y — x for y,x € D. Applying Taylor's
theorem with n = 2 and a = 0, we obtain,

B(1) = 6(0) + £(0) + £ 5'(9
for some c € (0,1). Writing this equation in terms of f gives
1) = fly) + (x — ) TVAly) + 5 (x ) Vz)(x — )
where z = y + c¢(x — y). Since D is convex, z € D. Thus, V2f(z) = 0. It follows that

flx) > fly) + (x —y) "VAy)

By a previous result, the function fis convex. 3
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Lipschitz Continuity vs. Strong Convexity

e Lipschitz continuity of gradient (references to V2 assume double differentiability)
V2 f(x) < LI
IVAX) = VAY)|| < Llx =yl

) < 9+ V00— + 5y = x?

@ Strong convexity: Curvature should be atleast somewhat positive

V2f(x) = ml

) = ) + VT Ay =) + Zlly = x|

» m = 0 corresponds to (sufficient condition for) normal convexity.
» Later: For example, augmented Lagrangian is used to introduce strong convexity
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