
Algorithms: Gradient Descent
This classic greedy algorithm for minimization uses the negative of the gradient of the
function at the current point x∗ as the descent direction ∆x∗.
This choice of ∆x∗ corresponds to the direction of steepest descent under the L2
(eucledian) norm and follows from the Cauchy Shwarz inequality

Find a starting point x(0) ∈ D
repeat
1. Set ∆x(k) = −∇f(x(k)).
2. Choose a step size t(k) > 0 using exact or backtracking ray search.
3. Obtain x(k+1) = x(k) + t(k)∆x(k).
4. Set k = k+ 1.

until stopping criterion (such as ||∇f(x(k+1))||2 ≤ ϵ) is satisfied

The steepest descent method can be thought of as changing the coordinate system in a
particular way and then applying the gradient descent method in the changed coordinate
system.
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Convergence of the Gradient Descent Algorithm
We recap the (necessary) inequality (36) resulting from Lipschitz continuity of ∇f(x):
f(y) ≤ f(x) +∇⊤f(x)(y− x) + L

2∥y− x∥2
Considering xk ≡ x, and xk+1 = xk − tk∇f(xk) ≡ y, we get
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We desire to have the following (46). It holds if....

f(xk+1) ≤ f(xk)−
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2

(46)
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▶ With fixed step size tk = bt, we ensure that 0 < bt ≤ 1
L

October 2, 2018 149 / 409



Convergence of the Gradient Descent Algorithm
We recap the (necessary) inequality (36) resulting from Lipschitz continuity of ∇f(x):
f(y) ≤ f(x) +∇⊤f(x)(y− x) + L

2∥y− x∥2
Considering xk ≡ x, and xk+1 = xk − tk∇f(xk) ≡ y, we get

f(xk+1) ≤ f(xk)− tk∇⊤f(xk)∇f(xk) +
L
(
tk
)2

2




∇f(xk)




2

=⇒ f(xk+1) ≤ f(xk)− (1− Ltk
2

)t



∇f(xk)





2

We desire to have the following (46). It holds if....

f(xk+1) ≤ f(xk)−
bt
2




∇f(xk)




2

(46)

▶ With fixed step size tk = bt, we ensure that 0 < bt ≤ 1
L =⇒ 1− Lbt

2 ≥ 1
2 .

October 2, 2018 149 / 409



Convergence of the Gradient Descent Algorithm
We recap the (necessary) inequality (36) resulting from Lipschitz continuity of ∇f(x):
f(y) ≤ f(x) +∇⊤f(x)(y− x) + L

2∥y− x∥2
Considering xk ≡ x, and xk+1 = xk − tk∇f(xk) ≡ y, we get

f(xk+1) ≤ f(xk)− tk∇⊤f(xk)∇f(xk) +
L
(
tk
)2

2




∇f(xk)




2

=⇒ f(xk+1) ≤ f(xk)− (1− Ltk
2

)t



∇f(xk)





2

We desire to have the following (46). It holds if....
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bt
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▶ With fixed step size tk = bt, we ensure that 0 < bt ≤ 1
L =⇒ 1− Lbt

2 ≥ 1
2 .

▶ With backtracking step seach, (46) holds with bt = min
{
1,β 2(1−c1)

L

}

See https://www.youtube.com/watch?v=SGZdsQviFYs&list=PLsd82ngobrvcYfCdnSnqM7lKLqE9qUUpX&index=17
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the drop in the value of the objective will be atleast order of
square of norm
of gradient

derivation provided a few slides later



Using convexity, we have f(x∗) ≥ f(xk) +∇⊤f(xk)(x∗ − xk)
=⇒ f(xk) ≤ f(x∗) +∇⊤f(xk)(xk − x∗)

Thus,
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Summing (47) over all iterations (since −



xk+1 − x∗





2
< 0), we have

∑

i=1

(
f(xi)− f(x∗)

)
≤ 1

2t

(


x(0) − x∗




2
)
)

The ray6 and line search ensure that f(xi+1) ≤ f(xi) ∀i = 0, 1, . . . , k. We thus get

6By Armijo condition in (29), for some 0 < c1 < 1, f(xi+1) ≤ f(xi) + c1ti∇Tf(xi)∆xi
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Thus, as k→∞, f(xk)→ f(x∗). This shows convergence for gradient descent.

6By Armijo condition in (29), for some 0 < c1 < 1, f(xi+1) ≤ f(xi) + c1ti∇Tf(xi)∆xi
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To get epsilon close to f(x*), it is sufficient for k to be O(1/epsilon)
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Thus, as k→∞, f(xk)→ f(x∗). This shows convergence for gradient descent.
What we are more interested in however, is the rate of convergence of the gradient
descent algorithm.

6By Armijo condition in (29), for some 0 < c1 < 1, f(xi+1) ≤ f(xi) + c1ti∇Tf(xi)∆xi
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Aside: Backtracking ray search and Lipschitz Continuity
Recap the Backtracking ray search algorithm

▶ Choose a β ∈ (0, 1)
▶ Start with t = 1
▶ While f(x + t∆x) > f(x) + c1t∇Tf(x)∆x, do

⋆ Update t ← βt
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Reason: With backtracking step seach, if 1− Ltk
2 ≥ c1, the Armijo rule will be satisfied.

That is, 0 < tk ≤ 2(1−c1)
L =⇒ 1− Ltk

2 ≥ c1. If not, there must exist an interger j for
which β 2(1−c1)

L ≤ βj ≤ 2(1−c1)
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1,β 2(1−c1)

L

}
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Rates of Convergence
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Convergence
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observe acceleration
(this is what we observed for the better
algo for Rosenbrack function)

rate of convergence = slope

increasing
order



Linear Convergence

v1, . . . , vk is Linearly (or specifically, Q-linearly) convergent if



vk+1 − v∗







vk − v∗



 ≤ r

for some k ≥ θ, and r ∈ (0, 1)
▶ ‘Q’ here stands for ‘quotient’ of the norms as shown above
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Q-convergence
v1, . . . , vk is Q-linearly convergent if




vk+1 − v∗







vk − v∗


 ≤ r

for some k ≥ θ, and r ∈ (0, 1)
▶ ‘Q’ here stands for ‘quotient’ of the norms as shown above
▶ Consider the sequence s1 s1 =

[
11
2 , 21

4 , 41
8 , . . . , 5 + 1

2n , . . .
]

The sequence converges to
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Q-convergence
v1, . . . , vk is Q-linearly convergent if
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vk − v∗


 ≤ r

for some k ≥ θ, and r ∈ (0, 1)
▶ ‘Q’ here stands for ‘quotient’ of the norms as shown above
▶ Consider the sequence s1 s1 =

[
11
2 , 21

4 , 41
8 , . . . , 5 + 1

2n , . . .
]

The sequence converges to s∗1 = 5 and it is Q-linear convergence because:



sk+1

1 − s∗1







sk1 − s∗1


1 =




 1
2k+1








 1
2k





=

1

2
< 0.6(= M)

▶ How about the convergence result we got by assuming Lipschitz continuity with backtracking
and exact line searches?
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Generalizing Q-convergence to R-convergence
Consider the sequence r1 r1 =

[
5, 214 ,

21
4 , . . . , 5 +

1

4⌊ n2⌋
, . . .

]

The sequence converges to
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Generalizing Q-convergence to R-convergence
Consider the sequence r1 r1 =

[
5, 214 ,

21
4 , . . . , 5 +

1

4⌊ n2⌋
, . . .

]

The sequence converges to s∗1 = 5 but not Q-linearly!
Let us consider the convergence result we got by assuming Lipschitz continuity with
backtracking and exact line searches:

f(xk)− f(x∗) ≤




x(0) − x∗




2

2tk
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Let us consider the convergence result we got by assuming Lipschitz continuity with
backtracking and exact line searches:

f(xk)− f(x∗) ≤




x(0) − x∗




2

2tk

Q-convergence by itself insufficient. We will generalize it to R-convergence.
‘R’ here stands for ‘root’, as we are looking at convergence rooted at x∗

We say that the sequence s1, . . . , sk is R-linearly convergent if



sk − s∗




 ≤ vk, ∀k, and
{
vk
}

converges Q-linearly to zero
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R-convergence assuming Lipschitz continuity

Consider vk = ∥x
(0)−x∗∥2
2tk = α

k , where α is a constant

Here, we have ∥v
k+1−v∗∥
∥vk−v∗∥
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R-convergence assuming Lipschitz continuity

Consider vk = ∥x
(0)−x∗∥2
2tk = α

k , where α is a constant

Here, we have ∥v
k+1−v∗∥
∥vk−v∗∥ ≤ K

K+1 , where K is the final number of iterations
▶ K

K+1 < 1, but we don’t have K
K+1 < r

Thus, vk = α
k is
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R-convergence assuming Lipschitz continuity

Consider vk = ∥x
(0)−x∗∥2
2tk = α

k , where α is a constant

Here, we have ∥v
k+1−v∗∥
∥vk−v∗∥ ≤ K

K+1 , where K is the final number of iterations
▶ K

K+1 < 1, but we don’t have K
K+1 < r

Thus, vk = α
k is not Q-linearly convergent as there exist no v < 1 s.t.

α/(k+1)
α/k = k

k+1 ≤ v, ∀k ≥ θ

Strictly speaking, for Lipschitz continuity alone, gradient descent is not guaranteed to
give R-linear convergence
In practice, Lipschitz continuity gives “almost” R-linear convergence – not too bad!
We say that gradient descent with Lipschtiz continuity has convergence rate O(1/k), that
is,
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α/(k+1)
α/k = k

k+1 ≤ v, ∀k ≥ θ

Strictly speaking, for Lipschitz continuity alone, gradient descent is not guaranteed to
give R-linear convergence
In practice, Lipschitz continuity gives “almost” R-linear convergence – not too bad!
We say that gradient descent with Lipschtiz continuity has convergence rate O(1/k), that
is, to obtain f(xk)− f(x∗) ≤ ϵ, we need O(1ϵ ) iterations.
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Taking hint from this analysis, if Q-linear,



sk+1 − s∗







sk − s∗



 ≤ r ∈ (0, 1)

then,


sk+1 − s∗



 ≤ r




sk − s∗





≤ r2



sk−1 − s∗





...
≤ rk




s(0) − s∗



, which is vk for R-linear

Thus, Q-linear convergence =⇒ R-linear convergence
▶ Q-linear is a special case of R-linear
▶ R-linear gives a more general way of characterizing linear convergence

Q-linear is an ‘order of convergence’
r is the ‘rate of convergence’
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Any Q-linearly convergent
sequence is also R-linearly
convergent



Q-superlinear convergence:

lim
k→∞




sk+1 − s∗







sk − s∗


 = 0

Q-sublinear convergence:

lim
k→∞




sk+1 − s∗







sk − s∗


 = 1

▶ e.g. For Lipschitz continuity, vk in gradient descent is Q-sublinear: limk→∞ k
k+1 = 1

Q-convergence of order p:

∀k ≥ θ,




sk+1 − s∗







sk − s∗


p ≤ M

▶ e.g. p = 2 for Q-quadratic, p = 3 for Q-cubic, etc.
▶ M is called the asymptotic error constant
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If order of convergence
is > 1, you also expect
superlinear behaviour
to hold

Gradient descent with
Lipschitz continuity is 
R-sublinearly convergent



Illustrating Order Convergence
Consider the two sequences s1 and s2.
s1 =

[
11
2 ,

21
4 ,

41
8 , . . . , 5 +

1
2n , . . .

]

s2 =
[
11
2 ,

41
8 ,

641
128 , . . . , 5 +

1
22

n−1
, . . .

]

Both sequences converge to 5. However, it seems that the second converges faster to 5
than the first one.
For s1, s∗1 = 5 and Q-convergence is of order p = 1 because:




sk+1
1 − s∗1








sk1 − s∗1





1 =




 1
2k+1








 1
2k





=

1

2
< 0.6(= M)

For s2, s∗2 = 5 and Q-convergence is of order p = 2 because:



sk+1

2 − s∗2








sk2 − s∗2




2 =




 1

22k+1−1








 1

22
k−1





2 =

1

2
< 0.6(= M)
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because s2 seems to be hopping across s1

H/w



Claim: Q-convergences of the order p are special cases of Q-superlinear convergence
∀k ≥ θ,
∥sk+1−s∗∥
∥sk−s∗∥p ≤ M

=⇒ lim
k→∞




sk+1 − s∗







sk − s∗


 ≤ lim

k→∞
M



sk − s∗





p−1

= 0

Therefore, irrespective of the value of M (as long as M ≥ 0), order p > 1 implies
Q-superlinear convergence
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Question: Could we analyze Gradient descent more specifically?
Assume backtracking line search
Continue assuming Lipschitz continuity

▶ Curvature is upper bounded: ∇2f(x) ⪯ LI
Assume strong convexity

▶ Curvature is lower bounded: ∇2f(x) ⪰ mI
▶ For instance, we might not want to use gradient descent for a quadratic function (curvature

is not accounted for)
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Could we either look at more conditions (strong convexity) for 
better order of convergence for existing gradient descent?

Could we either look at completely different algorithms for
better order of convergence?

Without strong convexity
grad descent = R sublinear

With strong convexity, 
grad descent also Q linear 



There exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient.
That is, with a good understanding of one, we can easily understand the other one. See

http://xingyuzhou.org/talks/Fenchel_duality.pdf for a quick summary!
(Better) Convergence Using Strong Convexity
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Second Order Conditions for Convexity

Theorem
A twice differential function f : D → ℜ for a nonempty open convex set D

1 is convex if and only if its domain is convex and its Hessian matrix is positive semidefinite
at each point in D. That is ∇2f(x) ⪰ 0 ∀ x ∈ D

2 is strictly convex if its domain is convex and its Hessian matrix is positive definite at each
point in D. That is ∇2f(x) ≻ 0 ∀ x ∈ D

3 is uniformly convex if and only if its domain is convex and its Hessian matrix is uniformly
positive definite at each point in D. That is, for any v ∈ ℜn and any x ∈ D, there exists
a c > 0 such that vT∇2f(x)v ≥ c||v||2
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Analogous to Lipschitz
continuity conditions 
in terms of Hessian



Proof of Second Order Conditions for Convexity
In other words

∇2f(x) ⪰ cIn×n
where In×n is the n× n identity matrix and ⪰ corresponds to the positive semidefinite
inequality. That is, the function f is strongly convex iff ∇2f(x)− cIn×n is positive semidefinite,
for all x ∈ D and for some constant c > 0, which corresponds to the positive minimum
curvature of f.
PROOF: We will prove only the first statement; the other two statements are proved in a
similar manner.
Necessity: Suppose f is a convex function, and consider a point x ∈ D. We will prove that for
any h ∈ ℜn, hT∇2f(x)h ≥ 0. Since f is convex, we have

f(x + th) ≥ f(x) + t∇Tf(x)h (48)

Consider the function ϕ(t) = f(x + th) defined on the domain Dϕ = [0, 1].
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Proof of Second Order Conditions for Convexity (contd.)
Using the chain rule,

ϕ′(t) =
n∑

i=1

fxi(x + th)dxidt = hT.∇f(x + th)

Since f has partial and mixed partial derivatives, ϕ′ is a differentiable function of t on Dϕ and

ϕ′′(t) = hT∇2f(x + th)h

Since ϕ and ϕ′ are continous on Dϕ and ϕ′ is differentiable on int(Dϕ), we can make use of
the Taylor’s theorem with n = 3 to obtain:

ϕ(t) = ϕ(0) + t.ϕ′(0) + t2.1
2
ϕ′′(0) + O(t3)

Writing this equation in terms of f gives
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ϕ(t) = ϕ(0) + t.ϕ′(0) + t2.1
2
ϕ′′(0) + O(t3)

Writing this equation in terms of f gives

f(x + th) = f(x) + thT∇f(x) + t2 1
2
hT∇2f(x)h + O(t3)
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Proof of Second Order Conditions for Convexity (contd.)

In conjunction with (48), the above equation implies that

t2
2
hT∇2f(x)h + O(t3) ≥ 0

Dividing by t2 and taking limits as t→ 0, we get

hT∇2f(x)h ≥ 0
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Proof of Second Order Conditions for Convexity (contd.)
Sufficiency: Suppose that the Hessian matrix is positive semidefinite at each point x ∈ D.
Consider the same function ϕ(t) defined above with h = y− x for y,x ∈ D. Applying Taylor’s
theorem with n = 2 and a = 0, we obtain,

ϕ(1) = ϕ(0) + t.ϕ′(0) + t2.1
2
ϕ′′(c)

for some c ∈ (0, 1). Writing this equation in terms of f gives

f(x) = f(y) + (x− y)T∇f(y) + 1

2
(x− y)T∇2f(z)(x− y)

where z = y + c(x− y). Since D is convex, z ∈ D. Thus, ∇2f(z) ⪰ 0. It follows that

f(x) ≥ f(y) + (x− y)T∇f(y)

By a previous result, the function f is convex.
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Lipschitz Continuity vs. Strong Convexity
Lipschitz continuity of gradient (references to ∇2 assume double differentiability)

∇2f(x) ⪯ LI


∇f(x)−∇f(y)



 ≤ L∥x− y∥

f(y) ≤ f(x) +∇⊤f(x)(y− x) + L
2
∥y− x∥2

Strong convexity: Curvature should be atleast somewhat positive

∇2f(x) ⪰ mI

f(y) ≥ f(x) +∇⊤f(x)(y− x) + m
2
∥y− x∥2

▶ m = 0 corresponds to (sufficient condition for) normal convexity.
▶ Later: For example, augmented Lagrangian is used to introduce strong convexity
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