@ Q-superlinear convergence:

s

SN EEE I
@ Q-sublinear convergence:

s
Aluly ey
» e.g. For Lipschitz continuity, V¥ in gradient descent is Q-sublinear: lim_, oo Fkl =1
@ Q-convergence of order p:
s
Vk >0, w <M

> e.g. p=2 for Q-quadratic, p = 3 for Q-cubic, etc.
» M is called the asymptotic error constant
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lllustrating Order Convergence
@ Consider the two sequences s; and ss.
si=[3.3.4, . 5+, ]
so= (B 45
Both sequences converge to 5. However, it seems that the second converges faster to 5

than the first one. An algorithm A is faster
e For sy, s] =5 and Q-convergence is of order p =1 because: than algorithm B if

either it has a larger (p)

et 1 1
Hsl —si ’ o 1 order of convergence

P T =TT = 5 SO6EM) o it has the same order
H51 —S;fH Hi’?’ but a lower value of M

@ For sy, s5 =5 and Q-convergence is of order p = 2 because:

k+1 _ o 1
| I i N
5 = 2=—<0.6(=M)
== == °
27 22 92F—1

I 4 a4 October 5, 2018 161 / 414



e Claim: Q-convergences of the order p are special cases of Q-superlinear convergence

o Vk> 0,
Sk+1_s=«
= ="
Hsk+1 _ g pe1
— lim < lim I\/IHsk—s* —0
k—o0 Hsk H k— 00

@ Therefore, irrespective of the value of M (as long as M > 0), order p > 1 implies
Q-superlinear convergence
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Question: Could we analyze Gradient descent more specifically?

@ Assume backtracking line search
@ Continue assuming Lipschitz continuity
» Curvature is upper bounded: V2f(x) < LI

@ Assume strong convexity
» Curvature is lower bounded: V2f(x) = ml
» For instance, we might not want to use gradient descent for a quadratic function (curvature
is not accounted for)
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There exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient.
That is, with a good understanding of one, we can easily understand the other one. See
http://xingyuzhou.org/talks/Fenchel_duality.pdf for a quick summary!

(Better) Convergence Using Strong Convexity

e TR LT



Important Aside: Second Order conditions for
Convexity, Strong Convexity, Lipschitz Continuity of
Gradient, Convex Conjugate, Fenchel Duality.
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Second Order Conditions for Convexity

Theorem

A twice differential function f: D — R for a nonempty open convex set D
@ s convex if and only if its domain is convex and its Hessian matrix is positive semidefinite
at each point in D. That is V?fix) =0 Vx €D
@ s strictly convex if its domain is convex and its Hessian matrix is positive definite at each
point in D. That is V*f(x) =0 Vx€D

© is uniformly convex if and only if its domain is convex and its Hessian matrix is uniformly
positive definite at each point in D. That is, for any v € R" and any x € D, there exists
a ¢ > 0 such that v V2f(x)v > c[|v]|? Also known as strong convexity

c and m are used interchangebly as the strong convexity factor/constant
Strong convexity of m ==> Atleast m curvature
Lipschitz continuous gradient of L ==> Atmost L curvature

I 4 a4 October 5, 2018 166 / 414



Proof of Second Order Conditions for Convexity
In other words
VQf(x) = clyxn

where I, is the n X n identity matrix and > corresponds to the positive semidefinite
inequality. That is, the function fis strongly convex iff V2f(x) — clnx, is positive semidefinite,

for all x € D and for some constant ¢ > 0, which corresponds to the positive minimum
curvature of f.

PROOF: We will prove only the first statement; the other two statements are proved in a
similar manner.

Necessity: Suppose fis a convex function, and consider a point x € D. We will prove that for
any h € ", h"V2f(x)h > 0. Since fis convex, we have

fix + th) > f(x) + tVf(x)h (48)

Consider the function ¢(t) = fix + th) defined on the domain Dy = [0, 1].

I 4 a4 October 5, 2018 167 / 414



Proof of Second Order Conditions for Convexity (contd.)
Using the chain rule,

50 =3 flx+ th)%i — hT.VAx + th)

Since f has partial and mixed partial derivatives, ¢ is a differentiable function of t on Dy and
¢"(t) = h"V*f(x + th)h

Since ¢ and ¢ are continous on Dy, and ¢’ is differentiable on int(Dy), we can make use of
the Taylor's theorem with n = 3 to obtain:

8(8) = 6(0) + £(0) + £.56"(0) + O(F)

Writing this equation in terms of f gives
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Proof of Second Order Conditions for Convexity (contd.)
Using the chain rule,

50 =3 flx+ th)%i — hT.VAx + th)

Since f has partial and mixed partial derivatives, ¢ is a differentiable function of t on Dy and
¢"(t) = h"V*f(x + th)h

Since ¢ and ¢ are continous on Dy, and ¢’ is differentiable on int(Dy), we can make use of
the Taylor's theorem with n = 3 to obtain:

H(8) = 9(0) + £4/(0) + £.56"(0) + O(F)
Writing this equation in terms of f gives
fix + th) = f(ix) + th Vf(x) + tZ%thzf(x)h + 0(t%)
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Proof of Second Order Conditions for Convexity (contd.)

In conjunction with (48), the above equation implies that

;hTVQf(x)h +0(t*) >0

Dividing by t? and taking limits as t — 0, we get

h"V2f(x)h > 0

For necessary condition, take limits
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Proof of Second Order Conditions for Convexity (contd.)

Sufficiency: Suppose that the Hessian matrix is positive semidefinite at each point x € D.

Consider the same function ¢(t) defined above with h = y — x for y,x € D. Applying Taylor's
theorem with n = 2 and a = 0, we obtain,

B(1) = 6(0) + £(0) + £ 5'(9
for some c € (0,1). Writing this equation in terms of f gives
1) = fly) + (x — ) TVAly) + 5 (x ) Vz)(x — )
where z = y + c¢(x — y). Since D is convex, z € D. Thus, V2f(z) = 0. It follows that

flx) > fly) + (x —y) "VAy)

By a previous result, the function fis convex. 3
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Lipschitz Continuity vs. Strong Convexity

e Lipschitz continuity of gradient (references to V2 assume double differentiability)
V2 f(x) < LI
[VFx) = VAY)|| < Lllx—yl
T L 2
fly) < f) + V) (y = %) + 5y — x|
@ Strong convexity: Curvature should be atleast somewhat positive

V2f(x) = ml

) = ) + VT Ay =) + Zlly = x|

» m = 0 corresponds to (sufficient condition for) normal convexity.
» Later: For example, augmented Lagrangian is used to introduce strong convexity
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Conjugate Functions

@ Recall from Lecture 14 the (Young's) inequality for scalars h,x € R and for p,q € R™
such that for %) + %7 =1
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Conjugate Functions

@ Recall from Lecture 14 the (Young's) inequality for scalars h,x € R and for p,q € R™
L.1_ 4. @ K

such that for s ts= 1: hx< >+ 5

@ In other words: h7: > hx — XFP

@ The RHS hx— X—: viewed as a function of x, is maximized at point x at which
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Conjugate Functions

@ Recall from Lecture 14 the (Young's) inequality for scalars h,x € R and for p,q € R™

1,.1_4. ® 4 h
suchthatforp+q—1.hx§p+q

q p
@ In other words: % > hx — XF
xP

@ The RHS hx— X—: viewed as a function of x, is maximized at point x at which —= = h,
X
that is at x*~1 = h
@ Note that, under this condition, h9 =
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Conjugate Functions

@ Recall from Lecture 14 the (Young's) inequality for scalars h,x € R and for p,q € R™

1,.1_4. ® 4 h
suchthatforp+q—1.hx§p+q

@ In other words: h7: > hx — X—;
xP
@ The RHS hx — X—: viewed as a function of x, is maximized at point x at which 7” = h,
that is at x*~1 = h
o Note that, under this condition, h% = x3(P~1) = xP (since %) + % = 1) and the inequality
becomes an equality

e That is, if fix) = Xf and f*(h) = %’ then
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Conjugate Functions

@ Recall from Lecture 14 the (Young's) inequality for scalars h,x € R and for p,q € R™
L.1_ 4. @ K
such that for s ts= 1: hx< >+ 5

@ In other words: '%: > hx — X—;
d¥

@ The RHS hx — X—: viewed as a function of x, is maximized at point x at which TP = h,
thatis at X1 = h

o Note that, under this condition, h% = x3(P~1) = xP (since % + % = 1) and the inequality
becomes an equality

e That is, if fix) = XFP and f*(h) = %’ then f*(h) > hx — f(x) and equality is attained when
f(x)=h
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Conjugate Functions
(x)

\/ Ao-rw)

o Thatis, if fix) = £ and £ (h) = & then f¥(h) >= hx - f(x)




Conjugate Functions
(x)

V Ao-rw)
e That is, if fix) = X;f and f(h) = hT: then 7 (h) > hx — f(x) and equality is attained when

f(x) = h. These observations can be generalized:

f*(h) = supremum over x of hx-f(x)
and
hx <= f(x) + f¥(h) otherwise
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Conjugate Functions

e
‘l
|

\/ Ao w)
o Thatis, if ix) = £

= and f*(h) = hT: then 7 (h) > hx — f(x) and equality is attained when
f(x) = h. These observations can be generalized:

Conjugate Function of f: D — R: f(h) = sup (h"x — f(x))
xeD
e Fenchel inequality: h™x < f(x) + (h) or #(h) > h"x — f(x)
The conjugate function *(y) is the maximum gap between the linear function yx and f(x),
as shown by the dashed line in the figure. If f is differentiable, this occurs at a point x

G te——— 000
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Conjugate and Conjugate of the Conjugate

(x)

V Ao-rw)
e Conjugate Function of f: D — R: f(h) = sup (h'x — f(x))

xeD
@ Even if fis not convex (and closed): f* = pointwise supremum of affine functions




Conjugate and Conjugate of the Conjugate

7 Ao-rw)
e Conjugate Function of f: D — R: f(h) = sup (h'x — f(x))
xeD

@ Even if fis not convex (and closed): f* is convex (since it is pointwise suprememum of
affine functions) and closed

@ How about f*(x)?  f**is the convex envelope of f
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Homework: Flind convex conjugate f* of f(x) = a x™~2 + bx

(assume a>0 and x, a & b are Reals) e
What will be f*+?
increasing
slope

convepi f

XYz

Shapewise f** corresponds to
a convex envelope of the
function




Conjugate Functions, Strong Convexity and Lipschitz Continuity

e Conjugate Function of f: D — R: f(h) = sup (h'x — f(x))
x€D

o Fenchel inequality: h'x < f(x) + f(h)
o Eg:



Conjugate Functions, Strong Convexity and Lipschitz Continuity

Conjugate Function of f: D — R: f(h) = sup (h"x — f(x))
xeD

Fenchel inequality: h'x < f(x) + f*(h)
Eg: f(x) = 2 and F(h) = & for L1 —1

Vfi(h) = arferr;)ax (h"x — f(x))
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Conjugate Functions, Strong Convexity and Lipschitz Continuity

e Conjugate Function of f: D — R: f(h) = sup (h'x — f(x))
xeD

o Fenchel inequality: h'x < f(x) + f(h)
e Eg: f(x)=% and f*(h):%q forl—i-%,:l

P
o Vf(h) = argmax (h"x — f(x))
xeD
o If fis closed and strongly convex with ;%ar?Imetetr m, thené" has a Lipschitz continuous
dient with ter 1/m. convex f atleast m curved =>
- ——— Lipshitz f* atmost 1/m curved
e If fis convex and has a Lipschitz continuous gradient with parameter L, then f* is
strongly convex with parameter 1/L Lipschitz gradient f atmost L curved =>
convex f* atleast 1/L curved
There exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient.
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Fenchel Duality, Strong Convexity and Lipschitz Continuity

@ Let fbe a closed convex function on " and let g be a closed concave function on R".
Then, under some general conditions:

inf(f{x) — g(x)) = Sl;lp(g*(h) — f'(h))
where f* is the convex conjugate of fand g* is the concave conjugate of g

@ Thus, there exits (Fenchel) duality between strong convexity and Lipschitz continuous
gradient. That is, with a good understanding of one, we can easily understand the other
one. See http://xingyuzhou.org/talks/Fenchel_duality.pdf for a quick
summary!
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convex f(x) —
Igf(f(X) — 8(x))

Primal: Find x that gives smalles gap between fand g

concave g(x)

or convex -g(x)

convex f(x)

sup(g”(h) — f(h))

concave g(x)

or convex -g(x)




Lipschitz Continuity vs. Strong Convexity: Example

Consider the linear regression loss function f{x) = 1|y — Ax||?
Vix) = ~AT(y — Ax)

V2fix) = ATA

One can show that

Max and min eigenvalues of A™T A
characterize strong convexity and
Lipschitz continuity respective
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Lipschitz Continuity vs. Strong Convexity: Example

o Consider the linear regression loss function fix) = 1 |ly — Ax||?
o VAix) = —AT(y — Ax)

o V2f(x)=ATA

@ One can show that

» V2fix) = ATA < LI where L = 0. is the largest eigenvalue of ATA
» V2fix) = ATA = ml where m = o, is the smallest eigenvalue of ATA

L/m puts some bound on the condition number of the Hessian
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End of Important Aside: Second Order conditions for
Convexity, Strong Convexity, Lipschitz Continuity of
Gradient, Convex Conjugate, Fenchel Duality.
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Using Strong Convexity: Revisiting Convergence Analysis

o fly) > fix) + V' Ax)(y — x) + Zly — x[*
> minimum value of RHS wrt y



Using Strong Convexity: Revisiting Convergence Analysis

o fly) > fix)+ V' fx)(y — x) + Zlly — x|*

> minimum value the RHS can take as a function of y
@ Minimum value of RHS

Vi{x)+ my —mx =0

= y=x— 2Vf(x)
@ Thus,
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Using Strong Convexity: Revisiting Convergence Analysis

o fly) > fix) + V' fix)(y — x) + Zlly — x|?
> minimum value the RHS can take as a function of y

@ Minimum value of RHS
Vi{x)+ my —mx =0
= y=x— —Vf( )
@ Thus,
fly) = fix) + VT ix) (~ Vf(x)) 2]~ gvio)||

— fly) > fix) — 2| VAx)|”
» Here, LHS is independent of x, and RHS is independent of y
» Thus the inequality holds also for y = x* (point of minimum of f(x))
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Using Strong Convexity: Revisiting Convergence Analysis (contd.)

) 2 fix) — o || V)|

° IfHVf(x)H is small, the point is nearly optimal

> If||Vf(x H < \/_e then:
fix) — fix*) <

» As the gradient HVf H approaches 0, we get closer to the optimal solution x*



