- Q-superlinear convergence:

$$
\lim _{k \rightarrow \infty} \frac{\left\|s^{k+1}-s^{*}\right\|}{\left\|s^{k}-s^{*}\right\|}=0
$$

- Q-sublinear convergence:

$$
\lim _{k \rightarrow \infty} \frac{\left\|s^{k+1}-s^{*}\right\|}{\left\|s^{k}-s^{*}\right\|}=1
$$

- e.g. For Lipschitz continuity, v^{k} in gradient descent is Q-sublinear: $\lim _{k \rightarrow \infty} \frac{k}{k+1}=1$
- Q-convergence of order p :

$$
\forall k \geq \theta, \frac{\left\|s^{k+1}-s^{*}\right\|}{\left\|s^{k}-s^{*}\right\|^{P}} \leq M
$$

- e.g. $p=2$ for Q-quadratic, $p=3$ for Q-cubic, etc.
- M is called the asymptotic error constant

Illustrating Order Convergence

- Consider the two sequences \mathbf{s}_{1} and \mathbf{s}_{2}.

$$
\begin{aligned}
& \mathbf{s}_{1}=\left[\frac{11}{2}, \frac{21}{4}, \frac{41}{8}, \ldots, 5+\frac{1}{2^{n}}, \ldots\right] \\
& \mathbf{s}_{2}=\left[\frac{11}{2}, \frac{41}{8}, \frac{641}{128}, \ldots, 5+\frac{1}{2^{2^{n}}-1},\right.
\end{aligned}
$$

Both sequences converge to 5 . However, it seems that the second converges faster to 5 than the first one.

- For $\mathbf{s}_{1}, s_{1}^{*}=5$ and Q-convergence is of order $p=1$ because:

An algorithm A is faster

$$
\frac{\left\|s_{1}^{k+1}-s_{1}^{*}\right\|}{\left\|s_{1}^{k}-s_{1}^{*}\right\|^{1}}=\frac{\| \frac{1}{2^{k+1} \|}}{\left\|\frac{1}{2^{k}}\right\|}=\frac{1}{2}<0.6(=M) \begin{aligned}
& \text { either it has a larger }(\mathrm{p}) \\
& \text { order of convergence } \\
& \text { or it has the same order } \\
& \text { but a lower value of } \mathrm{M}
\end{aligned}
$$

- For $\mathbf{s}_{2}, s_{2}^{*}=5$ and Q-convergence is of order $p=2$ because:

$$
\frac{\left\|s_{2}^{k+1}-s_{2}^{*}\right\|}{\left\|s_{2}^{k}-s_{2}^{*}\right\|^{2}}=\frac{\left\|\frac{1}{2^{2 k+1}-1}\right\|}{\left\|\frac{1}{2^{2^{k-1}}}\right\|^{2}}=\frac{1}{2}<0.6(=M)
$$

- Claim: Q-convergences of the order p are special cases of Q-superlinear convergence
- $\forall k \geq \theta$,

$$
\begin{aligned}
& \frac{\left\|s^{k+1}-s^{*}\right\|}{\left\|s^{k}-s^{*}\right\|^{P}} \leq M \\
& \quad \Longrightarrow \lim _{k \rightarrow \infty} \frac{\left\|s^{k+1}-s^{*}\right\|}{\left\|s^{k}-s^{*}\right\|} \leq \lim _{k \rightarrow \infty} M\left\|s^{k}-s^{*}\right\|^{p-1}=0
\end{aligned}
$$

- Therefore, irrespective of the value of M (as long as $M \geq 0$), order $p>1$ implies Q-superlinear convergence

Question: Could we analyze Gradient descent more specifically?

- Assume backtracking line search
- Continue assuming Lipschitz continuity
- Curvature is upper bounded: $\nabla^{2} f(x) \preceq L I$
- Assume strong convexity
- Curvature is lower bounded: $\nabla^{2} f(x) \succeq m I$
- For instance, we might not want to use gradient descent for a quadratic function (curvature is not accounted for)

There exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient. That is, with a good understanding of one, we can easily understand the other one. See http://xingyuzhou.org/talks/Fenchel_duality.pdf for a quick summary! (Better) Convergence Using Strong Convexity

Important Aside: Second Order conditions for Convexity, Strong Convexity, Lipschitz Continuity of Gradient, Convex Conjugate, Fenchel Duality.

Second Order Conditions for Convexity

Theorem

A twice differential function $f: \mathcal{D} \rightarrow \Re$ for a nonempty open convex set \mathcal{D}
(1) is convex if and only if its domain is convex and its Hessian matrix is positive semidefinite at each point in \mathcal{D}. That is $\nabla^{2} f(\mathbf{x}) \succeq 0 \quad \forall \mathrm{x} \in \mathcal{D}$
(2) is strictly convex if its domain is convex and its Hessian matrix is positive definite at each point in \mathcal{D}. That is $\nabla^{2} f(x) \succ 0 \quad \forall \mathrm{x} \in \mathcal{D}$
(3) is uniformly convex if and only if its domain is convex and its Hessian matrix is uniformly positive definite at each point in \mathcal{D}. That is, for any $\mathbf{v} \in \Re^{n}$ and any $\mathbf{x} \in \mathcal{D}$, there exists a $c>0$ such that $\mathbf{v}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{v} \geq c\|\mathbf{v}\|^{2} \quad$ Also known as strong convexity

[^0]
Proof of Second Order Conditions for Convexity

In other words

$$
\nabla^{2} f(\mathrm{x}) \succeq c l_{n \times n}
$$

where $I_{n \times n}$ is the $n \times n$ identity matrix and \succeq corresponds to the positive semidefinite inequality. That is, the function f is strongly convex iff $\nabla^{2} f(\mathbf{x})-c l_{n \times n}$ is positive semidefinite, for all $\mathrm{x} \in \mathcal{D}$ and for some constant $c>0$, which corresponds to the positive minimum curvature of f.
PROOF: We will prove only the first statement; the other two statements are proved in a similar manner.
Necessity: Suppose f is a convex function, and consider a point $\mathbf{x} \in \mathcal{D}$. We will prove that for any $\mathbf{h} \in \Re^{n}, \mathbf{h}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h} \geq 0$. Since f is convex, we have

$$
\begin{equation*}
f(\mathbf{x}+t \mathbf{h}) \geq f(\mathbf{x})+t \nabla^{\top} f(\mathbf{x}) \mathbf{h} \tag{48}
\end{equation*}
$$

Consider the function $\phi(t)=f(\mathbf{x}+\boldsymbol{t h})$ defined on the domain $\mathcal{D}_{\phi}=[0,1]$.

Proof of Second Order Conditions for Convexity (contd.)

Using the chain rule,

$$
\phi^{\prime}(t)=\sum_{i=1}^{n} f_{x_{i}}(\mathbf{x}+t \mathbf{h}) \frac{d x_{i}}{d t}=\mathbf{h}^{T} . \nabla f(\mathbf{x}+t \mathbf{h})
$$

Since f has partial and mixed partial derivatives, ϕ^{\prime} is a differentiable function of t on \mathcal{D}_{ϕ} and

$$
\phi^{\prime \prime}(t)=\mathbf{h}^{T} \nabla^{2} f(\mathbf{x}+t \mathbf{h}) \mathbf{h}
$$

Since ϕ and ϕ^{\prime} are continous on \mathcal{D}_{ϕ} and ϕ^{\prime} is differentiable on $\operatorname{int}\left(\mathcal{D}_{\phi}\right)$, we can make use of the Taylor's theorem with $n=3$ to obtain:

$$
\phi(t)=\phi(0)+t \cdot \phi^{\prime}(0)+t^{2} \cdot \frac{1}{2} \phi^{\prime \prime}(0)+O\left(t^{3}\right)
$$

Writing this equation in terms of f gives

Proof of Second Order Conditions for Convexity (contd.)

Using the chain rule,

$$
\phi^{\prime}(t)=\sum_{i=1}^{n} f_{x_{i}}(\mathbf{x}+t \mathbf{h}) \frac{d x_{i}}{d t}=\mathbf{h}^{T} . \nabla f(\mathbf{x}+t \mathbf{h})
$$

Since f has partial and mixed partial derivatives, ϕ^{\prime} is a differentiable function of t on \mathcal{D}_{ϕ} and

$$
\phi^{\prime \prime}(t)=\mathbf{h}^{T} \nabla^{2} f(\mathbf{x}+t \mathbf{h}) \mathbf{h}
$$

Since ϕ and ϕ^{\prime} are continous on \mathcal{D}_{ϕ} and ϕ^{\prime} is differentiable on $\operatorname{int}\left(\mathcal{D}_{\phi}\right)$, we can make use of the Taylor's theorem with $n=3$ to obtain:

$$
\phi(t)=\phi(0)+t \cdot \phi^{\prime}(0)+t^{2} \cdot \frac{1}{2} \phi^{\prime \prime}(0)+O\left(t^{3}\right)
$$

Writing this equation in terms of f gives

$$
f(\mathbf{x}+t \mathbf{h})=f(\mathbf{x})+t \mathbf{h}^{T} \nabla f(\mathbf{x})+t^{2} \frac{1}{2} h^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h}+O\left(t^{3}\right)
$$

Proof of Second Order Conditions for Convexity (contd.)

In conjunction with (48), the above equation implies that

$$
\frac{t^{2}}{2} h^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h}+O\left(t^{3}\right) \geq 0
$$

Dividing by t^{2} and taking limits as $t \rightarrow 0$, we get

$$
h^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h} \geq 0
$$

For necessary condition, take limits

Proof of Second Order Conditions for Convexity (contd.)

Sufficiency: Suppose that the Hessian matrix is positive semidefinite at each point $\mathbf{x} \in \mathcal{D}$. Consider the same function $\phi(t)$ defined above with $\mathbf{h}=\mathbf{y}-\mathbf{x}$ for $\mathbf{y}, \mathbf{x} \in \mathcal{D}$. Applying Taylor's theorem with $n=2$ and $a=0$, we obtain,

$$
\phi(1)=\phi(0)+t \cdot \phi^{\prime}(0)+t^{2} \cdot \frac{1}{2} \phi^{\prime \prime}(c)
$$

for some $c \in(0,1)$. Writing this equation in terms of f gives

$$
f(\mathbf{x})=f(\mathbf{y})+(\mathbf{x}-\mathbf{y})^{T} \nabla f(\mathbf{y})+\frac{1}{2}(\mathbf{x}-\mathbf{y})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{x}-\mathbf{y})
$$

where $\mathbf{z}=\mathbf{y}+c(\mathbf{x}-\mathbf{y})$. Since \mathcal{D} is convex, $\mathbf{z} \in \mathcal{D}$. Thus, $\nabla^{2} f(\mathbf{z}) \succeq 0$. It follows that

$$
f(\mathbf{x}) \geq f(\mathbf{y})+(\mathbf{x}-\mathbf{y})^{T} \nabla f(\mathbf{y})
$$

By a previous result, the function f is convex.

Lipschitz Continuity vs. Strong Convexity

- Lipschitz continuity of gradient (references to ∇^{2} assume double differentiability)

$$
\begin{gathered}
\nabla^{2} f(x) \preceq L I \\
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\| \\
f(y) \leq f(x)+\nabla^{\top} f(x)(y-x)+\frac{L}{2}\|y-x\|^{2}
\end{gathered}
$$

- Strong convexity: Curvature should be atleast somewhat positive

$$
\begin{gathered}
\nabla^{2} f(x) \succeq m l \\
f(y) \geq f(x)+\nabla^{\top} f(x)(y-x)+\frac{m}{2}\|y-x\|^{2}
\end{gathered}
$$

- $m=0$ corresponds to (sufficient condition for) normal convexity.
- Later: For example, augmented Lagrangian is used to introduce strong convexity

Conjugate Functions

- Recall from Lecture 14 the (Young's) inequality for scalars $h, x \in \Re$ and for $p, q \in \Re^{+}$ such that for $\frac{1}{p}+\frac{1}{q}=1$:

Conjugate Functions

- Recall from Lecture 14 the (Young's) inequality for scalars $h, x \in \Re$ and for $p, q \in \Re^{+}$ such that for $\frac{1}{p}+\frac{1}{q}=1$: $h x \leq \frac{x^{p}}{p}+\frac{h^{q}}{q}$
- In other words: $\frac{h^{q}}{q} \geq h x-\frac{x^{p}}{p}$
- The RHS $h x-\frac{x^{p}}{p}$ viewed as a function of x, is maximized at point x at which

Conjugate Functions

- Recall from Lecture 14 the (Young's) inequality for scalars $h, x \in \Re$ and for $p, q \in \Re^{+}$ such that for $\frac{1}{p}+\frac{1}{q}=1$: $h x \leq \frac{x^{p}}{p}+\frac{h^{q}}{q}$
- In other words: $\frac{h^{q}}{q} \geq h x-\frac{x^{p}}{p}$
- The RHS $h x-\frac{x^{p}}{p}$ viewed as a function of x, is maximized at point x at which $\frac{d \frac{x^{p}}{p}}{x}=h$, that is at $x^{p-1}=h$
- Note that, under this condition, $h^{q}=$

Conjugate Functions

- Recall from Lecture 14 the (Young's) inequality for scalars $h, x \in \Re$ and for $p, q \in \Re^{+}$ such that for $\frac{1}{p}+\frac{1}{q}=1$: $h x \leq \frac{x^{p}}{p}+\frac{h^{q}}{q}$
- In other words: $\frac{h^{q}}{q} \geq h x-\frac{x^{p}}{p}$
- The RHS $h x-\frac{x^{p}}{p}$ viewed as a function of x, is maximized at point x at which $\frac{d \frac{x^{p}}{p}}{x}=h$, that is at $x^{p-1}=h$
- Note that, under this condition, $h^{q}=x^{q(p-1)}=x^{p}$ (since $\left.\frac{1}{p}+\frac{1}{q}=1\right)$ and the inequality becomes an equality
- That is, if $f(x)=\frac{x^{p}}{p}$ and $f^{*}(h)=\frac{h^{q}}{q}$ then

Conjugate Functions

- Recall from Lecture 14 the (Young's) inequality for scalars $h, x \in \Re$ and for $p, q \in \Re^{+}$ such that for $\frac{1}{p}+\frac{1}{q}=1$: $h x \leq \frac{x^{p}}{p}+\frac{h^{q}}{q}$
- In other words: $\frac{h^{q}}{q} \geq h x-\frac{x^{p}}{p}$
- The RHS $h x-\frac{x^{p}}{p}$ viewed as a function of x, is maximized at point x at which $\frac{d \frac{x^{p}}{p}}{x}=h$, that is at $x^{p-1}=h$
- Note that, under this condition, $h^{q}=x^{q(p-1)}=x^{p}$ (since $\left.\frac{1}{p}+\frac{1}{q}=1\right)$ and the inequality becomes an equality
- That is, if $f(x)=\frac{x^{p}}{p}$ and $f^{*}(h)=\frac{h^{q}}{q}$ then $f^{*}(h) \geq h x-f(x)$ and equality is attained when $f(x)=h$

Conjugate Functions

- That is, if $f(x)=\frac{x^{p}}{p}$ and $f^{*}(h)=\frac{h^{q}}{q}$ then $f^{*}(h)>=h x-f(x)$

Conjugate Functions

- That is, if $f(x)=\frac{x^{p}}{p}$ and $f^{*}(h)=\frac{h^{q}}{q}$ then $f^{*}(h) \geq h x-f(x)$ and equality is attained when $f(x)=h$. These observations can be generalized:
$f *(h)=$ supremum over x of $h x-f(x)$
and
$h x<=f(x)+f^{*}(h)$ otherwise

Conjugate Functions

- That is, if $f(x)=\frac{x^{p}}{p}$ and $f^{*}(h)=\frac{h^{q}}{q}$ then $f^{*}(h) \geq h x-f(x)$ and equality is attained when $f(x)=h$. These observations can be generalized:
- Conjugate Function of $f: \mathcal{D} \rightarrow \Re: f^{*}(\mathbf{h})=\sup _{\mathbf{x} \in \mathcal{D}}\left(\mathbf{h}^{T} \mathbf{x}-f(\mathbf{x})\right)$
- Fenchel inequality: $\mathbf{h}^{T} \mathbf{x} \leq f(\mathbf{x})+f^{*}(\mathbf{h})$ or $f^{*}(\mathbf{h}) \geq \mathbf{h}^{T} \mathbf{x}-f(\mathbf{x})$
- The conjugate function $f^{*}(y)$ is the maximum gap between the linear function $y x$ and $f(x)$, as shown by the dashed line in the figure. If f is differentiable, this occurs at a point x

Conjugate and Conjugate of the Conjugate

- Conjugate Function of $f: \mathcal{D} \rightarrow \Re: f^{f}(\mathbf{h})=\sup _{\mathrm{x} \in \mathcal{D}}\left(\mathrm{h}^{\top} \mathrm{x}-f(\mathrm{x})\right)$
- Even if f is not convex (and closed): $\mathrm{f}^{*}=$ pointwise supremum of affine functions

Conjugate and Conjugate of the Conjugate

- Conjugate Function of $f: \mathcal{D} \rightarrow \Re: f^{*}(\mathbf{h})=\sup _{\mathbf{x} \in \mathcal{D}}\left(\mathbf{h}^{T} \mathbf{x}-f(\mathbf{x})\right)$
- Even if f is not convex (and closed): f^{*} is convex (since it is pointwise suprememum of affine functions) and closed
- How about $f^{* *}(\mathbf{x})$? $\quad f^{* *}$ is the convex envelope of f

Homework: Find convex conjugate f^{*} of $f(x)=a x^{\wedge} 2+b x$ (assume $a>0$ and $x, a \& b$ are Reals)

Conjugate Functions, Strong Convexity and Lipschitz Continuity

- Conjugate Function of $f: \mathcal{D} \rightarrow \Re: f^{*}(\mathbf{h})=\sup _{\mathbf{x} \in \mathcal{D}}\left(\mathbf{h}^{T} \mathbf{x}-f(\mathbf{x})\right)$
- Fenchel inequality: $\mathbf{h}^{T} \mathbf{x} \leq f(\mathbf{x})+f^{*}(\mathbf{h})$
- Eg:

Conjugate Functions, Strong Convexity and Lipschitz Continuity

- Conjugate Function of $f: \mathcal{D} \rightarrow \Re: f^{*}(\mathbf{h})=\sup _{\mathbf{x} \in \mathcal{D}}\left(\mathbf{h}^{T} \mathbf{x}-f(\mathbf{x})\right)$
- Fenchel inequality: $\mathbf{h}^{T} \mathbf{x} \leq f(\mathbf{x})+f^{*}(\mathbf{h})$
- Eg: $f(\mathbf{x})=\frac{x^{p}}{p}$ and $f^{*}(\mathbf{h})=\frac{h^{q}}{q}$ for $\frac{1}{p}+\frac{1}{q}=1$
- $\nabla f^{*}(\mathbf{h})=\underset{\mathbf{x} \in \mathcal{D}}{\operatorname{argmax}}\left(\mathbf{h}^{T} \mathbf{x}-f(\mathbf{x})\right)$

Conjugate Functions, Strong Convexity and Lipschitz Continuity

- Conjugate Function of $f: \mathcal{D} \rightarrow \Re: f^{*}(\mathbf{h})=\sup _{\mathbf{x} \in \mathcal{D}}\left(\mathbf{h}^{T} \mathbf{x}-f(\mathbf{x})\right)$
- Fenchel inequality: $\mathbf{h}^{T} \mathbf{x} \leq f(\mathbf{x})+f^{*}(\mathbf{h})$
- Eg: $f(\mathbf{x})=\frac{x^{p}}{p}$ and $f^{*}(\mathbf{h})=\frac{h^{q}}{q}$ for $\frac{1}{p}+\frac{1}{q}=1$
- $\nabla f^{*}(\mathbf{h})=\underset{\mathbf{x} \in \mathcal{D}}{\operatorname{argmax}}\left(\mathbf{h}^{T} \mathbf{x}-f(\mathbf{x})\right)$

$$
\mathbf{x} \in \mathcal{D}
$$

- If f is closed and strongly convex with parameter m, then f^{*} has a Lipschitz continuous gradient with parameter $1 / \mathrm{m}$. convex f atleast m curved $=>$

Lipshitz f* atmost 1/m curved

- If f is convex and has a Lipschitz continuous gradient with parameter L, then f^{*} is strongly convex with parameter $1 / L$ Lipschitz gradient f atmost L curved $=>$ convex f* atleast 1/L curved
There exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient.

Fenchel Duality, Strong Convexity and Lipschitz Continuity

- Let f be a closed convex function on \Re^{n} and let g be a closed concave function on \Re^{n}. Then, under some general conditions:

$$
\inf _{\mathbf{x}}(f(\mathbf{x})-g(\mathbf{x}))=\sup _{\mathbf{h}}\left(g^{*}(\mathbf{h})-f^{*}(\mathbf{h})\right)
$$

where f^{*} is the convex conjugate of f and g^{*} is the concave conjugate of g

- Thus, there exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient. That is, with a good understanding of one, we can easily understand the other one. See http://xingyuzhou.org/talks/Fenchel_duality.pdf for a quick summary!

Lipschitz Continuity vs. Strong Convexity: Example

- Consider the linear regression loss function $f(\mathbf{x})=\frac{1}{2}\|\mathbf{y}-A \mathbf{x}\|^{2}$
- $\nabla f(\mathbf{x})=-A^{T}(\mathbf{y}-A \mathbf{x})$
- $\nabla^{2} f(\mathbf{x})=A^{T} A$
- One can show that

Max and min eigenvalues of $A^{\wedge} T A$ characterize strong convexity and Lipschitz continuity respective

Lipschitz Continuity vs. Strong Convexity: Example

- Consider the linear regression loss function $f(\mathbf{x})=\frac{1}{2}\|\mathbf{y}-A \mathbf{x}\|^{2}$
- $\nabla f(\mathbf{x})=-A^{T}(\mathbf{y}-A \mathbf{x})$
- $\nabla^{2} f(\mathrm{x})=A^{T} A$
- One can show that
- $\nabla^{2} f(\mathbf{x})=A^{T} A \preceq L /$ where $L=\sigma_{\text {max }}$ is the largest eigenvalue of $A^{T} A$
- $\nabla^{2} f(\mathrm{x})=A^{T} A \succeq m I$ where $m=\sigma_{\text {min }}$ is the smallest eigenvalue of $A^{T} A$

End of Important Aside: Second Order conditions for Convexity, Strong Convexity, Lipschitz Continuity of Gradient, Convex Conjugate, Fenchel Duality.

Using Strong Convexity: Revisiting Convergence Analysis

- $f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{m}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$ \geq minimum value of RHS wrt y

Using Strong Convexity: Revisiting Convergence Analysis

- $f(\mathrm{y}) \geq f(\mathrm{x})+\nabla^{\top} f(\mathrm{x})(\mathrm{y}-\mathrm{x})+\frac{m}{2}\|\mathrm{y}-\mathrm{x}\|^{2}$
\geq minimum value the RHS can take as a function of y
- Minimum value of RHS
$\nabla f(\mathbf{x})+m y-m x=0$
$\Longrightarrow y=x-\frac{1}{m} \nabla f(\mathbf{x})$
- Thus,

Using Strong Convexity: Revisiting Convergence Analysis

- $f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{m}{2}\|\mathbf{y}-\mathbf{x}\|^{2}$
\geq minimum value the RHS can take as a function of y
- Minimum value of RHS

$$
\begin{aligned}
& \nabla f(\mathbf{x})+m \mathbf{y}-m \mathbf{x}=0 \\
& \Longrightarrow y=x-\frac{1}{m} \nabla f(\mathbf{x})
\end{aligned}
$$

- Thus,

$$
\begin{aligned}
& f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})\left(-\frac{1}{m} \nabla f(\mathbf{x})\right)+\frac{m}{2}\left\|-\frac{1}{m} \nabla f(\mathbf{x})\right\|^{2} \\
& \Longrightarrow f(\mathbf{y}) \geq f(\mathbf{x})-\frac{1}{2 m}\|\nabla f(\mathbf{x})\|^{2}
\end{aligned}
$$

- Here, LHS is independent of \mathbf{x}, and RHS is independent of \mathbf{y}
- Thus the inequality holds also for $\mathbf{y}=\mathbf{x}^{*}$ (point of minimum of $f(\mathbf{x})$)

Using Strong Convexity: Revisiting Convergence Analysis (contd.)

$$
f\left(\mathbf{x}^{*}\right) \geq f(\mathbf{x})-\frac{1}{2 m}\|\nabla f(\mathrm{x})\|^{2}
$$

- If $\|\nabla f(\mathbf{x})\|$ is small, the point is nearly optimal
- If $\|\nabla f(\mathbf{x})\| \leq \sqrt{2 m \epsilon}$, then:
$f(\mathrm{x})-f\left(\mathrm{x}^{*}\right) \leq \epsilon$
- As the gradient $\|\nabla f(\mathbf{x})\|$ approaches 0 , we get closer to the optimal solution x^{*}

[^0]: c and m are used interchangebly as the strong convexity factor/constant Strong convexity of $m==>$ Atleast m curvature
 Lipschitz continuous gradient of $L==>$ Atmost L curvature

