
Q-superlinear convergence:

lim
k→∞




sk+1 − s∗







sk − s∗


 = 0

Q-sublinear convergence:

lim
k→∞




sk+1 − s∗







sk − s∗


 = 1

▶ e.g. For Lipschitz continuity, vk in gradient descent is Q-sublinear: limk→∞ k
k+1 = 1

Q-convergence of order p:

∀k ≥ θ,




sk+1 − s∗







sk − s∗


p ≤ M

▶ e.g. p = 2 for Q-quadratic, p = 3 for Q-cubic, etc.
▶ M is called the asymptotic error constant
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Illustrating Order Convergence
Consider the two sequences s1 and s2.
s1 =

[
11
2 ,

21
4 ,

41
8 , . . . , 5 +

1
2n , . . .

]

s2 =
[
11
2 ,

41
8 ,

641
128 , . . . , 5 +

1
22

n−1
, . . .

]

Both sequences converge to 5. However, it seems that the second converges faster to 5
than the first one.
For s1, s∗1 = 5 and Q-convergence is of order p = 1 because:




sk+1
1 − s∗1








sk1 − s∗1





1 =




 1
2k+1








 1
2k





=

1

2
< 0.6(= M)

For s2, s∗2 = 5 and Q-convergence is of order p = 2 because:



sk+1

2 − s∗2








sk2 − s∗2




2 =




 1

22k+1−1








 1

22
k−1





2 =

1

2
< 0.6(= M)
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An algorithm A is faster
than algorithm B if
    either it has a larger (p)
     order of convergence
     or it has the same order
  but a lower value of M 



Claim: Q-convergences of the order p are special cases of Q-superlinear convergence
∀k ≥ θ,
∥sk+1−s∗∥
∥sk−s∗∥p ≤ M

=⇒ lim
k→∞




sk+1 − s∗







sk − s∗


 ≤ lim

k→∞
M



sk − s∗





p−1

= 0

Therefore, irrespective of the value of M (as long as M ≥ 0), order p > 1 implies
Q-superlinear convergence
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Question: Could we analyze Gradient descent more specifically?
Assume backtracking line search
Continue assuming Lipschitz continuity

▶ Curvature is upper bounded: ∇2f(x) ⪯ LI
Assume strong convexity

▶ Curvature is lower bounded: ∇2f(x) ⪰ mI
▶ For instance, we might not want to use gradient descent for a quadratic function (curvature

is not accounted for)
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There exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient.
That is, with a good understanding of one, we can easily understand the other one. See

http://xingyuzhou.org/talks/Fenchel_duality.pdf for a quick summary!
(Better) Convergence Using Strong Convexity
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Important Aside: Second Order conditions for
Convexity, Strong Convexity, Lipschitz Continuity of
Gradient, Convex Conjugate, Fenchel Duality.
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Second Order Conditions for Convexity

Theorem
A twice differential function f : D → ℜ for a nonempty open convex set D

1 is convex if and only if its domain is convex and its Hessian matrix is positive semidefinite
at each point in D. That is ∇2f(x) ⪰ 0 ∀ x ∈ D

2 is strictly convex if its domain is convex and its Hessian matrix is positive definite at each
point in D. That is ∇2f(x) ≻ 0 ∀ x ∈ D

3 is uniformly convex if and only if its domain is convex and its Hessian matrix is uniformly
positive definite at each point in D. That is, for any v ∈ ℜn and any x ∈ D, there exists
a c > 0 such that vT∇2f(x)v ≥ c||v||2
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Also known as strong convexity

c and m are used interchangebly as the strong convexity factor/constant
Strong convexity of m ==> Atleast m curvature
Lipschitz continuous gradient of L ==> Atmost L curvature



Proof of Second Order Conditions for Convexity
In other words

∇2f(x) ⪰ cIn×n
where In×n is the n× n identity matrix and ⪰ corresponds to the positive semidefinite
inequality. That is, the function f is strongly convex iff ∇2f(x)− cIn×n is positive semidefinite,
for all x ∈ D and for some constant c > 0, which corresponds to the positive minimum
curvature of f.
PROOF: We will prove only the first statement; the other two statements are proved in a
similar manner.
Necessity: Suppose f is a convex function, and consider a point x ∈ D. We will prove that for
any h ∈ ℜn, hT∇2f(x)h ≥ 0. Since f is convex, we have

f(x + th) ≥ f(x) + t∇Tf(x)h (48)

Consider the function ϕ(t) = f(x + th) defined on the domain Dϕ = [0, 1].
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Proof of Second Order Conditions for Convexity (contd.)
Using the chain rule,

ϕ′(t) =
n∑

i=1

fxi(x + th)dxidt = hT.∇f(x + th)

Since f has partial and mixed partial derivatives, ϕ′ is a differentiable function of t on Dϕ and

ϕ′′(t) = hT∇2f(x + th)h

Since ϕ and ϕ′ are continous on Dϕ and ϕ′ is differentiable on int(Dϕ), we can make use of
the Taylor’s theorem with n = 3 to obtain:

ϕ(t) = ϕ(0) + t.ϕ′(0) + t2.1
2
ϕ′′(0) + O(t3)

Writing this equation in terms of f gives
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Proof of Second Order Conditions for Convexity (contd.)
Using the chain rule,

ϕ′(t) =
n∑

i=1

fxi(x + th)dxidt = hT.∇f(x + th)

Since f has partial and mixed partial derivatives, ϕ′ is a differentiable function of t on Dϕ and

ϕ′′(t) = hT∇2f(x + th)h

Since ϕ and ϕ′ are continous on Dϕ and ϕ′ is differentiable on int(Dϕ), we can make use of
the Taylor’s theorem with n = 3 to obtain:

ϕ(t) = ϕ(0) + t.ϕ′(0) + t2.1
2
ϕ′′(0) + O(t3)

Writing this equation in terms of f gives

f(x + th) = f(x) + thT∇f(x) + t2 1
2
hT∇2f(x)h + O(t3)
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Proof of Second Order Conditions for Convexity (contd.)

In conjunction with (48), the above equation implies that

t2
2
hT∇2f(x)h + O(t3) ≥ 0

Dividing by t2 and taking limits as t→ 0, we get

hT∇2f(x)h ≥ 0
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For necessary condition, take limits



Proof of Second Order Conditions for Convexity (contd.)
Sufficiency: Suppose that the Hessian matrix is positive semidefinite at each point x ∈ D.
Consider the same function ϕ(t) defined above with h = y− x for y,x ∈ D. Applying Taylor’s
theorem with n = 2 and a = 0, we obtain,

ϕ(1) = ϕ(0) + t.ϕ′(0) + t2.1
2
ϕ′′(c)

for some c ∈ (0, 1). Writing this equation in terms of f gives

f(x) = f(y) + (x− y)T∇f(y) + 1

2
(x− y)T∇2f(z)(x− y)

where z = y + c(x− y). Since D is convex, z ∈ D. Thus, ∇2f(z) ⪰ 0. It follows that

f(x) ≥ f(y) + (x− y)T∇f(y)

By a previous result, the function f is convex.
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Lipschitz Continuity vs. Strong Convexity
Lipschitz continuity of gradient (references to ∇2 assume double differentiability)

∇2f(x) ⪯ LI


∇f(x)−∇f(y)



 ≤ L∥x− y∥

f(y) ≤ f(x) +∇⊤f(x)(y− x) + L
2
∥y− x∥2

Strong convexity: Curvature should be atleast somewhat positive

∇2f(x) ⪰ mI

f(y) ≥ f(x) +∇⊤f(x)(y− x) + m
2
∥y− x∥2

▶ m = 0 corresponds to (sufficient condition for) normal convexity.
▶ Later: For example, augmented Lagrangian is used to introduce strong convexity
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Conjugate Functions

Recall from Lecture 14 the (Young’s) inequality for scalars h, x ∈ ℜ and for p, q ∈ ℜ+

such that for 1
p +

1
q = 1:
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Conjugate Functions

Recall from Lecture 14 the (Young’s) inequality for scalars h, x ∈ ℜ and for p, q ∈ ℜ+

such that for 1
p +

1
q = 1: hx ≤ xp

p + hq
q

In other words: hq
q ≥ hx− xp

p

The RHS hx− xp
p viewed as a function of x, is maximized at point x at which
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Conjugate Functions

Recall from Lecture 14 the (Young’s) inequality for scalars h, x ∈ ℜ and for p, q ∈ ℜ+

such that for 1
p +

1
q = 1: hx ≤ xp

p + hq
q

In other words: hq
q ≥ hx− xp

p

The RHS hx− xp
p viewed as a function of x, is maximized at point x at which

d xpp
x = h,

that is at xp−1 = h
Note that, under this condition, hq =
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Conjugate Functions

Recall from Lecture 14 the (Young’s) inequality for scalars h, x ∈ ℜ and for p, q ∈ ℜ+

such that for 1
p +

1
q = 1: hx ≤ xp

p + hq
q

In other words: hq
q ≥ hx− xp

p

The RHS hx− xp
p viewed as a function of x, is maximized at point x at which

d xpp
x = h,

that is at xp−1 = h
Note that, under this condition, hq = xq(p−1) = xp (since 1

p +
1
q = 1) and the inequality

becomes an equality
That is, if f(x) = xp

p and f∗(h) = hq
q then
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Conjugate Functions

Recall from Lecture 14 the (Young’s) inequality for scalars h, x ∈ ℜ and for p, q ∈ ℜ+

such that for 1
p +

1
q = 1: hx ≤ xp

p + hq
q

In other words: hq
q ≥ hx− xp

p

The RHS hx− xp
p viewed as a function of x, is maximized at point x at which

d xpp
x = h,

that is at xp−1 = h
Note that, under this condition, hq = xq(p−1) = xp (since 1

p +
1
q = 1) and the inequality

becomes an equality
That is, if f(x) = xp

p and f∗(h) = hq
q then f∗(h) ≥ hx− f(x) and equality is attained when

f′(x) = h
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Conjugate Functions

That is, if f(x) = xp
p and f∗(h) = hq

q then
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f*(h) >= hx - f(x)



Conjugate Functions

That is, if f(x) = xp
p and f∗(h) = hq

q then f∗(h) ≥ hx− f(x) and equality is attained when
f′(x) = h. These observations can be generalized:
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f*(h) = supremum over x of hx-f(x)
and
hx <= f(x) + f*(h) otherwise



Conjugate Functions

That is, if f(x) = xp
p and f∗(h) = hq

q then f∗(h) ≥ hx− f(x) and equality is attained when
f′(x) = h. These observations can be generalized:
Conjugate Function of f : D → ℜ: f∗(h) = sup

x∈D
(hTx− f(x))

Fenchel inequality: hTx ≤ f(x) + f∗(h) or f∗(h) ≥ hTx− f(x)
The conjugate function f∗(y) is the maximum gap between the linear function yx and f(x),
as shown by the dashed line in the figure. If f is differentiable, this occurs at a point x
where f′(x) = h. October 5, 2018 173 / 414



Conjugate and Conjugate of the Conjugate

Conjugate Function of f : D → ℜ: f∗(h) = sup
x∈D

(hTx− f(x))

Even if f is not convex (and closed):
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 f* = pointwise supremum of affine functions



Conjugate and Conjugate of the Conjugate

Conjugate Function of f : D → ℜ: f∗(h) = sup
x∈D

(hTx− f(x))

Even if f is not convex (and closed): f∗ is convex (since it is pointwise suprememum of
affine functions) and closed
How about f∗∗(x)?
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f** is the convex envelope of f



Homework: Find convex conjugate f* of f(x) = a x^2 + bx
(assume a>0 and x, a & b are Reals)
What will be f**?

Shapewise f** corresponds to
a convex envelope of the
function

increasing
slope



Conjugate Functions, Strong Convexity and Lipschitz Continuity

Conjugate Function of f : D → ℜ: f∗(h) = sup
x∈D

(hTx− f(x))

Fenchel inequality: hTx ≤ f(x) + f∗(h)
Eg:
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Conjugate Functions, Strong Convexity and Lipschitz Continuity

Conjugate Function of f : D → ℜ: f∗(h) = sup
x∈D

(hTx− f(x))

Fenchel inequality: hTx ≤ f(x) + f∗(h)
Eg: f(x) = xp

p and f∗(h) = hq
q for 1

p +
1
q = 1

∇f∗(h) = argmax
x∈D

(hTx− f(x))
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Conjugate Functions, Strong Convexity and Lipschitz Continuity

Conjugate Function of f : D → ℜ: f∗(h) = sup
x∈D

(hTx− f(x))

Fenchel inequality: hTx ≤ f(x) + f∗(h)
Eg: f(x) = xp

p and f∗(h) = hq
q for 1

p +
1
q = 1

∇f∗(h) = argmax
x∈D

(hTx− f(x))

If f is closed and strongly convex with parameter m, then f∗ has a Lipschitz continuous
gradient with parameter 1/m.
If f is convex and has a Lipschitz continuous gradient with parameter L, then f∗ is
strongly convex with parameter 1/L

There exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient.
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convex f atleast m curved => 
Lipshitz f* atmost 1/m curved

Lipschitz gradient f atmost L curved => 
convex f* atleast 1/L curved



Fenchel Duality, Strong Convexity and Lipschitz Continuity

Let f be a closed convex function on ℜn and let g be a closed concave function on ℜn.
Then, under some general conditions:

inf
x
(f(x)− g(x)) = sup

h
(g∗(h)− f∗(h))

where f∗ is the convex conjugate of f and g∗ is the concave conjugate of g
Thus, there exits (Fenchel) duality between strong convexity and Lipschitz continuous
gradient. That is, with a good understanding of one, we can easily understand the other
one. See http://xingyuzhou.org/talks/Fenchel_duality.pdf for a quick
summary!
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convex f(x)

convex f(x)

concave g(x)
or convex -g(x)

concave g(x)
or convex -g(x)

Dual: Find slope h that gives 
largest gap between g* and f*

Primal: Find x that gives smalles gap between f and g



Lipschitz Continuity vs. Strong Convexity: Example

Consider the linear regression loss function f(x) = 1
2∥y− Ax∥2

∇f(x) = −AT(y− Ax)
∇2f(x) = ATA
One can show that
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Max and min eigenvalues of A^T A
characterize strong convexity and
Lipschitz continuity respective



Lipschitz Continuity vs. Strong Convexity: Example

Consider the linear regression loss function f(x) = 1
2∥y− Ax∥2

∇f(x) = −AT(y− Ax)
∇2f(x) = ATA
One can show that

▶ ∇2f(x) = ATA ⪯ LI where L = σmax is the largest eigenvalue of ATA
▶ ∇2f(x) = ATA ⪰ mI where m = σmin is the smallest eigenvalue of ATA
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L/m puts some bound on the condition number of the Hessian



End of Important Aside: Second Order conditions for
Convexity, Strong Convexity, Lipschitz Continuity of
Gradient, Convex Conjugate, Fenchel Duality.
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Using Strong Convexity: Revisiting Convergence Analysis

f(y) ≥ f(x) +∇⊤f(x)(y− x) + m
2 ∥y− x∥2

≥
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minimum value of RHS wrt y



Using Strong Convexity: Revisiting Convergence Analysis

f(y) ≥ f(x) +∇⊤f(x)(y− x) + m
2 ∥y− x∥2

≥ minimum value the RHS can take as a function of y
Minimum value of RHS
∇f(x) +my−mx = 0
=⇒ y = x− 1

m∇f(x)
Thus,
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Using Strong Convexity: Revisiting Convergence Analysis

f(y) ≥ f(x) +∇⊤f(x)(y− x) + m
2 ∥y− x∥2

≥ minimum value the RHS can take as a function of y
Minimum value of RHS
∇f(x) +my−mx = 0
=⇒ y = x− 1

m∇f(x)
Thus,
f(y) ≥ f(x) +∇⊤f(x)

(
− 1
m∇f(x)

)
+ m

2




− 1
m∇f(x)





2

=⇒ f(y) ≥ f(x)− 1
2m



∇f(x)


2

▶ Here, LHS is independent of x, and RHS is independent of y
▶ Thus the inequality holds also for y = x∗ (point of minimum of f(x))
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Using Strong Convexity: Revisiting Convergence Analysis (contd.)

f(x∗) ≥ f(x)− 1

2m


∇f(x)



2

If


∇f(x)



 is small, the point is nearly optimal
▶ If



∇f(x)


 ≤

√
2mϵ, then:

f(x)− f(x∗) ≤ ϵ
▶ As the gradient



∇f(x)


 approaches 0, we get closer to the optimal solution x∗
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