
(Sub)Gradient Descent: Generalization of Gradient Descent
Given a convex function f : Rn → R, not necessarily differentiable. Subgradient method is just
like gradient descent, but replacing gradients with subgradients. I.e., initialize x(0), then repeat

x(k) = x(k−1) − tk · h(k−1), k = 1, 2, 3, · · ·

where h(k−1) is any subgradient of f at x(k−1). We keep track of best iterate xkbest among
x(1), · · · ,x(k):

f(x(k)
best) = min

i=1,··· ,k
f(x(i))

To update each x(i), there are basically two ways to select the step size:
Fixed step size: tk = t for all k = 1, 2, 3 · · ·
Diminishing step size: choose tk to satisfy

lim
k→∞

(tk) = 0 ,

∞∑

k=1

tk = ∞
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Eg: t^k = 1/k
t^k = 1/sqrt{k}



Subgradient Algorithm: Convergence analysis
Given the convex function f : Rn → R that satisfies:

f is Lipschitz continuous with constant l > 0,
|f(x)− f(y)| ≤ l||x − y|| for all x,y

||x(1) − x∗|| ≤ R which means it is bounded

Theorem
For a fixed step size t, subgradient method satisfies

lim
k→∞

f(x(k)best) ≤ f(x∗) +
l2t
2

For diminishing step size such as tk = O
(

1√
k

)
,

f(x(k)best) ≤ f(x∗) + O
(

1√
k

)
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All iterates lie within R



Subgradient Descent: Convergence Analysis (contd.)
Proof:

||x(k+1) − x∗||2 = ||x(k) − tkh(k) − x∗||2
= ||x(k) − x∗||2 − 2tk(h(k))T(x(k) − x∗) + (tk)2||h(k)||2

By definition of the subgradient method, we have

f(x∗) ≥ f(x(k)) + (h(k))T(x∗ − x(k))

−(h(k))T(x∗ − x(k)) ≤ −(f(x(k))− f(x∗))

Using this inequality, for k, k− 1, . . . i, i− 1, . . . 0 we have
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Subgradient Descent: Convergence Analysis (contd.)
Proof:

||x(k+1) − x∗||2 = ||x(k) − tkh(k) − x∗||2
= ||x(k) − x∗||2 − 2tk(h(k))T(x(k) − x∗) + (tk)2||h(k)||2

By definition of the subgradient method, we have

f(x∗) ≥ f(x(k)) + (h(k))T(x∗ − x(k))

−(h(k))T(x∗ − x(k)) ≤ −(f(x(k))− f(x∗))

Using this inequality, for k, k− 1, . . . i, i− 1, . . . 0 we have

||x(k+1) − x∗||2 ≤ ||x(k) − x∗||2 − 2tk(f(x(k))− f(x∗)) + (tk)2||h(k)||2

≤ ||x(1) − x∗||2 − 2

k∑

i=1

ti(f(x(i))− f(x∗)) +
k∑

i=1

(ti)2||h(i)||2
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Subgradient Descent: Convergence Analysis (contd.)

And since this is lower bounded by 0, we have

0 ≤ ||x(k+1) − x∗||2 ≤ R2 − 2
k∑

i=1

ti(f(x(i))− f(x∗)) +
k∑

i=1

(ti)2l2

⇒ 2
k∑

i=1

ti(f(x(i))− f(x∗)) ≤ R2 +
k∑

i=1

(ti)2l2

⇒ 2(
k∑

i=1

ti)(f(x(k)
best)− f(x∗)) ≤ R2 +

k∑

i=1

(ti)2l2
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Using Lipschitz continuity of f, ||h||^2 <= l^2
Using the fact that best iterate is always maintained, f(x^i) >= f(x^k_best)
Using the fact that ||x - x*||^2 <= R^2



Subgradient Descent: Convergence Analysis (contd.)

For a constant step size ti = t:

R2 + l2t2k
2tk → l2t

2
, as k → ∞,

and for diminishing step size, we have:
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Subgradient Descent: Convergence Analysis (contd.)

For a constant step size ti = t:

R2 + l2t2k
2tk → l2t

2
, as k → ∞,

and for diminishing step size, we have:

k∑

i=0

(ti)2 ≤ 0,

k∑

i=0

ti = ∞

therefore,
R2 + l2

∑k
i=0(ti)2

2
∑k

i=0 ti
→ 0, as k → ∞,
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Subgradient Descent: Convergence Analysis (contd.)

Consider taking ti = R/(l
√
k), for all i = 1, ..., k. Then we can obtain the following tendency:
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Subgradient Descent: Convergence Analysis (contd.)

Consider taking ti = R/(l
√
k), for all i = 1, ..., k. Then we can obtain the following tendency:

R2 + l2
∑k

i=0(ti)2

2
∑k

i=0 ti
=

Rl√
k
.

That is, subgradient method has convergence rate of O( 1√
k), and to get f(x(k)best)− f(x∗) ≤ ϵ,

needs O( 1
ϵ2
) iterations.

This is a much worse convergence rate than even O
(
1
k

)
obtained for gradient descent under

Lipschitz continuity alone.
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We again see why Lipschitz continuity of function is a somewhat
weaker assumption that Lipschitz continuity of the gradient



Optimization: Subgradient Descent and Constrained Optimization
Instructor: Prof. Ganesh Ramakrishnan
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We will evolve specific and more efficient, better motivated
special cases (or even variants) of subgradient descent for
constraint optimization, mostly using the fact that the objective
function is often differentiable and sometimes has 
Lipschitz continuous gradient



Constrained Optimization and Subgradient Descent
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Constrained Optimization

Consider the objective
min f(x)

s.t. gi(x) ≤ 0, ∀i
Recall: Indicator function for gi(x)

Igi(x) =
{
0, if gi(x) ≤ 0

∞, otherwise

▶ We have shown that this is convex if each gi(x) is convex.

Option 1:
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Minimize sum of f(x) and I_g_i(x)



Constrained Optimization

Consider the objective
min f(x)

s.t. gi(x) ≤ 0, ∀i
Recall: Indicator function for gi(x)

Igi(x) =
{
0, if gi(x) ≤ 0

∞, otherwise

▶ We have shown that this is convex if each gi(x) is convex.

Option 1: Use subgradient descent to solve this optimization
Option 2:
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Write down smooth (differentiable) approximation functions
for the Indicator...Often bringing in additional advantages
such as strong convexity (even if f(x) was not strongly convex)



Constrained Optimization

Consider the objective
min f(x)

s.t. gi(x) ≤ 0, ∀i
Recall: Indicator function for gi(x)

Igi(x) =
{
0, if gi(x) ≤ 0

∞, otherwise

▶ We have shown that this is convex if each gi(x) is convex.

Option 1: Use subgradient descent to solve this optimization
Option 2: Barrier Method (approximate Igi(x) using some differentiable function),
Augmented Lagrangian, ADMM, etc.
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Later...



Option 1: (Sub)Gradient Descent with Sum of indicators

Convert our objective to the following unconstrained optimization problem
Each Ci =

{
x | gi(x) ≤ 0

}
is convex if gi(x) is convex.

We take
minx F(x) = min

x
f(x) +

∑

i
ICi(x)

Recap a subgradient of F:
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gradient of f(x) + linear combination of elements
   of normal cones to each C_i



Option 1: (Sub)Gradient Descent with Sum of indicators

Convert our objective to the following unconstrained optimization problem
Each Ci =

{
x | gi(x) ≤ 0

}
is convex if gi(x) is convex.

We take
minx F(x) = min

x
f(x) +

∑

i
ICi(x)

Recap a subgradient of F: hF(x) = hf(x) +
∑

i hICi (x). Recall that
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Gradient... 

x-gradient f(x) minimizes the quadratic approximation
of the function f around x



Option 1: (Sub)Gradient Descent with Sum of indicators

Convert our objective to the following unconstrained optimization problem
Each Ci =

{
x | gi(x) ≤ 0

}
is convex if gi(x) is convex.

We take
minx F(x) = min

x
f(x) +

∑

i
ICi(x)

Recap a subgradient of F: hF(x) = hf(x) +
∑

i hICi (x). Recall that
▶ hf(x) = ∇f(x) if f(x) is differentiable. Also, −∇f(x) at xk optimizes
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Option 1: (Sub)Gradient Descent with Sum of indicators

Convert our objective to the following unconstrained optimization problem
Each Ci =

{
x | gi(x) ≤ 0

}
is convex if gi(x) is convex.

We take
minx F(x) = min

x
f(x) +

∑

i
ICi(x)

Recap a subgradient of F: hF(x) = hf(x) +
∑

i hICi (x). Recall that
▶ hf(x) = ∇f(x) if f(x) is differentiable. Also, −∇f(x) at xk optimizes the first order

approximation for f(x) around xk: −∇f(x) = argmin
h

f(xk) +∇Tf(xk)h +
1

2
||h||2 Leads to

Mirror Descent etc.
▶ hICi (x) is d ∈ Rn s.t. d⊤x ≥ d⊤y, ∀y ∈ Ci. Also, hICi (x) = 0 if x is in the interior of Ci, and

has other solutions if x is on the boundary: Leads to KKT conditions and Dual Ascent
etc.
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Changing the notion of distance from squared (to say 1 norm) can yield
different approximations, different notion of strong convexity... 

All examples hereafter are special case of MD 



Option 1: Generalized Gradient Descent
Consider the following sum of a differentiable function f(x) and a nondifferentiable
function c(x) (an example being

∑
i ICi(x))

We take
min

x
F(x) = min

x
f(x) + c(x)

Like gradient descent, consider the first order approximation for f(x) around xk leaving
c(x) alone to obtain the next iterate xk+1:

xk+1 = argmin
x

f(xk) +∇Tf(xk)(x − xk) + 1

2t ||x − xk||2 + c(x)

Deleting f(xk) from the objective and adding t
2 ||∇f(xk)||2 to the objective (without any

loss) to complete squares, we obtain xk+1 as:

xk+1 = argmin
x

1

2t ||x − (xk − t∇f(xk))||2 + c(x)

In general, such a step is called a proximal step

xk+1 = proxt
(

xk − t∇f(xk))
)
= argmin

x
1

2t ||x − (xk − t∇f(xk))||2 + c(x)
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Recap our discussion
on subgradient for proximal

Find next iterate as close
as possible to grad desc
iterate of f, while also minimizaing c



Option 1: Generalized Gradient Descent

Interesting because in many settings, proxt(z) can be computed efficiently

proxt(z) = argmin
x

1

2t ||x − z||2 + c(x)

Illustration on Lasso: x∗ = argmin
x

||Ax − y||2 + ∥x∥1. You can successively use
z = xk − t∇f(xk).
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H/w: Build upon midsem solution to write the proximal step for Lasso in terms of z (no need of x^k)



Illustration on Lasso
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Illustration on Lasso
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Option 1: Generalized Gradient Descent
Recall

proxt(z) = argmin
x

1

2t ||x − z||2 + c(x)

1 Gradient Descent: c(x) = 0
2 Projected Gradient Descent: c(x) =

∑
i ICi(x)

3 Proximal Minimization: f(x) = 0

We will discuss these specific cases after a short discussion on convergence

7Else we just treat this as another minimization problem and obtain an approximate solution. Practical
convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng ’94]
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You are trying to find solution to a bunch of constraints



Option 1: Generalized Gradient Descent
Recall

proxt(z) = argmin
x

1

2t ||x − z||2 + c(x)

1 Gradient Descent: c(x) = 0
2 Projected Gradient Descent: c(x) =

∑
i ICi(x)

3 Proximal Minimization: f(x) = 0

We will discuss these specific cases after a short discussion on convergence
Convergence: If f(x) is convex, differentiable, and ∇f is Lipschitz continuous with
constant L > 0 AND c(x) is convex and proxt(z) can be solved exactly7 then

7Else we just treat this as another minimization problem and obtain an approximate solution. Practical
convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng ’94]
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f(x^k) - f(x^*) <= ||x^k - x^0||^2/2tk



Option 1: Generalized Gradient Descent
Recall

proxt(z) = argmin
x

1

2t ||x − z||2 + c(x)

1 Gradient Descent: c(x) = 0
2 Projected Gradient Descent: c(x) =

∑
i ICi(x)

3 Proximal Minimization: f(x) = 0

We will discuss these specific cases after a short discussion on convergence
Convergence: If f(x) is convex, differentiable, and ∇f is Lipschitz continuous with
constant L > 0 AND c(x) is convex and proxt(z) can be solved exactly7 then
convergence result (and proof) is similar to that for gradient descent

f(xk)− f(x∗) ≤ 1

k

k∑

i=1

(
f(xi)− f(x∗)

)
≤




x(0) − x∗




2

2tk
7Else we just treat this as another minimization problem and obtain an approximate solution. Practical

convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng ’94]
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Convergence Rate: Generalized Gradient Descent vs. Subgradient Descent

Recap: For Subgraident Descent: The subgradient method has convergence rate
O(1/

√
k); to get f(x(k)

best)− f(x∗) ≤ ϵ, we need O(1/
√
ϵ2) iterations.

This is actually the best we can do; e.g., we can’t do better than O(1/
√
k).
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Proved by Nesterov



Convergence Rate: Generalized Gradient Descent vs. Subgradient Descent

Recap: For Subgraident Descent: The subgradient method has convergence rate
O(1/

√
k); to get f(x(k)

best)− f(x∗) ≤ ϵ, we need O(1/
√
ϵ2) iterations.

This is actually the best we can do; e.g., we can’t do better than O(1/
√
k).

For generalized Gradient Descent: If f(x) is convex, differentiable, and ∇f is Lipschitz
continuous with constant L > 0 AND c(x) is convex and proxt(x) can be solved exactly
then convergence result (and proof) is similar to that for gradient descent

f(xk)− f(x∗) ≤ 1

k

k∑

i=1

(
f(xi)− f(x∗)

)
≤




x(0) − x∗




2

2tk

Better convergence (O(1/k)) because of assuming (i) Differentiability of f(x) and
(ii) Lipschitz continuity of ∇f(x).
Can we do even better without strong convexity (not possible for c(x)?
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Yes. You cannot get Q-linear as in strong convexity. But O(1/k^2) possible



(Nesterov) Accelerated Generalized Gradient Descent

March 29, 2018 186 / 264

This is O(1/k^2)!! 

O(1/k)

O(1/sqrt{k})



(Nesterov) Accelerated Generalized Gradient Descent
The problem is:

min
x∈Rn

f(x) + c(x)

where f(x) is convex and differentiable, c(x) is convex and not necessarily differentiable.
Initialize x(0)

u ∈ Rn

repeat for k = 1, 2, 3, . . .

y = x(k−1) +
k− 2

k+ 1
(x(k−1) − x(k−2))

x(k) = proxtk(y − tk∇f(y))
Or Equivalently,

y = (1− θk)x(k−1) + θkx(k−1)
u

xk = proxtk(y − tk∇f(y))

u(k) = x(k−1) +
1

θk
(x(k) − x(k−1))

where θ = 2/(k+ 1).
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Momentum is used to somewhat capture
second order moments/curvature

Prox not on x^k-1 but on
x^k-1 averaged with 
x^k-2



(Nesterov) Accelerated Generalized Gradient Descent
1 First step k = 1 is just usual generalized gradient update: x(1) = proxt1(x(0)− t1∇f(x(0)))
2 Thereafter, the method carries some ”momentum” from previous iterations
3 c(x) = 0 gives accelerated gradient method
4 The method accelerates more towards the end of iterations
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(Nesterov) Accelerated Generalized Gradient Descent
Examples showing the performance of accelerated gradient descent compared with usual
gradient descent.

Figure 12: Example 1: Performance of accelerated gradient descent compared with usual gradient
descent
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(Nesterov) Accelerated Generalized Gradient Descent: Convergence

Minimize f(x) = f(x) + c(x) assuming that:
f is convex, differentiable, ∇f is Lipschitz with constant L > 0, and
c is convex, the prox function can be evaluated.

Theorem
Accelerated generalized gradient method with fixed step size t ≤ 1/L satisfies:

f(x(k))− f(x∗) ≤ 2||x(0) − x∗||2
t(k+ 1)2

Accelerated generalized gradient method can achieve the optimal O(1/k2) rate for first-order
method, or equivalently, if we want to get f(x(k))− f(x∗) ≤ ϵ, we only need O(1/√ϵ)
iterations. Now we prove this theorem.
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