Constrained Optimization in \Re : Recap

 $\mathbf{B} \rightarrow \mathbf{b}$ October 19, 2018 197 / 424

ж.

200

Global Extrema on Closed Intervals

Recall the extreme value theorem. A consequence is that:

- if either of c or d lies in (a, b), then it is a critical number of f,
- else each of c and d must lie on one of the boundaries of [a, b].

This gives us a procedure for finding the maximum and minimum of a continuous function f on a closed bounded interval \mathcal{I} :

Procedure

[Finding extreme values on closed, bounded intervals]:

- Find the critical points in $int(\mathcal{I})$.
- Compute the values of f at the critical points and at the endpoints of the interval.
- Select the least and greatest of the computed values.

• To compute the maximum and minimum values of $f(x) = 4x^3 - 8x^2 + 5x$ on the interval [0, 1],

900

199 / 424

- To compute the maximum and minimum values of $f(x) = 4x^3 8x^2 + 5x$ on the interval [0, 1],
 - We first compute $f(x) = 12x^2 16x + 5$ which is 0 at $x = \frac{1}{2}, \frac{5}{6}$.
 - Values at the critical points are $f(\frac{1}{2}) = 1$, $f(\frac{5}{6}) = \frac{25}{27}$.
 - The values at the end points are f(0) = 0 and f(1) = 1.
 - Therefore, the minimum value is f(0) = 0 and the maximum value is $f(1) = f(\frac{1}{2}) = 1$.

200

199 / 424

- To compute the maximum and minimum values of $f(x) = 4x^3 8x^2 + 5x$ on the interval [0, 1],
 - We first compute $f(x) = 12x^2 16x + 5$ which is 0 at $x = \frac{1}{2}, \frac{5}{6}$.
 - ▶ Values at the critical points are $f(\frac{1}{2}) = 1$, $f(\frac{5}{6}) = \frac{25}{27}$.
 - The values at the end points are f(0) = 0 and f(1) = 1.
 - Therefore, the minimum value is f(0) = 0 and the maximum value is $f(1) = f(\frac{1}{2}) = 1$.

200

199 / 424

October 19, 2018

• In this context, it is relevant to discuss the one-sided derivatives of a function at the endpoints of the closed interval on which it is defined.

Definition

[One-sided derivatives at endpoints]: Let f be defined on a closed bounded interval [a, b]. The (right-sided) derivative of f at x = a is defined as

$$f'(a) = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$$

Similarly, the (left-sided) derivative of f at x = b is defined as

$$f'(b) = \lim_{h \to 0^-} \frac{f(b+h) - f(b)}{h}$$

200

200 / 424

October 19, 2018

Essentially, each of the one-sided derivatives defines one-sided slopes at the endpoints.

Based on these definitions, the following result can be derived.

Claim

If f is continuous on [a, b] and f(a) exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at a.

- If f(a) is the maximum value of f on [a, b], then $f'(a) \le 0$ or $f'(a) = -\infty$.
- If f(a) is the minimum value of f on [a, b], then $f'(a) \ge 0$ or $f'(a) = \infty$.

If f is continuous on [a, b] and f'(b) exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at b

200

201 / 424

Based on these definitions, the following result can be derived.

Claim

If f is continuous on [a, b] and f(a) exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at a.

- If f(a) is the maximum value of f on [a, b], then $f'(a) \le 0$ or $f'(a) = -\infty$.
- If f(a) is the minimum value of f on [a, b], then $f'(a) \ge 0$ or $f'(a) = \infty$.

If f is continuous on [a, b] and f'(b) exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at b

- If f(b) is the maximum value of f on [a, b], then $f'(b) \ge 0$ or $f'(b) = \infty$.
- If f(b) is the minimum value of f on [a, b], then $f'(b) \leq 0$ or $f'(b) = -\infty$.

The following result gives a useful procedure for finding extrema on closed intervals.

Claim

If f is continuous on [a, b] and f''(x) exists for all $x \in (a, b)$. Then,

- If f'(x) ≤ 0, ∀x ∈ (a, b), then the minimum value of f on [a, b] is either f(a) or f(b). If, in addition, f has a critical point c ∈ (a, b), then f(c) is the maximum value of f on [a, b].
- If f'(x) ≥ 0, ∀x ∈ (a, b), then the maximum value of f on [a, b] is either f(a) or f(b). If, in addition, f has a critical point c ∈ (a, b), then f(c) is the minimum value of f on [a, b].

500

202 / 424

Global Extrema on Open Intervals

The next result is very useful for finding extrema on open intervals.

Claim

Let \mathcal{I} be an open interval and let f'(x) exist $\forall x \in \mathcal{I}$.

- If $f'(x) \ge 0$, $\forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where f'(c) = 0, then f(c) is the global minimum value of f on \mathcal{I} .
- If $f'(x) \leq 0$, $\forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where f'(c) = 0, then f(c) is the global maximum value of f on \mathcal{I} .

200

203 / 424

October 19, 2018

For example, let $f(x) = \frac{2}{3}x - \sec x$ and $\mathcal{I} = (\frac{-\pi}{2}, \frac{\pi}{2}).$

Global Extrema on Open Intervals

The next result is very useful for finding extrema on open intervals.

Claim

Let \mathcal{I} be an open interval and let f'(x) exist $\forall x \in \mathcal{I}$.

- If $f'(x) \ge 0$, $\forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where f'(c) = 0, then f(c) is the global minimum value of f on \mathcal{I} .
- If $f'(x) \leq 0$, $\forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where f'(c) = 0, then f(c) is the global maximum value of f on \mathcal{I} .

For example, let
$$f(x) = \frac{2}{3}x - \sec x$$
 and
 $\mathcal{I} = (\frac{-\pi}{2}, \frac{\pi}{2}) \cdot f'(x) = \frac{2}{3} - \sec x \tan x = \frac{2}{3} - \frac{\sin x}{\cos^2 x} = 0 \Rightarrow x = \frac{\pi}{6}$. Further,
 $f''(x) = -\sec x(\tan^2 x + \sec^2 x) < 0$ on $(\frac{-\pi}{2}, \frac{\pi}{2})$. Therefore, f attains the maximum value
 $f(\frac{\pi}{6}) = \frac{\pi}{9} - \frac{2}{\sqrt{3}}$ on \mathcal{I} .

200

203 / 424

As another example, let us find the dimensions of the cone with minimum volume that can contain a sphere with radius R. Let h be the height of the cone and r the radius of its base. The objective to be minimized is the volume $f(r, h) = \frac{1}{3}\pi r^2 h$. The constraint betwen r and h is shown in Figure 10. The traingle *AEF* is similar to traingle *ADB* and therefore, $\frac{h-R}{R} = \frac{\sqrt{h^2+r^2}}{r}$.

Our first step is to reduce the volume formula to involve only one of r^{2} or h. The algebra involved will be the simplest if we solved for h. The constraint gives us $r^2 = \frac{R^2 h}{h - 2R}$. Substituting this expression for r^2 into the volume formula, we get $g(h) = \frac{\pi R^2}{3} \frac{h^2}{(h-2R)}$ with the domain given by $\mathcal{D} = \{h | 2R < h < \infty\}$. Note that \mathcal{D} is an open interval. $g' = \frac{\pi R^2}{3} \frac{2h(h-2R)-h^2}{(h-2R)^2} = \frac{\pi R^2}{3} \frac{h(h-4R)}{(h-2R)^2}$ which is 0 in its domain \mathcal{D} if and only if h = 4R. $g'' = \frac{\pi R^2}{3} \frac{2(\dot{h} - 2R)^3 - 2h(h - 4R)(\dot{h} - 2R)^2}{(h - 2R)^4} = \frac{\pi R^2}{3} \frac{2(h^2 - 4Rh + 4R^2 - h^2 + 4Rh)}{(h - 2R)^3} = \frac{\pi R^2}{3} \frac{8R^2}{(h - 2R)^3}, \text{ which is greater}$ than 0 in \mathcal{D} . Therefore, g (and consequently f) has a unique minimum at h = 4R and correspondingly, $r^2 = \frac{R^2 h}{h^2 R^2} = 2R^2$.

⁸Since *r* appears in the volume formula only in terms of r^2 .

Constrained Optimization and Subgradient Descent

200

 $< \square >$

Constrained Optimization

• Consider the objective

 $\min f(\mathbf{x})$

s.t.
$$g_i(\mathbf{x}) \leq 0, \forall i$$

• Recall: Indicator function for $g_i(x)$

$$I_{g_i}(\mathbf{x}) = egin{cases} 0, & ext{if } g_i(\mathbf{x}) \leq 0 \ \infty, & ext{otherwise} \end{cases}$$

200

207 / 424

- We have shown that this is convex if each $g_i(\mathbf{x})$ is convex.
- Option 1: Subgradient descent on f(x) + I_g(x)

Constrained Optimization

• Consider the objective

 $\min f(\mathbf{x})$

s.t.
$$g_i(\mathbf{x}) \leq 0, \forall i$$

• Recall: Indicator function for $g_i(x)$

$$I_{g_i}(\mathbf{x}) = egin{cases} 0, & ext{if } g_i(\mathbf{x}) \leq 0 \ \infty, & ext{otherwise} \end{cases}$$

200

207 / 424

- We have shown that this is convex if each $g_i(\mathbf{x})$ is convex.
- Option 1: Use subgradient descent to minimize $f(\mathbf{x}) + \sum_{i} I_{g_i}(\mathbf{x})$
- Option 2:

Constrained Optimization

• Consider the objective

 $\min f(\mathbf{x})$

s.t.
$$g_i(\mathbf{x}) \leq 0, \forall i$$

• Recall: Indicator function for $g_i(x)$

$$I_{g_i}(\mathbf{x}) = egin{cases} 0, & ext{if } g_i(\mathbf{x}) \leq 0 \ \infty, & ext{otherwise} \end{cases}$$

- We have shown that this is convex if each $g_i(\mathbf{x})$ is convex.
- Option 1: Use subgradient descent to minimize $f(\mathbf{x}) + \sum_{i} I_{g_i}(\mathbf{x})$
- Option 2: Barrier Method (approximate $I_{g_i}(\mathbf{x})$ using some differentiable and non-decreasing function such as $-(1/t)\log u$), Augmented Lagrangian, ADMM, *etc.*

- Convert our objective to the following unconstrained optimization problem
- Each $C_i = \{\mathbf{x} \mid g_i(\mathbf{x}) \leq 0\}$ is convex if $g_i(\mathbf{x})$ is convex.
- We take

$$\min_{\mathbf{x}} F(\mathbf{x}) = \min_{\mathbf{x}} f(\mathbf{x}) + \sum_{i} I_{C_i}(\mathbf{x})$$

200

208 / 424

October 19, 2018

• Recap a subgradient of F:

- Convert our objective to the following unconstrained optimization problem
- Each $C_i = \{\mathbf{x} \mid g_i(\mathbf{x}) \leq 0\}$ is convex if $g_i(\mathbf{x})$ is convex.
- We take

$$\min_{\mathbf{x}} F(\mathbf{x}) = \min_{\mathbf{x}} f(\mathbf{x}) + \sum_{i} I_{C_i}(\mathbf{x})$$

200

208 / 424

October 19, 2018

• Recap a subgradient of F: $\mathbf{h}_F(\mathbf{x}) = \mathbf{h}_f(\mathbf{x}) + \sum_i \mathbf{h}_{I_{C_i}}(\mathbf{x})$. Recall that

- Convert our objective to the following unconstrained optimization problem
- Each $C_i = \{\mathbf{x} \mid g_i(\mathbf{x}) \leq 0\}$ is convex if $g_i(\mathbf{x})$ is convex.
- We take

$$\min_{\mathbf{x}} F(\mathbf{x}) = \min_{\mathbf{x}} f(\mathbf{x}) + \sum_{i} I_{C_i}(\mathbf{x})$$

- Recap a subgradient of F: $\mathbf{h}_F(\mathbf{x}) = \mathbf{h}_f(\mathbf{x}) + \sum_i \mathbf{h}_{I_{C_i}}(\mathbf{x})$. Recall that
 - $\mathbf{h}_{f}(\mathbf{x}) = \nabla f(\mathbf{x})$ if $f(\mathbf{x})$ is differentiable. Also, $-\nabla f(\mathbf{x})$ at \mathbf{x}^{k} optimizes

Let us treat the gradient of f at x^k as that vector which minimized the second order quadratic expansion of f around x^k

200

208 / 424

- Convert our objective to the following unconstrained optimization problem
- Each $C_i = \{\mathbf{x} \mid g_i(\mathbf{x}) \leq 0\}$ is convex if $g_i(\mathbf{x})$ is convex.
- We take

$$\min_{\mathbf{x}} F(\mathbf{x}) = \min_{\mathbf{x}} f(\mathbf{x}) + \sum_{i} I_{C_i}(\mathbf{x})$$

- Recap a subgradient of F: $\mathbf{h}_F(\mathbf{x}) = \mathbf{h}_f(\mathbf{x}) + \sum_i \mathbf{h}_{I_{C_i}}(\mathbf{x})$. Recall that
 - h_f(x) = ∇f(x) if f(x) is differentiable. Also, -∇f(x) at x^k optimizes the first order approximation for f(x) around x^k: -∇f(x) = argmin f(x^k) + ∇^Tf(x^k)h + ¹/₂||h||²:
 Variations on the form of ¹/₂||h||² lead to Mirror Descent etc. replacing with entropic
 h<sub>I_{ci}(x) is d ∈ Rⁿ s.t. d^Tx ≥ d^Ty, ∀y ∈ C_i. Also, h_{I_{ci}}(x) = 0 if x is in the interior of C_i, and
 </sub>
 - ▶ $\mathbf{h}_{I_{C_i}}(x)$ is $\mathbf{d} \in \mathbf{R}^n$ s.t. $\mathbf{d}^T \mathbf{x} \ge \mathbf{d}^T \mathbf{y}$, $\forall \mathbf{y} \in C_i$. Also, $\mathbf{h}_{I_{C_i}}(\mathbf{x}) = 0$ if \mathbf{x} is in the interior of C_i , and has other solutions if \mathbf{x} is on the boundary: Analysis for convex g_i 's leads to KKT conditions and Dual Ascent etc.

• Consider the problem of minimizing the following sum of a differentiable function $f(\mathbf{x})$ and a (possibly) nondifferentiable function $c(\mathbf{x})$ (an example being $\sum_i I_{C_i}(\mathbf{x})$)

$$\min_{\mathbf{x}} F(\mathbf{x}) = \min_{\mathbf{x}} f(\mathbf{x}) + c(\mathbf{x})$$

• As in gradient descent, consider the first order approximation for $f(\mathbf{x})$ around \mathbf{x}^k leaving $c(\mathbf{x})$ alone to obtain the next iterate \mathbf{x}^{k+1} :

$$\mathbf{x}^{k+1} = \operatorname*{argmin}_{\mathbf{x}} f(\mathbf{x}^k) + \nabla^T f(\mathbf{x}^k)(\mathbf{x} - \mathbf{x}^k) + \frac{1}{2t} ||\mathbf{x} - \mathbf{x}^k||^2 + c(\mathbf{x})$$

• Consider the problem of minimizing the following sum of a differentiable function $f(\mathbf{x})$ and a (possibly) nondifferentiable function $c(\mathbf{x})$ (an example being $\sum_i I_{C_i}(\mathbf{x})$)

$$\min_{\mathbf{x}} F(\mathbf{x}) = \min_{\mathbf{x}} f(\mathbf{x}) + c(\mathbf{x})$$

• As in gradient descent, consider the first order approximation for $f(\mathbf{x})$ around \mathbf{x}^k leaving $c(\mathbf{x})$ alone to obtain the next iterate \mathbf{x}^{k+1} :

$$\mathbf{x}^{k+1} = \operatorname*{argmin}_{\mathbf{x}} f(\mathbf{x}^k) + \nabla^T f(\mathbf{x}^k)(\mathbf{x} - \mathbf{x}^k) + \frac{1}{2t} ||\mathbf{x} - \mathbf{x}^k||^2 + c(\mathbf{x})$$

• Deleting $f(\mathbf{x}^k)$ from the objective and adding $\frac{t}{2} ||\nabla f(\mathbf{x}^k)||^2$ to the objective (without any loss) to complete squares, we obtain \mathbf{x}^{k+1} as:

• Consider the problem of minimizing the following sum of a differentiable function $f(\mathbf{x})$ and a (possibly) nondifferentiable function $c(\mathbf{x})$ (an example being $\sum_i I_{C_i}(\mathbf{x})$)

$$\min_{\mathbf{x}} F(\mathbf{x}) = \min_{\mathbf{x}} f(\mathbf{x}) + c(\mathbf{x})$$

• As in gradient descent, consider the first order approximation for $f(\mathbf{x})$ around \mathbf{x}^k leaving $c(\mathbf{x})$ alone to obtain the next iterate \mathbf{x}^{k+1} :

$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} f(\mathbf{x}^k) + \nabla^T f(\mathbf{x}^k)(\mathbf{x} - \mathbf{x}^k) + \frac{1}{2t} ||\mathbf{x} - \mathbf{x}^k||^2 + c(\mathbf{x})$$

- Deleting $f(\mathbf{x}^k)$ from the objective and adding $\frac{t}{2} ||\nabla f(\mathbf{x}^k)||^2$ to the objective (without any (point closest to the unregulated loss) to complete squares, we obtain \mathbf{x}^{k+1} as: gradient descent update with a later $\mathbf{x}^{k+1} = \operatorname{argmin}_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - (\mathbf{x}^k - t\nabla f(\mathbf{x}^k))||^2 + c(\mathbf{x})$ regulation using c(x)
- In general, such a step is called a proximal step with respect to $c(\mathbf{x})$

$$\mathbf{x}^{k+1} = prox_{\mathbf{C}}\left(\mathbf{x}^{k} - t\nabla f(\mathbf{x}^{k})\right) = \arg\min_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - (\mathbf{x}^{k} - t\nabla f(\mathbf{x}^{k}))||^{2} + c(\mathbf{x})$$

this unregulated descent will be often referred to as z

PROX gives the effect c	you the point closes to the unregulated (wrt to c(x)) update when we also f (minimizing) c(x)	bring in
B asically w (a) un (b) co	e have phased out the subgradient descent update into two phases egulated update (such as gradient descent) for f(x) alone use correction based on c(x)	

Algorithm: The Generalized Gradient Descent

 $\min_{\mathbf{x}} f(\mathbf{x}) + c(\mathbf{x})$

Find a starting point \mathbf{x}_{p}^{0} . = Set k = 1repeat 1. Choose a step size $t^k \propto 1/\sqrt{k}$ or using exact or backtracking ray search or . 2. Set $\mathbf{z}^{k} = \mathbf{x}^{k-1} - t^{k} \nabla f(\mathbf{x}^{k-1})$. 3. Set $\mathbf{x}^k = prox_c(\mathbf{z}^k)$. 4 Set k = k + 1**until** stopping criterion (such as $||\mathbf{x}^{k} - \mathbf{x}^{k-1}|| \le \epsilon$ or $f(\mathbf{x}^{k}) > f(\mathbf{x}^{k-1})$) is satisfied^a ^aBetter criteria can be found using Lagrange duality theory. etc.

Figure 11: The generalized gradient descent algorithm.

200

210 / 424

• Interesting because in many settings, $prox_c(\mathbf{z})$ can be computed efficiently

$$\underline{prox}_{c}(\mathbf{z}) = \arg\min_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

• Theorem: If c is a proper convex⁹ function with a closed epigraph then (for t > 0) it has a unique value of $prox_c(\mathbf{z})$. *Hint: The quadratic term introduces strong convexity* \Rightarrow *strict convexity*. A strictly convex function has a unique minimizer

211 / 424

• Interesting because in many settings, $prox_c(\mathbf{z})$ can be computed efficiently

$$prox_{c}(\mathbf{z}) = \arg\min_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

• Theorem: If c is a proper convex⁹ function with a closed epigraph then (for t > 0) it has a unique value of $prox_c(\mathbf{z})$. *Hint: The quadratic term introduces strong convexity* \Rightarrow *strict convexity*. For non-convex c, the solution set is non-empty under similar conditions.

For $x \in \Re$, $c(\mathbf{x}) =$	For $z \in \Re$ & $t = 1$, $prox_c(z) =$	
Simplified Lasso: $\lambda x _1$??	
$ \begin{array}{c} \mu x x \ge 0 \\ \infty x < 0 \end{array} $??	
$ \begin{array}{ccc} \mu\lambda x^3 & x \ge 0 \\ \infty & x < 0 \end{array} $??	
$ \begin{array}{c c} -\lambda \log x & x > 0 \\ \infty & x \le 0 \end{array} $?? Inspired by or inspire	s barrier function
$\delta_{[0,\eta]\cap\Re}$??	

• Interesting because in many settings, $prox_c(\mathbf{z})$ can be computed efficiently

$$prox_{c}(\mathbf{z}) = \arg\min_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

• Theorem: If c is a proper convex⁹ function with a closed epigraph then (for t > 0) it has a unique value of $prox_c(\mathbf{z})$. *Hint: The quadratic term introduces strong convexity* \Rightarrow *strict convexity*. For non-convex c, the solution set is non-empty under similar conditions.

For $x \in \Re$, $c(\mathbf{x}) =$	For $z \in \Re$ & $t = 1$, $prox_c(z) =$
Simplified Lasso: $\lambda x _1$??
$\begin{array}{ll} \mu x & x \ge 0 \\ \infty & x < 0 \end{array}$??
$egin{array}{lll} \mu\lambda x^3 & x\geq 0 \ \infty & x<0 \end{array}$??
$\begin{array}{cc} -\lambda \log x & x > 0 \\ \infty & x \le 0 \end{array}$??
$\delta_{[0,\eta]\cap\Re}$??

$c(\mathbf{x}) =$	For $t = 1$, $prox_c(\mathbf{z}) =$
Constant: c	??
Affine: $\mathbf{a}^T \mathbf{x} + b$??
Convex quadratic: $\frac{1}{2}\mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$??
(where $A \in S^n_+, \mathbf{b} \in \Re^n$)	
Sum over components: $c(\mathbf{x}) = \sum_{i=1}^n c_i(\mathbf{x}_i)$???
$c(\lambda \mathbf{x} + \mathbf{a})$??
$\lambda c \left(\frac{1}{\lambda} \mathbf{x}\right)$?? calculus
$c(\mathbf{x}) + \mathbf{a}^T \mathbf{x} + \frac{\beta}{2} \ \mathbf{x}\ ^2 + \gamma$??
$c(A\mathbf{x} + \mathbf{b})$??
$c(\ \mathbf{x}\)$??

Iterative Soft Thresholding Algorithm for Solving Lasso

 $\langle \Box \rangle$

- C 🗖

October 19, 2018

ж

200

212 / 424

Proximal Subgradient Descent for Lasso

• Let
$$f(\mathbf{x}) = \|A\mathbf{x} - \mathbf{y}\|_2^2$$
, $c(\mathbf{x}) = \|\mathbf{x}\|_1$ and $F(\mathbf{x}) = f(\mathbf{x}) + c(\mathbf{x})$

- Proximal Subgradient Descent Algorithm: Initialization: Find starting point $\mathbf{x}^{(0)}$
 - Let $\widehat{\mathbf{x}}^{(k+1)} \equiv \mathbf{z}^{(k+1)}$ be a next gradient descent iterate for $\mathit{f}(\mathbf{x}^k)$
 - Compute $\mathbf{x}^{(k+1)} = \operatorname{argmin} \frac{1}{2} \|\mathbf{x} \mathbf{z}^{(k+1)}\|_2^2 + \lambda t \|\mathbf{x}\|_1$ by setting subgradient of this objective

to 0. This results in (see

1 ...

<u>(3)</u> ...

prox

step

https://www.cse.iitb.ac.in/~cs709/notes/enotes/lassoElaboration.pdf)

>>> @ ... Vector x^(k+1) is obtained by componentwise minimization

► Set k = k + 1, until stopping criterion is satisfied (such as no significant changes in x^k w.r.t x^(k-1))

Iterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for Lasso

- Let $f(\mathbf{x}) = \|A\mathbf{x} \mathbf{y}\|_2^2$, $c(\mathbf{x}) = \|\mathbf{x}\|_1$ and $F(\mathbf{x}) = f(\mathbf{x}) + c(\mathbf{x})$
- Proximal Subgradient Descent Algorithm: Initialization: Find starting point $\mathbf{x}^{(0)}$
 - Let $\mathbf{z}^{(k+1)}$ be a next gradient descent iterate for $f(\mathbf{x}^k)$

• Compute
$$prox_{\|\mathbf{x}\|_1} (\mathbf{z}^{(k+1)}) = \mathbf{x}^{(k+1)} =$$

Iterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for Lasso

- Let $f(\mathbf{x}) = \|A\mathbf{x} \mathbf{y}\|_2^2$, $c(\mathbf{x}) = \|\mathbf{x}\|_1$ and $F(\mathbf{x}) = f(\mathbf{x}) + c(\mathbf{x})$
- Proximal Subgradient Descent Algorithm: Initialization: Find starting point $\mathbf{x}^{(0)}$
 - Let $\mathbf{z}^{(k+1)}$ be a next gradient descent iterate for $f(\mathbf{x}^k)$

• Compute
$$\operatorname{prox}_{\|\mathbf{x}\|_1} \left(\mathbf{z}^{(k+1)} \right) = \mathbf{x}^{(k+1)} = \operatorname{argmin}_{\mathbf{x}} \frac{1}{2t} \|\mathbf{x} - \mathbf{z}^{(k+1)}\|_2^2 + \lambda \|\mathbf{x}\|_1$$
 as follows:

: ৩৭৫ 214 / 424

Iterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for Lasso

- Let $f(\mathbf{x}) = ||A\mathbf{x} \mathbf{y}||_2^2$, $c(\mathbf{x}) = ||\mathbf{x}||_1$ and $F(\mathbf{x}) = f(\mathbf{x}) + c(\mathbf{x})$
- Proximal Subgradient Descent Algorithm: **Initialization:** Find starting point $\mathbf{x}^{(0)}$
 - Let $\mathbf{z}^{(k+1)}$ be a next gradient descent iterate for $f(\mathbf{x}^k)$
 - Compute $\operatorname{prox}_{\|\mathbf{x}\|_1} \left(\mathbf{z}^{(k+1)} \right) = \mathbf{x}^{(k+1)} = \operatorname{argmin} \frac{1}{2t} \|\mathbf{x} \mathbf{z}^{(k+1)}\|_2^2 + \lambda \|\mathbf{x}\|_1$ as follows:
 - If $z_i^{(k+1)} > \lambda t_i$ then $x_i^{(k+1)} = -\lambda t + z_i^{(k+1)}$ If unregulated z was gretater than lambda t 2 If $z_{i}^{(k+1)} < -\lambda t$, then $x_{i}^{(k+1)} = \lambda t + z_{i}^{(k+1)}$ O otherwise.

reduce it by that amount

200 214 / 424

October 19, 2018

• Set k = k + 1, until stopping criterion is satisfied (such as no significant changes in x^k w.r.t $x^{(k-1)}$

Tables for the Proximal Operator

$$prox_c(\mathbf{z}) = \arg\min_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^2 + c(\mathbf{x})$$

ж.

October 19, 2018

<u>ት ማ</u>ዲዮ 215 / 424

For $x \in \Re$, $c(x) =$	For $z \in \Re$ & $t = 1$, $prox_c(z) =$
Simplified Lasso: $\lambda x $	$[x - \lambda]_+ sign(x)$
$ \begin{array}{ll} \mu x & x \ge 0 \\ \infty & x < 0 \end{array} $	$[x-\mu]_+$
$ \begin{array}{ccc} \mu\lambda x^3 & x \ge 0 \\ \infty & x < 0 \end{array} $	$\frac{-1+\sqrt{1+12\lambda[\mathbf{x}]_+}}{6\lambda}$
$\begin{array}{cc} -\lambda \log x & x > 0 \\ \infty & x \le 0 \end{array}$	$\frac{x + \sqrt{x^2 + 4\lambda}}{2}$
$\delta_{[0,\eta]\cap\Re}$	$min\{max\{x,0\},\eta\}$

Tables for the Proximal Operator

$$prox_{c}(\mathbf{z}) = \operatorname*{argmin}_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

For $x \in \Re$, $c(x) =$	For $z \in \Re$ & $t = 1$, $prox_c(z) =$
Simplified Lasso: $\lambda x $	$[x - \lambda]_+ sign(x)$
$ \begin{array}{ll} \mu x & x \ge 0 \\ \infty & x < 0 \end{array} $	$[x - \mu]_+$
$ \begin{array}{ll} \mu\lambda x^3 & x \ge 0 \\ \infty & x < 0 \end{array} $	$\frac{-1+\sqrt{1+12\lambda[\mathbf{x}]_{+}}}{6\lambda}$
$\begin{array}{cc} -\lambda \log x & x > 0 \\ \infty & x \le 0 \end{array}$	$\frac{x + \sqrt{x^2 + 4\lambda}}{2}$
$\delta_{[0,\eta]\cap\Re}$	$min\{max\{x,0\},\eta\}$

For $x \in \Re$, $c(\mathbf{x}) =$	For $z \in \Re$ & $t = 1$, $prox_c(\mathbf{z}) =$
Constant: c	Z
Affine: $\mathbf{a}^T \mathbf{x} + b$	$\mathbf{z} - \mathbf{a}$
Convex quadratic: $\frac{1}{2}\mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$	$(A+I)^{-1}(\mathbf{z}-\mathbf{b})$
(where $A \in S^n_+, \mathbf{b} \in \Re^n$)	

イロン 不通 とくほう 不通 とうなん

Tables for the Proximal Operator

$$prox_{c}(\mathbf{z}) = \operatorname*{argmin}_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

For $x \in \Re$, $c(x) =$	For $z \in \Re$ & $t = 1$, $prox_c(z) =$
Simplified Lasso: $\lambda x $	$[x - \lambda]_+ sign(x)$
$\begin{array}{ll} \mu x & x \ge 0 \\ \infty & x < 0 \end{array}$	$[x - \mu]_+$
$ \begin{array}{ll} \mu\lambda x^3 & x \ge 0 \\ \infty & x < 0 \end{array} $	$\frac{-1+\sqrt{1+12\lambda[\mathbf{x}]_{+}}}{6\lambda}$
$\begin{aligned} -\lambda \log x & x > 0 \\ \infty & x \le 0 \end{aligned}$	$\frac{x + \sqrt{x^2 + 4\lambda}}{2}$
$\delta_{[0,\eta]\cap\Re}$	$min\{max\{x,0\},\eta\}$

For $x \in \Re$, $c(\mathbf{x}) =$	For $z \in \Re$ & $t = 1$, $prox_c(\mathbf{z}) =$
Constant: c	Z
Affine: $\mathbf{a}^T \mathbf{x} + b$	$\mathbf{z} - \mathbf{a}$
Convex quadratic: $\frac{1}{2}\mathbf{x}^{T}A\mathbf{x} + \mathbf{b}^{T}\mathbf{x} + c$ (where $A \in S_{+}^{n}, \mathbf{b} \in \Re^{n}$)	$(A+I)^{-1}(\mathbf{z}-\mathbf{b})$
Sum over components: $c(\mathbf{x}) = \sum_{i=1}^{n} c_i(\mathbf{x}_i)$???
$c(\lambda \mathbf{x} + \mathbf{a})$??
$\lambda c \left(\frac{1}{\lambda} \mathbf{x}\right)$??
$c(\mathbf{x}) + \mathbf{a}^T \mathbf{x} + \frac{\beta}{2} \ \mathbf{x}\ ^2 + \gamma$??
$c(A\mathbf{x} + \mathbf{b})$??
$c(\ \mathbf{x}\)$??

• • • • • • • • • • •

 $3 \mapsto$ 215 / 424 October 19, 2018

а.