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Global Extrema on Closed Intervals

Recall the extreme value theorem. A consequence is that:
if either of c or d lies in (a, b), then it is a critical number of f;
else each of c and d must lie on one of the boundaries of [a, b].

This gives us a procedure for finding the maximum and minimum of a continuous function f
on a closed bounded interval I:
Procedure

[Finding extreme values on closed, bounded intervals]:
1 Find the critical points in int(I).
2 Compute the values of f at the critical points and at the endpoints of the

interval.
3 Select the least and greatest of the computed values.
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Global Extrema on Closed Intervals (contd)

To compute the maximum and minimum values of f(x) = 4x3 − 8x2 + 5x on the interval
[0, 1],
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Global Extrema on Closed Intervals (contd)

To compute the maximum and minimum values of f(x) = 4x3 − 8x2 + 5x on the interval
[0, 1],

▶ We first compute f′(x) = 12x2 − 16x+ 5 which is 0 at x = 1
2 ,

5
6 .

▶ Values at the critical points are f( 12 ) = 1, f( 56 ) =
25
27 .

▶ The values at the end points are f(0) = 0 and f(1) = 1.
▶ Therefore, the minimum value is f(0) = 0 and the maximum value is f(1) = f(12 ) = 1.
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Global Extrema on Closed Intervals (contd)

To compute the maximum and minimum values of f(x) = 4x3 − 8x2 + 5x on the interval
[0, 1],

▶ We first compute f′(x) = 12x2 − 16x+ 5 which is 0 at x = 1
2 ,

5
6 .

▶ Values at the critical points are f( 12 ) = 1, f( 56 ) =
25
27 .

▶ The values at the end points are f(0) = 0 and f(1) = 1.
▶ Therefore, the minimum value is f(0) = 0 and the maximum value is f(1) = f(12 ) = 1.

In this context, it is relevant to discuss the one-sided derivatives of a function at the
endpoints of the closed interval on which it is defined.
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Global Extrema on Closed Intervals (contd)

Definition
[One-sided derivatives at endpoints]: Let f be defined on a closed bounded interval [a, b].

The (right-sided) derivative of f at x = a is defined as

f′(a) = lim
h→0+

f(a+ h)− f(a)
h

Similarly, the (left-sided) derivative of f at x = b is defined as

f′(b) = lim
h→0−

f(b+ h)− f(b)
h

Essentially, each of the one-sided derivatives defines one-sided slopes at the endpoints.
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Global Extrema on Closed Intervals (contd)

Based on these definitions, the following result can be derived.

Claim
If f is continuous on [a, b] and f′(a) exists as a real number or as ±∞, then we have the
following necessary conditions for extremum at a.

If f(a) is the maximum value of f on [a, b], then f′(a) ≤ 0 or f′(a) = −∞.
If f(a) is the minimum value of f on [a, b], then f′(a) ≥ 0 or f′(a) =∞.

If f is continuous on [a, b] and f′(b) exists as a real number or as ±∞, then we have the
following necessary conditions for extremum at b
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Global Extrema on Closed Intervals (contd)

Based on these definitions, the following result can be derived.

Claim
If f is continuous on [a, b] and f′(a) exists as a real number or as ±∞, then we have the
following necessary conditions for extremum at a.

If f(a) is the maximum value of f on [a, b], then f′(a) ≤ 0 or f′(a) = −∞.
If f(a) is the minimum value of f on [a, b], then f′(a) ≥ 0 or f′(a) =∞.

If f is continuous on [a, b] and f′(b) exists as a real number or as ±∞, then we have the
following necessary conditions for extremum at b

If f(b) is the maximum value of f on [a, b], then f′(b) ≥ 0 or f′(b) =∞.
If f(b) is the minimum value of f on [a, b], then f′(b) ≤ 0 or f′(b) = −∞.
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Global Extrema on Closed Intervals (contd)

The following result gives a useful procedure for finding extrema on closed intervals.

Claim
If f is continuous on [a, b] and f′′(x) exists for all x ∈ (a, b). Then,

If f′′(x) ≤ 0, ∀x ∈ (a, b), then the minimum value of f on [a, b] is either f(a) or f(b). If, in
addition, f has a critical point c ∈ (a, b), then f(c) is the maximum value of f on [a, b].
If f′′(x) ≥ 0, ∀x ∈ (a, b), then the maximum value of f on [a, b] is either f(a) or f(b). If, in
addition, f has a critical point c ∈ (a, b), then f(c) is the minimum value of f on [a, b].
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Global Extrema on Open Intervals

The next result is very useful for finding extrema on open intervals.

Claim
Let I be an open interval and let f′′(x) exist ∀x ∈ I.

If f′′(x) ≥ 0, ∀x ∈ I, and if there is a number c ∈ I where f′(c) = 0, then f(c) is the
global minimum value of f on I.
If f′′(x) ≤ 0, ∀x ∈ I, and if there is a number c ∈ I where f′(c) = 0, then f(c) is the
global maximum value of f on I.

For example, let f(x) = 2
3x− sec x and

I = (−π
2 , π2 ).
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Global Extrema on Open Intervals

The next result is very useful for finding extrema on open intervals.

Claim
Let I be an open interval and let f′′(x) exist ∀x ∈ I.

If f′′(x) ≥ 0, ∀x ∈ I, and if there is a number c ∈ I where f′(c) = 0, then f(c) is the
global minimum value of f on I.
If f′′(x) ≤ 0, ∀x ∈ I, and if there is a number c ∈ I where f′(c) = 0, then f(c) is the
global maximum value of f on I.

For example, let f(x) = 2
3x− sec x and

I = (−π
2 , π2 ).f′(x) =

2
3 − sec x tan x = 2

3 − sin x
cos2 x = 0⇒ x = π

6 . Further,
f′′(x) = − sec x(tan2 x+ sec2 x) < 0 on (−π

2 , π2 ). Therefore, f attains the maximum value
f(π6 ) =

π
9 − 2√

3
on I.
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Global Extrema on Open Intervals (contd)
As another example, let us find the dimensions of the cone with minimum volume that can
contain a sphere with radius R. Let h be the height of the cone and r the radius of its base.
The objective to be minimized is the volume f(r, h) = 1

3πr2h. The constraint betwen r and h is
shown in Figure 10. The traingle AEF is similar to traingle ADB and therefore, h−R

R =
√
h2+r2
r .
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Global Extrema on Open Intervals (contd)

Our first step is to reduce the volume formula to involve only one of8 r2 or h.
The algebra involved will be the simplest if we solved for h.
The constraint gives us r2 = R2h

h−2R . Substituting this expression for r2 into the volume formula,
we get g(h) = πR2

3
h2

(h−2R) with the domain given by D =
{
h|2R < h <∞

}
.

Note that D is an open interval.
g′ = πR2

3
2h(h−2R)−h2

(h−2R)2 = πR2

3
h(h−4R)
(h−2R)2 which is 0 in its domain D if and only if h = 4R.

g′′ = πR2

3
2(h−2R)3−2h(h−4R)(h−2R)2

(h−2R)4 = πR2

3
2(h2−4Rh+4R2−h2+4Rh)

(h−2R)3 = πR2

3
8R2

(h−2R)3 , which is greater
than 0 in D.
Therefore, g (and consequently f) has a unique minimum at h = 4R and correspondingly,
r2 = R2h

h−2R = 2R2.

8Since r appears in the volume formula only in terms of r2.
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Constrained Optimization and Subgradient Descent
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Constrained Optimization
Consider the objective

min f(x)

s.t. gi(x) ≤ 0, ∀i
Recall: Indicator function for gi(x)

Igi(x) =
{
0, if gi(x) ≤ 0

∞, otherwise

▶ We have shown that this is convex if each gi(x) is convex.

Option 1:
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Constrained Optimization
Consider the objective

min f(x)

s.t. gi(x) ≤ 0, ∀i
Recall: Indicator function for gi(x)

Igi(x) =
{
0, if gi(x) ≤ 0

∞, otherwise

▶ We have shown that this is convex if each gi(x) is convex.

Option 1: Use subgradient descent to minimize f(x) +
∑

i
Igi(x)

Option 2:

October 19, 2018 207 / 424



Constrained Optimization
Consider the objective

min f(x)

s.t. gi(x) ≤ 0, ∀i
Recall: Indicator function for gi(x)

Igi(x) =
{
0, if gi(x) ≤ 0

∞, otherwise

▶ We have shown that this is convex if each gi(x) is convex.

Option 1: Use subgradient descent to minimize f(x) +
∑

i
Igi(x)

Option 2: Barrier Method (approximate Igi(x) using some differentiable and
non-decreasing function such as −(1/t) log−u), Augmented Lagrangian, ADMM, etc.
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Option 1: (Sub)Gradient Descent with Sum of indicators

Convert our objective to the following unconstrained optimization problem
Each Ci =

{
x | gi(x) ≤ 0

}
is convex if gi(x) is convex.

We take
minx F(x) = min

x
f(x) +

∑

i
ICi(x)

Recap a subgradient of F:
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Option 1: (Sub)Gradient Descent with Sum of indicators

Convert our objective to the following unconstrained optimization problem
Each Ci =

{
x | gi(x) ≤ 0

}
is convex if gi(x) is convex.

We take
minx F(x) = min

x
f(x) +

∑

i
ICi(x)

Recap a subgradient of F: hF(x) = hf(x) +
∑

i hICi (x). Recall that
▶ hf(x) = ∇f(x) if f(x) is differentiable. Also, −∇f(x) at xk optimizes
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Option 1: (Sub)Gradient Descent with Sum of indicators

Convert our objective to the following unconstrained optimization problem
Each Ci =

{
x | gi(x) ≤ 0

}
is convex if gi(x) is convex.

We take
minx F(x) = min

x
f(x) +

∑

i
ICi(x)

Recap a subgradient of F: hF(x) = hf(x) +
∑

i hICi (x). Recall that
▶ hf(x) = ∇f(x) if f(x) is differentiable. Also, −∇f(x) at xk optimizes the first order

approximation for f(x) around xk: −∇f(x) = argmin
h

f(xk) +∇Tf(xk)h +
1

2
||h||2:

Variations on the form of 1
2 ||h||2 lead to Mirror Descent etc.

▶ hICi (x) is d ∈ Rn s.t. dTx ≥ dTy, ∀y ∈ Ci. Also, hICi (x) = 0 if x is in the interior of Ci, and
has other solutions if x is on the boundary:
Analysis for convex gi’s leads to KKT conditions and Dual Ascent etc.

October 19, 2018 208 / 424

replacing with entropic
regularizer



Option 1: Generalized Gradient Descent
Consider the problem of minimizing the following sum of a differentiable function f(x)
and a (possibly) nondifferentiable function c(x) (an example being

∑
i ICi(x))

min
x

F(x) = min
x

f(x) + c(x)

As in gradient descent, consider the first order approximation for f(x) around xk leaving
c(x) alone to obtain the next iterate xk+1:

xk+1 = argmin
x

f(xk) +∇Tf(xk)(x− xk) + 1

2t ||x− xk||2 + c(x)
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Option 1: Generalized Gradient Descent
Consider the problem of minimizing the following sum of a differentiable function f(x)
and a (possibly) nondifferentiable function c(x) (an example being

∑
i ICi(x))

min
x

F(x) = min
x

f(x) + c(x)

As in gradient descent, consider the first order approximation for f(x) around xk leaving
c(x) alone to obtain the next iterate xk+1:

xk+1 = argmin
x

f(xk) +∇Tf(xk)(x− xk) + 1

2t ||x− xk||2 + c(x)

Deleting f(xk) from the objective and adding t
2 ||∇f(xk)||2 to the objective (without any

loss) to complete squares, we obtain xk+1 as:
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Option 1: Generalized Gradient Descent
Consider the problem of minimizing the following sum of a differentiable function f(x)
and a (possibly) nondifferentiable function c(x) (an example being

∑
i ICi(x))

min
x

F(x) = min
x

f(x) + c(x)

As in gradient descent, consider the first order approximation for f(x) around xk leaving
c(x) alone to obtain the next iterate xk+1:

xk+1 = argmin
x

f(xk) +∇Tf(xk)(x− xk) + 1

2t ||x− xk||2 + c(x)

Deleting f(xk) from the objective and adding t
2 ||∇f(xk)||2 to the objective (without any

loss) to complete squares, we obtain xk+1 as:
xk+1 = argminx

1
2t ||x− (xk − t∇f(xk))||2 + c(x)

In general, such a step is called a proximal step with respect to c(x)

xk+1 = proxc
(

xk − t∇f(xk))
)
= argmin

x
1

2t ||x− (xk − t∇f(xk))||2 + c(x)
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(point closest to the unregulated 
gradient descent update with a later 
regulation using c(x))

this unregulated descent will be often referred to as z



PROX gives you the point closes to the unregulated (wrt to c(x)) update when we also bring in 
the effect of (minimizing) c(x)

Basically we have phased out the subgradient descent update into two phases
(a) unregulated update (such as gradient descent) for f(x) alone
(b) course correction based on c(x)



Algorithm: The Generalized Gradient Descent

min
x

f(x) + c(x)

Find a starting point x0
p. =

Set k = 1
repeat
1. Choose a step size tk ∝ 1/

√
k or using exact or backtracking ray search or .

2. Set zk = xk−1 − tk∇f(xk−1).
3. Set xk = proxc

(
zk
)
.

4. Set k = k+ 1.
until stopping criterion (such as ||xk − xk−1|| ≤ ϵ or f(xk) > f(xk−1)) is satisfieda

aBetter criteria can be found using Lagrange duality theory, etc.

Figure 11: The generalized gradient descent algorithm.
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Option 1: Generalized Gradient Descent
Interesting because in many settings, proxc(z) can be computed efficiently

proxc(z) = argmin
x

1

2t ||x− z||2 + c(x)

Theorem: If c is a proper convex9 function with a closed epigraph then (for t > 0) it has
a unique value of proxc(z). Hint: The quadratic term introduces strong convexity ⇒
strict convexity.

9f takes values in the extended real number line such that f(x) < +∞ for at least one x and f(x) > −∞ forOctober 19, 2018 211 / 424

it is finite value < +inf atleast at one point and is 
not -inf everywhere else

A strictly convex function has a unique minimizer



Option 1: Generalized Gradient Descent
Interesting because in many settings, proxc(z) can be computed efficiently

proxc(z) = argmin
x

1

2t ||x− z||2 + c(x)

Theorem: If c is a proper convex9 function with a closed epigraph then (for t > 0) it has
a unique value of proxc(z). Hint: The quadratic term introduces strong convexity ⇒
strict convexity. For non-convex c, the solution set is non-empty under similar conditions.

For x ∈ ℜ, c(x) = For z ∈ ℜ & t = 1, proxc(z) =
Simplified Lasso: λ|x|1 ??
µx x ≥ 0
∞ x < 0

??

µλx3 x ≥ 0
∞ x < 0

??

−λ log x x > 0
∞ x ≤ 0

??

δ[0,η]∩ℜ ??

9f takes values in the extended real number line such that f(x) < +∞ for at least one x and f(x) > −∞ forOctober 19, 2018 211 / 424
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Option 1: Generalized Gradient Descent
Interesting because in many settings, proxc(z) can be computed efficiently

proxc(z) = argmin
x

1

2t ||x− z||2 + c(x)

Theorem: If c is a proper convex9 function with a closed epigraph then (for t > 0) it has
a unique value of proxc(z). Hint: The quadratic term introduces strong convexity ⇒
strict convexity. For non-convex c, the solution set is non-empty under similar conditions.

For x ∈ ℜ, c(x) = For z ∈ ℜ & t = 1, proxc(z) =
Simplified Lasso: λ|x|1 ??
µx x ≥ 0
∞ x < 0

??

µλx3 x ≥ 0
∞ x < 0

??

−λ log x x > 0
∞ x ≤ 0

??

δ[0,η]∩ℜ ??

c(x) = For t = 1, proxc(z) =
Constant: c ??
Affine: aTx + b ??
Convex quadratic: 1

2xTAx + bTx + c ??
(where A ∈ Sn+,b ∈ ℜn)

Sum over components: c(x) =
n∑

i=1

ci(xi) ???

c(λx + a) ??
λc

(
1
λx

)
??

c(x) + aTx + β
2 ∥x∥2 + γ ??

c(Ax + b) ??
c(∥x∥) ??

9f takes values in the extended real number line such that f(x) < +∞ for at least one x and f(x) > −∞ forOctober 19, 2018 211 / 424
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Iterative Soft Thresholding Algorithm for Solving Lasso
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Proximal Subgradient Descent for Lasso

Let f(x) =∥Ax− y∥22, c(x) = ∥x∥1 and F(x) = f(x) + c(x)
Proximal Subgradient Descent Algorithm:
Initialization: Find starting point x(0)

▶ Let bx(k+1) ≡ z(k+1) be a next gradient descent iterate for f(xk)
▶ Compute x(k+1) = argmin

x
1
2∥x− z(k+1)∥22 + λt∥x∥1 by setting subgradient of this objective

to 0. This results in (see
https://www.cse.iitb.ac.in/~cs709/notes/enotes/lassoElaboration.pdf)

1 ...
2 ...
3 ...

▶ Set k = k+ 1, until stopping criterion is satisfied (such as no significant changes in xk w.r.t
x(k−1))
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Iterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for
Lasso

Let f(x) =∥Ax− y∥22, c(x) = ∥x∥1 and F(x) = f(x) + c(x)
Proximal Subgradient Descent Algorithm:
Initialization: Find starting point x(0)

▶ Let z(k+1) be a next gradient descent iterate for f(xk)

▶ Compute prox∥x∥1

(
z(k+1)

)
= x(k+1) =
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▶ Let z(k+1) be a next gradient descent iterate for f(xk)
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Iterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for
Lasso

Let f(x) =∥Ax− y∥22, c(x) = ∥x∥1 and F(x) = f(x) + c(x)
Proximal Subgradient Descent Algorithm:
Initialization: Find starting point x(0)

▶ Let z(k+1) be a next gradient descent iterate for f(xk)

▶ Compute prox∥x∥1

(
z(k+1)

)
= x(k+1) = argmin

x
1
2t∥x− z(k+1)∥22 + λ∥x∥1 as follows:

1 If z(k+1)
i > λt, then x(k+1)

i = −λt + z(k+1)
i

2 If z(k+1)
i < −λt, then x(k+1)

i = λt + z(k+1)
i

3 0 otherwise.
▶ Set k = k+ 1, until stopping criterion is satisfied (such as no significant changes in xk w.r.t

x(k−1))
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Tables for the Proximal Operator

proxc(z) = argmin
x

1

2t ||x− z||2 + c(x)

For x ∈ ℜ, c(x) = For z ∈ ℜ & t = 1, proxc(z) =
Simplified Lasso: λ|x| [|x|− λ]+sign(x)
µx x ≥ 0
∞ x < 0

[x− µ]+

µλx3 x ≥ 0
∞ x < 0

−1 +
√

1 + 12λ[x]+
6λ

−λ log x x > 0
∞ x ≤ 0

x+
√
x2 + 4λ

2
δ[0,η]∩ℜ min{max{x, 0}, η}
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Constant: c z
Affine: aTx + b z− a
Convex quadratic: 1

2xTAx + bTx + c (A+ I)−1(z− b)
(where A ∈ Sn+,b ∈ ℜn)



Tables for the Proximal Operator
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