Constrained Optimization in J: Recap
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Global Extrema on Closed Intervals

Recall the extreme value theorem. A consequence is that:

o if either of c or d lies in (a, b), then it is a critical number of f,

o else each of c and d must lie on one of the boundaries of [a, b].
This gives us a procedure for finding the maximum and minimum of a continuous function f
on a closed bounded interval Z:

Procedure

[Finding extreme values on closed, bounded intervals]:
@ Find the critical points in int(Z).
@ Compute the values of f at the critical points and at the endpoints of the

interval.
© Select the least and greatest of the computed values.
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Global Extrema on Closed Intervals (contd)

e To compute the maximum and minimum values of f(x) = 4x> — 8x% + 5x on the interval
[0, 1],



Global Extrema on Closed Intervals (contd)

@ To compute the maximum and minimum values of f{x) = 4x> — 8x% + 5x on the interval
[0,1],
> We first compute f(x) = 12x* — 16x+ 5 which is 0 at x= £, .
> Values at the critical points are f{3) = 1, f{3) = 2.
» The values at the end points are f{0) =0 and f{1) = 1.
» Therefore, the minimum value is 0) = 0 and the maximum value is f{1) = f(3) = 1.
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Global Extrema on Closed Intervals (contd)

e To compute the maximum and minimum values of f{x) = 4x> — 8x*> + 5x on the interval
[0,1],

We first compute f(x) = 12x* — 16x+ 5 which is 0 at x = 5, 2.

Values at the critical points are f{3) =1, (3) = 2.

The values at the end points are {0) =0 and (1) = 1.

Therefore, the minimum value is 0) = 0 and the maximum value is f(1) = f(3) = 1.

vV vy VvYyy

@ In this context, it is relevant to discuss the one-sided derivatives of a function at the
endpoints of the closed interval on which it is defined.
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Global Extrema on Closed Intervals (contd)

Definition
[One-sided derivatives at endpoints]: Let f be defined on a closed bounded interval |a, b.
The (right-sided) derivative of f at x = a is defined as

_ i fath) —fla)

h—0t

Similarly, the (left-sided) derivative of f at x = b is defined as

R

Essentially, each of the one-sided derivatives defines one-sided slopes at the endpoints.
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Global Extrema on Closed Intervals (contd)

Based on these definitions, the following result can be derived.
Claim

If f is continuous on [a, b] and f(a) exists as a real number or as +00, then we have the
following necessary conditions for extremum at a.

e If f(a) is the maximum value of f on [a, b], then f(a) <0 or f(a) = —oo.
e If f(a) is the minimum value of f on [a, b], then f(a) > 0 or f(a) = oco.

If f is continuous on [a, b] and f(b) exists as a real number or as 0o, then we have the
following necessary conditions for extremum at b
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Global Extrema on Closed Intervals (contd)

Based on these definitions, the following result can be derived.

Claim

If f is continuous on [a, b] and f(a) exists as a real number or as +00, then we have the
following necessary conditions for extremum at a.

e If f(a) is the maximum value of f on [a, b], then f(a) <0 or f(a) = —o0.
e If f(a) is the minimum value of f on [a, b], then f(a) > 0 or f(a) = oo.

If f is continuous on [a, b] and f(b) exists as a real number or as 0o, then we have the
following necessary conditions for extremum at b

o If f(b) is the maximum value of f on |a, b], then f(b) > 0 or f(b) = cc.
o If f(b) is the minimum value of f on |a, b, then f(b) < 0 or f(b) = —cc.
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Global Extrema on Closed Intervals (contd)

The following result gives a useful procedure for finding extrema on closed intervals.

Claim

If f is continuous on |[a, b] and f'(x) exists for all x € (a, b). Then,

o Iff'(x) <0, Vx € (a,b), then the minimum value of f on [a, b] is either fla) or f(b). If, in
addition, f has a critical point c € (a, b), then f(c) is the maximum value of f on [a, b|.

o Iff'(x) >0, Vx € (a,b), then the maximum value of f on [a, b] is either f(a) or f(b). If, in
addition, f has a critical point c € (a, b), then f(c) is the minimum value of f on [a, b].
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Global Extrema on Open Intervals

The next result is very useful for finding extrema on open intervals.

Claim

Let T be an open interval and let f'(x) exist Vx € T.

o Iff'(x) >0, Vx € Z, and if there is a number c € T where f(c) = 0, then f(c) is the
global minimum value of fon I.

e Iff'(x) <0, Vx€Z, and if there is a number c € T where f(c) =0, then f(c) is the
global maximum value of fon T.

For example, let f{x) = x — sec x and

I=(F3)
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Global Extrema on Open Intervals

The next result is very useful for finding extrema on open intervals.

Claim

Let T be an open interval and let f'(x) exist Vx € T.

o Iff'(x) >0, Vx € Z, and if there is a number c € T where f(c) = 0, then f(c) is the
global minimum value of fon I.

e Iff'(x) <0, Vx€Z, and if there is a number c € T where f(c) =0, then f(c) is the
global maximum value of fon T.

For example, let f{x) = x — sec x and
I=(5£%)f(x) =% —secxtanx =5 — S0X — () = x=Z. Further,
f'(x) = — sec x(tan? x + sec? x) < 0 on (£, ). Therefore, f attains the maximum value

i5)=5-%onT.
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Global Extrema on Open Intervals (contd)

As another example, let us find the dimensions of the cone with minimum volume that can

contain a sphere with radius R. Let h be the height of the cone and r the radius of its base
The objective to be minimized is the volume f{r, h) = wr*h. The constraint betwen rand his

shown in Figure 10. The traingle AEF is similar to traingle ADB and therefore, T = Y= h2+’2
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Global Extrema on Open Intervals (contd)

Our first step is to reduce the volume formula to involve only one of® /2 or h.
The algebra involved will be the simplest if we solved for h.
The constraint gives us r* = h 2R Substituting this expression for r* into the volume formula,

s

we get g(h) = i ?h_;RF with the domain given by D = {h]2R < h < oo}.

Note that D is an open interval.
2
g = =R 22K =R Bh—4R) \ hich is 0 in its domain D if and only if h=4R.

3 (h—2R)2 — 3 (h—2R)?
2 2(h—2R)3—2h(h—4R)(h—2R)? 2 2(h?2—4Rh+4R?—h?+4Rh 2 2 S
g = % : ) (h_(QR)4 L L - ”R ( (h—2R) ) = ”§ —(hngg,, which is greater
than 0 in D.

Therefore, g (and consequently f) has a unique minimum at h = 4R and correspondingly,
P =Kk —9or

8Since r appears in the volume formula only in terms of /2.
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Constrained Optimization and Subgradient Descent
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Constrained Optimization

o Consider the objective
min f(x)

s.t. gi(x) <0,Vi
@ Recall: Indicator function for gj(x)

I (x) = {O, if gi(x) <0

o0, otherwise

» We have shown that this is convex if each gj(x) is convex.

e Option 1. Subgradient descent on f(x) + |_g(x)
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Constrained Optimization

o Consider the objective
min f(x)

s.t. gi(x) <0,Vi

@ Recall: Indicator function for gj(x)

I (x) = {0, if gi(x) <0

o0, otherwise

» We have shown that this is convex if each gj(x) is convex.

@ Option 1: Use subgradient descent to minimize f(x) + Z lg.(x)

e Option 2:
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Constrained Optimization

o Consider the objective
min f(x)

s.t. gi(x) <0,Vi
@ Recall: Indicator function for gj(x)

I (x) = {O, if gi(x) <0

o0, otherwise
» We have shown that this is convex if each gj(x) is convex.
@ Option 1: Use subgradient descent to minimize f(x) + Z lg.(x)
i

e Option 2: Barrier Method (approximate /g, (x) using some differentiable and
non-decreasing function such as —(1/t) log —u), Augmented Lagrangian, ADMM, etc.
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Option 1: (Sub)Gradient Descent with Sum of indicators

@ Convert our objective to the following unconstrained optimization problem
e Each C;= {x | gi(x) < 0} is convex if gj(x) is convex.
o We take

miny F(x) = min fix) + Z lc.(x)

@ Recap a subgradient of F:
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Option 1: (Sub)Gradient Descent with Sum of indicators

@ Convert our objective to the following unconstrained optimization problem
e Each C;= {x | gi(x) < 0} is convex if gj(x) is convex.
o We take

miny F(x) = min fix) + Z lc.(x)

® Recap a subgradient of F: hg(x) = hex) + > ;h. (x). Recall that
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Option 1: (Sub)Gradient Descent with Sum of indicators

@ Convert our objective to the following unconstrained optimization problem
e Each C;= {x | gi(x) < 0} is convex if gj(x) is convex.
o We take

miny F(x) = min f(x) + Z lc.(x)
® Recap a subgradient of F: hg(x) = hex) + > ;h. (x). Recall that

» he(x) = VAx) if (x) is differentiable. Also, —Vf(x) at x* optimizes

Let us treat the gradient of f at x~k as that vector which
minimized the second order quadratic expansion of f around
X~k
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Option 1: (Sub)Gradient Descent with Sum of indicators

@ Convert our objective to the following unconstrained optimization problem
e Each C;= {x | gi(x) < 0} is convex if gj(x) is convex.
o We take
miny F(x) = min fx) + Z lc.(x)
1

® Recap a subgradient of F: hge(x) = hdx) + > ;h;.(x). Recall that
» hex) = VAx) if f(x) is differentiable. Also, —Vf(x) at x* optimizes the first order
approximation for f(x) around x*: —Vf(x) = argmin fix*) + V' AAx*)h + %||h||2:
h

Variations on the form of 1||h||* lead to Mirror Descent etc. )r:p alg'r?fe‘;‘“t entropic
» h) (x)isdeR"st. d'x >d"y, Vy € C. Also, hy_(x) =0 if x is4n the interior of G, and
i e
has other solutions if x is on the boundary:
Analysis for convex g;'s leads to KKT conditions and Dual Ascent etc.
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Option 1: Generalized Gradient Descent

e Consider the problem of minimizing the following sum of a differentiable function f(x)
and a (possibly) nondifferentiable function c(x) (an example being >, /c,(x))

min F(x) = min fix) + c(x)

@ As in gradient descent, consider the first order approximation for f{x) around x* leaving
c(x) alone to obtain the next iterate x**1:

1 g
x*1 = argmin {x¥) + VT Ax9) (x — x¥) + EHX —xN? + (x)
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Option 1: Generalized Gradient Descent

e Consider the problem of minimizing the following sum of a differentiable function f(x)
and a (possibly) nondifferentiable function c(x) (an example being >, /c,(x))

min F(x) = min fx) + c(x)

@ As in gradient descent, consider the first order approximation for f{x) around x* leaving
c(x) alone to obtain the next iterate x**1:

1
x*1 = argmin A(x¥) + VT Ax")(x — x*) + Q—tHX — x| + (%)

o Deleting 7(x") from the objective and adding ||V (x")||? to the objective (without any
loss) to complete squares, we obtain x**! as:
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Option 1: Generalized Gradient Descent

e Consider the problem of minimizing the following sum of a differentiable function f(x)
and a (possibly) nondifferentiable function c(x) (an example being >, /c,(x))

min F(x) = min fix) + c(x)

@ As in gradient descent, consider the first order approximation for f{x) around x* leaving
c(x) alone to obtain the next iterate x**1:

1
x*1 = argmin A(x¥) + VT Ax")(x — x*) + Q—tHX — x| + (%)

o Deleting f{x*) from the objective and adding §||Vf(x¥)||? to the objective (without any

[ mol r Wi in xkt1 as: (point closest to the unregulated
oss) to complete squares, we obtai as gradient descent update with a later

xk+1 = argminy 2tHX — (xF— tVAx ))H2 + c(x) regulation using c(x))
@ In general, such a step is called a proximal step with respect to c(x)

1
x 1 = prox. <xk - tvf(xk))) = argmin — ||x — (x* — tVAx)||2 + c(x)
X
this unregulated descent will be often referred to as z
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Algorithm: The Generalized Gradient Descent

mxin fx) + c(x)

Find a starting point xg. =
Set k=1
repeat
1. Choose a step size tX o 1/\/7( or using exact or backtracking ray search or .
2. Set zK = xK—1 — thv fxk—1).
3. Set x¥ = prox (zk).
4. Set k= k+ 1.
until stopping criterion (such as ||x* — xk71|| < € or AxK) > fx¥~1)) is satisfied?

“Better criteria can be found using Lagrange duality theory, etc.

Figure 11: The generalized gradient descent algorithm.
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Option 1: Generalized Gradient Descent

@ Interesting because in many settings, prox.(z) can be computed efficiently

1
prox.(z) = argmin —||x — z||” + c(x)
x 2t

@ Theorem: If cis a proper convex® function with a closed epigraph then (for t > 0) it has
a unique value of prox.(z). Hint: The quadratic term introduces strong convexity =
strict convexity. A strictly convex function has a unique minimizer

it is finite value < +inf atleast at one point and is

not -inf everywhere el . RN -
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Option 1: Generalized Gradient Descent
@ Interesting because in many settings, prox.(z) can be computed efficiently
1
proxc(z) = argmin 2_t||X —z|* + ¢(x)

@ Theorem: If cis a proper convex® function with a closed epigraph then (for t > 0) it has
a unique value of prox.(z). Hint: The quadratic term introduces strong convexity =
strict convexity. For non-convex c, the solution set is non-empty under similar conditions.

For x € R, ¢(x) = Forze R & t=1, prox.(z) =
Simplified Lasso: A|x|; | 77

pux x>0
—

o x<0
uAe x>0
—

00 x <0
—Alogx x>0
oo x<0
0j0.nR

I

7

77 Inspired by or inspirgs barrier function

7
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Option 1: Generalized Gradient Descent
@ Interesting because in many settings, prox.(z) can be computed efficiently
1
proxc(z) = argmin Q_tHX —z|* + ¢(x)

@ Theorem: If cis a proper convex® function with a closed epigraph then (for t > 0) it has
a unique value of prox.(z). Hint: The quadratic term introduces strong convexity =
strict convexity. For non-convex c, the solution set is non-empty under similar conditions.

ox) = For t= 1 proxc(z) — ]
For xe R, c(x) = For ze R & t=1, prox.(z) = Constant. ¢ 77 —
— 1 Affine: a’x -+ b 77
; 77
Simplified Lasso: A[x|; | 77 |/ Convex quadratic. 3% AX TBTx T ¢ >
px x20 7 (where A € 57.b € R")
oo x<0 g
,u/\Xj x>0 - Sum over components: ¢(x) = Z] ci(xj) | 777
00 x <0 B c(Ax +a) 7
—Alogx x>0 7 Ac(4x) 72 calculus
X x<0 c(x) +a'x+ &[x[>+ 7 7?7
Of0,n]nR i (AX + b) 77
c([x)) 7

e — T YT



Iterative Soft Thresholding Algorithm for Solving Lasso
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Proximal Subgradient Descent for Lasso

o Let flx) = | Ax — yl3, c(x) = [|x]1 and F(x) = f(x) + c(x)
@ Proximal Subgradient Descent Algorithm:
Initialization: Find starting point x(©)

» Let X(k+1) = z(k+1) be a next gradient descent iterate for f(x*)
» Compute x“*1) = argmin||x — z(**V||3 4+ At||x||; by setting subgradient of this objective
X

. This results in (see
https://www.cse.iitb.ac.in/~cs709/notes/enotes/lassoElaboration.pdf)

prox
step @ ... Vector x"~(k+1) is obtained by componentwise minimization
Q ..
» Set k= k+ 1, until stopping criterion is satisfied (such as no significant changes in x* w.r.t
(k=1)y
X
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Iterative Soft Thresholding Algorithm ( ) for
Lasso

o Let fix) = Ax —yl3, c(x) = |Ix|li and F(x) = f(x) + c(x)
@ Proximal Subgradient Descent Algorithm:
Initialization: Find starting point x(?)
» Let z(5t1) be a next gradient descent iterate for f{x*)
» Compute prox|x||, (z(k“‘l)) = x(kt1) =
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Iterative Soft Thresholding Algorithm ( ) for
Lasso

o Let fix) = Ax —yl3, c(x) = |Ix|li and F(x) = f(x) + c(x)
@ Proximal Subgradient Descent Algorithm:
Initialization: Find starting point x(?)
» Let z(5t1) be a next gradient descent iterate for f{x*)

» Compute prox|x|, (z("“)) =xD = argming||x — z*TV||2 4+ A||x||; as follows:
X
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Iterative Soft Thresholding Algorithm ( ) for
Lasso

o Let fix) = Ax —yl3, c(x) = |Ix|li and F(x) = f(x) + c(x)
@ Proximal Subgradient Descent Algorithm:
Initialization: Find starting point x(?)
» Let z(5t1) be a next gradient descent iterate for f{x*)
» Compute prox|x|, (z("“)) =xD = argming||x — z*TV||2 4+ A||x||; as follows:

QI z/(k+1> > At, then X/(k+1) = At 4 <D If unregulated z was gretater than lambda t

@ If 2 — _xt then x*TYU = At + Z’gk+1) reduce it by that amount

© 0 otherwise.

» Set k= k+ 1, until stopping criterion is satisfied (such as no significant changes in x
(kfl))
x

Kw.rt
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Tables for the Proximal Operator

1
prox.(z) = argmin —||x — z||* + c(x)
x 2t

For xe R, c(x) = For ze R & t=1, prox.(z) =
Simplified Lasso: \|x| | [[x] — \]4sign(x)

px x>0

o x<0 [x=pl+

A x>0 —1+/T+12X[x] 1

00 x <0 6

—Alogx x>0 X+ Vx4 4\

oo x<0 - 2
310,n)n% min{max{x,0},n}
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Tables for the Proximal Operator

1
prox.(z) = argmin —||x — z||* + c(x)
x 2t

For xe R, c(x) =

For ze R & t =1, prox.(z)

Foxeh a0 =

For z€ R & t = L, prox(z) —

Simplified Lasso: \|x|

(I — Al sign(x)

Constant: ¢ z
Affine: a’x + b z—a
Convex quadratic: 5x'Ax +b'x + ¢ (A+)~Hz—-b)

(where A€ S, b e R")

px x>0

o x<0 [x— 4

A x>0 —1+/T+12X[x] 1
00 x <0 — 6x
—Alogx x>0 X+ VX2 44\

oo x<0 - 2

Ol

min{max{x, 0}, n}




Tables for the Proximal Operator

1
prox.(z) = argmin —||x — z||* + c(x)
x 2t

j For x € X, c(x) = For z€ R & t = L, prox(z) —

For x € R, c(x) = Forze R & t=1, prox.(z) = Constant: ¢ z
Simolified L — .o Affine: a’x + b Z—a

Ll |e> ) asso: A 11X Lo sign() Convex quadratic: 5x'Ax +b'x + ¢ (A+ 1)~z —b)
pxox = [x =y« (where A € 57, b € R")

oo x<0 u

I x>0 1+ /1 + 2Axs Sum over components: ¢(x) = ;c;(x,-) m?

o0 x<0 6 c(Mx +a) B 7

—Alogx x>0 X+ VX2 44\ )\c(&x) 27

0 x<0 2 ox) +alx + Qx>+ v 77
310,n)n% min{max{x,0},n} (Ax + b) 77

c(x]) o
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