Constrained Optimization in \Re : Recap

Global Extrema on Closed Intervals

Recall the extreme value theorem. A consequence is that:

- if either of c or d lies in (a, b), then it is a critical number of f;
- else each of c and d must lie on one of the boundaries of $[a, b]$.

This gives us a procedure for finding the maximum and minimum of a continuous function f on a closed bounded interval \mathcal{I} :

Procedure

[Finding extreme values on closed, bounded intervals]:
(1) Find the critical points in int (\mathcal{I}).
(2) Compute the values of f at the critical points and at the endpoints of the interval.
(3) Select the least and greatest of the computed values.

Global Extrema on Closed Intervals (contd)

- To compute the maximum and minimum values of $f(x)=4 x^{3}-8 x^{2}+5 x$ on the interval $[0,1]$,

Global Extrema on Closed Intervals (contd)

- To compute the maximum and minimum values of $f(x)=4 x^{3}-8 x^{2}+5 x$ on the interval $[0,1]$,
- We first compute $f(x)=12 x^{2}-16 x+5$ which is 0 at $x=\frac{1}{2}, \frac{5}{6}$.
- Values at the critical points are $f\left(\frac{1}{2}\right)=1, f\left(\frac{5}{6}\right)=\frac{25}{27}$.
- The values at the end points are $f(0)=0$ and $f(1)=1$.
- Therefore, the minimum value is $f(0)=0$ and the maximum value is $f(1)=f\left(\frac{1}{2}\right)=1$.

Global Extrema on Closed Intervals (contd)

- To compute the maximum and minimum values of $f(x)=4 x^{3}-8 x^{2}+5 x$ on the interval $[0,1]$,
- We first compute $f(x)=12 x^{2}-16 x+5$ which is 0 at $x=\frac{1}{2}, \frac{5}{6}$.
- Values at the critical points are $f\left(\frac{1}{2}\right)=1, f\left(\frac{5}{6}\right)=\frac{25}{27}$.
- The values at the end points are $f(0)=0$ and $f(1)=1$.
- Therefore, the minimum value is $f(0)=0$ and the maximum value is $f(1)=f\left(\frac{1}{2}\right)=1$.
- In this context, it is relevant to discuss the one-sided derivatives of a function at the endpoints of the closed interval on which it is defined.

Global Extrema on Closed Intervals (contd)

Definition

[One-sided derivatives at endpoints]: Let f be defined on a closed bounded interval $[a, b]$. The (right-sided) derivative of f at $x=a$ is defined as

$$
f^{\prime}(a)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}
$$

Similarly, the (left-sided) derivative of f at $x=b$ is defined as

$$
f(b)=\lim _{h \rightarrow 0^{-}} \frac{f(b+h)-f(b)}{h}
$$

Essentially, each of the one-sided derivatives defines one-sided slopes at the endpoints.

Global Extrema on Closed Intervals (contd)

Based on these definitions, the following result can be derived.

Claim

If f is continuous on $[a, b]$ and $f(a)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at a.

- If $f(a)$ is the maximum value of f on $[a, b]$, then $f(a) \leq 0$ or $f(a)=-\infty$.
- If $f(a)$ is the minimum value of f on $[a, b]$, then $f^{\prime}(a) \geq 0$ or $f^{\prime}(a)=\infty$.

If f is continuous on $[a, b]$ and $f(b)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at b

Global Extrema on Closed Intervals (contd)

Based on these definitions, the following result can be derived.

Claim

If f is continuous on $[a, b]$ and $f(a)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at a.

- If $f(a)$ is the maximum value of f on $[a, b]$, then $f(a) \leq 0$ or $f(a)=-\infty$.
- If $f(a)$ is the minimum value of f on $[a, b]$, then $f^{\prime}(a) \geq 0$ or $f(a)=\infty$.

If f is continuous on $[a, b]$ and $f(b)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at b

- If $f(b)$ is the maximum value of f on $[a, b]$, then $f(b) \geq 0$ or $f(b)=\infty$.
- If $f(b)$ is the minimum value of f on $[a, b]$, then $f(b) \leq 0$ or $f(b)=-\infty$.

Global Extrema on Closed Intervals (contd)

The following result gives a useful procedure for finding extrema on closed intervals.

Claim

If f is continuous on $[a, b]$ and $f^{\prime}(x)$ exists for all $x \in(a, b)$. Then,

- If $f^{\prime}(x) \leq 0, \forall x \in(a, b)$, then the minimum value of f on $[a, b]$ is either $f(a)$ or $f(b)$. If, in addition, f has a critical point $c \in(a, b)$, then $f(c)$ is the maximum value of f on $[a, b]$.
- If $f^{\prime}(x) \geq 0, \forall x \in(a, b)$, then the maximum value of f on $[a, b]$ is either $f(a)$ or $f(b)$. If, in addition, f has a critical point $c \in(a, b)$, then $f(c)$ is the minimum value of f on $[a, b]$.

Global Extrema on Open Intervals

The next result is very useful for finding extrema on open intervals.

Claim

Let \mathcal{I} be an open interval and let $f^{\prime}(x)$ exist $\forall x \in \mathcal{I}$.

- If $f^{\prime}(x) \geq 0, \forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where $f(c)=0$, then $f(c)$ is the global minimum value of f on \mathcal{I}.
- If $f^{\prime}(x) \leq 0, \forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where $f(c)=0$, then $f(c)$ is the global maximum value of f on \mathcal{I}.

For example, let $f(x)=\frac{2}{3} x-\sec x$ and $\mathcal{I}=\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.

Global Extrema on Open Intervals

The next result is very useful for finding extrema on open intervals.

Claim

Let \mathcal{I} be an open interval and let $f^{\prime}(x)$ exist $\forall x \in \mathcal{I}$.

- If $f^{\prime}(x) \geq 0, \forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where $f(c)=0$, then $f(c)$ is the global minimum value of f on \mathcal{I}.
- If $f^{\prime}(x) \leq 0, \forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where $f(c)=0$, then $f(c)$ is the global maximum value of f on \mathcal{I}.

For example, let $f(x)=\frac{2}{3} x-\sec x$ and
$\mathcal{I}=\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \cdot f(x)=\frac{2}{3}-\sec x \tan x=\frac{2}{3}-\frac{\sin x}{\cos ^{2} x}=0 \Rightarrow x=\frac{\pi}{6}$. Further, $f^{\prime}(x)=-\sec x\left(\tan ^{2} x+\sec ^{2} x\right)<0$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. Therefore, f attains the maximum value $f\left(\frac{\pi}{6}\right)=\frac{\pi}{9}-\frac{2}{\sqrt{3}}$ on \mathcal{I}.

Global Extrema on Open Intervals (contd)

As another example, let us find the dimensions of the cone with minimum volume that can contain a sphere with radius R. Let h be the height of the cone and r the radius of its base. The objective to be minimized is the volume $f(r, h)=\frac{1}{3} \pi r^{2} h$. The constraint betwen r and h is shown in Figure 10. The traingle $A E F$ is similar to traingle $A D B$ and therefore, $\frac{h-R}{R}=\frac{\sqrt{h^{2}+r^{2}}}{r}$.

Global Extrema on Open Intervals (contd)

Our first step is to reduce the volume formula to involve only one of ${ }^{8} r^{2}$ or h.
The algebra involved will be the simplest if we solved for h.
The constraint gives us $r^{2}=\frac{R^{2} h}{h-2 R}$. Substituting this expression for r^{2} into the volume formula, we get $g(h)=\frac{\pi R^{2}}{3} \frac{h^{2}}{(h-2 R)}$ with the domain given by $\mathcal{D}=\{h \mid 2 R<h<\infty\}$.
Note that \mathcal{D} is an open interval.
$g^{\prime}=\frac{\pi R^{2}}{3} \frac{2 h(h-2 R)-h^{2}}{(h-2 R)^{2}}=\frac{\pi R^{2}}{3} \frac{h(h-4 R)}{(h-2 R)^{2}}$ which is 0 in its domain \mathcal{D} if and only if $h=4 R$.
$g^{\prime \prime}=\frac{\pi R^{2}}{3} \frac{2(h-2 R)^{3}-2 h(h-4 R)(h-2 R)^{2}}{(h-2 R)^{4}}=\frac{\pi R^{2}}{3} \frac{2\left(h^{2}-4 R h+4 R^{2}-h^{2}+4 R h\right)}{(h-2 R)^{3}}=\frac{\pi R^{2}}{3} \frac{8 R^{2}}{(h-2 R)^{3}}$, which is greater than 0 in \mathcal{D}.
Therefore, g (and consequently f) has a unique minimum at $h=4 R$ and correspondingly, $r^{2}=\frac{R^{2} h}{h-2 R}=2 R^{2}$.

[^0]
Constrained Optimization and Subgradient Descent

Constrained Optimization

- Consider the objective

$$
\begin{array}{cl}
& \min f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \forall i
\end{array}
$$

- Recall: Indicator function for $g_{i}(x)$

$$
I_{g_{i}}(\mathbf{x})= \begin{cases}0, & \text { if } g_{i}(\mathbf{x}) \leq 0 \\ \infty, & \text { otherwise }\end{cases}
$$

- We have shown that this is convex if each $g_{i}(\mathbf{x})$ is convex.
- Option 1: Subgradient descent on $f(x)+1 _g(x)$

Constrained Optimization

- Consider the objective

$$
\begin{array}{cl}
& \min f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \forall i
\end{array}
$$

- Recall: Indicator function for $g_{i}(x)$

$$
I_{g_{i}}(\mathbf{x})= \begin{cases}0, & \text { if } g_{i}(\mathbf{x}) \leq 0 \\ \infty, & \text { otherwise }\end{cases}
$$

- We have shown that this is convex if each $g_{i}(\mathbf{x})$ is convex.
- Option 1: Use subgradient descent to minimize $f(\mathbf{x})+\sum_{i} I_{g_{i}}(\mathbf{x})$
- Option 2:

Constrained Optimization

- Consider the objective

$$
\begin{array}{cl}
& \min f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \forall i
\end{array}
$$

- Recall: Indicator function for $g_{i}(x)$

$$
I_{g_{i}}(\mathbf{x})= \begin{cases}0, & \text { if } g_{i}(\mathbf{x}) \leq 0 \\ \infty, & \text { otherwise }\end{cases}
$$

- We have shown that this is convex if each $g_{i}(\mathbf{x})$ is convex.
- Option 1: Use subgradient descent to minimize $f(\mathbf{x})+\sum_{i} I_{g_{i}}(\mathbf{x})$
- Option 2: Barrier Method (approximate $I_{g_{i}}(\mathbf{x})$ using some differentiable and non-decreasing function such as $-(1 / t) \log -u)$, Augmented Lagrangian, ADMM, etc.

Option 1: (Sub)Gradient Descent with Sum of indicators

- Convert our objective to the following unconstrained optimization problem
- Each $C_{i}=\left\{\mathbf{x} \mid g_{i}(\mathbf{x}) \leq 0\right\}$ is convex if $g_{i}(\mathbf{x})$ is convex.
- We take

$$
\min _{\mathbf{x}} F(\mathbf{x})=\min _{\mathbf{x}} f(\mathbf{x})+\sum_{i} I_{C_{i}}(\mathbf{x})
$$

- Recap a subgradient of F :

Option 1: (Sub)Gradient Descent with Sum of indicators

- Convert our objective to the following unconstrained optimization problem
- Each $C_{i}=\left\{\mathbf{x} \mid g_{i}(\mathbf{x}) \leq 0\right\}$ is convex if $g_{i}(\mathbf{x})$ is convex.
- We take

$$
\min _{\mathbf{x}} F(\mathbf{x})=\min _{\mathbf{x}} f(\mathbf{x})+\sum_{i} I_{C_{i}}(\mathbf{x})
$$

- Recap a subgradient of $F: \mathbf{h}_{F}(\mathbf{x})=\mathbf{h}_{f}(\mathbf{x})+\sum_{i} \mathbf{h}_{C_{C_{i}}}(\mathbf{x})$. Recall that

Option 1: (Sub)Gradient Descent with Sum of indicators

- Convert our objective to the following unconstrained optimization problem
- Each $C_{i}=\left\{\mathbf{x} \mid g_{i}(\mathbf{x}) \leq 0\right\}$ is convex if $g_{i}(\mathbf{x})$ is convex.
- We take

$$
\min _{\mathbf{x}} F(\mathbf{x})=\min _{\mathbf{x}} f(\mathbf{x})+\sum_{i} I_{C_{i}}(\mathbf{x})
$$

- Recap a subgradient of $F: \mathbf{h}_{F}(\mathbf{x})=\mathbf{h}_{f}(\mathbf{x})+\sum_{i} \mathbf{h}_{C_{C_{i}}}(\mathbf{x})$. Recall that
- $\mathbf{h}_{f}(\mathbf{x})=\nabla f(\mathbf{x})$ if $f(\mathbf{x})$ is differentiable. Also, $-\nabla f(\mathbf{x})$ at \mathbf{x}^{k} optimizes

Let us treat the gradient of f at $x^{\wedge} k$ as that vector which minimized the second order quadratic expansion of f around $x^{\wedge} k$

Option 1: (Sub)Gradient Descent with Sum of indicators

- Convert our objective to the following unconstrained optimization problem
- Each $C_{i}=\left\{\mathbf{x} \mid g_{i}(\mathbf{x}) \leq 0\right\}$ is convex if $g_{i}(\mathbf{x})$ is convex.
- We take

$$
\min _{\mathbf{x}} F(\mathrm{x})=\min _{\mathrm{x}} f(\mathrm{x})+\sum_{i} I_{C_{i}}(\mathrm{x})
$$

- Recap a subgradient of $F: \mathbf{h}_{F}(\mathbf{x})=\mathbf{h}_{f}(\mathbf{x})+\sum_{i} \mathbf{h}_{c_{c_{i}}}(\mathbf{x})$. Recall that
- $\mathbf{h}_{f}(\mathbf{x})=\nabla f(\mathbf{x})$ if $f(\mathbf{x})$ is differentiable. Also, $-\nabla f(\mathbf{x})$ at \mathbf{x}^{k} optimizes the first order approximation for $f(\mathbf{x})$ around $\mathbf{x}^{k}:-\nabla f(\mathbf{x})=\underset{\mathbf{h}}{\operatorname{argmin}} f\left(\mathbf{x}^{k}\right)+\nabla^{T} f\left(\mathbf{x}^{k}\right) \mathbf{h}+\frac{1}{2}\|\mathbf{h}\|^{2}$:
Variations on the form of $\frac{1}{2}\|\mathbf{h}\|^{2}$ lead to Mirror Descent etc. $\begin{gathered}\text { replacing with entropic }\end{gathered}$
- $\mathbf{h}_{c_{c_{i}}}(x)$ is $\mathbf{d} \in \mathbf{R}^{n}$ s.t. $\mathbf{d}^{T} \mathbf{x} \geq \mathbf{d}^{T} \mathbf{y}, \forall \mathbf{y} \in C_{i}$. Also, $\mathbf{h}_{/_{c_{i}}}(\mathbf{x})=0$ if \mathbf{x} is in the interior of C_{i}, and has other solutions if \mathbf{x} is on the boundary:
Analysis for convex g_{i} 's leads to KKT conditions and Dual Ascent etc.

Option 1: Generalized Gradient Descent

- Consider the problem of minimizing the following sum of a differentiable function $f(x)$ and a (possibly) nondifferentiable function $c(\mathbf{x})$ (an example being $\sum_{i} I_{c_{i}}(\mathbf{x})$)

$$
\min _{\mathbf{x}} F(\mathbf{x})=\min _{\mathbf{x}} f(\mathbf{x})+c(\mathbf{x})
$$

- As in gradient descent, consider the first order approximation for $f(\mathbf{x})$ around \mathbf{x}^{k} leaving $c(\mathbf{x})$ alone to obtain the next iterate \mathbf{x}^{k+1} :

$$
\mathrm{x}^{k+1}=\underset{\mathrm{x}}{\operatorname{argmin}} f\left(\mathrm{x}^{k}\right)+\nabla^{\top} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}-\mathrm{x}^{k}\right)+\frac{1}{2 t}\left\|\mathrm{x}-\mathrm{x}^{k}\right\|^{2}+c(\mathrm{x})
$$

Option 1: Generalized Gradient Descent

- Consider the problem of minimizing the following sum of a differentiable function $f(\mathbf{x})$ and a (possibly) nondifferentiable function $c(\mathbf{x})$ (an example being $\sum_{i} I_{c_{i}}(\mathbf{x})$)

$$
\min _{\mathbf{x}} F(\mathbf{x})=\min _{\mathbf{x}} f(\mathbf{x})+c(\mathbf{x})
$$

- As in gradient descent, consider the first order approximation for $f(\mathbf{x})$ around \mathbf{x}^{k} leaving $c(\mathbf{x})$ alone to obtain the next iterate \mathbf{x}^{k+1} :

$$
\mathrm{x}^{k+1}=\underset{\mathrm{x}}{\operatorname{argmin}} f\left(\mathrm{x}^{k}\right)+\nabla^{T} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}-\mathrm{x}^{k}\right)+\frac{1}{2 t}\left\|\mathrm{x}-\mathrm{x}^{k}\right\|^{2}+c(\mathbf{x})
$$

- Deleting $f\left(x^{k}\right)$ from the objective and adding $\frac{t}{2}\left\|\nabla f\left(x^{k}\right)\right\|^{2}$ to the objective (without any loss) to complete squares, we obtain x^{k+1} as:

Option 1: Generalized Gradient Descent

- Consider the problem of minimizing the following sum of a differentiable function $f(\mathbf{x})$ and a (possibly) nondifferentiable function $c(\mathbf{x})$ (an example being $\sum_{i} I_{c_{i}}(\mathbf{x})$)

$$
\min _{\mathbf{x}} F(\mathbf{x})=\min _{\mathbf{x}} f(\mathbf{x})+c(\mathbf{x})
$$

- As in gradient descent, consider the first order approximation for $f(\mathbf{x})$ around \mathbf{x}^{k} leaving $c(\mathbf{x})$ alone to obtain the next iterate \mathbf{x}^{k+1} :

$$
\mathrm{x}^{k+1}=\underset{\mathrm{x}}{\operatorname{argmin}} f\left(\mathrm{x}^{k}\right)+\nabla^{T} f\left(\mathrm{x}^{k}\right)\left(\mathrm{x}-\mathrm{x}^{k}\right)+\frac{1}{2 t}\left\|\mathrm{x}-\mathrm{x}^{k}\right\|^{2}+c(\mathrm{x})
$$

- Deleting $f\left(\mathbf{x}^{k}\right)$ from the objective and adding $\frac{t}{2}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}$ to the objective (without any loss) to complete squares, we obtain x^{k+1} as:
(point closest to the unregulated $\mathbf{x}^{k+1}=\operatorname{argmin}_{\mathbf{x}} \frac{1}{2 t}\left\|\mathrm{x}-\left(\mathrm{x}^{k}-t \nabla f\left(\mathrm{x}^{k}\right)\right)\right\|^{2}+c(\mathbf{x}) \quad \begin{aligned} & \text { gradient descent upda } \\ & \text { regulation using } c(\mathrm{x}))\end{aligned}$
- In general, such a step is called a proximal step with respect to $c(\mathbf{x})$

$$
\left.\mathbf{x}^{k+1}=\operatorname{prox}_{c}\left(\mathrm{x}^{k}-t \nabla f\left(\mathrm{x}^{k}\right)\right)\right)=\operatorname{argmin} \frac{1}{2 t}\left\|\mathbf{x}-\left(\mathrm{x}^{k}-t \nabla f\left(\mathrm{x}^{k}\right)\right)\right\|^{2}+c(\mathbf{x})
$$

this unregulated descent will be often referred to to as

PROX gives you the point closes to the unregulated (wrt to $c(x)$) update when we also bring in the effect of (minimizing) $c(x)$

Basically we have phased out the subgradient descent update into two phases
(a) unregulated update (such as gradient descent) for $f(x)$ alone
(b) course correction based on $c(x)$

Algorithm: The Generalized Gradient Descent

$$
\min _{\mathbf{x}} f(\mathbf{x})+c(\mathbf{x})
$$

Find a starting point x_{p}^{0}. $=$
Set $k=1$
repeat

1. Choose a step size $t^{k} \propto 1 / \sqrt{k}$ or using exact or backtracking ray search or .
2. Set $\mathbf{z}^{k}=\mathbf{x}^{k-1}-t^{k} \nabla f\left(\mathbf{x}^{k-1}\right)$.
3. Set $\mathbf{x}^{k}=\operatorname{prox}_{c}\left(\mathbf{z}^{k}\right)$.
4. Set $k=k+1$.
until stopping criterion (such as $\left\|x^{k}-x^{k-1}\right\| \leq \epsilon$ or $f\left(x^{k}\right)>f\left(x^{k-1}\right)$) is satisfied ${ }^{a}$
[^1]Figure 11: The generalized gradient descent algorithm.

Option 1: Generalized Gradient Descent

- Interesting because in many settings, $\operatorname{prox}_{c}(\mathbf{z})$ can be computed efficiently

$$
\operatorname{prox}_{c}(\mathbf{z})=\underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2 t}\|\mathrm{x}-\mathrm{z}\|^{2}+c(\mathbf{x})
$$

- Theorem: If c is a proper convex ${ }^{9}$ function with a closed epigraph then (for $t>0$) it has a unique value of $\operatorname{prox}_{c}(\mathbf{z})$. Hint: The quadratic term introduces strong convexity \Rightarrow strict convexity. A strictly convex function has a unique minimizer

Option 1: Generalized Gradient Descent

- Interesting because in many settings, $\operatorname{prox}_{c}(\mathbf{z})$ can be computed efficiently

$$
\operatorname{prox}_{c}(\mathbf{z})=\operatorname{argmin} \frac{1}{\mathbf{x}} \frac{1}{2 t}\|\mathbf{x}-\mathbf{z}\|^{2}+c(\mathbf{x})
$$

- Theorem: If c is a proper convex ${ }^{9}$ function with a closed epigraph then (for $t>0$) it has a unique value of $\operatorname{prox}_{c}(\mathbf{z})$. Hint: The quadratic term introduces strong convexity \Rightarrow strict convexity. For non-convex c, the solution set is non-empty under similar conditions.

For $x \in \Re, c(\mathbf{x})=$	For $z \in \Re \& t=1, \operatorname{prox}_{c}(z)=$
Simplified Lasso: $\lambda\|x\|_{1}$	$? ? ?$
$\frac{\mu x}{} \quad x \geq 0$	$? ?$
$\frac{\mu \lambda x^{3}}{\infty} \quad x \geq 0$?
$\infty \quad$$-\lambda \log x$ $x>0$ ∞ $x \leq 0$	$? ?$ Inspired by or inspires barrier function
$\delta_{[0, \eta] \cap} \quad$	$? ?$

Option 1: Generalized Gradient Descent

- Interesting because in many settings, $\operatorname{prox}_{c}(\mathbf{z})$ can be computed efficiently

$$
\operatorname{prox}_{c}(\mathbf{z})=\operatorname{argmin} \frac{1}{\mathbf{x}} \frac{1}{2 t}\|\mathbf{x}-\mathbf{z}\|^{2}+c(\mathbf{x})
$$

- Theorem: If c is a proper convex ${ }^{9}$ function with a closed epigraph then (for $t>0$) it has a unique value of $\operatorname{prox}_{c}(\mathbf{z})$. Hint: The quadratic term introduces strong convexity \Rightarrow strict convexity. For non-convex c, the solution set is non-empty under similar conditions.

For $x \in \Re, c(\mathbf{x})=$	For $z \in \Re$ \& $t=1, \operatorname{prox}_{c}(z)=$
Simplified Lasso: $\lambda\|x\|_{1}$??
$\begin{array}{ll} \hline \mu x & x \geq 0 \\ \infty & x<0 \end{array}$??
$\begin{array}{ll} \hline \mu \lambda x^{3} & x \geq 0 \\ \infty & x<0 \end{array}$??
$\begin{array}{ll} -\lambda \log x & x>0 \\ \infty & x \leq 0 \end{array}$??
$\delta_{[0, \eta] \cap}$??

$c(\mathbf{x})=$	For $t=1, \operatorname{prox}_{c}(\mathbf{z})=$		
Constant: c	??		
Affine: $\mathbf{a}^{\boldsymbol{T}} \mathbf{x}+b$??		
Convex quadratic: ${ }_{2}^{1} \mathrm{x}^{\prime} A \mathrm{x}+\mathrm{b}^{\prime} \mathrm{x}+\mathrm{c}$ (where $A \in S_{+}^{n}, \mathbf{b} \in \Re^{n}$)	??		
Sum over components: $c(\mathbf{x})=\sum_{i=1}^{n} c_{i}\left(\mathbf{x}_{i}\right)$???		
$c(\lambda \mathbf{x}+\mathbf{a})$??		
$\lambda c\left(\frac{1}{\lambda} \mathrm{x}\right)$?? calculus		
$c(\mathbf{x})+\mathbf{a}^{\top} \mathbf{x}+\frac{\frac{S}{2}}{}\\|\mathbf{x}\\|^{2}+\gamma$??		
$c(A \mathbf{x}+\mathbf{b})$??		
$c(\\|\mathbf{x}\\|)$??		

Iterative Soft Thresholding Algorithm for Solving Lasso

Proximal Subgradient Descent for Lasso

- Let $f(\mathbf{x})=\|A \mathbf{x}-\mathbf{y}\|_{2}^{2}, c(\mathbf{x})=\|\mathbf{x}\|_{1}$ and $F(\mathbf{x})=f(\mathbf{x})+c(\mathbf{x})$

- Proximal Subgradient Descent Algorithm:

Initialization: Find starting point $\mathbf{x}^{(0)}$

- Let $\widehat{\mathbf{x}}^{(k+1)} \equiv \mathbf{z}^{(k+1)}$ be a next gradient descent iterate for $f\left(\mathbf{x}^{k}\right)$
- Compute $\mathbf{x}^{(k+1)}=\operatorname{argmin} \frac{1}{2}\left\|\mathbf{x}-\mathbf{z}^{(k+1)}\right\|_{2}^{2}+\lambda t\|\mathbf{x}\|_{1}$ by setting subgradient of this objective to 0 . This results in (see https://www.cse.iitb.ac.in/~cs709/notes/enotes/lassoElaboration.pdf)
(2) ... Vector $x^{\wedge}(k+1)$ is obtained by componentwise minimization
- Set $k=k+1$, until stopping criterion is satisfied (such as no significant changes in \mathbf{x}^{k} w.r.t $\mathbf{x}^{(k-1)}$)

Iterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for

 Lasso- Let $f(\mathbf{x})=\|A \mathbf{x}-\mathbf{y}\|_{2}^{2}, c(\mathbf{x})=\|\mathbf{x}\|_{1}$ and $F(\mathbf{x})=f(\mathbf{x})+c(\mathbf{x})$
- Proximal Subgradient Descent Algorithm: Initialization: Find starting point $\mathbf{x}^{(0)}$
- Let $\mathbf{z}^{(k+1)}$ be a next gradient descent iterate for $f\left(\mathbf{x}^{k}\right)$
- Compute $\operatorname{prox}_{\|\mathbf{x}\|_{1}}\left(\mathbf{z}^{(k+1)}\right)=\mathbf{x}^{(k+1)}=$

Iterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for

 Lasso- Let $f(\mathbf{x})=\|A \mathbf{x}-\mathbf{y}\|_{2}^{2}, c(\mathbf{x})=\|\mathbf{x}\|_{1}$ and $F(\mathbf{x})=f(\mathbf{x})+c(\mathbf{x})$
- Proximal Subgradient Descent Algorithm: Initialization: Find starting point $\mathbf{x}^{(0)}$
- Let $\mathbf{z}^{(k+1)}$ be a next gradient descent iterate for $f\left(\mathbf{x}^{k}\right)$
- Compute $\operatorname{prox}_{\|\mathbf{x}\|_{1}}\left(\mathbf{z}^{(k+1)}\right)=\mathbf{x}^{(k+1)}=\underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2 t}\left\|\mathbf{x}-\mathbf{z}^{(k+1)}\right\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}$ as follows:

Iterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for Lasso

- Let $f(\mathbf{x})=\|A \mathbf{x}-\mathbf{y}\|_{2}^{2}, c(\mathbf{x})=\|\mathbf{x}\|_{1}$ and $F(\mathbf{x})=f(\mathbf{x})+c(\mathbf{x})$

- Proximal Subgradient Descent Algorithm:

Initialization: Find starting point $\mathbf{x}^{(0)}$

- Let $\mathbf{z}^{(k+1)}$ be a next gradient descent iterate for $f\left(\mathbf{x}^{k}\right)$
- Compute $\operatorname{prox}_{\|\mathbf{x}\|_{1}}\left(\mathbf{z}^{(k+1)}\right)=\mathbf{x}^{(k+1)}=\underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2 t}\left\|\mathbf{x}-\mathbf{z}^{(k+1)}\right\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}$ as follows:
(1) If $z_{i}^{(k+1)}>\lambda t$, then $x_{i}^{(k+1)}=-\lambda t+z_{i}^{(k+1)}$ If unregulated z was gretater than lambda t
(2) If $z_{i}^{(k+1)}<-\lambda t$, then $x_{i}^{(k+1)}=\lambda t+z_{i}^{(k+1)} \quad$ reduce it by that amount
(3) 0 otherwise.
- Set $k=k+1$, until stopping criterion is satisfied (such as no significant changes in x^{k} w.r.t $\mathrm{x}^{(k-1)}$)

Tables for the Proximal Operator

$$
\operatorname{prox}_{c}(\mathbf{z})=\underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2 t}\|\mathbf{x}-\mathbf{z}\|^{2}+c(\mathbf{x})
$$

For $x \in \Re, c(x)=$	For $z \in \Re \& t=1, \operatorname{prox}_{c}(z)=$
Simplified Lasso: $\lambda\|x\|$	$[\|x\|-\lambda]_{+} \operatorname{sign}(x)$
$\mu x \quad x \geq 0$	$[x-\mu]_{+}$
$\infty \quad x<0$	$\frac{-1+\sqrt{1+12 \lambda[x]_{+}}}{}$
$\mu \lambda x^{3} \quad x \geq 0$	
$\infty \quad x<0$	$\frac{x+\sqrt{x^{2}+4 \lambda}}{2}$
$-\lambda \log x$ $x>0$ ∞ $x \leq 0$ $\min \{\max \{x, 0\}, \eta\}$ $\delta_{[0, \eta] \cap \Re}$	

Tables for the Proximal Operator

$$
\operatorname{prox}_{c}(\mathbf{z})=\underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2 t}\|\mathbf{x}-\mathbf{z}\|^{2}+c(\mathbf{x})
$$

For $x \in \Re, c(x)=$	For $z \in \Re$ \& $t=1, \operatorname{prox}_{c}(z)=$
Simplified Lasso: $\lambda\|x\|$	$\|x\|-\lambda]_{+} \operatorname{sign}(x)$
$\begin{array}{ll} \hline \mu x & x \geq 0 \\ \infty & x<0 \end{array}$	$[x-\mu]_{+}$
$\begin{array}{ll} \hline \mu \lambda x^{3} & x \geq 0 \\ \infty & x<0 \end{array}$	$\frac{-1+\sqrt{1+12 \lambda[x]_{+}}}{6 \lambda}$
$\begin{array}{ll} -\lambda \log x & x>0 \\ \infty & x \leq 0 \end{array}$	$\frac{x+\sqrt{x^{2}+4 \lambda}}{2}$
$\delta_{[0, \eta] \cap}$	$\min \{\max \{x, 0\}, \eta\}$

For $x \in \Re, c(\mathbf{x})=$	For $z \in \Re \& t=1, \operatorname{prox}_{c}(\mathbf{z})=$
Constant: C	z
Affine: $\mathbf{a}^{\top} \mathbf{x}+b$	$\mathrm{z}-\mathrm{a}$
Convex quadratic: $\frac{1}{2} \mathrm{x}^{\boldsymbol{1}} \mathrm{Ax}+\mathrm{b}^{\boldsymbol{\prime}} \mathbf{x}+c$ (where $A \in S_{+}^{n}, \mathbf{b} \in \Re^{n}$)	$(A+l)^{-1}(\mathrm{z}-\mathrm{b})$

Tables for the Proximal Operator

$$
\operatorname{prox}_{c}(\mathbf{z})=\underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2 t}\|\mathbf{x}-\mathbf{z}\|^{2}+c(\mathbf{x})
$$

For $x \in \Re, c(x)=$	For $z \in \Re$ \& $t=1, \operatorname{prox}_{c}(z)=$
Simplified Lasso: $\lambda\|x\|$	$\|x\|-\lambda]_{+} \operatorname{sign}(x)$
$\begin{array}{ll} \mu x & x \geq 0 \\ \infty & x<0 \end{array}$	$[x-\mu]_{+}$
$\begin{array}{ll} \hline \mu \lambda x^{3} & x \geq 0 \\ \infty & x<0 \end{array}$	$\frac{-1+\sqrt{1+12 \lambda[x]_{+}}}{6 \lambda}$
$\begin{array}{ll} -\lambda \log x & x>0 \\ \infty & x \leq 0 \end{array}$	$\frac{x+\sqrt{x^{2}+4 \lambda}}{2}$
$\delta_{[0, \eta] \cap}$	$\min \{\max \{x, 0\}, \eta\}$

For $x \in \Re, c(\mathbf{x})=$	For $z \in \Re$ \& $t=1, \operatorname{prox}_{c}(\mathbf{z})=$		
Constant: C	z		
Affine: $\mathbf{a}^{\top} \mathbf{x}+b$	$\mathrm{z}-\mathrm{a}$		
$\begin{array}{\|l} \hline \text { Convex quadratic: } \frac{1}{2} \mathrm{x}^{\prime} A \mathrm{x}+\mathrm{b}^{\prime} \mathrm{x}+\mathrm{c} \\ \text { (where } A \in S_{+}^{n}, \mathrm{~b} \in \Re^{n} \text {) } \\ \hline \end{array}$	$(A+C)^{-1}(z-b)$		
Sum over components: $c(\mathbf{x})=\sum_{i=1}^{n} c_{i}\left(\mathbf{x}_{i}\right)$???		
$c(\lambda \mathbf{x}+\mathbf{a})$??		
$\lambda c\left(\frac{1}{\lambda} \mathbf{x}\right)$??		
$c(\mathbf{x})+\mathbf{a}^{T} \mathbf{x}+\frac{5}{2}\\|\mathbf{x}\\|^{2}+\gamma$??		
$c(A \mathbf{x}+\mathbf{b})$??		
${ }_{c}(\\|\mathbf{x}\\|)$??		

[^0]: ${ }^{8}$ Since r appears in the volume formula only in terms of r^{2}.

[^1]: ${ }^{2}$ Better criteria can be found using Lagrange duality theory, etc.

