Iterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for Lasso $\min f(x) + c(x)$

- Let $f(\mathbf{x}) = ||A\mathbf{x} \mathbf{y}||_2^2$, $c(\mathbf{x}) = ||\mathbf{x}||_1$ and $F(\mathbf{x}) = f(\mathbf{x}) + c(\mathbf{x})$
- Proximal Subgradient Descent Algorithm: Initialization: Find starting point $\mathbf{x}^{(0)}$
 - Let $\mathbf{z}^{(k+1)}$ be a next gradient descent iterate for $f(\mathbf{x}^k)$
 - Compute $\operatorname{prox}_{\|\mathbf{x}\|_1} \left(\mathbf{z}^{(k+1)} \right) = \mathbf{x}^{(k+1)} = \operatorname{argmin}_{\mathbf{x}} \frac{1}{2t} \|\mathbf{x} \mathbf{z}^{(k+1)}\|_2^2 + \lambda \|\mathbf{x}\|_1$ as follows:
 - If $z_i^{(k+1)} > \lambda t$, then $x_i^{(k+1)} = -\lambda t + z_i^{(k+1)}$ If $z_i^{(k+1)} < -\lambda t$, then $x_i^{(k+1)} = \frac{\lambda t + z_i^{(k+1)}}{\lambda t + z_i^{(k+1)}}$ If otherwise.
 - Set k = k + 1, until stopping criterion is satisfied (such as no significant changes in x^k w.r.t x^(k-1))

<u>২</u> 214 / 427

Tables for the Proximal Operator

$$prox_{c}(\mathbf{z}) = \arg\min_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

For $x \in \Re$, $c(x) =$	For $z \in \Re$ & $t = 1$, $prox_c(z) =$
Simplified Lasso: $\lambda x $	$[z - \lambda]_+ sign(z)$
$ \begin{array}{cc} \lambda x & x \ge 0 \\ \infty & x < 0 \end{array} $	$[z - \lambda]_+$
$ \begin{array}{ll} \lambda x^3 & x \ge 0 \\ \infty & x < 0 \end{array} $	$\frac{-1+\sqrt{1+12\lambda[z]_+}}{6\lambda}$
$\begin{array}{cc} -\lambda \log x & x > 0 \\ \infty & x \le 0 \end{array}$	$\frac{z + \sqrt{z^2 + 4\lambda}}{2}$
$\begin{array}{ll} \lambda x & 0 \le x \le \alpha \\ \infty & \text{otherwise} \end{array}$	$\min\{\max\{z-\lambda,0\},\alpha\}$

we have already derived this first entry in the table

Since x^3 is differentiable, the penalization of \lambda on z is much softer

200

215 / 427

Tables for the Proximal Operator

$$prox_{c}(\mathbf{z}) = \operatorname*{argmin}_{\mathbf{x}} rac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

For $x \in \Re$, $c(x) =$	For $z \in \Re$ & $t = 1$, $prox_c(z) =$
Simplified Lasso: $\lambda x $	$[z - \lambda]_+ sign(z)$
$ \begin{array}{ccc} \lambda x & x \ge 0 \\ \infty & x < 0 \end{array} $	$[z - \lambda]_+$
$ \begin{array}{cc} \lambda x^3 & x \ge 0 \\ \infty & x < 0 \end{array} $	$\frac{-1+\sqrt{1+12\lambda[z]_+}}{6\lambda}$
$ \begin{array}{cc} -\lambda \log x & x > 0 \\ \infty & x \le 0 \end{array} $	$\frac{z + \sqrt{z^2 + 4\lambda}}{2}$
$\begin{array}{ll} \lambda x & 0 \le x \le \alpha \\ \infty & \text{otherwise} \end{array}$	$\min\{\max\{z-\lambda,0\},\alpha\}$

For $x \in \Re$, $c(\mathbf{x}) =$	For $z \in \Re$ & $t = 1$, $prox_c(\mathbf{z}) =$
Constant: c	Z
Affine: $\mathbf{a}^T \mathbf{x} + b$	$\mathbf{z} - \mathbf{a}$
Convex quadratic: $\frac{1}{2}\mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$	$(A+I)^{-1}(\mathbf{z}-\mathbf{b})$
(where $A\in S^n_+,\mathbf{b}\in \Re^n$)	

Tables for the Proximal Operator

$$prox_{c}(\mathbf{z}) = \operatorname*{argmin}_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

For $x \in \Re$, $c(x) =$	For $z \in \Re$ & $t = 1$, $prox_c(z) =$
Simplified Lasso: $\lambda x $	$[z - \lambda]_+ sign(z)$
$ \begin{array}{cc} \lambda x & x \ge 0 \\ \infty & x < 0 \end{array} $	$[z - \lambda]_+$
$ \begin{array}{ll} \lambda x^3 & x \ge 0 \\ \infty & x < 0 \end{array} $	$\frac{-1+\sqrt{1+12\lambda[z]_+}}{6\lambda}$
$\begin{array}{cc} -\lambda \log x & x > 0 \\ \infty & x \le 0 \end{array}$	$\frac{z + \sqrt{z^2 + 4\lambda}}{2}$
$ \begin{array}{ll} \lambda x & 0 \le x \le \alpha \\ \infty & \text{otherwise} \end{array} $	$\min\{\max\{z-\lambda,0\},\alpha\}$

For $x \in \Re$, $c(\mathbf{x}) =$	For $z \in \Re$ & $t = 1$, $prox_c(\mathbf{z}) =$
Constant: c	Z
Affine: $\mathbf{a}^T \mathbf{x} + b$	$\mathbf{z} - \mathbf{a}$
Convex quadratic: $\frac{1}{2}\mathbf{x}^{T}A\mathbf{x} + \mathbf{b}^{T}\mathbf{x} + c$ (where $A \in S_{+}^{n}, \mathbf{b} \in \Re^{n}$)	$(A+I)^{-1}(\mathbf{z}-\mathbf{b})$
Sum over components: $c(\mathbf{x}) = \sum_{i=1}^{n} c_i(\mathbf{x}_i)$	777
$c(\lambda \mathbf{x} + \mathbf{a})$??
$\lambda c \left(\frac{1}{\lambda} \mathbf{x}\right)$??
$c(\mathbf{x}) + \mathbf{a}^T \mathbf{x} + \frac{\beta}{2} \ \mathbf{x}\ ^2 + \gamma$??
$c(A\mathbf{x} + \mathbf{b})$??
$c(\ \mathbf{x}\)$??

Can we recover the prox of the composition of function as a composition of prox operations October 26, 2018 215 / 427 Calculus for the Proximal Operator: See https://archive.siam.org/books/mo25/mo25_ch6.pdf

$$prox_{c}(\mathbf{z}) = \operatorname*{argmin}_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

$c(\mathbf{x}) =$	For $t = 1$, $prox_c(\mathbf{z}) =$
Sum over components: $c(\mathbf{x}) = \sum_{i=1}^{n} c_i(\mathbf{x}_i)$	Product over components: $prox_c(\mathbf{z}) = \prod_{i=1}^{n} prox_{c_i}(\mathbf{z}_i)$
where $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]$	where $\mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n]$
$c(\lambda \mathbf{x} + \mathbf{a})$	$rac{1}{\lambda} \left[prox_{\lambda^2 c}(\lambda \mathbf{z} + \mathbf{a}) - \mathbf{a} ight]$
where $\lambda \neq 0$ and <i>c</i> is proper	
$\lambda c \left(\frac{1}{\lambda} \mathbf{x}\right)$	$\lambda \operatorname{prox}_{c/\lambda}\left(\frac{1}{\lambda}\mathbf{z}\right)$
where $\dot{\lambda} \neq 0$ and <u>c is prope</u> r	- ()
$c(\mathbf{x}) + \mathbf{a}^T \mathbf{x} + \frac{\beta}{2} \ \mathbf{x}\ ^2 + \gamma$	$prox_{\frac{1}{\beta+1}c}\left(\frac{\mathbf{z}-\mathbf{a}}{\gamma+1}\right)$
where $eta > 0$, $\gamma \in \Re$, c is proper	
$c(A\mathbf{x} + \mathbf{b})$	$\mathbf{z} + \frac{1}{\alpha} A^{T} \left(prox_{\alpha c} (A\mathbf{z} + \mathbf{b}) - A\mathbf{z} - \mathbf{b} \right)$
where c is proper closed and convex, $\mathbf{b} \in \Re^n$, $AA^T = \alpha I$, $\alpha > 0$	
$c(\ \mathbf{x}\)$	$prox_{c}(\ \mathbf{z}\) \stackrel{\mathbf{z}}{\ \mathbf{z}\ } \qquad \mathbf{z} \neq 0$
	$\{\mathbf{u} \ \mathbf{u}\ = \frac{\mathbf{prox}_c(0)}{\mathbf{prox}_c(0)} \mathbf{z} = 0$
where $\mathbf{b} \in \Re^n$, $AA^T = \alpha I$, $\alpha > 0$	人口 医水管管 医外外 医下颌 化乙烯

Recall

$$prox_{c}(\mathbf{z}) = \arg\min_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

200

217 / 427

October 26, 2018

It's special cases are:

• Gradient Descent \Rightarrow C(X) = constant

Recall

$$prox_{c}(\mathbf{z}) = \arg\min_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

It's special cases are:

- **()** Gradient Descent $\Rightarrow c(\mathbf{x}) = 0$
- Projected Gradient Descent \Rightarrow c(x) = Indicator function of the constraint function g(x) <=0

: • • **ን** ዓ ር • 217 / 427

Recall

$$prox_{c}(\mathbf{z}) = \arg\min_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

900

217 / 427

October 26, 2018

It's special cases are:

- **()** Gradient Descent $\Rightarrow c(\mathbf{x}) = 0$
- **2** Projected Gradient Descent $\Rightarrow c(\mathbf{x}) = I_{\mathcal{C}}(\mathbf{x})$ (Example:

Recall

$$prox_{c}(\mathbf{z}) = \operatorname*{argmin}_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

and c(x) = sum

of indicators

October 26, 2018

200

217 / 427

It's special cases are:

- Gradient Descent $\Rightarrow c(\mathbf{x}) = 0$
- **2** Projected Gradient Descent $\Rightarrow c(\mathbf{x}) = l_{\mathcal{C}}(\mathbf{x})$ (Example: $= \sum_{i} l_{g_i}(\mathbf{x})$)
- Solution Alternating Projection/Proximal Minimization: $f(\mathbf{x}) = 0$
- 4 Alternating Direction Method of Multipliers
- Special Cases for Specific Objectives
 - LASSO: (Fast) Iterative Shrinkage Thresholding Algorithm (ISTA/FISTA)

Case 2: Projection Methods

October 26, 2018 218 / 427

ж.

200

F 4 3 F

→ 4 3

Demystifying the Projection Step

$$\mathbf{x}_{p}^{(k+1)} = \operatorname{prox}_{l_{\mathcal{C}}}(\mathbf{x}_{u}^{(k+1)}) = \operatorname{argmin}_{\mathbf{x}} \left\| \mathbf{x}_{u}^{(k+1)} - \mathbf{x} \right\|_{2}^{2} + \underline{I_{\mathcal{C}}}(\mathbf{x})$$

= $\operatorname{argmin}_{\mathbf{x} \in \mathcal{C}} \left\| \mathbf{x}_{u}^{(k+1)} - \mathbf{x} \right\|_{2}^{2} = \operatorname{Proj}_{\mathbf{C}}(\mathbf{z})$ this term dominates

3 996

人口下 人間下 人名卡人 医下口

Demystifying the Projection Step

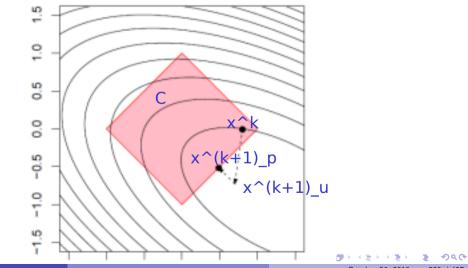
$$\begin{aligned} \mathbf{x}_{p}^{(k+1)} &= prox_{l_{\mathcal{C}}}(\mathbf{x}_{u}^{(k+1)}) &= \arg\min_{\mathbf{x}} \left\| \mathbf{x}_{u}^{(k+1)} - \mathbf{x} \right\|_{2}^{2} + l_{\mathcal{C}}(\mathbf{x}) \\ &= \arg\min_{\mathbf{x}\in\mathcal{C}} \left\| \mathbf{x}_{u}^{(k+1)} - \mathbf{x} \right\|_{2}^{2} &= P_{\mathcal{C}}(\mathbf{x}_{u}^{(k+1)}) \end{aligned}$$

October 26, 2018 219 / 427

3 996

人口下 人間下 人名卡人 医下口

Projected Gradient Descent: Illustrated



October 26, 2018 220 / 427

Algorithm: Projected Gradient Descent (We use \mathbf{x}_{u}^{k} instead of \mathbf{z}^{k})

Find a starting point
$$\mathbf{x}_p^0 \in C$$
.
Set $k = 1$
repeat
1. Choose a step size $t^k \propto 1/\sqrt{k}$.
2. Set $\mathbf{x}_u^k = \mathbf{x}_p^{k-1} - t^k \nabla f(\mathbf{x}_p^{k-1})$.
3. Set $\left\|\mathbf{x}_p^k = \arg\min_{\mathbf{z}\in C} \left\|\mathbf{x}_u^k - \mathbf{z}\right\|_2^2$.
4. Set $k = k + 1$.
until stopping criterion (such as $||\mathbf{x}_p^k - \mathbf{x}_p^{k-1}|| \le \epsilon$ or $f(\mathbf{x}_p^k) > f(\mathbf{x}_p^{k-1})$) is satisfied^a

^aBetter criteria can be found using Lagrange duality theory, etc.

Figure 12: The projected gradient descent algorithm.

900

221 / 427

Table of Orthogonal Projections: See https://archive.siam.org/books/mo25_ch6.pdf

$$P_{C}(\mathbf{z}) = \operatorname{prox}_{I_{C}}(\mathbf{z}) = \operatorname{argmin}_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + I_{C}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{x} \in C} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2}$$

Observation: All expressions are about dropping perpendicular from z to the constaint set

Set $C =$	For $t = 1$, $P_C(\mathbf{z}) =$	Assumptions
ℜ ^	$[\mathbf{z}]_+$	
$\operatorname{Box}[\mathbf{l},\mathbf{u}]$	$P_{\mathcal{C}}(\mathbf{z})_{i} = \min\{\max\{z_{i}, l_{i}\}, u_{i}\}$	$l_i \leq u_i$
$\operatorname{Ball}[\mathbf{c}, \mathbf{r}]$	$\mathbf{c} + \frac{r}{\max\{\ \mathbf{z} - \mathbf{c}\ _2, r\}} (\mathbf{z} - \mathbf{c}) \text{ if max} \doteq r, P(z) = z$	$\ .\ _2$ ball, centre $\mathbf{c} \in \Re^n$ & radius $r > 0$
${\mathbf{x} A\mathbf{x} = \mathbf{b}}$	$\mathbf{z} = A'(AA')^{-1}(Az - b)$ derived on subsequent slides	$A\in \Re^{m imes n}$, $\mathbf{b}\in \Re^m$, A is full row rank
$\{\mathbf{x} \mathbf{a}^T\mathbf{x} \leq b\}$	$\mathbf{Z} = \frac{ \mathbf{a}'\mathbf{x} - b _+}{\ \mathbf{a}\ ^2}$	$0 \neq \mathbf{a} \in \Re^n \ b \in \Re$
Δ_n	$[\mathbf{z}-\mu^*\mathbf{e}]_+$ where $\mu^*\in\Re$ satisfies $\mathbf{e}^{\mathcal{T}}[\mathbf{z}-\mu^*\mathbf{e}]_+=1$	
$H_{\mathbf{a},b} \cap \operatorname{Box}[\mathbf{l},\mathbf{u}]$	$ \begin{aligned} & \mathcal{P}_{\text{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z}-\boldsymbol{\mu}^*\mathbf{a}) \text{ where } \boldsymbol{\mu}^* \in \Re \text{ satisfies} \\ & \mathbf{a}^T \mathcal{P}_{\text{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z}-\boldsymbol{\mu}^*\mathbf{a}) = b \end{aligned} $	$0 \neq \mathbf{a} \in \Re^n \ \mathbf{b} \in \Re$
$H^{-}_{\mathbf{a},b} \cap \operatorname{Box}[\mathbf{l},\mathbf{u}]$	$ \begin{array}{ll} P_{\text{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z}) & \mathbf{a}^{T} P_{\text{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z}) \leq b \\ P_{\text{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z} - \lambda^{*} \mathbf{a}) & \mathbf{a}^{T} P_{\text{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z}) > b \\ \text{where } \lambda^{*} \in \Re \text{ satisfies } & \mathbf{a}^{T} P_{\text{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z} - \lambda^{*} \mathbf{a}) = b \& \lambda^{*} > 0 \end{array} $	$0 \neq \mathbf{a} \in \Re^n \ \boldsymbol{b} \in \Re$
$B_{\ .\ _1}[0,\alpha]$	$ \begin{array}{c} \mathbf{z} & \ \mathbf{z}\ _{1} \leq \alpha \\ [\mathbf{z} - \lambda^{*} \mathbf{e}]_{+} \odot \textit{sign}(\mathbf{z}) & \ \mathbf{z}\ _{1} > \alpha \\ \text{where } \lambda^{*} > 0, \ \& \ [\mathbf{z} - \lambda^{*} \mathbf{e}]_{+} \odot \textit{sign}(\mathbf{z}) = \alpha \end{array} $	$\alpha > 0$
		October 26, 2018 222 / 427

Easy to Project Sets C (with closed form solutions)

- Solution set of a linear system $C = {\mathbf{x} \in \Re^n : A^T \mathbf{x} = \mathbf{b}}$
- Affine images $\mathcal{C} = \{A\mathbf{x} + \mathbf{b} : \mathbf{x} \in \Re^n\}$
- Nonnegative orthant C = {x ∈ ℜⁿ : x ≥ 0}. It may be hard to project on arbitrary polyhedron.

October 26, 2018

• Norm balls $\mathcal{C} = \{\mathbf{x} \in \Re^n : \|\mathbf{x}\|_p \leq 1\}$, for $p = 1, 2, \infty$

Projected Gradient Descent for Affine Constraint Set C

Solution set of a linear system $C = {\mathbf{x} \in \Re^n : A^T \mathbf{x} = \mathbf{b}}$

$$\mathbf{x}_{p}^{(k+1)} = P_{\mathcal{C}}(\mathbf{x}_{u}^{(k+1)}) = \arg\min_{\mathcal{A}^{T}\mathbf{z}=\mathbf{b}} \frac{1}{2} \left\| \mathbf{x}_{u}^{(k+1)} - \mathbf{z} \right\|_{2}^{2}$$

For $\mathbf{z}, \mathbf{x} \in \mathbb{R}^n$, A as an $n \times m$ matrix, **b** is a vector of size *m*, consider the slightly more general problem (50) with B as an $n \times n$ matrix:

$$\min_{\mathbf{x}\in\Re^n} \frac{\frac{1}{2}(\mathbf{x}-\mathbf{z})^T B(\mathbf{x}-\mathbf{z})}{\mathbf{x}^T \mathbf{x} = \mathbf{b}}$$

For projected gradient descent, B = 1

(50)

Projected Gradient Descent for Affine Constraint Set C

Solution set of a linear system $C = {\mathbf{x} \in \Re^n : A^T \mathbf{x} = \mathbf{b}}$

$$\mathbf{x}_{\rho}^{(k+1)} = P_{\mathcal{C}}(\mathbf{x}_{u}^{(k+1)}) = \arg\min_{\mathcal{A}^{T}\mathbf{z}=\mathbf{b}} \frac{1}{2} \left\| \mathbf{x}_{u}^{(k+1)} - \mathbf{z} \right\|_{2}^{2}$$

For $\mathbf{z}, \mathbf{x} \in \mathbb{R}^n$, A as an $n \times m$ matrix, **b** is a vector of size *m*, consider the slightly more general problem (50) with B as an $n \times n$ matrix:

$$\min_{\mathbf{x}\in\Re^{n}} \quad \frac{1}{2}(\mathbf{x}-\mathbf{z})^{T}B(\mathbf{x}-\mathbf{z})
\text{subject to} \quad A^{T}\mathbf{x} = \mathbf{b}$$
(50)

900

224 / 427

October 26, 2018

For projected gradient descent, B = I. Further, if n = 2 and m = 1, the minimization problem (50) amounts to finding a point \mathbf{x}^* on a line $a_{11}x_1 + a_{12}x_2 = b$ that is closest to \mathbf{z} .

Projected Gradient Descent for Affine Constraint Set ${\mathcal C}$

• Consider minimization of the modified objective function T_{1}

$$L(\mathbf{z},\lambda) = \frac{1}{2}(\mathbf{x}-\mathbf{z})' B(\mathbf{x}-\mathbf{z}) + \lambda' (A'\mathbf{z}-\mathbf{b}).$$

$$\min_{\mathbf{x}\in\mathbb{R}^{n},\lambda\in\mathbb{R}^{m}} \quad \frac{1}{2}(\mathbf{x}-\mathbf{z})^{\mathsf{T}}\mathcal{B}(\mathbf{x}-\mathbf{z}) + \lambda^{\mathsf{T}}(\mathcal{A}^{\mathsf{T}}\mathbf{x}-\mathbf{b})$$
(51)

The function $L(\mathbf{x}, \lambda)$ is called the lagrangian and involves the lagrange multiplier $\lambda \in \Re^m$. • A sufficient condition for optimality of $L(\mathbf{x}, \lambda)$ at a point $L(\mathbf{x}^*, \lambda^*)$ is that $\nabla L(\mathbf{x}^*, \lambda^*) = 0$ and $\nabla^2 L(\mathbf{x}^*, \lambda^*) \succ 0$. For this specific problem:

$$\nabla \mathcal{L}(\mathbf{x}^*, \lambda^*) = \begin{bmatrix} B\mathbf{x}^* - \frac{1}{2}(B + B^T)\mathbf{z} + A\lambda^* \\ A^T\mathbf{x}^* - \mathbf{b} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

and

$$\nabla^2 \mathcal{L}(\mathbf{x}^*, \lambda^*) = \begin{bmatrix} B & A \\ A^T & 0 \end{bmatrix} \succ 0$$

October 26, 2018 225 / 427

Projected Gradient Descent for Affine Constraint Set $\ensuremath{\mathcal{C}}$

- The point $(\mathbf{x}^*, \lambda^*)$ must therefore satisfy, $A^T \mathbf{x}^* = \mathbf{b}$ and $A\lambda^* = -B\mathbf{x}^* + \frac{1}{2}(B + B^T)\mathbf{z}$.
- Recap: If B is taken to be the identity matrix, n = 2 and m = 1, the minimization problem (50) amounts to finding a point \mathbf{x}^* on a line $a_{11}x_1 + a_{12}x_2 = b$ that is closest to \mathbf{z} .
- From geometry, the point on a line closest to z is the point of intersection p^* of a perpendicular (or least possible¹⁰ obtuse angle) from z to the line. However, the solution for the minimum of (51), for these conditions coincide with p^* and are given by:

$$x_1^* = z_1 - \frac{a_{11}(a_{11}z_1 + a_{12}z_2 - b)}{(a_{11})^2 + (a_{12})^2} \quad x_2^* = z_2 - \frac{a_{12}(a_{11}z_1 + a_{12}z_2 - b)}{(a_{11})^2 + (a_{12})^2}$$

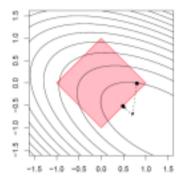
That is, for n = 2 and m = 1, the solution to (51) is the same as the solution to (50)

• For general *n* and *m*, with $\mathbf{z} \equiv \mathbf{x}_{u}^{(k+1)}$,

$$\mathbf{x}^{*} = \mathbf{x}_{\rho}^{(k+1)} = P_{\mathcal{C}}(\mathbf{x}_{u}^{(k+1)}) = \arg\min_{A^{T}\mathbf{x}=\mathbf{b}} \frac{1}{2} \left\| \mathbf{x}_{u}^{(k+1)} - \mathbf{x} \right\|_{2}^{2} = \mathbf{x}_{u}^{(k+1)} - A(A^{T}A)^{-1}(A^{T}\mathbf{x}_{u}^{(k+1)} - \mathbf{b})$$

¹⁰See following slides for some elaboration on geometry of the projection

Projected Gradient Descent: Illustrated and Summarized



- Illustration of Projected Gradient Descent on Quadratic Objective with bounded affine (Polyhedral) constraint set
- The line joining point of projection $\mathbf{x}_p^k = P_C(\mathbf{x}_u^k)$ to \mathbf{x}_u^k forms least possible obtuse angle^a with line joining $\mathbf{x}_p^k = P_C(\mathbf{x}_u^k)$ to any point $\mathbf{y} \in C$.

^aSee following slides for some elaboration on geometry of the projecti

: ৩৭৫ 227 / 427

Table of Orthogonal Projections: See https://archive.siam.org/books/mo25/mo25_ch6.pdf

$$P_{C}(\mathbf{z}) = \operatorname{prox}_{I_{C}}(\mathbf{z}) = \operatorname{argmin}_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + I_{C}(\mathbf{x}) = \operatorname{argmin}_{\mathbf{x} \in C} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2}$$

Set $C =$	For $t = 1$, $P_{C}(\mathbf{z}) =$	Assumptions
ℜ <u>n</u>	$[\mathbf{z}]_+$	
Box[l, u]	$P_{C}(\mathbf{z})_{i} = min\{max\{z_{i}, l_{i}\}, u_{i}\}$	$I_i \leq u_i$
$\operatorname{Ball}[\mathbf{c}, r]$	$\mathbf{c} + rac{r}{\max\{\ \mathbf{z} - \mathbf{c}\ _2, r\}} (\mathbf{z} - \mathbf{c})$	$\ .\ _2$ ball, centre $\mathbf{c} \in \Re^n$ & radius $r > 0$
${\mathbf{x} A\mathbf{x}=\mathbf{b}}$	$\mathbf{z} - A' (AA')^{-1} (Az - \mathbf{b})$	$A\in \Re^{m imes n}$, $\mathbf{b}\in \Re^m$, A is full row rank
$\{\mathbf{x} \mathbf{a}^T\mathbf{x} \le b\}$	$\mathbf{z} - rac{[\mathbf{a}'\mathbf{x} - b]_+}{\ \mathbf{a}\ ^2}$	$0 \neq \mathbf{a} \in \Re^n \ b \in \Re$
Δ_n	$[\mathbf{z}-\mu^*\mathbf{e}]_+$ where $\mu^*\in\Re$ satisfies $\mathbf{e}^{ T}[\mathbf{z}-\mu^*\mathbf{e}]_+=1$	
$H_{\mathbf{a},b} \cap \operatorname{Box}[\mathbf{l},\mathbf{u}]$	$ \begin{array}{l} P_{\text{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z} - \mu^* \mathbf{a}) \text{ where } \mu^* \in \Re \text{ satisfies} \\ \mathbf{a}^T P_{\text{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z} - \mu^* \mathbf{a}) = b \end{array} $	$0 \neq \mathbf{a} \in \Re^n \ \mathbf{b} \in \Re$
$H^{-}_{\mathbf{a},\boldsymbol{b}}\cap \operatorname{Box}[\mathbf{l},\mathbf{u}]$	$ \begin{array}{ll} P_{\mathrm{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z}) & \mathbf{a}^{T} P_{\mathrm{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z}) \leq b \\ P_{\mathrm{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z}-\lambda^{*}\mathbf{a}) & \mathbf{a}^{T} P_{\mathrm{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z}) > b \\ \text{where } \lambda^{*} \in \Re \text{ satisfies } & \mathbf{a}^{T} P_{\mathrm{Box}[\mathbf{l},\mathbf{u}]}(\mathbf{z}-\lambda^{*}\mathbf{a}) = b \ \& \ \lambda^{*} > 0 \end{array} $	$0 \neq \mathbf{a} \in \Re^n \ b \in \Re$
$\pmb{B}_{\parallel \cdot \parallel_1}[0,\alpha]$	$ \begin{aligned} \mathbf{z} & \ \mathbf{z}\ _{1} \leq \alpha \\ [\mathbf{z} - \lambda^{*} \mathbf{e}]_{+} \odot sign(\mathbf{z}) & \ \mathbf{z}\ _{1} > \alpha \\ \text{where } \lambda^{*} > 0, \ \& \ [\mathbf{z} - \lambda^{*} \mathbf{e}]_{+} \odot sign(\mathbf{z}) = \alpha \end{aligned} $	$\alpha > 0$

October 26, 2018 228 / 427

Elaboration on the Geometry of the Projected Gradient Descent Right angle FOR Affine Set/Unbounded sets Least possible obtuse angle FOR Polyhedron/Bounded Sets

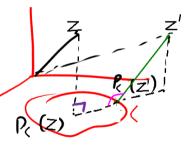
> : ৩৭৫ 229 / 427

• Claim: If $P_{\mathcal{C}}(\mathbf{z})$ is a projection of \mathbf{z} , then

$$\left(\mathbf{y} - P_{\mathcal{C}}(\mathbf{z})\right)^{T} \left(\mathbf{z} - P_{\mathcal{C}}(\mathbf{z})\right) \leq 0, \, \forall \, \mathbf{y} \in \mathcal{C}$$

• That is, the angle between $(\mathbf{y} - P_{\mathcal{C}}(\mathbf{z}))$ and $(\mathbf{z} - P_{\mathcal{C}}(\mathbf{z}))$ is obtuse (or right-angled for the projected point), $\forall \mathbf{y} \in C$

Proof of this claim is on following slides for your reading



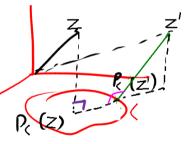
• Claim: If $P_{\mathcal{C}}(\mathbf{z})$ is a projection of \mathbf{z} , then

$$\left(\mathbf{y} - P_{\mathcal{C}}(\mathbf{z})\right)^{\mathsf{T}} \left(\mathbf{z} - P_{\mathcal{C}}(\mathbf{z})\right) \leq 0, \, \forall \, \mathbf{y} \in \mathcal{C}$$

• That is, the angle between $(\mathbf{y} - P_{\mathcal{C}}(\mathbf{z}))$ and $(\mathbf{z} - P_{\mathcal{C}}(\mathbf{z}))$ is obtuse (or right-angled for the projected point), $\forall \mathbf{y} \in \mathcal{C}$

For the more general *prox_C* operator,

$$\left(\mathbf{y} - \operatorname{prox}_{C}(\mathbf{z})\right)^{T} \left(\mathbf{z} - \operatorname{prox}_{C}(\mathbf{z})\right) \leq 0, \forall \mathbf{y}$$
 (52)



• Claim: If $P_{\mathcal{C}}(\mathbf{z})$ is a projection of \mathbf{z} , then

$$\left(\mathbf{y} - P_{\mathcal{C}}(\mathbf{z})\right)^{\mathsf{T}} \left(\mathbf{z} - P_{\mathcal{C}}(\mathbf{z})\right) \leq 0, \, \forall \, \mathbf{y} \in \mathcal{C}$$

• That is, the angle between $(\mathbf{y} - P_{\mathcal{C}}(\mathbf{z}))$ and $(\mathbf{z} - P_{\mathcal{C}}(\mathbf{z}))$ is obtuse (or right-angled for the projected point), $\forall \mathbf{y} \in \mathcal{C}$

For the more general *prox_C* operator,

$$(\mathbf{y} - \mathbf{prox}_{C}(\mathbf{z}))^{T} (\mathbf{z} - \mathbf{prox}_{C}(\mathbf{z})) \leq 0, \forall \mathbf{y}$$
 (52)

In fact, the conditions in (53), (54) and (55) can be proved to be equivalent^a (when c is assumed to be convex)

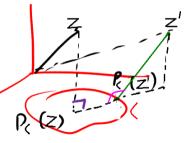
$$(\mathbf{y} - \mathbf{z}^*)' (\mathbf{z} - \mathbf{z}^*) \le 0, \forall \mathbf{y}$$
 (53)

$$\mathbf{z}^* = \operatorname{prox}_{c}(\mathbf{z}) \tag{54}$$

$$\mathbf{z} - \mathbf{z}^* \in \partial \boldsymbol{c}(\mathbf{z}^*) \tag{55}$$

^aTheorem 6.30 of https://archive.ciam.org/books/mo25/mo25 ch6 pdf October 26, 2018

0.0



Proof for $\left< \mathbf{y} - \mathit{P}_{\mathcal{C}}(\mathbf{z}), \mathbf{z} - \mathit{P}_{\mathcal{C}}(\mathbf{z}) \right> \leq 0$

• To be more general, let us consider an inner product $\langle a,b\rangle$ instead of $a^{\mathcal{T}}b$

< D > < m

3 996

231 / 427

• Let
$$\mathbf{y}^* = (1 - \alpha)P_{\mathcal{C}}(\mathbf{z}) + \alpha \mathbf{y}$$
, for some $\alpha \in (0, 1)$, and $\mathbf{y} \in \mathcal{C}$
 $\Rightarrow \mathbf{y}^* = P_{\mathcal{C}}(\mathbf{z}) + \alpha (\mathbf{y} - P_{\mathcal{C}}(\mathbf{z})), \ \mathbf{y}^* \in \mathcal{C}$
 \mathbf{z}^*
 $P_{\mathcal{C}}(\mathbf{z}) = \operatorname{argmin}_{\mathbf{y} \in \mathcal{C}} \|\mathbf{z} - \mathbf{y}\|_2^2$
 \Rightarrow
 $P_{\mathcal{C}}(\mathbf{z}) = \operatorname{argmin}_{\mathbf{y} \in \mathcal{C}} \|\mathbf{z} - \mathbf{y}\|_2^2$

Proof for
$$\langle \mathbf{y} - P_{\mathcal{C}}(\mathbf{z}), \mathbf{z} - P_{\mathcal{C}}(\mathbf{z}) \rangle \leq 0$$

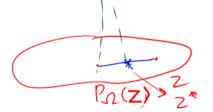
 \bullet To be more general, let us consider an inner product $\langle {\bf a}, {\bf b} \rangle$ instead of ${\bf a}^T {\bf b}$

• Let $\mathbf{y}^* = (1 - \alpha) P_{\mathcal{C}}(\mathbf{z}) + \alpha \mathbf{y}$, for some $\alpha \in (0, 1)$, and $\mathbf{y} \in \mathcal{C}$ $\implies \mathbf{y}^* = P_{\mathcal{C}}(\mathbf{z}) + \alpha (\mathbf{y} - P_{\mathcal{C}}(\mathbf{z}))$, $\mathbf{y}^* \in \mathcal{C}$

$$\begin{aligned} & \mathcal{P}_{\mathcal{C}}(\mathbf{z}) = \operatorname{argmin}_{\mathbf{y} \in \mathcal{C}} \|\mathbf{z} - \mathbf{y}\|_{2}^{2} \\ & \Rightarrow \left\|\mathbf{z} - \mathcal{P}_{\mathcal{C}}(\mathbf{z})\right\|^{2} \leq \|\mathbf{z} - \mathbf{y}^{*}\|^{2} \end{aligned}$$

900

231 / 427



Proof for $\left< \mathbf{y} - \mathit{P}_{\mathcal{C}}(\mathbf{z}), \mathbf{z} - \mathit{P}_{\mathcal{C}}(\mathbf{z}) \right> \leq 0$

$$\begin{aligned} \|\mathbf{z} - \mathbf{y}^*\|^2 \\ &= \left\|\mathbf{z} - \left(\mathcal{P}_{\mathcal{C}}(\mathbf{z}) + \alpha(\mathbf{y} - \mathcal{P}_{\mathcal{C}}(\mathbf{z}))\right)\right\|^2 \\ &= \left\|\mathbf{z} - \mathcal{P}_{\mathcal{C}}(\mathbf{z})\right\|^2 + \alpha^2 \left\|\mathbf{y} - \mathcal{P}_{\mathcal{C}}(\mathbf{z})\right\|^2 - 2\alpha \left\langle \mathbf{z} - \mathcal{P}_{\mathcal{C}}(\mathbf{z}), \mathbf{y} - \mathcal{P}_{\mathcal{C}}(\mathbf{z})\right\rangle \\ &\geq \left\|\mathbf{z} - \mathcal{P}_{\mathcal{C}}(\mathbf{z})\right\|^2 \end{aligned}$$

$$\implies \left\langle \mathbf{z} - \mathcal{P}_{\mathcal{C}}(\mathbf{z}), \mathbf{y} - \mathcal{P}_{\mathcal{C}}(\mathbf{z}) \right\rangle \leq \frac{\alpha}{2} \left\| \mathbf{y} - \mathcal{P}_{\mathcal{C}}(\mathbf{z}) \right\|^{2}, \, \forall \alpha \in (0, 1)$$

• Thus, the LHS can either be 0 or a negative value. Any positive value of the LHS will lead to a contradiction for some small $\alpha\to 0$

• Hence, we proved that
$$ig\langle \mathbf{y} - \mathcal{P}_{\mathcal{C}}(\mathbf{z}), \mathbf{z} - \mathcal{P}_{\mathcal{C}}(\mathbf{z}) ig
angle \leq 0$$

A D > A B > A B

Proof for $\left< \mathbf{y} - \mathit{P}_{\mathcal{C}}(\mathbf{z}), \mathbf{z} - \mathit{P}_{\mathcal{C}}(\mathbf{z}) \right> \leq 0$

• We can also prove that if $\langle \mathbf{z} - \mathbf{z}^*, \mathbf{y} - \mathbf{z}^* \rangle \leq 0$, $\forall \mathbf{y} \in \mathcal{C}$ s.t. $\mathbf{y} \neq \mathbf{z}^*$, and $\mathbf{z}^* \in \mathcal{C}$, then

$$\mathbf{z}^* = \mathcal{P}_{\mathcal{C}}(\mathbf{z}) = \arg\min_{ar{\mathbf{y}} \in \mathcal{C}} \|\mathbf{z} - ar{\mathbf{y}}\|_2^2$$

• Consider
$$\|\mathbf{z} - \mathbf{y}\|^2 - \|\mathbf{z} - \mathbf{z}^*\|^2$$

= $\|\mathbf{z} - \mathbf{z}^* + (\mathbf{z}^* - \mathbf{y})\|^2 - \|\mathbf{z} - \mathbf{z}^*\|^2$
= $\|\mathbf{z} - \mathbf{z}^*\|^2 + \|\mathbf{y} - \mathbf{z}^*\|^2 - 2\langle \mathbf{z} - \mathbf{z}^*, \mathbf{y} - \mathbf{z}^* \rangle - \|\mathbf{z} - \mathbf{z}^*\|^2$
= $\|\mathbf{y} - \mathbf{z}^*\|^2 - 2\langle \mathbf{z} - \mathbf{z}^*, \mathbf{y} - \mathbf{z}^* \rangle$
> 0

•
$$\implies$$
 $\|\mathbf{z} - \mathbf{y}\|^2 > \|\mathbf{z} - \mathbf{z}^*\|^2$, $\forall \mathbf{y} \in \mathcal{C}$ s.t. $\mathbf{y} \neq \mathbf{z}^*$

• This proves that $\mathbf{z}^* = \mathcal{P}_{\mathcal{C}}(\mathbf{z})$

• • • • • • • • • • •

Case 1: Projected (Gradient) Descent

- We can find Δx as the change in x along some steepest descent direction of f without constraints
- Thus, let $\mathbf{x}_{\mu}^{k+1} = \mathbf{z}^{k+1} = \mathbf{x}^{k} + \Delta \mathbf{x}$ iterate reduces $f(\mathbf{x})$ without constraints
- To find the proximal update when $c(\mathbf{x}) = I_{\mathcal{C}}(\mathbf{x})$, we

Case 1: Projected (Gradient) Descent

- We can find Δx as the change in x along some steepest descent direction of f without constraints
- Thus, let $\mathbf{x}_{\mu}^{k+1} = \mathbf{z}^{k+1} = \mathbf{x}^{k} + \Delta \mathbf{x}$ iterate reduces $f(\mathbf{x})$ without constraints
- To find the proximal update when $c(\mathbf{x}) = I_{\mathcal{C}}(\mathbf{x})$, we project \mathbf{x}_{u}^{k+1} onto \mathcal{C} to get the projected point \mathbf{x}_{p}^{k+1} by solving:

Case 1: Projected (Gradient) Descent

- We can find Δx as the change in x along some steepest descent direction of f without constraints
- Thus, let $\mathbf{x}_{u}^{k+1} = \mathbf{z}^{k+1} = \mathbf{x}^{k} + \Delta \mathbf{x}$ iterate reduces $f(\mathbf{x})$ without constraints
- To find the proximal update when $c(\mathbf{x}) = I_{\mathcal{C}}(\mathbf{x})$, we project \mathbf{x}_{u}^{k+1} onto \mathcal{C} to get the projected point \mathbf{x}_{p}^{k+1} by solving:

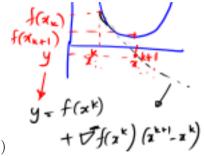
$$\mathbf{x}_{p}^{(k+1)} = P_{\mathcal{C}}\left(\mathbf{z}^{k+1}\right) = \underset{\mathbf{x}}{\operatorname{argmin}} \left\| \mathbf{z}^{(k+1)} - \mathbf{x} \right\|_{2}^{2} + I_{\mathcal{C}}(\mathbf{x}) = \underset{\mathbf{x} \in \mathcal{C}}{\operatorname{argmin}} \left\| \mathbf{z}^{(k+1)} - \mathbf{x} \right\|_{2}^{2} = \operatorname{prox}_{I_{\mathcal{C}}}(\mathbf{z})$$

• Thus, the projected point $\mathbf{x}_p^{(k+1)}$ is the point in \mathcal{C} that is the closest to the unbounded optimal point $\mathbf{x}_u^{(k+1)}$ if \mathcal{C} is a non-empty closed convex set

Recall a necessary condition for descent direction: Dot product of update step with gradient $\langle = 0_{a}, \langle a \rangle$

Recall: Descent direction for a convex function

• For a descent in a convex function f, we must have $f(\mathbf{x}^{k+1}) \ge V$ alue at \mathbf{x}^{k+1} obtained by linear interpolation from \mathbf{x}^k



• ie. $f(\mathbf{x}^{k+1}) \ge f(\mathbf{x}^k) + \nabla^T f(\mathbf{x}^k)(\mathbf{x}^{k+1} - \mathbf{x}^k)$

• Thus, for $\Delta \mathbf{x}^k$ to be a descent direction, it is necessary that $\nabla^T f(\mathbf{x}^k) \Delta \mathbf{x}^k \leq 0$ (where $\Delta \mathbf{x}^k = \mathbf{x}^{k+1} - \mathbf{x}^k$)

Question: Descent Direction and Projected Gradient Descent

• We want that the point obtained after the projection of \mathbf{x}_u^{k+1} be a descent from \mathbf{x}_p^k for the function f

October 26, 2018

$$\nabla f(\mathbf{x}^{k}) \cdot \Delta \mathbf{x}_{p} \leq 0$$
(where $\Delta \mathbf{x}_{p}^{(k+1)} = P_{\mathcal{C}}(\mathbf{x}_{u}^{k+1}) - \mathbf{x}_{p}^{k} = \mathbf{x}_{p}^{(k+1)} - \mathbf{x}_{p}^{k}$)

• Are we guaranteed this?

Algorithm: Projected Gradient Descent

Find a starting point $\mathbf{x}_{p}^{0} \in \mathcal{C}$. Set k = 1repeat 1. Choose a step size $t^k \propto 1/\sqrt{k}$. 2. Set $\mathbf{x}_{\mu}^{k} = \mathbf{x}_{p}^{k-1} - t^{k} \nabla f(\mathbf{x}_{p}^{k-1})$. 3. Set $\mathbf{x}_{p}^{k} = \arg\min_{\mathbf{z} \in \mathcal{C}} \left\| \mathbf{x}_{u}^{k} - \mathbf{z} \right\|_{2}^{2}$. 4 Set k = k + 1. **until** stopping criterion (such as $||\mathbf{x}_{p}^{k} - \mathbf{x}_{p}^{k-1}|| \le \epsilon$ or $f(\mathbf{x}_{p}^{k}) > f(\mathbf{x}_{p}^{k-1})$) is satisfied^a

^aBetter criteria can be found using Lagrange duality theory, etc.

Figure 13: The projected gradient descent algorithm.

200

237 / 427

Recall

$$prox_{c}(\mathbf{z}) = \operatorname*{argmin}_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

 $\bullet \quad \mathsf{Gradient} \ \mathsf{Descent} \Rightarrow$

¹¹Else we just treat this as another minimization problem and obtain an approximate solution. Practical convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng '94]

Recall

$$prox_c(\mathbf{z}) = \operatorname*{argmin}_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^2 + c(\mathbf{x})$$

- Gradient Descent $\Rightarrow c(\mathbf{x}) = 0$
- 2 Projected Gradient Descent \Rightarrow

¹¹Else we just treat this as another minimization problem and obtain an approximate solution. Practical convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng '94]

Recall

$$prox_c(\mathbf{z}) = \operatorname*{argmin}_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^2 + c(\mathbf{x})$$

- Gradient Descent $\Rightarrow c(\mathbf{x}) = 0$
- **2** Projected Gradient Descent $\Rightarrow c(\mathbf{x}) = \sum_i I_{C_i}(\mathbf{x})$
- **③** Proximal Minimization $\Rightarrow f(\mathbf{x}) = 0$

We will discuss these specific cases after a short discussion on convergence

¹¹Else we just treat this as another minimization problem and obtain an approximate solution. Practical convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng '94]

Recall

$$prox_{c}(\mathbf{z}) = \arg\min_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

- Gradient Descent $\Rightarrow c(\mathbf{x}) = 0$
- **2** Projected Gradient Descent $\Rightarrow c(\mathbf{x}) = \sum_i I_{C_i}(\mathbf{x})$
- **③** Proximal Minimization $\Rightarrow f(\mathbf{x}) = 0$

We will discuss these specific cases after a short discussion on convergence

• Convergence: If $f(\mathbf{x})$ is convex, differentiable, and ∇f is Lipschitz continuous with constant L > 0 AND $c(\mathbf{x})$ is convex and $prox_c(\mathbf{z})$ can be solved exactly¹¹ then

¹¹Else we just treat this as another minimization problem and obtain an approximate solution. Practical convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng '94]

Recall

$$prox_{c}(\mathbf{z}) = \arg\min_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

- Gradient Descent $\Rightarrow c(\mathbf{x}) = 0$
- **2** Projected Gradient Descent $\Rightarrow c(\mathbf{x}) = \sum_i I_{C_i}(\mathbf{x})$
- **9** Proximal Minimization $\Rightarrow f(\mathbf{x}) = 0$

We will discuss these specific cases after a short discussion on convergence

• Convergence: If $f(\mathbf{x})$ is convex, differentiable, and ∇f is Lipschitz continuous with constant L > 0 AND $\underline{c}(\mathbf{x})$ is convex and $\underline{prox}_c(\mathbf{z})$ can be solved exactly¹¹ then convergence result (and proof) is similar to that for gradient descent

Recall sublinear rate of convergence

$$f(x^{k}) - f(x^{*}) \leq \frac{1}{k} \sum_{i=1}^{k} \left(f(x^{i}) - f(x^{*}) \right) \leq \frac{\left\| x^{(0)} - x^{*} \right\|^{2}}{2tk}$$

October 26, 2018

238 / 427

¹¹Else we just treat this as another minimization problem and obtain an approximate solution. Practical convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng]'94]

Summary results for Generalized Gradient Descent: (Details at https://archive.siam.org/books/mo25/mo25_ch10.pdf

For one of three backtracking procedures $B1,\ B2$ and B3

- With no convexity assumption: Convergence can be proved using **B1** (Theorem 10.15)
- With convexity of f: O(1/k) rate of convergence using **B2** (Theorem 10.21)
- With strong convexity of f. Linear rate of convergence using **B2** (Theorem 10.29)

Assuming upper bound on norm of gradient ∇f (that is, Lipschitz continuitu of f), we get weaker $O(1/\sqrt{k})$ convergence rate (Extra optional slides at the end)

200

239 / 427

October 26, 2018

Recommended optional reading

Algorithms: Generalized Gradient Descent

Goal: $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} f(\mathbf{x}) + c(\mathbf{x})$

Find a starting point $\mathbf{x}^{(0)} \in \mathcal{D}$ repeat 1. Set $\Delta \mathbf{x}^{(k)} = -\nabla f(\mathbf{x}^{(k)})$. 2. Choose a step size $t^{(k)} > 0$ using exact or backtracking ray search to obtain $\mathbf{\hat{x}}^{(k+1)} = \mathbf{x}^{(k)} + t^{(k)}\Delta \mathbf{x}^{(k)}$ 3. Obtain $\mathbf{x}^{(k+1)} = \operatorname{prox}_{c}\left(\mathbf{\hat{x}}^{(k+1)}\right)$. 4. Set k = k + 1. until stopping criterion (such as $||\mathbf{x}^{(k+1)} - \mathbf{x}^{k}||_{2} \le \epsilon$) is satisfied

The steepest descent method can be thought of as changing the coordinate system in a particular way and then applying the gradient descent method in the changed coordinate system.

Convergence Rate: Generalized Gradient Descent vs. Subgradient Descent

October 26, 2018

• Recap: For Subgraident Descent: The subgradient method has convergence rate $O(1/\sqrt{k})$; to get $f(\mathbf{x}_{best}^{(k)}) - f(\mathbf{x}^*) \leq \epsilon$, we need $O(1/\sqrt{\epsilon^2})$ iterations. This is actually the best we can do; e.g., we can't do better than $O(1/\sqrt{k})$.

Convergence Rate: Generalized Gradient Descent vs. Subgradient Descent

- Recap: For Subgraident Descent: The subgradient method has convergence rate $O(1/\sqrt{k})$; to get $f(\mathbf{x}_{best}^{(k)}) f(\mathbf{x}^*) \le \epsilon$, we need $O(1/\sqrt{\epsilon^2})$ iterations. This is actually the best we can do; e.g., we can't do better than $O(1/\sqrt{k})$.
- For generalized Gradient Descent: If *f*(*x*) is convex, differentiable, and *∇f* is Lipschitz continuous with constant *L* > 0 AND *c*(*x*) is convex and *prox_c*(*x*) can be solved exactly then convergence result (and proof) is similar to that for gradient descent

We appreciate that we do better than subgradient descent by making use of differentiability of f(x) part of the object

$$f(x^{k}) - f(x^{*}) \leq \frac{1}{k} \sum_{i=1}^{k} \left(f(x^{i}) - f(x^{*}) \right) \leq \frac{\left\| x^{(0)} - x^{*} \right\|^{2}}{2tk}$$

of f(x) part of the objective Better convergence (O(1/k)) because of assuming (i) Differentiability of f(x) and (ii) Lipschitz continuity of $\nabla f(x)$.

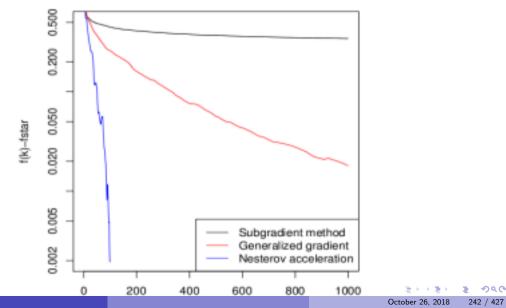
Can we do even better without strong convexity (which is not possible for c(x))?

October 26, 2018

200

241 / 427

(Nesterov) Accelerated Generalized Gradient Descent



(Nesterov) Accelerated Generalized Gradient Descent The problem is:

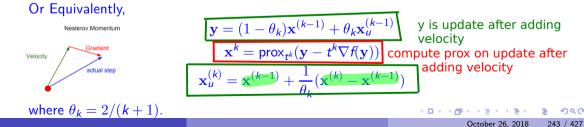
y

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) + c(\mathbf{x})$$

where $f(\mathbf{x})$ is convex and differentiable, $c(\mathbf{x})$ is convex and not necessarily differentiable.

- Initialize $\mathbf{x}_u^{(0)} \in \mathbb{R}^n$
- repeat for $k = 1, 2, 3, \ldots$

$$= \mathbf{x}^{(k-1)} + \frac{k-2}{k+1} (\mathbf{x}^{(k-1)} - \mathbf{x}^{(k-2)})$$
 Steps for implementing
$$\mathbf{x}^{(k)} = \operatorname{prox}_{t^k} (\mathbf{y} - t^k \nabla f(\mathbf{y}))$$



Algorithm: (Nesterov) Accelerated Generalized Gradient Descent

Initialize $\mathbf{x}_{u}^{(0)}, \mathbf{x}^{(0)} \in \Re^{n}$ Initialize k = 1repeat 1. $\theta_k = 2/(k+1)$ 2. $\mathbf{y} = (1 - \theta_k) \mathbf{x}^{(k-1)} + \theta_k \mathbf{x}_{\mu}^{(k-1)}$. 3. Choose a step size $t^k > 0$ using exact or backtracking ray search. 4. $\mathbf{x}^k = \operatorname{prox}_{t^k}(\mathbf{v} - t^k \nabla f(\mathbf{v}))$ 5. $\mathbf{x}_{u}^{(k)} = \mathbf{x}^{(k-1)} + \frac{1}{\theta_{u}}(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)})$ 6 Set k = k + 1**until** stopping criterion (such as $||\mathbf{x}^{k} - \mathbf{x}^{k-1}|| \le \epsilon$ or $f(\mathbf{x}^{k}) > f(\mathbf{x}^{k-1})$) is satisfied^a

^aBetter criteria can be found using Lagrange duality theory, etc.

Figure 15: The gradient descent algorithm.

200

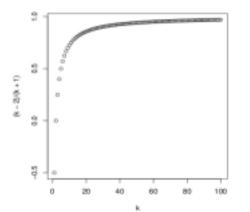
244 / 427

October 26, 2018

(Nesterov) Accelerated Generalized Gradient Descent

• First step k = 1 is just usual generalized gradient update: $\mathbf{x}^{(1)} = \operatorname{prox}_{t^1}(\mathbf{x}^{(0)} - t^1 \nabla f(\mathbf{x}^{(0)}))$

- **2** Thereafter, the method carries some "momentum" from previous iterations
- $c(\mathbf{x}) = 0$ gives accelerated gradient method
- The method accelerates more towards the end of iterations



(Nesterov) Accelerated Generalized Gradient Descent

Examples showing the performance of accelerated gradient descent compared with usual gradient descent.

Example (with n = 30, p = 10):

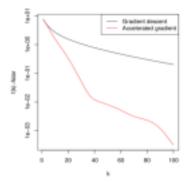


Figure 17: Example 1: Performance of accelerated gradient descent compared with usual gradient descent

900

246 / 427

October 26, 2018

(Nesterov) Accelerated Generalized Gradient Descent: Convergence

Minimize $f(\mathbf{x}) = f(\mathbf{x}) + c(\mathbf{x})$ assuming that: f is convex, differentiable, ∇f is Lipschitz with constant L > 0, and c is convex, the prox function can be evaluated.

Theorem

Accelerated generalized gradient method with fixed step size $t \leq 1/L$ satisfies:

$$f(\mathbf{x}^{(k)}) - f(\mathbf{x}^*) \le \frac{2||x^{(0)} - x^*||^2}{t(k+1)^2}$$

Accelerated generalized gradient method can achieve the optimal $O(1/k^2)$ rate for first-order method, or equivalently, if we want to get $f(\mathbf{x}^{(k)}) - f(\mathbf{x}^*) \leq \epsilon$, we only need $O(1/\sqrt{\epsilon})$ iterations. Now we prove this theorem.

(Nesterov) Accelerated Generalized Gradient Descent: Proof **Proof:**

First we bound both the convex functions $f(\mathbf{x}^k)$ and $c(\mathbf{x}^k)$.

• Since $t \leq 1/L$ and ∇f is Lipschitz with constant L > 0, we have

$$f(\mathbf{x}^{k}) \leq f(\mathbf{y}) + \nabla^{T} f(\mathbf{y})(\mathbf{x}^{k} - \mathbf{y}) + \frac{L}{2} ||\mathbf{x}^{k} - \mathbf{y}||^{2} \leq f(\mathbf{y}) + \nabla f(\mathbf{y})^{T}(\mathbf{x}^{k} - \mathbf{y}) + \frac{1}{2t} ||\mathbf{x}^{k} - \mathbf{y}||^{2}$$
(56)

• In
$$\mathbf{x}^k = \operatorname{prox}_t(\mathbf{y} - t\nabla f(\mathbf{y}))$$
, let $\mathbf{h} = \mathbf{x}^k$ and $\mathbf{w} = \mathbf{y} - t\nabla f(\mathbf{y})$. Then

$$\mathbf{h} = \operatorname{prox}_{t}(\mathbf{w}) = \arg\min_{\mathbf{h}} \frac{1}{2t} ||\mathbf{w} - \mathbf{h}||^{2} + c(\mathbf{h})$$

• For this, we must have

$$0 \in \partial(\frac{1}{2t}||\mathbf{w} - \mathbf{h}||^2 + c(\mathbf{h})) = -\frac{1}{t}(\mathbf{w} - \mathbf{h}) + \partial c(\mathbf{h}) \quad \Rightarrow \quad -\frac{1}{t}(\mathbf{w} - \mathbf{h}) \in \partial c(\mathbf{h})$$

 \bullet According to the definition of subgradient, we have for all $\mathbf{z},$

(Nesterov) Accelerated Generalized Gradient Descent: Proof Proof:

First we bound both the convex functions $f(\mathbf{x}^k)$ and $c(\mathbf{x}^k)$.

• Since $t \leq 1/L$ and ∇f is Lipschitz with constant L > 0, we have

$$f(\mathbf{x}^{k}) \leq f(\mathbf{y}) + \nabla^{T} f(\mathbf{y})(\mathbf{x}^{k} - \mathbf{y}) + \frac{L}{2} ||\mathbf{x}^{k} - \mathbf{y}||^{2} \leq f(\mathbf{y}) + \nabla f(\mathbf{y})^{T}(\mathbf{x}^{k} - \mathbf{y}) + \frac{1}{2t} ||\mathbf{x}^{k} - \mathbf{y}||^{2}$$
(56)

• In
$$\mathbf{x}^k = \text{prox}_t(\mathbf{y} - t\nabla f(\mathbf{y}))$$
, let $\mathbf{h} = \mathbf{x}^k$ and $\mathbf{w} = \mathbf{y} - t\nabla f(\mathbf{y})$. Then

$$\mathbf{h} = \operatorname{prox}_{t}(\mathbf{w}) = \arg\min_{\mathbf{h}} \frac{1}{2t} ||\mathbf{w} - \mathbf{h}||^{2} + c(\mathbf{h})$$

• For this, we must have

$$0 \in \partial(\frac{1}{2t}||\mathbf{w} - \mathbf{h}||^2 + c(\mathbf{h})) = -\frac{1}{t}(\mathbf{w} - \mathbf{h}) + \partial c(\mathbf{h}) \quad \Rightarrow \quad -\frac{1}{t}(\mathbf{w} - \mathbf{h}) \in \partial c(\mathbf{h})$$

 \bullet According to the definition of subgradient, we have for all $\mathbf{z},$

$$c(\mathbf{z}) \geq c(\mathbf{h}) - rac{1}{t}(\mathbf{h} - \mathbf{w})^{T}(\mathbf{z} - \mathbf{h}) \quad \Rightarrow \quad c(\mathbf{h}) \leq c(\mathbf{z}) + rac{1}{t}(\mathbf{h} - \mathbf{w})^{T}(\mathbf{z} - \mathbf{h})$$

for all \mathbf{z}, \mathbf{w} and $\mathbf{h} = \text{prox}_t(\mathbf{w})$.

October 26, 2018 248 / 427

(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.) Substituting back for both h and w in the above inequality we get for all z,

$$c(\mathbf{x}^{k}) \leq c(\mathbf{z}) + \frac{1}{t}(\mathbf{x}^{k} - \mathbf{y} + t\nabla f(\mathbf{y}))^{T}(\mathbf{z} - \mathbf{x}^{k}) = c(\mathbf{z}) + \frac{1}{t}(\mathbf{x}^{k} - \mathbf{y})^{T}(\mathbf{z} - \mathbf{x}^{k}) + \nabla f(\mathbf{y})^{T}(\mathbf{z} - \mathbf{x}^{k})$$
(57)

Adding inequalities (56) and (57) we get for all z,

$$f(\mathbf{x}^k) \le f(\mathbf{y}) + c(\mathbf{z}) + \frac{1}{t}(\mathbf{x}^k - \mathbf{y})^T(\mathbf{z} - \mathbf{x}^k) + \frac{1}{2t}||\mathbf{x}^k - \mathbf{y}||^2 + \nabla f(\mathbf{y})^T(\mathbf{z} - \mathbf{y})$$

900

249 / 427

October 26, 2018

Since *f* is convex,

(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.) Substituting back for both \mathbf{h} and \mathbf{w} in the above inequality we get for all \mathbf{z} ,

$$c(\mathbf{x}^{k}) \leq c(\mathbf{z}) + \frac{1}{t} (\mathbf{x}^{k} - \mathbf{y} + t\nabla f(\mathbf{y}))^{T} (\mathbf{z} - \mathbf{x}^{k}) = c(\mathbf{z}) + \frac{1}{t} (\mathbf{x}^{k} - \mathbf{y})^{T} (\mathbf{z} - \mathbf{x}^{k}) + \nabla f(\mathbf{y})^{T} (\mathbf{z} - \mathbf{x}^{k})$$
(57)

Adding inequalities (56) and (57) we get for all z,

$$f(\mathbf{x}^k) \le f(\mathbf{y}) + c(\mathbf{z}) + \frac{1}{t}(\mathbf{x}^k - \mathbf{y})^T(\mathbf{z} - \mathbf{x}^k) + \frac{1}{2t}||\mathbf{x}^k - \mathbf{y}||^2 + \nabla f(\mathbf{y})^T(\mathbf{z} - \mathbf{y})|$$

Since f is convex, using $f(\mathbf{z}) \geq f(\mathbf{y}) + \nabla f(\mathbf{y})^T (\mathbf{z} - \mathbf{y})$, we further get

$$f(\mathbf{x}^k) \le f(\mathbf{z}) + \frac{1}{t}(\mathbf{x}^k - \mathbf{y})^T(\mathbf{z} - \mathbf{x}^k) + \frac{1}{2t}||\mathbf{x}^k - \mathbf{y}||^2$$

Now take $\mathbf{z} = \mathbf{x}^{(k-1)}$, multiply both sides by $(1 - \theta)$ and for $\mathbf{z} = \mathbf{x}^*$ multiply both sides by θ ,

$$(1-\theta)f(\mathbf{x}^{k}) \leq (1-\theta)f(\mathbf{x}^{(k-1)}) + \frac{1-\theta}{t}(\mathbf{x}^{k}-\mathbf{y})^{T}(\mathbf{x}^{(k-1)}-\mathbf{x}^{k}) + \frac{1-\theta}{2t}||\mathbf{x}^{k}-\mathbf{y}||^{2}$$
$$\theta f(\mathbf{x}^{k}) \leq \theta f(\mathbf{x}^{*}) + \frac{\theta}{t}(\mathbf{x}^{k}-\mathbf{y})^{T}(\mathbf{x}^{*}-\mathbf{x}^{k}) + \frac{\theta}{2t}||\mathbf{x}^{k}-\mathbf{y}||^{2}$$

249 /

(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.) Adding these two inequalities together, we get

$$f(\mathbf{x}^{k}) - f(\mathbf{x}^{*}) - (1 - \theta)(f(\mathbf{x}^{(k-1)}) - f(\mathbf{x}^{*})) \le \frac{1}{t} (\mathbf{x}^{k} - \mathbf{y})^{T} ((1 - \theta)\mathbf{x}^{(k-1)} + \theta\mathbf{x}^{*} - \mathbf{x}^{k}) + \frac{1}{2t} ||\mathbf{x}^{k} - \mathbf{y}||^{2}$$
(58)

- Using $\mathbf{x}_{u}^{k} = \mathbf{x}^{(k-1)} + \frac{1}{\theta}(\mathbf{x}^{k} \mathbf{x}^{(k-1)})$ and $\mathbf{y} = (1 \theta)\mathbf{x}^{(k-1)} + \theta\mathbf{x}_{u}^{(k-1)}$, we have $(1 \theta)\mathbf{x}^{(k-1)} + \theta\mathbf{x}^{*} \mathbf{x}^{k} = \theta(\mathbf{x}^{*} \mathbf{x}_{u}^{k})$ and using this again in the second equation, $\mathbf{x}^{k} \mathbf{y} = \theta(\mathbf{x}_{u}^{k} \mathbf{x}_{u}^{(k-1)})$
- Substituting these equations into the RHS of inequality (58) we have

$$f(\mathbf{x}^{k}) - f(\mathbf{x}^{*}) - (1 - \theta)(f(\mathbf{x}^{(k-1)}) - f(\mathbf{x}^{*})) \leq \frac{\theta}{2t} \underbrace{(\mathbf{x}_{u}^{k} - \mathbf{x}_{u}^{(k-1)})}^{T} [2\theta(\mathbf{x}^{*} - \mathbf{x}_{u}^{k}) + \theta(\mathbf{x}_{u}^{k} - \mathbf{x}_{u}^{(k-1)})]$$

500

250 / 427

October 26, 2018

(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.) Adding these two inequalities together, we get

$$f(\mathbf{x}^{k}) - f(\mathbf{x}^{*}) - (1 - \theta)(f(\mathbf{x}^{(k-1)}) - f(\mathbf{x}^{*})) \le \frac{1}{t} (\mathbf{x}^{k} - \mathbf{y})^{T} ((1 - \theta)\mathbf{x}^{(k-1)} + \theta\mathbf{x}^{*} - \mathbf{x}^{k}) + \frac{1}{2t} ||\mathbf{x}^{k} - \mathbf{y}||^{2}$$
(58)

- Using $\mathbf{x}_{u}^{k} = \mathbf{x}^{(k-1)} + \frac{1}{\theta}(\mathbf{x}^{k} \mathbf{x}^{(k-1)})$ and $\mathbf{y} = (1 \theta)\mathbf{x}^{(k-1)} + \theta\mathbf{x}_{u}^{(k-1)}$, we have $(1 \theta)\mathbf{x}^{(k-1)} + \theta\mathbf{x}^{*} \mathbf{x}^{k} = \theta(\mathbf{x}^{*} \mathbf{x}_{u}^{k})$ and using this again in the second equation, $\mathbf{x}^{k} \mathbf{y} = \theta(\mathbf{x}_{u}^{k} \mathbf{x}_{u}^{(k-1)})$
- Substituting these equations into the RHS of inequality (58) we have

$$f(\mathbf{x}^{k}) - f(\mathbf{x}^{*}) - (1 - \theta)(f(\mathbf{x}^{(k-1)}) - f(\mathbf{x}^{*})) \leq \frac{\theta}{2t} \underbrace{(\mathbf{x}_{u}^{k} - \mathbf{x}_{u}^{(k-1)})}^{T} [2\theta(\mathbf{x}^{*} - \mathbf{x}_{u}^{k}) + \theta(\mathbf{x}_{u}^{k} - \mathbf{x}_{u}^{(k-1)})]$$

$$= \frac{\theta^2}{2t} \frac{(\mathbf{x}^* - \mathbf{x}_u^{(k-1)}) - (\mathbf{x}^* - \mathbf{x}_u^{(k-1)})]}{2t}^T [(\mathbf{x}^* - \mathbf{x}_u^k) + (\mathbf{x}^* - \mathbf{x}_u^{(k-1)})]$$

= dfrac $\theta^2 2t(||\mathbf{x}_u^{(k-1)} - \mathbf{x}^*||^2 - ||\mathbf{x}_u^k - \mathbf{x}^*||^2)$

October 26, 2018 250 / 427

(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.)

$$\frac{t}{\theta_k^2}(f(\mathbf{x}^{(k)}) - f(\mathbf{x}^*)) + \frac{1}{2}||\mathbf{x}_u^{(k)} - \mathbf{x}^*||^2 \le \frac{t(1 - \theta_k)}{\theta_k^2}(f(\mathbf{x}^{(k-1)}) - f(\mathbf{x}^*)) + \frac{1}{2}||\mathbf{x}_u^{(k-1)} - \mathbf{x}^*||^2$$

Since $\theta=2/(\textit{k}+1)$, using $\frac{1-\theta_k}{\theta_k^2}\leq \frac{1}{\theta_{k-1}^2}$, we have

$$\frac{t}{\theta_k^2}(f(\mathbf{x}^{(k)}) - f(\mathbf{x}^*)) + \frac{1}{2}||\mathbf{x}_u^{(k)} - \mathbf{x}^*||^2 \le \frac{t}{\theta_{k-1}^2}(f(\mathbf{x}^{(k-1)}) - f(\mathbf{x}^*)) + \frac{1}{2}||\mathbf{x}_u^{(k-1)} - \mathbf{x}^*||^2$$

Iterating this inequality and using $\theta_1=1$ we get

$$\frac{t}{\theta_k^2}(f(\mathbf{x}^{(k)}) - f(\mathbf{x}^*)) + \frac{1}{2}||\mathbf{x}_u^{(k)} - \mathbf{x}^*||^2 \le \frac{t(1 - \theta_1)}{\theta_1^2}(f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*)) + \frac{1}{2}||\mathbf{x}_u^{(0)} - \mathbf{x}^*||^2 \le \frac{1}{2}||\mathbf{x}^{(0)} - \mathbf{$$

Hence we conclude

$$f(\mathbf{x}^{(k)}) - f(\mathbf{x}^*) \le \frac{\theta_k^2}{2t} ||\mathbf{x}^{(0)} - \mathbf{x}^*||^2 = \frac{2||\mathbf{x}^{(0)} - \mathbf{x}^*||^2}{t(k+1)^2}$$

Generalized Gradient Descent and its Special Cases

Recall

$$prox_{c}(\mathbf{z}) = \operatorname*{argmin}_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

900

252 / 427

October 26, 2018

It's special cases are:

- Gradient Descent: $c(\mathbf{x}) = 0$
- **2** Projected Gradient Descent: $c(\mathbf{x}) = I_{\mathcal{C}}(\mathbf{x})$ (Example:

Generalized Gradient Descent and its Special Cases

Recall

$$prox_{c}(\mathbf{z}) = \operatorname*{argmin}_{\mathbf{x}} \frac{1}{2t} ||\mathbf{x} - \mathbf{z}||^{2} + c(\mathbf{x})$$

It's special cases are:

- Gradient Descent: $c(\mathbf{x}) = 0$
- **2** Projected Gradient Descent: $c(\mathbf{x}) = I_{\mathcal{C}}(\mathbf{x})$ (Example: $= \sum_{i} I_{g_i}(\mathbf{x})$)
- **3** Alternating Projection/Proximal Minimization: $f(\mathbf{x}) = 0$
- 4 Alternating Direction Method of Multipliers
- Special Cases for Specific Objectives
 - LASSO: (Fast) Iterative Shrinkage Thresholding Algorithm (ISTA/FISTA)

900

252 / 427

October 26, 2018

Convergence of Projected Gradient Descent (even under weaker assumptions)

October 26, 2018

Convergence of Projected Gradient Descent: Weaker assumptions

- Recall: Assuming Lipschitz continuity on gradient ∇f and convexity of f and assuming bounded iterates and assuming convexity of C (and therefore of I_C) we obtained O(1/k) convergence rate for (Generalized and hence for) Projected Gradient Descent
- Assuming upper bound on norm of gradient ∇f (that is, Lipschitz continuitu of f), we get weaker $O(1/\sqrt{k})$ convergence rate for Projected Gradient Descent

Convergence of Projected Gradient Descent: Weaker assumptions

- Recall: Assuming Lipschitz continuity on gradient ∇f and convexity of f and assuming bounded iterates and assuming convexity of C (and therefore of I_C) we obtained O(1/k) convergence rate for (Generalized and hence for) Projected Gradient Descent
- Assuming upper bound on norm of gradient ∇f (that is, Lipschitz continuitu of f), we get weaker $O(1/\sqrt{k})$ convergence rate for Projected Gradient Descent
- **Proof:** To project $\mathbf{x}_{u}^{k+1} = \mathbf{x}^{k} t\nabla f(\mathbf{x}^{k})$ onto the non-empty closed convex set C to get the projected point \mathbf{x}_{p}^{k+1} , we solve: $\mathbf{x}_{p}^{k+1} = P_{\mathcal{C}}(\mathbf{x}_{u}^{k+1}) = \operatorname{argmin}_{\mathbf{z}\in\mathcal{C}} \left\|\mathbf{x}_{u}^{k+1} \mathbf{z}\right\|_{2}^{2}$

$$\|\mathbf{x}^{*} - \mathbf{x}_{u}^{k+1}\|^{2} = \|\mathbf{x}^{*} - \mathbf{x}^{k}\|^{2} - 2t\nabla f(\mathbf{x}^{k})(\mathbf{x}^{k} - \mathbf{x}^{*}) + t^{2}|\nabla f(\mathbf{x}^{k})|^{2}$$
(59)

If: (i) d is diameter of C, *i.e.*, ∀x, y ∈ C, ||x - y|| ≤ d (ii) / is upper bound on norm of gradients, *i.e.*, ||∇f(x)|| ≤ / and (iv) step size t = d/√K, then substituting for / into (59)

$$\|\mathbf{x}^* - \mathbf{x}_u^{k+1}\|^2 \le \|\mathbf{x}^* - \mathbf{x}^k\|^2 - 2t\nabla f(\mathbf{x}^k)(\mathbf{x}^k - \mathbf{x}^*) + t^2 l^2$$
(60)

化氯化化物 化氯化化物 化乙烯

October 26, 2018

200

254 / 427

Convergence of Proj. Grad. Descent: Weaker assumptions (contd.)

• Further, based on (60)

$$2t\nabla f(\mathbf{x}^{k})(\mathbf{x}^{k}-\mathbf{x}^{*}) \leq \|\mathbf{x}^{*}-\mathbf{x}^{k}\|^{2} - \|\mathbf{x}^{*}-\mathbf{x}_{u}^{k+1}\|^{2} + t^{2}l^{2}$$
(61)

• As per definition of convexity:

$$f\left(\frac{1}{K}\sum_{k=1}^{K}\mathbf{x}^{k}\right) - f(\mathbf{x}^{*}) \leq \frac{1}{K}\sum_{k=1}^{K}\left(f(\mathbf{x}^{k}) - f(\mathbf{x}^{*})\right) \leq \frac{1}{K}\sum_{k=1}^{K}\nabla f(\mathbf{x}^{k})(\mathbf{x}^{k} - \mathbf{x}^{*})$$
(62)

• Substituting for $\nabla f(\mathbf{x}^k)(\mathbf{x}^k - \mathbf{x}^*)$ from (61) into (62), we get (63):

$$f\left(\frac{1}{K}\sum_{k=1}^{K}\mathbf{x}^{k}\right) - f(\mathbf{x}^{*}) \leq \frac{1}{2tK}\sum_{k=1}^{K}\left(\|\mathbf{x}^{*}-\mathbf{x}^{k}\|^{2} - \|\mathbf{x}^{*}-\mathbf{x}_{u}^{k+1}\|^{2} + t^{2}t^{2}\right)$$
(63)

October 26, 2018 255 / 427

Convergence of Proj. Grad. Descent: Weaker assumptions (contd.)

• Expanding the summation over $\|\mathbf{x}^* - \mathbf{x}^k\|^2$, all terms get canceled except for the first and last:

$$f\left(\frac{1}{K}\sum_{k=1}^{K}\mathbf{x}^{k}\right) - f(\mathbf{x}^{*}) \leq \frac{1}{2tK}\left(\|\mathbf{x}^{*}-\mathbf{x}^{0}\|^{2} - \|\mathbf{x}^{*}-\mathbf{x}_{u}^{K+1}\|^{2}\right) + \frac{t\ell^{2}}{2}$$
(64)

• Since d is diameter of C, *i.e.*, $\|\mathbf{x}^* - \mathbf{x}^0\|^2 \leq \mathbf{d}^2$ and since $-\|\mathbf{x}^* - \mathbf{x}_u^{K+1}\|^2 \leq 0$,

$$f\left(\frac{1}{K}\sum_{k=1}^{K}\mathbf{x}^{k}\right) - f(\mathbf{x}^{*}) \leq \frac{1}{2tK}\left(d^{2}\right) + \frac{tl^{2}}{2} \leq \frac{\mathbf{d}I}{\sqrt{K}}$$
(65)

• Therefore, if
$$t = \frac{\mathbf{d}}{l\sqrt{K}}$$
, $f\left(\frac{1}{K}\sum_{k=1}^{K}\mathbf{x}^{k}\right) \leq \min_{\mathbf{x}\in\mathcal{C}} f(\mathbf{x}) + \frac{\mathbf{d}I}{\sqrt{K}}$

October 26, 2018 256 / 427

Convergence of Proj. Grad. Descent: Weaker assumptions (contd.)

• To get solution that is ϵ approximate with $\epsilon = \frac{dg}{\sqrt{K}}$, you need number of gradient iterations that is $K = \left(\frac{dg}{\epsilon}\right)^2 = O\left(\frac{1}{\epsilon}\right)^2$

Extra and Optional: Alternative Projection Method

October 26, 2018 258 / 427

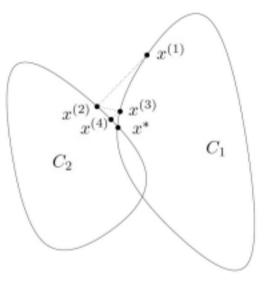


Figure 19: Alternating Projection from Boyd Notes

900

259 / 427

2 × - 2

10

October 26, 2018

Example: Subgradients and Alternating Projections

Problem: Given *m* closed convex sets C_1, C_2, \ldots, C_m , we want to find $\mathbf{x}^* \in \bigcap_i^m C_i$. First, we define

$$f(x) = \max_{i=1,...,m} \operatorname{dist}(x, C_i)$$

where

$$\mathsf{dist}(x,C) = \min_{u \in C} \|x - u\|$$

is the closest we can get to x if we have to stay in the set C. Also,

$$f(\mathbf{x}^*) = 0 \iff \mathbf{x}^* \in \bigcap_i^m C_i$$

Therefore, the optimization problem is to minimize

 $\min_{x\in\mathbb{R}^n}f(x)$

200

260 / 427

October 26, 2018

which, when equal to 0 is the point we are looking for.

Example: Subgradients and Alternating Projections (contd.)

Since C is closed and convex, there is a unique point $u^* = P_C(x)$. This unique point is the projection of x onto C, and it minimizes ||x - u|| over $u \in C$. We can thus write

$$\mathsf{dist}(x, C) = \|x - P_C(x)\|$$

Finding subgradient of f_i

We want to calculate the subgradient of f because if we can do so, we can apply subgradient methods and obtain an algorithm to solve our problem.

First, we consider $f_i(x)$ of C_i . It turns out that $f_i(x)$ is differentiable. For each *i*, if we take a point not in C_i , i.e $x \notin C_i$ and $||x - P_C(x)|| \neq 0$, it turns out that

$$\frac{x - P_C(x)}{\|x - P_C(x)\|}$$
(66)

200

261 / 427

October 26, 2018

is a subgradient of $f_i(x)$. We obtain this by just taking the projected point and finding the gradient without the chain rule. Show that (123) is a subgradient of f_i at x.

Example: Subgradients and Alternating Projections (contd.) **Finding subgradients of** *f*:

Using a rule we learnt from earlier on in the course, if

$$f(x) = \max_{i=1,\dots,m} f_i(x)$$

then,

$$\partial f(x) = \operatorname{conv}\left(\bigcup_{j:f_j(x)=f(x)}\partial f_j(x)\right)$$

What this means is that the subgradient of f(x) is equal to the convex hull of the union of all maximal $f_i(x)$'s, and take the respective subdifferentials.

If $f_i(x) = f(x) \neq 0$ (when it is 0, we are done), then

$$\frac{x - P_C(x)}{\|x - P_C(x)\|} \in \partial f(x)$$

200

262 / 427

October 26, 2018

This gives us a prescription for finding the subgradients.

Example: Subgradients and Alternating Projections **Subgradient descent:**

We will use a particular stepsize, known as the Polyak stepsize, because this particular choice will give us a famous algorithm that is a special case of the subgradient method. For the purpose of illustration, the Polyak stepsize is

$$t_k = f(\mathbf{x}^{(k-1)})$$

and the subgradient descent update rule is

$$\begin{aligned} \mathbf{x}^{(k)} &= \mathbf{x}^{(k-1)} - t_k \partial f(\mathbf{x}^{(k-1)}) \\ &= \mathbf{x}^{(k-1)} - f(\mathbf{x}^{(k-1)}) \frac{x - P_{C_i}(x)}{\|x - P_{C_i}(x)\|} \text{ where } \mathbf{x}^{(k-1)} \text{ is farthest from } C_i \\ &= \mathbf{x}^{(k-1)} - \mathbf{x}^{(k-1)} + P_{C_i}(x) \\ &= P_{C_i}(x) \end{aligned}$$

So the update rule is just to take $\mathbf{x}^{(k-1)}$ and project it to the set it is farthest from. This is also known as the alternating projections algorithm. By using the subgradient method, we can now use what we know about subgradients to say things about the alternating $\mathbf{z} = \mathbf{z}^{0}$

Extra and Optional: Nesterov's Theorem

Theorem

Nesterov's Theorem: For any $k \le n-1$ and starting point $\mathbf{x}^{(0)}$, there is a function in the problem class such that any nonsmooth first-order method satisfies

$$f(\mathbf{x}^{(k)}) - f(\mathbf{x}^*) \ge \frac{RG}{2(1+\sqrt{k+1})}$$

Proof.

Let k = n - 1 and $\mathbf{x}^{(0)} = 0$. $f(x) = \max_{i=1...n} x_i + \frac{1}{2} ||x||^2$ The optimal \mathbf{x}^* here $= (-1/n, \ldots, -1/n)$, with the optimal function value $f(\mathbf{x}^*) = -\frac{1}{2n}$. If $R = \frac{1}{\sqrt{n}}$, then f is Lipschitz with $G = 1 + \frac{1}{\sqrt{n}}$. Claim: At any iteration i from 1 to n, all of the elements of x from x_{i+1} to x_n are 0. To show this, let us assume we have some oracle that gives us $g = e_j + x$, where j is the smallest index