Lagrange Function and KKT Conditions

How do you compute the table of Orthogonal Projections?

$$
P_{C}(\mathbf{z})=\operatorname{prox}_{I_{C}}(\mathbf{z})=\underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2 t}\|\mathbf{x}-\mathbf{z}\|^{2}+I_{C}(\mathbf{x})=\underset{\mathbf{x} \in C}{\operatorname{argmin}} \frac{1}{2 t}\|\mathbf{x}-\mathbf{z}\|^{2}
$$

Set $C=$	For $t=1, P_{C}(\mathbf{z})=$	Assumptions						
\Re_{+}^{n}	$\left.{ }^{\text {z }}\right]_{+}$							
Box[l, u]	$P_{C}(\mathbf{z})_{i}=\min \left\{\max \left\{z_{i}, I_{i}\right\}, u_{i}\right\}$	$l_{i} \leq u_{i}$						
Ball $[\mathbf{c}, r]$	$\mathbf{c}+\frac{r}{\max \left\{\\|\mathbf{z}-\mathbf{c}\\|_{2}, r\right\}}(\mathbf{z}-\mathbf{c})$	$\\|\cdot\\|_{2}$ ball, centre $\mathbf{c} \in \Re^{n}$ \& radius $r>0$						
$\{\mathbf{x} \mid A \mathrm{x}=\mathbf{b}\}$	$\mathbf{z}-A^{\prime}\left(A A^{\prime}\right)^{-1}(A \mathbf{z}-\mathbf{b})$	$A \in \Re^{m \times n}, \mathbf{b} \in \Re^{m}, A$ is full row rank						
$\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \leq b\right\}$	$\mathrm{z}-\frac{\mathrm{a}^{\prime} \mathbf{x}-\mathrm{l}_{+}}{\\|\mathbf{a}\\|^{2}}$	$0 \neq \mathbf{a} \in \Re^{n} b \in \Re$						
Δ_{n}	$\left[\mathbf{z}-\mu^{*} \mathbf{e}\right]_{+}$where $\mu^{*} \in \Re$ satisfies $\mathbf{e}^{T}\left[\mathbf{z}-\mu^{*} \mathbf{e}\right]_{+}=1$							
$H_{\text {a }, ~ b} \cap \operatorname{Box}[\mathbf{l}, \mathbf{u}]$	$P_{\text {Box }[\mathbf{l}, \mathbf{u}]}\left(\mathbf{z}-\mu^{*} \mathbf{a}\right)$ where $\mu^{*} \in \Re$ satisfies $\mathbf{a}^{\top} P_{\text {Box }[\mathbf{l}, \mathbf{u}]}\left(\mathbf{z}-\mu^{*} \mathbf{a}\right)=b$	$0 \neq \mathbf{a} \in \Re^{n} b \in \Re$						
$\mathrm{H}^{-}{ }_{\mathbf{a}, \mathrm{b}} \cap \operatorname{Box}[\mathbf{l}, \mathbf{u}]$	$P_{\operatorname{Box}[1, \mathbf{u}]}(\mathbf{z})$ $\mathbf{a}^{\top} P_{\operatorname{Box}[1, \mathbf{u}]}(\mathbf{z}) \leq b$ $P_{\operatorname{Box}[1, \mathbf{u}]}\left(\mathbf{z}-\lambda^{*} \mathbf{a}\right)$ $\mathbf{a}^{\top} P_{\operatorname{Box}[1, \mathbf{u}]}(\mathbf{z})>b$ where $\lambda^{*} \in \Re$ satisfies $\mathbf{a}^{\top} P_{\operatorname{Box}[1, \mathbf{u}]}\left(\mathbf{z}-\lambda^{*} \mathbf{a}\right)=b \& \lambda^{*}>0$	$0 \neq \mathbf{a} \in \Re^{n} b \in \Re$						
$B_{\\|\cdot\\| /}[0, \alpha]$	\mathbf{z} $\\|z\\|_{1} \leq \alpha$ $\left[\mathbf{z}-\lambda^{*} \mathbf{e}\right]_{+} \odot \operatorname{sign}(\mathbf{z})$ $\\|z\\|_{1}>\alpha$ where $\lambda^{*}>0, \&\left[\mathbf{z}-\lambda^{*} \mathbf{e}\right]_{+} \odot \operatorname{sign}(\mathbf{z})=\alpha$	$\alpha>0$						

Lagrange Function and Necessary KKT Conditions

- Can the Lagrange Multiplier construction be generalized to always find optimal solutions to a minimization problem?
- Instead of the iterative path again, assume everything can be computed analytically
- Attributed to the mathematician Lagrange (born in 1736 in Turin). Largely worked on mechanics, the calculus of variations, probability, group theory, and number theory.
- Credited with the choice of base 10 for the metric system (rather than 12).

Lagrange Function and Necessary KKT Conditions

Note that a lot of the analysis that follows does not even assume convexity Necessary conditions often do NOT require convexity

- Consider the equality constrained minimization problem (with $\mathcal{D} \subseteq \Re^{n}$)

subject to $\quad g_{i}(\mathbf{x})=0 \quad i=1,2, \ldots, m$ component perpendicular to gradient of gl

All this shows that there cannot be a local minimum ${ }^{5}$ at x^{\prime}

- The figure shows some level curves of the function f and of a single constraint function g_{1} (dotted lines)
- The gradient of the constraint ∇g_{1} is not parallel to the gradient ∇f of the function at $f=10.4$; it is therefore possible to reduce the value of f by moving in negative of non-zero compo Moving perpendicular to grad $\mathrm{gl}==>\mathrm{gl}(\mathrm{x})=0$ remains perpendicular to grad g 1 Goal: We should not be able to reduce the value of f while still honoring $g 1(x)=0$

Lagrange Function and Necessary KKT Conditions

- Consider the equality constrained minimization problem (with $\mathcal{D} \subseteq \Re^{n}$)

$\min _{\mathbf{x} \in \mathcal{D}}$	$f(\mathbf{x})$
subject to	$g_{i}(\mathbf{x})=0 \quad i=1,2, \ldots, m$

- The figure shows some level curves of the function f and of a single constraint function g_{1} (dotted lines)
- The gradient of the constraint ∇g_{1} is not parallel to the gradient ∇f of the function at $f=10.4$; it is therefore possible to move along the constraint surface so as to further reduce f.

Lagrange Function and Necessary KKT Conditions

- However, ∇g_{1} and ∇f are parallel at $f=10.3$, and any motion along $g_{1}(\mathbf{x})=0$ will
lie along the perpendicular to gradient of $\mathrm{gl}(\mathrm{x})$ at that point $<==>$ but gradient of f along that direction $=0!$!
$==>$ If we try to decrease value of f , we will land up increasing/decreasing g1 (unacceptable)
$==>$ If we move along perpendicular to gradient of g1, no change expected in f

SO gradients of f and g being in same/opposite directions is necessary condition for local minimum/maximum

Lagrange Function and Necessary KKT Conditions

- However, ∇g_{1} and ∇f are parallel at $f=10.3$, and any motion along $g_{1}(\mathbf{x})=0$ will leave f unchanged.
- Hence, at the solution x^{*},
gradient $f\left(x^{*}\right)$ proportional to gradient $g 1\left(x^{*}\right)$

Lagrange Function and Necessary KKT Conditions

- However, ∇g_{1} and ∇f are parallel at $f=10.3$, and any motion along $g_{1}(\mathbf{x})=0$ will leave f unchanged.
- Hence, at the solution $\mathbf{x}^{*}, \nabla f\left(\mathbf{x}^{*}\right)$ must be proportional to $-\nabla g_{1}\left(\mathbf{x}^{*}\right)$, yielding, $\nabla f\left(\mathrm{x}^{*}\right)=-\lambda \nabla g_{1}\left(\mathrm{x}^{*}\right)$, for some constant $\lambda \in \Re ; \lambda$ is called a Lagrange multiplier.
- Often λ itself need never be computed and therefore often qualified as the undetermined lagrange multiplier.

Lagrange Function and Necessary KKT Conditions

- The necessary condition for an optimum at \mathbf{x}^{*} for the optimization problem in (68) with $m=1$ can be stated as in (68); the gradient is now in

The gradient of the Lagrange function wrt x^{*} and lambda* should vanish as a necessary condition for optimum at x^{*},lambda*

Lagrange Function and Necessary KKT Conditions

- The necessary condition for an optimum at \mathbf{x}^{*} for the optimization problem in (68) with $m=1$ can be stated as in (68); the gradient is now in \Re^{n+1} with its last component being a partial derivative with respect to λ.

$$
\begin{align*}
\nabla L\left(\mathbf{x}^{*}, \lambda^{*}\right) & =\nabla f\left(\mathbf{x}^{*}\right)+\lambda^{*} \nabla g_{1}\left(\mathbf{x}^{*}\right)=0 \\
g_{i}\left(\mathbf{x}^{*}\right) & =0 \tag{68}
\end{align*}
$$

- The solutions to (68) are the stationary points of the lagrangian L; they are not necessarily local extrema of L.
- L is unbounded: given a point \mathbf{x} that doesn't lie on the constraint, letting $\lambda \rightarrow \pm \infty$ makes L arbitrarily large or small. (General property of linear functions - here linearity in lambda)
- However, under certain stronger assumptions, if the strong Lagrangian principle holds, the minima of f minimize the Lagrangian globally. A bit later

Lagrange Function and Necessary KKT Conditions

- Let us extend the necessary condition for optimality of a minimization problem with single constraint to minimization problems with multiple equality constraints (i.e., $m>1$. in (67)).
- Let \mathcal{S} be the subspace spanned by $\nabla g_{i}(\mathbf{x})$ at any point \mathbf{x} and let \mathcal{S}_{\perp} be its orthogonal complement. Let $(\nabla f) \perp$ be the component of ∇f in the subspace \mathcal{S}_{\perp}.

Moving perpendicular to $S==>$ all constraints remain satisified.
$===>$ At an optimal point x^{*}, we should not be able to move perpendicular to S while reducing the value of f
$===>$ Gradient of cannot have any component along perpendicular to S
$===>\mathrm{f}$ MUST lie in S

Lagrange Function and Necessary KKT Conditions

- Let us extend the necessary condition for optimality of a minimization problem with single constraint to minimization problems with multiple equality constraints (i.e., $m>1$. in (67)).
- Let \mathcal{S} be the subspace spanned by $\nabla g_{i}(\mathbf{x})$ at any point \mathbf{x} and let \mathcal{S}_{\perp} be its orthogonal complement. Let $(\nabla f)_{\perp}$ be the component of ∇f in the subspace \mathcal{S}_{\perp}.
- At any solution x^{*}, it must be true that the gradient of f has $(\nabla f)_{\perp}=0$ (i.e., no components that are perpendicular to all of the ∇g_{i}), because otherwise you could move \mathbf{x}^{*} a little in that direction (or in the opposite direction) to increase (decrease) f without changing any of the g_{i}, i.e. without violating any constraints.
- Hence for multiple equality constraints, it must be true that at the solution \mathbf{x}^{*}, the space \mathcal{S} contains the vector ∇f, i.e., there are some constants λ_{i} such that $\nabla f\left(\mathrm{x}^{*}\right)=\lambda_{i} \nabla g_{i}\left(\mathrm{x}^{*}\right)$.

Lagrange Multipliers with Inequality Constraints

- We also need to impose that the solution is on the correct constraint surface (i.e., $\left.g_{i}=0, \forall i\right)$. In the same manner as in the case of $m=1$, this can be encapsulated by introducing the Lagrangian $L(\mathbf{x}, \lambda)=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})$, whose gradient with respect to both \mathbf{x}, and λ vanishes at the solution.
- This gives us the following necessary condition for optimality of (67):

Lagrange Multipliers with Inequality Constraints

- We also need to impose that the solution is on the correct constraint surface (i.e., $\left.g_{i}=0, \forall i\right)$. In the same manner as in the case of $m=1$, this can be encapsulated by introducing the Lagrangian $L(\mathbf{x}, \lambda)=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})$, whose gradient with respect to both \mathbf{x}, and λ vanishes at the solution.
- This gives us the following necessary condition for optimality of (67):

$$
\begin{equation*}
\nabla L\left(\mathbf{x}^{*}, \lambda^{*}\right)=\nabla\left(f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})\right)=0 \tag{69}
\end{equation*}
$$

Lagrange Multipliers with Inequality Constraints

- Single equality constraint $g_{1}(\mathbf{x})=0$, replaced with a single inequality constraint $g_{1}(\mathbf{x}) \leq 0$. The entire region labeled $g_{1}(\mathbf{x}) \leq 0$ in the Figure becomes feasible.
- At the solution \mathbf{x}^{*}, if $g_{1}\left(\mathbf{x}^{*}\right)=0$, i.e., if the constraint is active, we must have
gradient of $f\left(x^{*}\right)$ and gradient of $g\left(x^{*}\right)$ are in same space..
(active case is exactly the same as that of equality constrained optimization)

INACTIVE CONSTRAINT $==>\mathrm{gl}\left(\mathrm{x}^{*}\right)<0$

Lagrange Multipliers with Inequality Constraints

- Single equality constraint $g_{1}(\mathbf{x})=0$, replaced with a single inequality constraint $g_{1}(\mathbf{x}) \leq 0$. The entire region labeled $g_{1}(\mathbf{x}) \leq 0$ in the Figure becomes feasible.
- At the solution \mathbf{x}^{*}, if $g_{1}\left(\mathbf{x}^{*}\right)=0$, i.e., if the constraint is active, we must have (as in the case of a single equality constraint) that ∇f is parallel to ∇g_{1}, by the same argument as before.
- Additionally, necessary for the two gradients to point in opposite directions

We have a problem: It is fine to reduce f while reducing $g 1$ $==>$ It is fine to move in negative gradient $f\left(x^{*}\right)$ if that also has a component in negative gradient $\mathrm{gl}\left(\mathrm{x}^{*}\right)$

Lagrange Multipliers with Inequality Constraints

- Single equality constraint $g_{1}(\mathbf{x})=0$, replaced with a single inequality constraint $g_{1}(\mathbf{x}) \leq 0$. The entire region labeled $g_{1}(\mathbf{x}) \leq 0$ in the Figure becomes feasible.
- At the solution \mathbf{x}^{*}, if $g_{1}\left(\mathbf{x}^{*}\right)=0$, i.e., if the constraint is active, we must have (as in the case of a single equality constraint) that ∇f is parallel to ∇g_{1}, by the same argument as before.
- Additionally, necessary for the two gradients to point in opposite directions; else a move away from the surface $g_{1}=0$ and into the feasible region would further reduce f.
- With Lagrangian $L=f+\lambda g_{1}$, an additional constraint is that lambda1 $>=0$

Lagrange Multipliers with Inequality Constraints

- Single equality constraint $g_{1}(\mathbf{x})=0$, replaced with a single inequality constraint $g_{1}(\mathbf{x}) \leq 0$. The entire region labeled $g_{1}(\mathbf{x}) \leq 0$ in the Figure becomes feasible.
- At the solution \mathbf{x}^{*}, if $g_{1}\left(\mathbf{x}^{*}\right)=0$, i.e., if the constraint is active, we must have (as in the case of a single equality constraint) that ∇f is parallel to ∇g_{1}, by the same argument as before.
- Additionally, necessary for the two gradients to point in opposite directions; else a move away from the surface $g_{1}=0$ and into the feasible region would further reduce f.
- With Lagrangian $L=f+\lambda g_{1}$, an additional constraint is that $\lambda \geq 0$

Lagrange Multipliers with Inequality Constraints

- If the constraint is not active at the solution
$\nabla f\left(\mathbf{x}^{*}\right)=0$, then removing g_{1} (that is
does not involve lambda1
setting lambda1 = 0)

Lagrange Multipliers with Inequality Constraints

- If the constraint is not active at the solution $\nabla f\left(\mathrm{x}^{*}\right)=0$, then removing g_{1} makes no difference and we can drop it from $L=f+\lambda g_{1}$,
- This is equivalent to setting
$\mid a m b d a 1=0$

Lagrange Multipliers with Inequality Constraints

- If the constraint is not active at the solution $\nabla f\left(\mathrm{x}^{*}\right)=0$, then removing g_{1} makes no difference and we can drop it from $L=f+\lambda g_{1}$,
- This is equivalent to setting $\lambda=0$.
- Thus, whether or not the constraints $g_{1}=0$ are active, we can find the solution by requiring that
(1) the gradients of the Lagrangian vanish, and (2) $\lambda g_{1}\left(\mathrm{x}^{*}\right)=0$. (complementary slackness)

This latter condition is one of the important Karush-Kuhn-Tucker conditions of convex optimization theory that can facilitate the search for the solution and will be more formally discussed subsequently.

Lagrange Multipliers with Inequality Constraints

- Now consider the general inequality constrained minimization problem

$\min _{\mathbf{x} \in \mathcal{D}}$	$f(\mathbf{x})$
subject to	$g_{i}(\mathbf{x}) \leq 0 \quad i=1,2, \ldots, m$

- With multiple inequality constraints, for constraints that are active, (as in the case of multiple equality constraints),
(1) ∇f must lie in the space spanned by the ∇g_{i} 's,
(2) if the Lagrangian is $L=f+\sum_{i=1}^{m} \lambda_{i} g_{i}$, then we must also have $\lambda_{i} \geq 0, \forall i$ (since otherwise f could be reduced by moving into the feasible region).

Lagrange Multipliers with Inequality Constraints

- As for an inactive constraint $g_{j}\left(g_{j}<0\right)$, removing g_{j} from L makes no difference and we can drop ∇g_{j} from $\nabla f=-\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}$ or equivalently set $\lambda_{j}=0$.
- Thus, the foregoing KKT condition generalizes to
$\lambda_{i} g_{i}\left(\mathbf{x}^{*}\right)=0, \forall i$.
- The necessary condition for optimality of (74) is summarized as:

Gradeint is wrt x^{*} only

$$
\begin{align*}
\nabla L\left(\mathbf{x}^{*}, \lambda^{*}\right)=\nabla\left(f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})\right) & =0 \tag{71}\\
\forall i \lambda_{i} g_{i}(\mathbf{x}) & =0
\end{align*}
$$

A simple and often useful trick called the free constraint gambit is to solve ignoring one or more of the constraints, and then check that the solution satisfies those constraints, in which case you have solved the problem.

Eg: Take gl and see if gradient $\mathrm{f}\left(\mathrm{x}^{*}\right)+$ lambda1* gradient $\mathrm{gl}\left(\mathrm{x}^{*}\right)=0$ for some lambda1* and x^{*}
If yes, then we have satisified the necessary condition as discussed on the board

A simple and often useful trick called the free constraint gambit is to solve ignoring one or more of the constraints, and then check that the solution satisfies those constraints, in which case you have solved the problem.

Some Algebraic Justification: Lagrange Multipliers with Inequality Constraints

Algebraic Justification: Lagrange Multipliers with Inequality Constraints

- For the constrained optimization problem

$$
\begin{array}{ll}
\min _{\substack{\mathbf{x} \in \mathcal{D} \\
\text { subject to }}} & f(\mathbf{x}) \tag{72}\\
\mathbf{x} \in \mathcal{C}
\end{array}
$$

$$
\begin{aligned}
& \mathbf{x}^{*}=\underset{\mathbf{x} \in C}{\operatorname{argmin}} f(\mathbf{x}) \Longleftrightarrow \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x})+I_{C}(\mathbf{x}), \text { where } I_{C}(\mathbf{x})=I\{\mathbf{x} \in C\}= \begin{cases}0 & \text { if } \mathbf{x} \in C \\
\infty & \text { if } \mathbf{x} \notin C\end{cases} \\
& N_{C}(\mathbf{x})=\partial I_{C}(\mathbf{x})=\left\{\mathbf{h} \in \Re^{n} \mid \mathbf{h}^{T} \mathbf{x} \geq \mathbf{h}^{T} \mathbf{z} \text { for any } \mathbf{z} \in C\right\}=\left\{\mathbf{h} \in \Re^{n} \mid \mathbf{h}^{T}(\mathbf{x}-\mathbf{z}) \geq 0\right. \text { for an }
\end{aligned}
$$

- Recap: Necessary condition for optimality at $\mathbf{x}^{*}: 0 \in\left\{\mathbf{x}^{*} \mid \nabla f\left(\mathbf{x}^{*}\right)+N_{\mathcal{C}}\left(\mathbf{x}^{*}\right)\right\}$, that is, $\nabla f\left(\mathrm{x}^{*}\right)=-N_{\mathcal{C}}\left(\mathrm{x}^{*}\right)=0$ and therefore

$$
\begin{equation*}
\nabla^{T} f\left(\mathrm{x}^{*}\right)\left(\mathbf{z}-\mathrm{x}^{*}\right) \geq 0 \quad \text { for any } \mathbf{z} \in C \tag{73}
\end{equation*}
$$

Algebraic Justification: Lagrange Multipliers with Inequality Constraints(contd.)

- Specifically, let $C=\left\{\mathbf{x} \in \Re^{n} \mid g_{i}(\mathbf{x}) \leq 0 \forall i=1,2, \ldots, m\right\}$

$$
\begin{array}{ll}
\min _{\mathbf{x} \in \mathcal{D}} & f(\mathbf{x}) \tag{74}\\
\text { subject to } & g_{i}(\mathbf{x}) \leq 0 \quad i=1,2, \ldots, m
\end{array}
$$

Assume that each g_{i} is convex and is differentiable. Then, we must have, for each i,

$$
\begin{equation*}
\nabla^{\top} g_{i}\left(\mathbf{x}^{*}\right)\left(\mathbf{z}-\mathbf{x}^{*}\right)+g_{i}\left(\mathbf{x}^{*}\right) \leq g_{i}(\mathbf{z}) \quad \text { for any } \mathbf{z} \in C \tag{75}
\end{equation*}
$$

- Since $g_{i}(\mathbf{z}) \leq 0$ whenever $\mathbf{z} \in C$,

Algebraic Justification: Lagrange Multipliers with Inequality Constraints(contd.)

- Specifically, let $C=\left\{\mathbf{x} \in \Re^{n} \mid g_{i}(\mathbf{x}) \leq 0 \forall i=1,2, \ldots, m\right\}$

$$
\begin{array}{ll}
\min _{\mathbf{x} \in \mathcal{D}} & f(\mathbf{x}) \tag{74}\\
\text { subject to } & g_{i}(\mathbf{x}) \leq 0 \quad i=1,2, \ldots, m
\end{array}
$$

Assume that each g_{i} is convex and is differentiable. Then, we must have, for each i,

$$
\begin{equation*}
\nabla^{\top} g_{i}\left(\mathbf{x}^{*}\right)\left(\mathbf{z}-\mathbf{x}^{*}\right)+g_{i}\left(\mathbf{x}^{*}\right) \leq g_{i}(\mathbf{z}) \quad \text { for any } \mathbf{z} \in C \tag{75}
\end{equation*}
$$

- Since $g_{i}(\mathbf{z}) \leq 0$ whenever $\mathbf{z} \in C$,

$$
\begin{array}{lll}
& \nabla^{T} g_{i}\left(\mathbf{x}^{*}\right)\left(\mathbf{z}-\mathbf{x}^{*}\right)+g_{i}\left(\mathbf{x}^{*}\right) \leq 0 & \text { for any } \mathbf{z} \in C \tag{76}\\
\Rightarrow & -\nabla^{T} g_{i}\left(\mathbf{x}^{*}\right)\left(\mathbf{z}-\mathbf{x}^{*}\right)-g_{i}\left(\mathbf{x}^{*}\right) \geq 0 & \text { for any } \mathbf{z} \in C
\end{array}
$$

Algebraic Justification: Lagrange Multipliers with Inequality Constraints(contd.)

- Since any non-negative scalar (such as in (73)) is a linear combination of non-negative scalars (such as in (76)) with non-negative weights, there exists scalar (vector) $\lambda \in \Re_{+}^{m}$ such that

$$
\begin{equation*}
\nabla^{\top} f\left(\mathrm{x}^{*}\right)\left(\mathrm{z}-\mathrm{x}^{*}\right)=\sum_{i=1}^{m}-\lambda_{i} \nabla^{\top} g_{i}\left(\mathrm{x}^{*}\right)\left(\mathrm{z}-\mathrm{x}^{*}\right)-\lambda_{i} g_{i}\left(\mathrm{x}^{*}\right) \quad \text { for any } \mathbf{z} \in C \tag{77}
\end{equation*}
$$

- Since (77) must hold for any $\mathbf{z} \in C$ and since $\mathbf{x}^{*} \in C$, we should have $\lambda_{i} g_{i}\left(\mathbf{x}^{*}\right)=0$. Since the equality (77) should also continuously hold on the convex set C, we must also have $\nabla f\left(\mathbf{x}^{*}\right)=\sum_{i=1}^{m}-\lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)$, that is $\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)=0$
- Since any equality constraint $h_{j}(\mathbf{x})=0$ can be expressed as two inequality constraints: $h_{j}(\mathbf{x}) \geq 0$ and $-h_{j}(\mathrm{x}) \geq 0$, the corresponding lagrange multiplier μ_{j} will have no sign constraints.

