
Lagrange Function and KKT Conditions

October 26, 2018 265 / 429



How do you compute the table of Orthogonal Projections?

PC(z) = proxIC(z) = argmin
x

1

2t ||x− z||2 + IC(x) = argmin
x∈C

1

2t ||x− z||2

Set C = For t = 1, PC(z) = Assumptions
ℜn+ [z]+
Box[l,u] PC(z)i = min{max{zi, li}, ui} li ≤ ui
Ball[c, r] c +

r
max{∥z− c∥2, r}

(z− c) ∥.∥2 ball, centre c ∈ ℜn & radius r > 0

{x|Ax = b} z− AT(AAT)−1(Az− b) A ∈ ℜm×n, b ∈ ℜm, A is full row rank
{x|aTx ≤ b} z− [aTx−b]+

∥a∥2 0 ̸= a ∈ ℜn b ∈ ℜ
∆n [z− µ∗e]+ where µ∗ ∈ ℜ satisfies eT[z− µ∗e]+ = 1

Ha,b ∩ Box[l,u] PBox[l,u](z− µ∗a) where µ∗ ∈ ℜ satisfies
aTPBox[l,u](z− µ∗a) = b 0 ̸= a ∈ ℜn b ∈ ℜ

H−a,b ∩ Box[l,u]
PBox[l,u](z) aTPBox[l,u](z) ≤ b
PBox[l,u](z− λ∗a) aTPBox[l,u](z) > b
where λ∗ ∈ ℜ satisfies aTPBox[l,u](z− λ∗a) = b & λ∗ > 0

0 ̸= a ∈ ℜn b ∈ ℜ

B∥.∥1 [0,α]
z ∥z∥1 ≤ α
[z− λ∗e]+ ⊙ sign(z) ∥z∥1 > α
where λ∗ > 0, & [z− λ∗e]+ ⊙ sign(z) = α

α > 0
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Lagrange Function and Necessary KKT Conditions

Can the Lagrange Multiplier construction be generalized to always find optimal solutions
to a minimization problem?
Instead of the iterative path again, assume everything can be computed analytically
Attributed to the mathematician Lagrange (born in 1736 in Turin). Largely worked on
mechanics, the calculus of variations, probability, group theory, and number theory.
Credited with the choice of base 10 for the metric system (rather than 12).
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Lagrange Function and Necessary KKT Conditions

Consider the equality constrained minimization
problem (with D ⊆ ℜn)

min
x∈D

f(x)
subject to gi(x) = 0 i = 1, 2, . . . ,m

(67)

The figure shows some level curves of the function f
and of a single constraint function g1 (dotted lines)
The gradient of the constraint ∇g1 is not parallel to
the gradient ∇f of the function at f = 10.4; it is
therefore possible to
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grad f has a 
non-zero

component perpendicular to gradient of g1

Goal: We should not be able to reduce the value of f while still honoring g1(x) = 0

reduce the value of f by moving
in negative of non-zero component
perpendicular to grad g1Moving perpendicular to grad g1 ==> g1(x) = 0 remains

x'

All this shows
that there cannot
be a local minimum 
at x'

Note that a lot of the analysis that follows does not even assume convexity
Necessary conditions often do NOT require convexity



Lagrange Function and Necessary KKT Conditions

Consider the equality constrained minimization
problem (with D ⊆ ℜn)

min
x∈D

f(x)
subject to gi(x) = 0 i = 1, 2, . . . ,m

(67)

The figure shows some level curves of the function f
and of a single constraint function g1 (dotted lines)
The gradient of the constraint ∇g1 is not parallel to
the gradient ∇f of the function at f = 10.4; it is
therefore possible to move along the constraint
surface so as to further reduce f.
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Lagrange Function and Necessary KKT Conditions

However, ∇g1 and ∇f are parallel at f = 10.3, and
any motion along g1(x) = 0 will
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lie along the perpendicular to gradient of g1(x) 
at that point <==> but gradient of f along that

direction = 0!!

==> If we try to decrease value of f, we will land up
increasing/decreasing g1 (unacceptable)

==> If we move along perpendicular to gradient of g1, 
no change expected in f

SO gradients of f and g being in same/opposite directions
is necessary condition for local minimum/maximum



Lagrange Function and Necessary KKT Conditions

However, ∇g1 and ∇f are parallel at f = 10.3, and
any motion along g1(x) = 0 will leave f unchanged.
Hence, at the solution x∗,
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gradient f(x*) proportional to gradient g1(x*)



Lagrange Function and Necessary KKT Conditions

However, ∇g1 and ∇f are parallel at f = 10.3, and
any motion along g1(x) = 0 will leave f unchanged.
Hence, at the solution x∗, ∇f(x∗) must be
proportional to −∇g1(x∗), yielding,
∇f(x∗) = −λ∇g1(x∗), for some constant λ ∈ ℜ; λ
is called a Lagrange multiplier.
Often λ itself need never be computed and
therefore often qualified as the undetermined
lagrange multiplier.
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Lagrange Function and Necessary KKT Conditions

The necessary condition for an optimum at x∗ for the optimization problem in (68) with
m = 1 can be stated as in (68); the gradient is now in
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The gradient of the Lagrange function wrt x* and lambda* should vanish
as a necessary condition for optimum at x*,lambda*



Lagrange Function and Necessary KKT Conditions

The necessary condition for an optimum at x∗ for the optimization problem in (68) with
m = 1 can be stated as in (68); the gradient is now in ℜn+1 with its last component
being a partial derivative with respect to λ.

∇L(x∗,λ∗) = ∇f(x∗) + λ∗∇g1(x∗) = 0

gi(x∗)= 0
(68)

The solutions to (68) are the stationary points of the lagrangian L; they are not
necessarily local extrema of L.

▶ L is unbounded: given a point x that doesn’t lie on the constraint, letting λ→ ±∞ makes L
arbitrarily large or small.

▶ However, under certain stronger assumptions, if the strong Lagrangian principle holds, the
minima of f minimize the Lagrangian globally.

October 26, 2018 270 / 429

(General property of linear functions - here linearity in lambda)

A bit later



Lagrange Function and Necessary KKT Conditions

Let us extend the necessary condition for optimality of a minimization problem with single
constraint to minimization problems with multiple equality constraints (i.e., m > 1. in
(67)).
Let S be the subspace spanned by ∇gi(x) at any point x and let S⊥ be its orthogonal
complement. Let (∇f)⊥ be the component of ∇f in the subspace S⊥.
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Moving perpendicular to S ==> all constraints remain satisified. 
===> At an optimal point x*, we should not be able to move perpendicular to S while

reducing the value of f
===> Gradient of cannot have any component along perpendicular to S
===> f MUST lie in S



Lagrange Function and Necessary KKT Conditions

Let us extend the necessary condition for optimality of a minimization problem with single
constraint to minimization problems with multiple equality constraints (i.e., m > 1. in
(67)).
Let S be the subspace spanned by ∇gi(x) at any point x and let S⊥ be its orthogonal
complement. Let (∇f)⊥ be the component of ∇f in the subspace S⊥.
At any solution x∗, it must be true that the gradient of f has (∇f)⊥ = 0 (i.e., no
components that are perpendicular to all of the ∇gi), because otherwise you could move
x∗ a little in that direction (or in the opposite direction) to increase (decrease) f without
changing any of the gi, i.e. without violating any constraints.
Hence for multiple equality constraints, it must be true that at the solution x∗, the space
S contains the vector ∇f, i.e., there are some constants λi such that ∇f(x∗) = λi∇gi(x∗).
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Lagrange Multipliers with Inequality Constraints

We also need to impose that the solution is on the correct constraint surface (i.e.,
gi = 0, ∀i). In the same manner as in the case of m = 1, this can be encapsulated by

introducing the Lagrangian L(x,λ) = f(x) +
m∑

i=1

λigi(x), whose gradient with respect to

both x, and λ vanishes at the solution.
This gives us the following necessary condition for optimality of (67):
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Lagrange Multipliers with Inequality Constraints

We also need to impose that the solution is on the correct constraint surface (i.e.,
gi = 0, ∀i). In the same manner as in the case of m = 1, this can be encapsulated by

introducing the Lagrangian L(x,λ) = f(x) +
m∑

i=1

λigi(x), whose gradient with respect to

both x, and λ vanishes at the solution.
This gives us the following necessary condition for optimality of (67):

∇L(x∗,λ∗) = ∇


f(x) +

m∑

i=1

λigi(x)


 = 0 (69)
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Lagrange Multipliers with Inequality Constraints
Single equality constraint g1(x) = 0, replaced with
a single inequality constraint g1(x) ≤ 0. The entire
region labeled g1(x) ≤ 0 in the Figure becomes
feasible.
At the solution x∗, if g1(x∗) = 0, i.e., if the
constraint is active, we must have
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INACTIVE CONSTRAINT ==> g1(x*) < 0

(active case is exactly the same as that of
equality constrained optimization)

gradient of f(x*) and gradient of g(x*) are in same
space..



Lagrange Multipliers with Inequality Constraints
Single equality constraint g1(x) = 0, replaced with
a single inequality constraint g1(x) ≤ 0. The entire
region labeled g1(x) ≤ 0 in the Figure becomes
feasible.
At the solution x∗, if g1(x∗) = 0, i.e., if the
constraint is active, we must have (as in the case of
a single equality constraint) that ∇f is parallel to
∇g1, by the same argument as before.
Additionally, necessary for the two gradients to
point in
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We have a problem: It is fine to reduce f while reducing g1
==> It is fine to move in negative gradient f(x*) if that

also has a component in negative gradient g1(x*)

opposite directions



Lagrange Multipliers with Inequality Constraints
Single equality constraint g1(x) = 0, replaced with
a single inequality constraint g1(x) ≤ 0. The entire
region labeled g1(x) ≤ 0 in the Figure becomes
feasible.
At the solution x∗, if g1(x∗) = 0, i.e., if the
constraint is active, we must have (as in the case of
a single equality constraint) that ∇f is parallel to
∇g1, by the same argument as before.
Additionally, necessary for the two gradients to
point in opposite directions; else a move away from
the surface g1 = 0 and into the feasible region
would further reduce f.
With Lagrangian L = f+ λg1, an additional
constraint is that
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lambda1 >= 0



Lagrange Multipliers with Inequality Constraints
Single equality constraint g1(x) = 0, replaced with
a single inequality constraint g1(x) ≤ 0. The entire
region labeled g1(x) ≤ 0 in the Figure becomes
feasible.
At the solution x∗, if g1(x∗) = 0, i.e., if the
constraint is active, we must have (as in the case of
a single equality constraint) that ∇f is parallel to
∇g1, by the same argument as before.
Additionally, necessary for the two gradients to
point in opposite directions; else a move away from
the surface g1 = 0 and into the feasible region
would further reduce f.
With Lagrangian L = f+ λg1, an additional
constraint is that λ ≥ 0
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Lagrange Multipliers with Inequality Constraints

If the constraint is not active at the solution
∇f(x∗) = 0, then removing g1
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(that is
setting lambda1 = 0)

does not involve lambda1



Lagrange Multipliers with Inequality Constraints

If the constraint is not active at the solution
∇f(x∗) = 0, then removing g1 makes no difference
and we can drop it from L = f+ λg1,
This is equivalent to setting
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lambda1 = 0



Lagrange Multipliers with Inequality Constraints

If the constraint is not active at the solution
∇f(x∗) = 0, then removing g1 makes no difference
and we can drop it from L = f+ λg1,
This is equivalent to setting λ = 0.
Thus, whether or not the constraints g1 = 0 are
active, we can find the solution by requiring that

1 the gradients of the Lagrangian vanish, and
2 λg1(x∗) = 0.

This latter condition is one of the important
Karush-Kuhn-Tucker conditions of convex
optimization theory that can facilitate the search
for the solution and will be more formally discussed
subsequently.
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wrt x* only

(complementary slackness)



Lagrange Multipliers with Inequality Constraints
Now consider the general inequality constrained
minimization problem

min
x∈D

f(x)
subject to gi(x) ≤ 0 i = 1, 2, . . . ,m

(70)

With multiple inequality constraints, for constraints
that are active, (as in the case of multiple equality
constraints),

1 ∇f must lie in the space spanned by the ∇gi’s,
2 if the Lagrangian is L = f+

m∑

i=1

λigi, then we must

also have λi ≥ 0, ∀i (since otherwise f could be
reduced by moving into the feasible region).
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Lagrange Multipliers with Inequality Constraints
As for an inactive constraint gj (gj < 0), removing
gj from L makes no difference and we can drop ∇gj
from ∇f = −

m∑

i=1

λi∇gi or equivalently set λj = 0.

Thus, the foregoing KKT condition generalizes to
λigi(x∗) = 0, ∀i.
The necessary condition for optimality of (74) is
summarized as:

∇L(x∗,λ∗) = ∇


f(x) +

m∑

i=1

λigi(x)


 = 0

∀i λigi(x) = 0 (71)
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Gradeint is wrt x*
only



A simple and often useful trick called the free constraint gambit is to solve ignoring one or
more of the constraints, and then check that the solution satisfies those constraints, in which

case you have solved the problem.

October 26, 2018 277 / 429

Eg: Take g1 and see if gradient f(x*) + lambda1* gradient g1(x*) = 0 for some
lambda1* and x*
If yes, then we have satisified the necessary condition as discussed on the board



A simple and often useful trick called the free constraint gambit is to solve ignoring one or
more of the constraints, and then check that the solution satisfies those constraints, in which

case you have solved the problem.
Some Algebraic Justification: Lagrange Multipliers

with Inequality Constraints
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Algebraic Justification: Lagrange Multipliers with Inequality Constraints
For the constrained optimization problem

min
x∈D

f(x)
subject to x ∈ C

(72)

x∗ = argmin
x∈C

f(x) ⇐⇒ argmin
x

f(x)+IC(x), where IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

NC(x) = ∂IC(x) =
{

h ∈ ℜn
���hTx ≥ hTz for any z ∈ C

}
=

{
h ∈ ℜn

���hT(x− z) ≥ 0 for any

Recap: Necessary condition for optimality at x∗: 0 ∈
{

x∗ ��∇f(x∗) + NC(x∗)
}
, that is,

∇f(x∗) = −NC(x∗) = 0 and therefore

∇Tf(x∗)(z− x∗) ≥ 0 for any z ∈ C (73)
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Algebraic Justification: Lagrange Multipliers with Inequality
Constraints(contd.)

Specifically, let C =
{

x ∈ ℜn
��gi(x) ≤ 0 ∀ i = 1, 2, . . . ,m

}

min
x∈D

f(x)
subject to gi(x) ≤ 0 i = 1, 2, . . . ,m

(74)

Assume that each gi is convex and is differentiable. Then, we must have, for each i,

∇Tgi(x∗)(z− x∗) + gi(x∗) ≤ gi(z) for any z ∈ C (75)

Since gi(z) ≤ 0 whenever z ∈ C,
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Algebraic Justification: Lagrange Multipliers with Inequality
Constraints(contd.)

Specifically, let C =
{

x ∈ ℜn
��gi(x) ≤ 0 ∀ i = 1, 2, . . . ,m

}

min
x∈D

f(x)
subject to gi(x) ≤ 0 i = 1, 2, . . . ,m

(74)

Assume that each gi is convex and is differentiable. Then, we must have, for each i,

∇Tgi(x∗)(z− x∗) + gi(x∗) ≤ gi(z) for any z ∈ C (75)

Since gi(z) ≤ 0 whenever z ∈ C,

∇Tgi(x∗)(z− x∗) + gi(x∗) ≤ 0 for any z ∈ C
⇒ −∇Tgi(x∗)(z− x∗)− gi(x∗) ≥ 0 for any z ∈ C (76)
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Algebraic Justification: Lagrange Multipliers with Inequality
Constraints(contd.)

Since any non-negative scalar (such as in (73)) is a linear combination of non-negative
scalars (such as in (76)) with non-negative weights, there exists scalar (vector) λ ∈ ℜm+
such that

∇Tf(x∗)(z− x∗) =
m∑

i=1

−λi∇Tgi(x∗)(z− x∗)− λigi(x∗) for any z ∈ C (77)

Since (77) must hold for any z ∈ C and since x∗ ∈ C, we should have λigi(x∗) = 0. Since
the equality (77) should also continuously hold on the convex set C, we must also have

∇f(x∗) =
m∑

i=1

−λi∇gi(x∗), that is ∇f(x∗) +
m∑

i=1

λi∇gi(x∗) = 0

Since any equality constraint hj(x) = 0 can be expressed as two inequality constraints:
hj(x) ≥ 0 and −hj(x) ≥ 0, the corresponding lagrange multiplier µj will have no sign
constraints.
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sum of lambdai gi = 0 by substituting z = x*


