SHT: Separating hyperplane theorem (a fundamental theorem)

If C and D are disjoint convex sets, i.e., CN'D = ¢, then there exists a # 0, with a b € R such
that
a’x<bforxeld,
a’x > b for x € D.
That is, the hyperplane {x|aTx = b} separates C and D.
@ The seperating hyperplane need not be unique though.

@ Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).
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SHT: Separating hyperplane theorem (restated)

If C and D are disjoint convex sets, i.e., CN'D = ¢, then there exists a # 0, with a b € R such
that
a’x<bforxeld,
a’x > b for x € D.
That is, the hyperplane {x|aTx = b} separates C and D.
@ The seperating hyperplane need not be unique though.

@ Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).
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Proof of the Separating Hyperplane Theorem

We first note that the set S = {x — y|x € C,y € D} is convex, since it is the sum of two
convex sets. Since C and D are disjoint, 0 ¢ S. Consider two cases:

© Suppose 0 ¢ closure(S). Let £ = {0} and F = closure(S). Then, the euclidean distance
between £ and F, defined as
dist(€; F) = inf{|lu—v||zJu € &,v € F}
is positive, and there exists a point f € F that achieves the minimum distance, i.e.,
||f]]2 = dist(é’ F). Define a =f, b = ||f||2. Then a # 0 and the affine function
fx) = a’x — b= fT(x — 1f) is nonpositive on £ and nonnegative on F, i.e., that the
hyperplane {x]a X = b} separates £ and F. Thus, a’(x —y) > 0 for all

X —y € S C closure(S), which implies that, a’x > a’y for all x € C and y € D.
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Proof of the Separating Hyperplane Theorem

@ Suppose, 0 € closure(S). Since 0 ¢ S, it must be in the boundary of S.
> If S has empty interior, it must lie in an affine set of dimension less than n, and any
hyperplane containing that affine set contains S and is a hyperplane. In other words, § is
contained in a hyperplane {z|a’z = b}, which must include the origin and therefore b = 0.

In other words, a’x = a'y for all x € C and all y € D gives us a trivial separating
hyperplane.
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Proof of the Separating Hyperplane Theorem

@ Suppose, 0 € closure(S). Since 0 ¢ S, it must be in the boundary of S.

» If S has a nonempty interior, consider the set
S_c = {z|B(z,e) C S}
where B(z, €) is the Euclidean ball with center z and radius € > 0. S_. is the set S, shrunk
by €. closure(S_.) is closed and convex, and does not contain 0, so as argued before, it is
separated from {0} by atleast one hyperplane with normal vector a(e) such that
a(e)Tz >0 forall z € S,
Without loss of generality assume ||a(e)||a = 1. Let €, for k=1,2,... be a sequence of
positive values of €, with lerr;Oek = 0. Since ||a(ex)||2 = 1 for all k, the sequence a(ex)

contains a convergent subsequence, and let a be its limit. We have
a(e)'z>0forallze S,

and therefore a’z > 0 for all z € interior(S), and a’z >0 for all z € S, which means
a'x>a'yforallxeC, and y € D.
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Supporting hyperplane theorem (consequence of separating hyperplane
theorem)
Supporting hyperplane to set C at boundary point x,:

° {x|aTx = aTxo}

@ where a # 0 and a'x<alx,forallxeC

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at
every boundary point of C.
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Positive Semidefinite Cone and Convex Analysis
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More on Convex Sets and Advanced Material on Convex Analysis

Positive Semi-definite cone.

Positive Semi-definite cone: Example and Notes.
Linear program and dual of LP.

Properties of dual cones.

Conic Program.

Generalized Inequalities.
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Positive semidefinite cone: Notes

@ Claim: (87)* = (81])
@ ie. <X,Y>=1tr(XTY) =1tr(XY) >0V Xe (S7)iffY € (57)

Proof:

(1) Letussay Y ¢ S7. Thatis3z € R"s.t. 2’ Yz=1tr(zz"Y) < 0

ie. IX=2z" € & st. <XY> <0

— Y ¢ (5}

Suppose Y, X € §7. Any X € 5 can be written in terms of eignvalue decomposition as:
X =31 Aitiit] (A = 0)

S<Y X =tr(YX) = (Y X, dwid]) =Y
Since (A; > 0) and (u] Yu; > 0asY € S7)

= Ye (5))

i=1:n )‘itr(yuiui-r) = Ei:l:n Al'u,'TYUi Z 0.

00000 OO0
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Positive semidefinite cone: Questions

@ Q) Is there some connection between Y = yy" used for ST = {X € §" | <yy’, X> > 0}
and (51)" = (S3).
- (To be revisited as H/W)
Q@ Q) (S34)" =7 int(S}) = (5h4)
- Ans: (S7,)" = (87), (will be done formally for general case of convex cones)
- C = convex cone, C** = cl(C)
@ Q) Consider an application of psd cone for optimization. (thru LP)

@ We will first see (weak) duality in a linear optimization problem (LP).

® Next we look at generalized (conic) inequalities and the properties that the cone must satisfy
for the inequality to be a valid inequality.

© Next, we generalize LP to conic program (CP) using generalized inequality and realize weak
duality for CP thru dual cones.
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Linear program (LP) & dual of LP.
We will first see (weak) duality in a linear optimization problem (LP).
@ LP: mingcgqn c'x (Affine Objective)
subjected to —Ax+ b <0

» Let A\ >0 (ie. A€ RY)

» Then AT(-Ax+b) <0

» = c'x>c"x+ AT(—-Ax + b)

» = x> ATh+ (c—ATN)Tx

» So, c’x > ming ATh+ (c— AT\ Tx
» Thus,

; {/\Tb, if ATA = ¢
c'x>

—00, otherwise

» Note: LHS (c'x) is independent of A and R.H.S (A7b) is independent of x.

@ Weak duality theorem for Linear Program:
Primal LP (lower bounded) > Dual LP (upper bounded):
(minyegnc'x, s.t. Ax > b) > (maxy>ob '\, s.t. ATA = c)

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 186 / 212



Conic program

We will motivate through linear programming (LP), generalized inequalities:
@ LP: mingcyn c'x (Affine Objective)
subjected to —Ax+ b <0
» Note: —Ax + b < 0 can be rewritten as Ax > 0.
» So, constraint is Ax — b € R
> Note: R} is a CONE. How about defining generalized inequality for a cone K as:
c>kdiffc—de K
@ So, a generalized conic program can be defined as:
MiNycRn c’x
subjected to —Ax 4+ b <k 0
» That is, constraint is Ax — b€ K.
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Properties of dual cones

@ If Xis a Hilbert space & C C X then C* is a closed convex cone.
» We have already proven that C* is a closed convex cone.
» (" = intersection of infinite topological half spaces.
» ' =Nyxec Ylye X, <y,x >>0}
» —> (¥ is closed.
@GCCG — GCq.
@ interior(C*) = {y € X| <y,x >> 0}
Q If Cis cone and has int(C) # () then C* is pointed.
» Since; ify € C* & —y € C*, then y = 0.
@ If Cis cone then closure(C) = C*
» If C = open half space, then C** = closed half space.
@ If closure of Cis pointed, then interior(C*) # ¢.

Sis called conically spanning set of cone K iff conic(S) = K.
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Generalized Inequalities

a convex cone K C R" is a proper cone (or regular cone) if:
(Some restrictions on K that we will require, H/W Why?)

e K is closed (contains its boundary)
e K is solid (has nonempty interior)
e K is pointed (contains no line)

» i.e. K has no straight lines passing through O.
> j.e. if —a,a€ K, thena =20

examples

@ non-negative orthant K= R] = {x e R"|x; > 0,i=1,...,n}
@ positive semidefinite cone K= 57
@ nonnegative polynomials on [0,1]:

K={x€R"x; +xot+x32 + ... + x,t""1 >0 for t € [0, 1]}
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Valid Inequality and Partial Order

To prove that K being closed, solid and pointed are necessary & sufficient conditions for > to
be a valid inequality, reall that any partial order > should satisfy the following properties:(refer
page 51 of www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf):

@ Reflexivity: a > g
@ Anti-symmetry: if both a > b and b > a, then a = b;
© Transitivity: if both a > b and b > ¢, then a > ¢

@ Compatibility with linear operations:
©® Homogeneity: If a > b and )\ is a nonnegative real, then Aa > Ab, i.e. one can multiply both

sides of an inequaility by a nonnegative real.
@ Addititvity: if both a > b abd ¢ > d, then a+ ¢ > b+ d, i.e. One can add two inequalities of

the same sign.

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 190 / 212


www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf

Example of Partial Order

@ Example of Partial Order C over sets

@ The Hasse diagram of the set of all subsets of a three-element set {x, y, z}, ordered by
inclusion(Inclusion, i.e. the Partial Order C):

o (source http://en.wikipedia.org/wiki/Partially_ordered_set)
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Dual Cones and Generalized Inequalities
Instructor: Prof. Ganesh Ramakrishnan

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709



Contents: Vector Spaces beyond R”

@ Recap: Linear program (LP) & dual of LP.

@ Recap: Conic program.
@ Recap: Linear program (LP) & dual of LP.
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Linear program (LP) & dual of LP.
We will first see (weak) duality in a linear optimization problem (LP).
@ LP: mingcgqn c'x (Affine Objective)
subjected to —Ax +b <0

» Let A >0 (ie. AeR)

» Then AT(—Ax +b) <0

» = c’x>c"x+ AT(—Ax+b)

» = cx>ATh+(c—ATN)x

» So, c’x > ming ATb + (c — AT)\)Tx
» Thus,

- Ab, ifATA=c
c'x > .
—00, otherwise

» Note: LHS (c'x) is independent of A and R.H.S (ATb) is independent of x.

@ Weak duality theorem for Linear Program:
Primal LP (lower bounded by dual) > Dual LP (upper bounded by primal):
(mingegn c7x, s.t.Ax > b) > (maxAZObT)\, stATA =¢)
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Conic program

We will motivate through linear programming (LP), generalized inequalities:

© A generalized conic program can be defined as:
MiNyecRn €' X
subjected to —Ax + b <k 0

» That is, constraint is Ax — b € K.

@ Q: Has to generalize —Ax + b < 0 to —Ax + b <k 0 s.t. <k is a generalized inequality &
K some set?

© What properties should K satisfy so that <y satisfies properties of generalized
inequalities?
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Valid Inequality and Partial Order

To prove that K being closed, solid and pointed are necessary & sufficient conditions for > to
be a valid inequality, reall that any partial order > should satisfy the following properties:(refer
page 51 of www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf):

@ Reflexivity: a > g
@ Anti-symmetry: if both a > b and b > a, then a = b;
© Transitivity: if both a > b and b > ¢, then a > ¢

@ Compatibility with linear operations:
©® Homogeneity: If a > b and )\ is a nonnegative real, then Aa > Ab, i.e. one can multiply both

sides of an inequaility by a nonnegative real.
@ Addititvity: if both a > b abd ¢ > d, then a+ ¢ > b+ d, i.e. One can add two inequalities of

the same sign.
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Example of Partial Order

@ Example of Partial Order C over sets

@ The Hasse diagram of the set of all subsets of a three-element set {x, y, z}, ordered by
inclusion(Inclusion, i.e. the Partial Order C):

o (source http://en.wikipedia.org/wiki/Partially_ordered_set)
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Proof of generalized inequality

To prove that K being closed, solid and pointed are necessary & sufficient conditions for > to

be a valid inequality.
Proof:
@ K being pointed convex cone = > is a partial order
@ Reflexivity: a >k a, sincea—a=0¢€ K (.- Kis cone)
@ Anti-symmetry: Ifa >k b &b >kxathena=Db,sincea-beK&b-aeK = a-b=0
(.- K is pointed)
© Transitivity: If both a >k b & b >k cthena >kc,sincea-beK&b-ce K = (a-b)
+ (b-c) € K (.- Kis a convex cone i.e. contain all conic combinations of points in the set)
@ Homogeneity: If both a >k b & A > 0 then A\a >k Ab,sincea-be K& A >0 = A(a-
b) € K (.- K is a cone)
O Additivity: Ifa>kb& c>kdthena+c>xkb+d sincea-beK&c-deK = (a+
c)- (b+d) e K(. Kisa convex cone)

@ > is a partial order = K being pointed convex cone
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Proof of generalized inequality

To prove that K being closed, solid and pointed are necessary & sufficient conditions for > to
be a valid inequality.
Proof:
@ >k is a partial order = K being pointed convex cone
@ Kis convex cone: If x,y € Kthen 1x+ 6y € KV 01,05 > 0,sincex>k0& y >0 =
01x >k 0& Oy >k 0V 01,00 >0 (Homogeneity of ZK) and thus 01x+ 6,y >0 (Additivity
of >k)
@ Kispointed: If x € K& —x € Kthen x =0, sincex >k x & x>0 = 0>kx
(reflectivity x >k x, and adding x > x&—x > 0 by additivity) and —x > x (additivity
on —x >k 0 & 0 >k x) and similarly x >, —x, and by applying anti-symmetry on —x > x
&x>k—xwegetx=—-xie x=0.
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Additional properties over & above K being pointed convex cone

@ Que: Suppose ' >k b’V i & a' — a & b’ — b, then for a >, b what more is required of
K?

@ Ans: Necessary condition is that a' - b' — a— b € K. i.e. K is closed(Also happens to be
a sufficient condition).

© Que: What is required so that 3 a >k b (i.e. b % a)?

© Ans: Sufficient condition is that a — b € int(K) i.e. int(K) # ¢ OR K has non-empty
interior.

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 200 / 212



Linear program (LP) & Conic program.

We will first see (weak) duality in a linear optimization problem (LP).
@ LP: mingcqn c"x (Affine Objective)
subjected to —Ax+ b <0

—Ax + b < 0 can be rewritten as Ax > b or Ax — b € R, Note: R is a CONE. How about
defining generalized inequality for a cone C as ¢ >k d iff c— d € K and a generl conic program
as:

O minycpn c’x
subjected to —Ax + b <k 0

@ That is, constraint is Ax — b€ K.

@ K is a proper cone.
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Generalized Inequalities

a convex cone K C R" is a proper cone (or regular cone) if:
(Some restrictions on K that we will require, H/W Why?)

e K is closed (contains its boundary)
e K is solid (has nonempty interior)
e K is pointed (contains no line)

» i.e. K has no straight lines passing through O.
> j.e. if —a,a€ K, thena =20

examples
@ non-negative orthant K= R = {x e R"|x; > 0,i=1,...,n}
@ psitive semidefinite cone K= 57
@ nonnegative polynomials on [0,1]:
K={xe€R"x +xot+x32 + ... + x,t""1 >0 for t € [0,1]}

@ Que: What if n — oo, can you get proper cones under additional constraints?
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Linear program & its dual To Conic program and its dual.
Consider LP and its dual:
@ LP: mingcgqn c'x (Affine Objective)
subjected to —Ax+ b <0

» Let A\ >0 (ie. A€ RY)

» Then AT(=Ax + b) <0

» = c'x>c"x+ AT(—-Ax + b)

» = x> ATh+ (c—ATN)Tx

» So, c’x > ming ATh+ (c— ATA) Tx
» Thus,

; {)\Tb, if ATA=c
c'x > .
—o00, otherwise

» Note: LHS (c¢"x) is independent of A and R.H.S (A7b) is independent of x.

@ Weak duality theorem for Linear Program:
Primal LP (lower bounded by dual) > Dual LP (upper bounded by primal):
(minyegn 7x, s.t.Ax > b) > (maxy>ob™ ), s.t. AT\ = ¢)
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Conic program

Refer page 5 of http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf:
© Conic program:
MiNycspRn c’x
subjected to —Ax + b <k 0
@ Generalized conic program:
Minkecy < ¢, X >y
subjected to Ax — be K
@ K is a regular/proper cone.
@ We need an equivalent A € DD K* s.t.
<MAx—b>>0.
© This K* s.t.
D={\<MNAx—b>>0, A€ VVAx—be K}
& D D K* is dual cone of K
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Dual of Conic program

© Refer page 7 of http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf:
K* = {\: \T¢ >0 V¢ € K} is the cone dual to K.

@ With this follows weak duality theorem for CONIC PROGRAM:
Primal CP (lower bounded by dual) > Dual CP (upper bounded by primal):
(mingey < 6, X >y, s.t. < A AX —b >>0.) > (maxyexs < b, A >,s.tATA = ¢)
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Notes: LP and CP

© Both LP and CP dealt with affine objectives.
@ CP dealt with the generalized conic inequalities.
© Later, in convex optimization, we will deal with the more general convex functions in the
objective.
Some Generalizations:
Q If K=R", the CPis an LP.
@ If K =57 (Set of all nXn SPD matrices), the CP is an SDP (Semi-definite program).

© Any generic convex program can be expressed as a cone program (CP).
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Dual of dual

@ If Kis a closed convex cone then K** = K.

@ More generally, if K is just a convex cone, K** = closure(K) (abbreviated as CI(K))
We will prove that if Kis closed, then K** = K:

Q@ KC K™ sincexe K =<x,y>>0Vye K = x¢e K"

@ K™ C K, we will prove by contradiction. Suppose x € K** but x ¢ K:

@ K** is closed since any dual cone is intersection of half spaces that are closed.

@ {x} is a singleton set.

© = by "strict hyperplane theorem” (on next page and proved later):
JaeV&beRst <a,x><b&k<ay>>blycK

0 — <ax><0<<a,y>VyeK. (Sinccy=0¢€ K*, Claim: b=20if Vis a closed
convex cone)

@ — ac K" & x ¢ K** [contradiction]
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Separating hyperplane theorem (a fundamental theorem)

If C and D are disjoint convex sets, i.e., CN'D = ¢, then there exists a # 0, with a b € R such
that
a’x<bforxeld,
a’x > b for x € D.
That is, the hyperplane {x|aTx = b} separates C and D.
@ The seperating hyperplane need not be unique though.

@ Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).
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Supporting hyperplane theorem (consequence of separating hyperplane
theorem)
Supporting hyperplane to set C at boundary point x,:

° {x|aTx = aTxo}

@ where a # 0 and a'x<alx,forallxeC

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at
every boundary point of C.
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Dual cones and generalized inequalities

In-fact, if K'is a proper cone then K* is also proper.
K* = {\:AT¢ >0, V€ € K} is the cone dual to K.
Examples:
@ Self-dual cones
> K=R7: K* =R7
» K=S1: K*=5]
> K={xdllxlz <t} K ={(x, DlIxl2 < t}
o K={(x,t)llx[h < t}: K* ={(x, )[[x[lc <t}

Dual cones of proper cones are proper, hence define generalized inequalities:
y ke 0 <= y'x>0forall x =,0
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Minimum and minimal elements via dual inequalities

minimum element w.r.t <g:

@ x is minimum element of S iff for all A k= 0, x is unique minimizer of A7z over S.
minimal element w.r.t <g:

o If x minimizes A7z over S for some A =+ 0 then x is minimal

o If x is minimal element of convex set S, then there exists a nonzero A =k+ 0 such that x
minimizes A"z over S
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From Dual of Norm Cone to Dual Norm

Let .|| be a norm on R" The dual of K = {(x, t) € R™|||x|| < t} is:
K= {(u,v)] € R™||ull. < v}

where ||ull. = sup{ux]|x]| < 1}

Proof: We need to show that

xTu+ tv> 0 whenever ||x|| <t <= |lull« < v
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