SHT: Separating hyperplane theorem (a fundamental theorem)

If C and D are disjoint convex sets, *i.e.*, $C \cap D = \phi$, then there exists $\mathbf{a} \neq \mathbf{0}$, with a $b \in \Re$ such that

 $\mathbf{a}^T \mathbf{x} \leq \mathbf{b}$ for $\mathbf{x} \in \mathcal{C}$,

 $\mathbf{a}^T \mathbf{x} \ge \mathbf{b}$ for $\mathbf{x} \in \mathcal{D}$.

That is, the hyperplane $\left\{ \mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{b} \right\}$ separates C and D.

- The seperating hyperplane need not be unique though.
- Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).

SHT: Separating hyperplane theorem (restated)

If C and D are disjoint convex sets, *i.e.*, $C \cap D = \phi$, then there exists $\mathbf{a} \neq \mathbf{0}$, with a $b \in \Re$ such that

 $\mathbf{a}^T \mathbf{x} \leq \mathbf{b}$ for $\mathbf{x} \in \mathcal{C}$,

 $\mathbf{a}^T \mathbf{x} \geq \mathbf{b}$ for $\mathbf{x} \in \mathcal{D}$.

That is, the hyperplane $\left\{ \mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{b} \right\}$ separates C and D.

- The seperating hyperplane need not be unique though.
- Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).

Proof of the Separating Hyperplane Theorem

We first note that the set $S = \{ \mathbf{x} - \mathbf{y} | \mathbf{x} \in C, \mathbf{y} \in D \}$ is convex, since it is the sum of two convex sets. Since C and D are disjoint, $\mathbf{0} \notin S$. Consider two cases:

Suppose 0 ∉ closure(S). Let E = {0} and F = closure(S). Then, the euclidean distance between E and F, defined as dist(E; F) = inf{||u - v||₂|u ∈ E, v ∈ F} is positive, and there exists a point f ∈ F that achieves the minimum distance, i.e., ||f||₂ = dist(E, F). Define a = f, b = ||f||₂. Then a ≠ 0 and the affine function f(x) = a^Tx - b = f^T(x - ½f) is nonpositive on E and nonnegative on F, *i.e.*, that the hyperplane {x|a^Tx = b} separates E and F. Thus, a^T(x - y) > 0 for all x - y ∈ S ⊆ closure(S), which implies that, a^Tx ≥ a^Ty for all x ∈ C and y ∈ D.

Proof of the Separating Hyperplane Theorem

- Suppose, $0 \in closure(S)$. Since $0 \notin S$, it must be in the boundary of S.
 - If S has empty interior, it must lie in an affine set of dimension less than n, and any hyperplane containing that affine set contains S and is a hyperplane. In other words, S is contained in a hyperplane $\{\mathbf{z} | \mathbf{a}^T \mathbf{z} = b\}$, which must include the origin and therefore b = 0. In other words, $\mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{y}$ for all $\mathbf{x} \in C$ and all $\mathbf{y} \in D$ gives us a trivial separating hyperplane.

Proof of the Separating Hyperplane Theorem

Suppose, $0 \in closure(S)$. Since $0 \notin S$, it must be in the boundary of S.

 \blacktriangleright If ${\mathcal S}$ has a nonempty interior, consider the set

$$\mathcal{S}_{-\epsilon} = \left\{ \mathbf{z} | B(\mathbf{z}, \epsilon) \subseteq \mathcal{S} \right\}$$

where $\hat{B}(\mathbf{z}, \epsilon)$ is the Euclidean ball with center \mathbf{z} and radius $\epsilon > 0$. $S_{-\epsilon}$ is the set S, shrunk by ϵ . $closure(S_{-\epsilon})$ is closed and convex, and does not contain $\mathbf{0}$, so as argued before, it is separated from $\{\mathbf{0}\}$ by atleast one hyperplane with normal vector $\mathbf{a}(\epsilon)$ such that $\mathbf{a}(\epsilon)^T \mathbf{z} \ge 0$ for all $\mathbf{z} \in S_{\epsilon}$

Without loss of generality assume $||\mathbf{a}(\epsilon)||_2 = 1$. Let ϵ_k , for k = 1, 2, ... be a sequence of positive values of ϵ_k with $\lim_{k \to \infty} \epsilon_k = 0$. Since $||\mathbf{a}(\epsilon_k)||_2 = 1$ for all k, the sequence $\mathbf{a}(\epsilon_k)$

contains a convergent subsequence, and let $\overline{\mathbf{a}}$ be its limit. We have

 $\mathbf{a}(\epsilon_k)^T \mathbf{z} \ge 0$ for all $\mathbf{z} \in S_{-\epsilon_k}$ and therefore $\overline{\mathbf{a}}^T \mathbf{z} \ge 0$ for all $\mathbf{z} \in interior(S)$, and $\overline{\mathbf{a}}^T \mathbf{z} \ge 0$ for all $\mathbf{z} \in S$, which means $\overline{\mathbf{a}}^T \mathbf{x} \ge \overline{\mathbf{a}}^T \mathbf{y}$ for all $\mathbf{x} \in C$, and $\mathbf{y} \in D$.

Supporting hyperplane theorem (consequence of separating hyperplane theorem)

Supporting hyperplane to set C at boundary point \mathbf{x}_o :

- $\left\{ \mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{x}_o \right\}$
- where $\mathbf{a} \neq 0$ and $\mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \mathbf{x}_o$ for all $\mathbf{x} \in \mathcal{C}$

* 0

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C.

Positive Semidefinite Cone and Convex Analysis

More on Convex Sets and Advanced Material on Convex Analysis

- Positive Semi-definite cone.
- Positive Semi-definite cone: Example and Notes.
- Linear program and dual of LP.
- Properties of dual cones.
- Conic Program.
- Generalized Inequalities.

Positive semidefinite cone: Notes

1 Claim :
$$(S_{+}^{n})^{*} = (S_{+}^{n})$$
2 i.e. $\langle X, Y \rangle = tr(X^{T}Y) = tr(XY) \ge 0 \ \forall \ X \in (S_{+}^{n}) \text{ iff } Y \in (S_{+}^{n})$

Proof:

• Let us say
$$Y \notin S_+^n$$
. That is $\exists z \in \Re^n$ s.t. $z^T Y z = tr(zz^T Y) < 0$
• i.e. $\exists X = zz^T \in S_+^n$ s.t. $\langle X, Y \rangle < 0$
• $\Longrightarrow Y \notin (S_+^n)^*$
• Suppose $Y, X \in S_+^n$. Any $X \in S_+^n$ can be written in terms of eignvalue decomposition as:
• $X = \sum_{i=1:n} \lambda_i u_i u_i^T (\lambda_i \ge 0)$
• $\therefore \langle Y, X \rangle = tr(YX) = tr(Y \sum_{i=1:n} \lambda_i u_i u_i^T) = \sum_{i=1:n} \lambda_i tr(Yu_i u_i^T) = \sum_{i=1:n} \lambda_i u_i^T Yu_i \ge 0$.
• Since $(\lambda_i \ge 0)$ and $(u_i^T Yu_i \ge 0$ as $Y \in S_+^n)$
• $\Longrightarrow Y \in (S_+^n)^*$

Positive semidefinite cone: Questions

- Q) Is there some connection between $Y = yy^T$ used for $S_+^n = \{X \in S^n \mid \langle yy^T, X \rangle \geq 0\}$ and $(S_+^n)^* = (S_+^n)$.
 - (To be revisited as $\mathsf{H}/\mathsf{W})$
- **2** Q) $(S_{++}^n)^* = ?$, $int(S_{+}^n) = (S_{++}^n)$
 - Ans: $(S_{++}^n)^* = (S_{+}^n)$, (will be done formally for general case of convex cones)
 - C = convex cone, $C^{**} = cl(C)$
- **③** Q) Consider an application of psd cone for optimization. (thru LP)
 - We will first see (weak) duality in a linear optimization problem (LP).
 - Next we look at generalized (conic) inequalities and the properties that the cone must satisfy for the inequality to be a valid inequality.
 - Next, we generalize LP to conic program (CP) using generalized inequality and realize weak duality for CP thru dual cones.

Linear program (LP) & dual of LP.

We will first see (weak) duality in a linear optimization problem (LP).

- LP: $\min_{\mathbf{x}\in\mathbb{R}^n} c^T \mathbf{x}$ (Affine Objective) subjected to $-A\mathbf{x} + b \le 0$
 - ► Let $\lambda \ge 0$ (i.e. $\lambda \in R_{+}^{n}$) ► Then $\lambda^{T}(-A\mathbf{x} + b) \le 0$ ► $\implies c^{T}\mathbf{x} \ge c^{T}\mathbf{x} + \lambda^{T}(-A\mathbf{x} + b)$ ► $\implies c^{T}\mathbf{x} \ge \lambda^{T}b + (c - A^{T}\lambda)^{T}\mathbf{x}$ ► So, $c^{T}\mathbf{x} \ge \min_{\mathbf{x}} \lambda^{T}b + (c - A^{T}\lambda)^{T}\mathbf{x}$ ► Thus,

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} \ge \begin{cases} \lambda^{\mathsf{T}}\mathbf{b}, & \text{if } A^{\mathsf{T}}\lambda = \mathbf{c} \\ -\infty, & \text{otherwise} \end{cases}$$

- Note: LHS $(\mathbf{c}^T \mathbf{x})$ is independent of λ and R.H.S $(\lambda^T \mathbf{b})$ is independent of \mathbf{x} .
- Weak duality theorem for Linear Program: Primal LP (lower bounded) ≥ Dual LP (upper bounded): (min_{x∈ℜⁿ} c^Tx, s.t. Ax ≥ b) ≥ (max_{λ≥0}b^Tλ, s.t. A^Tλ = c)

Conic program

We will motivate through linear programming (LP), generalized inequalities:

- LP: $\min_{\mathbf{x}\in\Re^n} c^T \mathbf{x}$ (Affine Objective) subjected to $-A\mathbf{x} + b \le 0$
 - Note: $-A\mathbf{x} + b \leq 0$ can be rewritten as $A\mathbf{x} \geq 0$.
 - So, constraint is $A\mathbf{x} b \in R^n_+$
 - ▶ Note: R_+^n is a CONE. How about defining generalized inequality for a cone K as: $c \ge_K d$ iff $c - d \in K$
- So, a generalized conic program can be defined as: min_{x∈Rⁿ} c^Tx subjected to −Ax + b ≤_K 0
 - That is, constraint is $A\mathbf{x} b \in K$.

Properties of dual cones

1 If X is a Hilbert space & $C \subseteq X$ then C^* is a closed convex cone.

- We have already proven that C^* is a closed convex cone.
- C^* = intersection of infinite topological half spaces.

$$\bullet \quad C^* = \cap_{\mathbf{x} \in C} \{ y | y \in X, < \mathbf{y}, \mathbf{x} \ge 0 \}$$

 $\blacktriangleright \implies C^* \text{ is closed.}$

• If C is cone and has $int(C) \neq \emptyset$ then C^* is pointed.

• Since; if
$$\mathbf{y} \in \textit{C}^*$$
 & $-\mathbf{y} \in \textit{C}^*$, then $\mathbf{y} = 0$.

- If C is cone then $closure(C) = C^{**}$
 - If C = open half space, then $C^{**} =$ closed half space.
- If closure of C is pointed, then interior $(C^*) \neq \phi$.

S is called conically spanning set of cone K iff conic(S) = K.

Generalized Inequalities

a convex cone $K \subseteq \Re^n$ is a proper cone (or regular cone) if: (Some restrictions on K that we will require, H/W Why?)

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)
 - i.e. K has no straight lines passing through O.
 - i.e. if $-a, a \in K$, then a = 0

examples

- non-negative orthant $K = R_+^n = \{ \mathbf{x} \in \Re^n | \mathbf{x}_i \ge 0, i = 1, ..., n \}$
- positive semidefinite cone $K = S^n_+$
- nonnegative polynomials on [0,1]:
 - $\mathcal{K} = \{ \mathbf{x} \in \Re^n | x_1 + x_2 t + x_3 t^2 + \dots + x_n t^{n-1} \ge 0 \text{ for } t \in [0, 1] \}$

Valid Inequality and Partial Order

To prove that K being closed, solid and pointed are necessary & sufficient conditions for $\geq_{\mathcal{K}}$ to be a valid inequality, reall that any partial order \geq should satisfy the following properties:(refer page 51 of www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf):

- Reflexivity: $a \ge a$;
- ② Anti-symmetry: if both $a \ge b$ and $b \ge a$, then a = b;
- **③** Transitivity: if both $a \ge b$ and $b \ge c$, then $a \ge c$;
- Ompatibility with linear operations:
 - Homogeneity: If a ≥ b and λ is a nonnegative real, then λa ≥ λb, i.e. one can multiply both sides of an inequality by a nonnegative real.
 - **2** Addititvity: if both $a \ge b$ abd $c \ge d$, then $a + c \ge b + d$, i.e. One can add two inequalities of the same sign.

Example of Partial Order

- Example of Partial Order \subseteq over sets
- The Hasse diagram of the set of all subsets of a three-element set {**x**, *y*, *z*}, ordered by inclusion(Inclusion, i.e. the Partial Order ⊆):

• (source http://en.wikipedia.org/wiki/Partially_ordered_set)

Dual Cones and Generalized Inequalities Instructor: Prof. Ganesh Ramakrishnan

Contents: Vector Spaces beyond \Re^n

- Recap: Linear program (LP) & dual of LP.
- Recap: Conic program.
- Recap: Linear program (LP) & dual of LP.

Linear program (LP) & dual of LP.

We will first see (weak) duality in a linear optimization problem (LP).

- LP: $\min_{\mathbf{x}\in\mathbb{R}^n} c^T \mathbf{x}$ (Affine Objective) subjected to $-A\mathbf{x} + \mathbf{b} \leq 0$
 - ► Let $\lambda \ge 0$ (i.e. $\lambda \in \Re_{+}^{n}$) ► Then $\lambda^{T}(-A\mathbf{x} + \mathbf{b}) \le 0$ ► $\implies \mathbf{c}^{T}\mathbf{x} \ge \mathbf{c}^{T}\mathbf{x} + \lambda^{T}(-A\mathbf{x} + b)$ ► $\implies \mathbf{c}^{T}\mathbf{x} \ge \lambda^{T}\mathbf{b} + (\mathbf{c} - A^{T}\lambda)^{T}\mathbf{x}$ ► So, $\mathbf{c}^{T}\mathbf{x} \ge \min_{\mathbf{x}} \lambda^{T}\mathbf{b} + (\mathbf{c} - A^{T}\lambda)^{T}\mathbf{x}$ ► Thus,

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} \geq \begin{cases} \lambda^{\mathsf{T}}b, & \text{if } A^{\mathsf{T}}\lambda = \mathbf{c} \\ -\infty, & \text{otherwise} \end{cases}$$

- Note: LHS $(c^T \mathbf{x})$ is independent of λ and R.H.S $(\lambda^T b)$ is independent of \mathbf{x} .
- Weak duality theorem for Linear Program: Primal LP (lower bounded by dual) ≥ Dual LP (upper bounded by primal): (min_{x∈ℜⁿ} c^Tx, s.t.Ax ≥ b) ≥ (max_{λ≥0}b^Tλ, s.t.A^Tλ = c)

Conic program

We will motivate through linear programming (LP), generalized inequalities:

- A generalized conic program can be defined as: min_{x∈ℜⁿ} c^Tx subjected to -Ax + b ≤_K 0
 - That is, constraint is $A\mathbf{x} b \in K$.
- Q: Has to generalize −Ax + b ≤ 0 to −Ax + b ≤_K 0 s.t. ≤_K is a generalized inequality & K some set?
- What properties should K satisfy so that ≤_K satisfies properties of generalized inequalities?

Valid Inequality and Partial Order

To prove that K being closed, solid and pointed are necessary & sufficient conditions for $\geq_{\mathcal{K}}$ to be a valid inequality, reall that any partial order \geq should satisfy the following properties:(refer page 51 of www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf):

- Reflexivity: $a \ge a$;
- ② Anti-symmetry: if both $a \ge b$ and $b \ge a$, then a = b;
- **③** Transitivity: if both $a \ge b$ and $b \ge c$, then $a \ge c$;
- Ompatibility with linear operations:
 - Homogeneity: If a ≥ b and λ is a nonnegative real, then λa ≥ λb, i.e. one can multiply both sides of an inequality by a nonnegative real.
 - **2** Addititvity: if both $a \ge b$ abd $c \ge d$, then $a + c \ge b + d$, i.e. One can add two inequalities of the same sign.

Example of Partial Order

- Example of Partial Order \subseteq over sets
- The Hasse diagram of the set of all subsets of a three-element set {**x**, *y*, *z*}, ordered by inclusion(Inclusion, i.e. the Partial Order ⊆):

• (source http://en.wikipedia.org/wiki/Partially_ordered_set)

Proof of generalized inequality

To prove that K being closed, solid and pointed are necessary & sufficient conditions for \geq_K to be a valid inequality.

Proof:

- **(**) *K* being pointed convex cone $\implies \ge_K$ is a partial order
 - Reflexivity: $a \ge_K a$, since $a a = 0 \in K$ (:: K is cone)
 - O Anti-symmetry: If a ≥_K b & b ≥_K a then a = b, since a b ∈ K & b -a ∈ K ⇒ a b = 0 (∴ K is pointed)
 - Transitivity: If both $a \ge_K b \& b \ge_K c$ then $a \ge_K c$, since $a b \in K \& b c \in K \implies$ (a b) + (b - c) $\in K$ (∵ K is a convex cone i.e. contain all conic combinations of points in the set)
 - Homogeneity: If both a ≥_K b & λ ≥ 0 then λa ≥_K λb, since a b ∈ K & λ ≥ 0 ⇒ λ(a b) ∈ K (∵ K is a cone)
 - Additivity: If $a \ge_K b \& c \ge_K d$ then $a + c \ge_K b + d$, since $a b \in K \& c d \in K \implies (a + c) (b + d) \in K$ (∵ K is a convex cone)
- $\bigcirc \ge_{\mathcal{K}}$ is a partial order \implies K being pointed convex cone

Proof of generalized inequality

To prove that K being closed, solid and pointed are necessary & sufficient conditions for $\geq_{\mathcal{K}}$ to be a valid inequality.

Proof:

- $\mathbf{O} \geq_{\mathcal{K}}$ is a partial order \implies K being pointed convex cone
 - K is convex cone: If $\mathbf{x}, \mathbf{y} \in K$ then $\theta_1 \mathbf{x} + \theta_2 \mathbf{y} \in K \forall \ \theta_1, \theta_2 \ge 0$, since $\mathbf{x} \ge_K 0 \& \mathbf{y} \ge_K 0 \implies \theta_1 \mathbf{x} \ge_K 0 \& \ \theta_2 \mathbf{y} \ge_K 0 \ \forall \ \theta_1, \theta_2 \ge 0$ (Homogeneity of \ge_K) and thus $\theta_1 \mathbf{x} + \theta_2 \mathbf{y} \ge 0$ (Additivity of \ge_K)
 - **9** K is pointed: If $\mathbf{x} \in K \& -\mathbf{x} \in K$ then $\mathbf{x} = 0$, since $\mathbf{x} \ge_K \mathbf{x} \& -\mathbf{x} \ge_K 0 \implies 0 \ge_K \mathbf{x}$ (reflectivity $\mathbf{x} \ge_K \mathbf{x}$, and adding $\mathbf{x} \ge_K \mathbf{x} \& -\mathbf{x} \ge_K 0$ by additivity) and $-\mathbf{x} \ge_K \mathbf{x}$ (additivity on $-\mathbf{x} \ge_K 0 \& 0 \ge_K \mathbf{x}$) and similarly $\mathbf{x} \ge_K -\mathbf{x}$, and by applying anti-symmetry on $-\mathbf{x} \ge_K \mathbf{x} \& \mathbf{x} \ge_K -\mathbf{x}$ we get $\mathbf{x} = -\mathbf{x}$ i.e. $\mathbf{x} = 0$.

Additional properties over & above K being pointed convex cone

- Que: Suppose $a^i \ge_{\kappa} b^i \forall i \& a^i \rightarrow a \& b^i \rightarrow b$, then for $a \ge_{\kappa} b$ what more is required of K?
- ② Ans: Necessary condition is that aⁱ bⁱ → a b ∈ K. i.e. K is closed(Also happens to be a sufficient condition).
- **3** Que: What is required so that $\exists a >_{\mathcal{K}} b$ (i.e. $b \not\geq_{\mathcal{K}} a$)?
- Ans: Sufficient condition is that a − b ∈ int(K) i.e. int(K) ≠ φ OR K has non-empty interior.

Linear program (LP) & Conic program.

We will first see (weak) duality in a linear optimization problem (LP).

• LP: $\min_{\mathbf{x}\in\mathbb{R}^n} c^T \mathbf{x}$ (Affine Objective) subjected to $-A\mathbf{x} + b \le 0$

 $-A\mathbf{x} + b \leq 0$ can be rewritten as $A\mathbf{x} \geq b$ or $A\mathbf{x} - b \in \Re^n_+$ Note: \Re^n_+ is a CONE. How about defining generalized inequality for a cone C as $c >_K d$ iff $c - d \in K$ and a general conic program as:

- $\min_{\mathbf{x}\in\mathbb{R}^n} c^T \mathbf{x}$ subjected to $-A\mathbf{x} + b \leq_K 0$
- That is, constraint is $A\mathbf{x} b \in K$.
- K is a proper cone.

Generalized Inequalities

a convex cone $K \subseteq \Re^n$ is a proper cone (or regular cone) if: (Some restrictions on K that we will require, H/W Why?)

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)
 - i.e. K has no straight lines passing through O.
 - i.e. if $-a, a \in K$, then a = 0

examples

- non-negative orthant $K = R_+^n = \{\mathbf{x} \in \Re^n | x_i \ge 0, i = 1, ..., n\}$
- psitive semidefinite cone $K = S^n_+$
- nonnegative polynomials on [0,1]: $K = \{ \mathbf{x} \in \Re^n | x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0,1] \}$
- Que: What if $n \to \infty$, can you get proper cones under additional constraints?

Linear program & its dual To Conic program and its dual. Consider LP and its dual:

- LP: $\min_{\mathbf{x}\in\Re^n} c^T \mathbf{x}$ (Affine Objective) subjected to $-A\mathbf{x} + b \le 0$
 - ► Let $\lambda \ge 0$ (i.e. $\lambda \in R_+^n$) ► Then $\lambda^T (-A\mathbf{x} + b) \le 0$ ► $\implies c^T \mathbf{x} \ge c^T \mathbf{x} + \lambda^T (-A\mathbf{x} + b)$ ► $\implies c^T \mathbf{x} \ge \lambda^T b + (c - A^T \lambda)^T \mathbf{x}$ ► So, $c^T \mathbf{x} \ge \min_{\mathbf{x}} \lambda^T b + (c - A^T \lambda)^T \mathbf{x}$ ► Thus,

$$c^{T}\mathbf{x} \geq egin{cases} \lambda^{T}b, & ext{if } A^{T}\lambda = c \ -\infty, & ext{otherwise} \end{cases}$$

- Note: LHS $(\mathbf{c}^T \mathbf{x})$ is independent of λ and R.H.S $(\lambda^T \mathbf{b})$ is independent of \mathbf{x} .
- Weak duality theorem for Linear Program: Primal LP (lower bounded by dual) ≥ Dual LP (upper bounded by primal): (min_{x∈ℜⁿ} c^Tx, s.t.Ax ≥ b) ≥ (max_{λ≥0}b^Tλ, s.t.A^Tλ = c)

Conic program

Refer page 5 of http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf:

- Conic program: $\min_{\mathbf{x}\in\Re^n} c^T \mathbf{x}$ subjected to $-A\mathbf{x} + b \leq_K 0$
- Generalized conic program: min_{x∈V} < c, x >_V subjected to Ax - b ∈ K
- Solution K is a regular/proper cone.
- We need an equivalent $\lambda \in D \supseteq K^*$ s.t. $<\lambda, A\mathbf{x} - b > \ge 0.$
- This K^* s.t. $D = \{\lambda | < \lambda, A\mathbf{x} - \mathbf{b} \ge 0, \lambda \in V \forall A\mathbf{x} - \mathbf{b} \in K\}$ & $D \supseteq K^*$ is dual cone of K

- Refer page 7 of http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf: $K^* = \{\lambda : \lambda^T \xi \ge 0 \ \forall \xi \in K\}$ is the cone dual to K.
- With this follows weak duality theorem for CONIC PROGRAM: Primal CP (lower bounded by dual) ≥ Dual CP (upper bounded by primal): (min_{x∈V} < c, x >_V, s.t. < λ, Ax - b >≥ 0.) ≥ (max_{λ∈K*} < b, λ >, s.t.A^Tλ = c)

Notes: LP and CP

- **1** Both LP and CP dealt with affine objectives.
- ② CP dealt with the generalized conic inequalities.
- Substitution and the second second

Some Generalizations:

- If $K = R_+^n$, the CP is an LP.
- **2** If $K = S^n_+$ (Set of all *nXn* SPD matrices), the CP is an SDP (Semi-definite program).
- S Any generic convex program can be expressed as a cone program (CP).

Dual of dual

• If K is a closed convex cone then $K^{**} = K$.

2 More generally, if K is just a convex cone, $K^{**} = closure(K)$ (abbreviated as Cl(K))

We will prove that if K is closed, then $K^{**} = K$:

- $\textbf{0} \ \ \mathcal{K} \subseteq \mathcal{K}^{**} \text{, since } \mathbf{x} \in \mathcal{K} \implies <\mathbf{x}, \mathbf{y}> \geq 0 \ \forall \ \mathbf{y} \in \mathcal{K}^{*} \implies \mathbf{x} \in \mathcal{K}^{**}.$
- **2** $K^{**} \subseteq K$, we will prove by contradiction. Suppose $\mathbf{x} \in K^{**}$ but $\mathbf{x} \notin K$:
 - \mathcal{K}^{**} is closed since any dual cone is intersection of half spaces that are closed.
 - $\mathbf{2}$ {**x**} is a singleton set.
 - by "strict hyperplane theorem" (on next page and proved later): $\exists \mathbf{a} \in V \& \mathbf{b} \in \Re \text{ s.t. } < \mathbf{a}, \mathbf{x} > < \mathbf{b} \& < \mathbf{a}, \mathbf{y} > \ge b \forall \mathbf{y} \in K.$

 - $\mathbf{S} \implies \mathbf{a} \in \mathcal{K}^* \ \& \ \mathbf{x} \notin \mathcal{K}^{**} \ [contradiction]$

Separating hyperplane theorem (a fundamental theorem)

If C and D are disjoint convex sets, *i.e.*, $C \cap D = \phi$, then there exists $\mathbf{a} \neq \mathbf{0}$, with a $b \in \Re$ such that

 $\mathbf{a}^T_{\mathbf{x}} \leq \mathbf{b}$ for $\mathbf{x} \in \mathcal{C}$,

 $\mathbf{a}^T \mathbf{x} \ge \mathbf{b}$ for $\mathbf{x} \in \mathcal{D}$.

That is, the hyperplane $\left\{ \mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{b} \right\}$ separates C and D.

- The seperating hyperplane need not be unique though.
- Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).

Supporting hyperplane theorem (consequence of separating hyperplane theorem)

Supporting hyperplane to set C at boundary point \mathbf{x}_o :

- $\left\{ \mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{x}_o \right\}$
- where $\mathbf{a} \neq 0$ and $\mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \mathbf{x}_o$ for all $\mathbf{x} \in \mathcal{C}$

* 0

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C.

Dual cones and generalized inequalities

In-fact, if K is a proper cone then K^* is also proper. $K^* = \{\lambda : \lambda^T \xi \ge 0, \forall \xi \in K\}$ is the cone dual to K. Examples:

Self-dual cones

•
$$K = \Re_{+}^{n}$$
: $K^{*} = \Re_{+}^{n}$
• $K = S_{+}^{n}$: $K^{*} = S_{+}^{n}$
• $K = \{(\mathbf{x}, t) |||\mathbf{x}||_{2} \le t\}$: $K^{*} = \{(\mathbf{x}, t) |||\mathbf{x}||_{2} \le t\}$
• $K = \{(\mathbf{x}, t) |||\mathbf{x}||_{1} \le t\}$: $K^{*} = \{(\mathbf{x}, t) |||\mathbf{x}||_{\infty} \le t\}$

Dual cones of proper cones are proper, hence define generalized inequalities: $\mathbf{y} \succeq_{\mathcal{K}^*} 0 \iff \mathbf{y}^T \mathbf{x} \ge 0$ for all $\mathbf{x} \succeq_{\mathcal{K}} 0$

Minimum and minimal elements via dual inequalities

minimum element w.r.t $\preceq_{\mathcal{K}}$:

• **x** is minimum element of *S* iff for all $\lambda \succ_{K^*} 0$, **x** is unique minimizer of $\lambda^T \mathbf{z}$ over *S*. minimal element w.r.t \preceq_K :

- If x minimizes $\lambda^T \mathbf{z}$ over S for some $\lambda \succ_{K^*} 0$ then x is minimal
- If x is minimal element of convex set S, then there exists a nonzero $\lambda \succeq_{K^*} 0$ such that x minimizes $\lambda^T z$ over S

From Dual of Norm Cone to Dual Norm

Let
$$\|.\|$$
 be a norm on \Re^n The dual of $K = \{(\mathbf{x}, t) \in \Re^{n+1} | \|\mathbf{x}\| \le t\}$ is:
 $K^* = \{(u, v)| \in \Re^{n+1} | \|u\|_* \le v\}$
where $\|u\|_* = \sup\{u^T \mathbf{x} | \|\mathbf{x}\| \le 1\}$
Proof: We need to show that
 $\mathbf{x}^T u + tv \ge 0$ whenever $\|\mathbf{x}\| \le t \iff \|u\|_* \le v$