
SHT: Separating hyperplane theorem (a fundamental theorem)

If C and D are disjoint convex sets, i.e., C ∩D = ϕ, then there exists a ̸= 0, with a b ∈ ℜ such
that
aTx ≤ b for x ∈ C,
aTx ≥ b for x ∈ D.
That is, the hyperplane

{
x|aTx = b

}
separates C and D.

The seperating hyperplane need not be unique though.
Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).
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SHT: Separating hyperplane theorem (restated)

If C and D are disjoint convex sets, i.e., C ∩D = ϕ, then there exists a ̸= 0, with a b ∈ ℜ such
that
aTx ≤ b for x ∈ C,
aTx ≥ b for x ∈ D.
That is, the hyperplane

{
x|aTx = b

}
separates C and D.

The seperating hyperplane need not be unique though.
Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).
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Proof of the Separating Hyperplane Theorem

We first note that the set S =
{

x − y|x ∈ C,y ∈ D
}
is convex, since it is the sum of two

convex sets. Since C and D are disjoint, 0 /∈ S. Consider two cases:
1 Suppose 0 /∈ closure(S). Let E = {0} and F = closure(S). Then, the euclidean distance

between E and F , defined as
dist(E ;F) = inf

{
||u − v||2|u ∈ E ,v ∈ F

}
is positive, and there exists a point f ∈ F that achieves the minimum distance, i.e.,
||f||2 = dist(E ,F). Define a = f, b = ||f||2. Then a ̸= 0 and the affine function
f(x) = aTx − b = fT(x − 1

2 f) is nonpositive on E and nonnegative on F , i.e., that the
hyperplane

{
x|aTx = b

}
separates E and F . Thus, aT(x − y) > 0 for all

x − y ∈ S ⊆ closure(S), which implies that, aTx ≥ aTy for all x ∈ C and y ∈ D.
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Proof of the Separating Hyperplane Theorem

2 Suppose, 0 ∈ closure(S). Since 0 /∈ S, it must be in the boundary of S.
▶ If S has empty interior, it must lie in an affine set of dimension less than n, and any

hyperplane containing that affine set contains S and is a hyperplane. In other words, S is
contained in a hyperplane

{
z|aTz = b

}
, which must include the origin and therefore b = 0.

In other words, aTx = aTy for all x ∈ C and all y ∈ D gives us a trivial separating
hyperplane.
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Proof of the Separating Hyperplane Theorem

2 Suppose, 0 ∈ closure(S). Since 0 /∈ S, it must be in the boundary of S.
▶ If S has a nonempty interior, consider the set

S−ϵ =
{

z|B(z, ϵ) ⊆ S
}

where B(z, ϵ) is the Euclidean ball with center z and radius ϵ > 0. S−ϵ is the set S, shrunk
by ϵ. closure (S−ϵ) is closed and convex, and does not contain 0, so as argued before, it is
separated from {0} by atleast one hyperplane with normal vector a(ϵ) such that
a(ϵ)Tz ≥ 0 for all z ∈ Sϵ

Without loss of generality assume ||a(ϵ)||2 = 1. Let ϵk, for k = 1, 2, . . . be a sequence of
positive values of ϵk with lim

k→∞
ϵk = 0. Since ||a(ϵk)||2 = 1 for all k, the sequence a(ϵk)

contains a convergent subsequence, and let a be its limit. We have
a(ϵk)Tz ≥ 0 for all z ∈ S−ϵk

and therefore aTz ≥ 0 for all z ∈ interior(S), and aTz ≥ 0 for all z ∈ S, which means
aTx ≥ aTy for all x ∈ C, and y ∈ D.
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Supporting hyperplane theorem (consequence of separating hyperplane
theorem)
Supporting hyperplane to set C at boundary point xo:{

x|aTx = aTxo
}

where a ̸= 0 and aTx ≤ aTxo for all x ∈ C

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at
every boundary point of C.
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Positive Semidefinite Cone and Convex Analysis
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More on Convex Sets and Advanced Material on Convex Analysis

Positive Semi-definite cone.
Positive Semi-definite cone: Example and Notes.
Linear program and dual of LP.
Properties of dual cones.
Conic Program.
Generalized Inequalities.
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Positive semidefinite cone: Notes

1 Claim : (Sn
+)

∗ = (Sn
+)

2 i.e. <X,Y> = tr(XTY) = tr(XY) ≥ 0 ∀ X ∈ (Sn
+) iff Y ∈ (Sn

+)

Proof:
1 1 Let us say Y /∈ Sn

+. That is ∃ z ∈ ℜn s.t. zTYz = tr(zzTY) < 0
2 i.e. ∃ X = zzT ∈ Sn

+ s.t. <X,Y> < 0
3 =⇒ Y /∈ (Sn

+)
∗

2 1 Suppose Y,X ∈ Sn
+. Any X ∈ Sn

+ can be written in terms of eignvalue decomposition as:
2 X =

∑
i=1:n λiuiuT

i (λi ≥ 0)
3 ∴ <Y,X> = tr(YX) = tr(Y

∑
i=1:n λiuiuT

i ) =
∑

i=1:n λitr(YuiuT
i ) =

∑
i=1:n λiuT

i Yui ≥ 0.
4 Since (λi ≥ 0) and (uT

i Yui ≥ 0 as Y ∈ Sn
+)

5 =⇒ Y ∈ (Sn
+)

∗
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Positive semidefinite cone: Questions

1 Q) Is there some connection between Y = yyT used for Sn
+ = {X ∈ Sn | <yyT,X> ≥ 0}

and (Sn
+)

∗ = (Sn
+).

- (To be revisited as H/W)
2 Q) (Sn

++)
∗ = ?, int(Sn

+) = (Sn
++)

- Ans: (Sn
++)

∗ = (Sn
+), (will be done formally for general case of convex cones)

- C = convex cone, C∗∗ = cl(C)
3 Q) Consider an application of psd cone for optimization. (thru LP)

1 We will first see (weak) duality in a linear optimization problem (LP).
2 Next we look at generalized (conic) inequalities and the properties that the cone must satisfy

for the inequality to be a valid inequality.
3 Next, we generalize LP to conic program (CP) using generalized inequality and realize weak

duality for CP thru dual cones.
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Linear program (LP) & dual of LP.
We will first see (weak) duality in a linear optimization problem (LP).

1 LP: minx∈ℜn cTx (Affine Objective)
subjected to −Ax + b ≤ 0

▶ Let λ ≥ 0 (i.e. λ ∈ Rn
+)

▶ Then λT(−Ax + b) ≤ 0
▶ =⇒ cTx ≥ cTx + λT(−Ax + b)
▶ =⇒ cTx ≥ λTb + (c − ATλ)Tx
▶ So, cTx ≥ minx λTb + (c − ATλ)Tx
▶ Thus,

cTx ≥

{
λTb, if ATλ = c
−∞, otherwise

▶ Note: LHS (cTx) is independent of λ and R.H.S (λTb) is independent of x.

2 Weak duality theorem for Linear Program:
Primal LP (lower bounded) ≥ Dual LP (upper bounded):
(minx∈ℜn cTx, s.t. Ax ≥ b) ≥ (maxλ≥0bTλ, s.t. ATλ = c)
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Conic program

We will motivate through linear programming (LP), generalized inequalities:
1 LP: minx∈ℜn cTx (Affine Objective)

subjected to −Ax + b ≤ 0
▶ Note: −Ax + b ≤ 0 can be rewritten as Ax ≥ 0.
▶ So, constraint is Ax − b ∈ Rn

+
▶ Note: Rn

+ is a CONE. How about defining generalized inequality for a cone K as:
c ≥K d iff c − d ∈ K

2 So, a generalized conic program can be defined as:
minx∈ℜn cTx
subjected to −Ax + b ≤K 0

▶ That is, constraint is Ax − b ∈ K.
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Properties of dual cones
1 If X is a Hilbert space & C ⊆ X then C∗ is a closed convex cone.

▶ We have already proven that C∗ is a closed convex cone.
▶ C∗ = intersection of infinite topological half spaces.
▶ C∗ = ∩x∈C {y|y ∈ X, < y,x >≥ 0}
▶ =⇒ C∗ is closed.

2 C1 ⊆ C2 =⇒ C∗
2 ⊆ C∗

1.
3 interior(C∗) = {y ∈ X| < y,x >> 0}
4 If C is cone and has int(C) ̸= ∅ then C∗ is pointed.

▶ Since; if y ∈ C∗ & −y ∈ C∗, then y = 0.
5 If C is cone then closure(C) = C∗*

▶ If C = open half space, then C∗* = closed half space.
6 If closure of C is pointed, then interior(C∗) ̸= ϕ.

S is called conically spanning set of cone K iff conic(S) = K.
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Generalized Inequalities
a convex cone K ⊆ ℜn is a proper cone (or regular cone) if:
(Some restrictions on K that we will require, H/W Why?)

K is closed (contains its boundary)
K is solid (has nonempty interior)
K is pointed (contains no line)

▶ i.e. K has no straight lines passing through O.
▶ i.e. if −a, a ∈ K, then a = 0

examples
non-negative orthant K = Rn

+ = {x ∈ ℜn|xi ≥ 0, i = 1, ..., n}
positive semidefinite cone K = Sn

+

nonnegative polynomials on [0,1]:
K = {x ∈ ℜn|x1 + x2t + x3t2 + ....+ xntn−1 ≥ 0 for t ∈ [0, 1]}
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Valid Inequality and Partial Order

To prove that K being closed, solid and pointed are necessary & sufficient conditions for ≥K to
be a valid inequality, reall that any partial order ≥ should satisfy the following properties:(refer
page 51 of www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf):

1 Reflexivity: a ≥ a;
2 Anti-symmetry: if both a ≥ b and b ≥ a, then a = b;
3 Transitivity: if both a ≥ b and b ≥ c, then a ≥ c;
4 Compatibility with linear operations:

1 Homogeneity: If a ≥ b and λ is a nonnegative real, then λa ≥ λb, i.e. one can multiply both
sides of an inequaility by a nonnegative real.

2 Addititvity: if both a ≥ b abd c ≥ d, then a + c ≥ b + d, i.e. One can add two inequalities of
the same sign.
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Example of Partial Order

Example of Partial Order ⊆ over sets
The Hasse diagram of the set of all subsets of a three-element set {x, y, z}, ordered by
inclusion(Inclusion, i.e. the Partial Order ⊆):

(source http://en.wikipedia.org/wiki/Partially_ordered_set)
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Dual Cones and Generalized Inequalities
Instructor: Prof. Ganesh Ramakrishnan
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Contents: Vector Spaces beyond ℜn

Recap: Linear program (LP) & dual of LP.
Recap: Conic program.
Recap: Linear program (LP) & dual of LP.
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Linear program (LP) & dual of LP.
We will first see (weak) duality in a linear optimization problem (LP).

1 LP: minx∈ℜn cTx (Affine Objective)
subjected to −Ax + b ≤ 0

▶ Let λ ≥ 0 (i.e. λ ∈ ℜn
+)

▶ Then λT(−Ax + b) ≤ 0
▶ =⇒ cTx ≥ cTx + λT(−Ax + b)
▶ =⇒ cTx ≥ λTb + (c − ATλ)Tx
▶ So, cTx ≥ minx λTb + (c − ATλ)Tx
▶ Thus,

cTx ≥

{
λTb, if ATλ = c
−∞, otherwise

▶ Note: LHS (cTx) is independent of λ and R.H.S (λTb) is independent of x.

2 Weak duality theorem for Linear Program:
Primal LP (lower bounded by dual) ≥ Dual LP (upper bounded by primal):
(minx∈ℜn cTx, s.t.Ax ≥ b) ≥ (maxλ≥0bTλ, s.t.ATλ = c)
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Conic program

We will motivate through linear programming (LP), generalized inequalities:
1 A generalized conic program can be defined as:

minx∈ℜn cTx
subjected to −Ax + b ≤K 0

▶ That is, constraint is Ax − b ∈ K.
2 Q: Has to generalize −Ax + b ≤ 0 to −Ax + b ≤K 0 s.t. ≤K is a generalized inequality &

K some set?
3 What properties should K satisfy so that ≤K satisfies properties of generalized

inequalities?

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 195 / 212



Valid Inequality and Partial Order

To prove that K being closed, solid and pointed are necessary & sufficient conditions for ≥K to
be a valid inequality, reall that any partial order ≥ should satisfy the following properties:(refer
page 51 of www2.isye.gatech.edu/~nemirovs/Lect_ModConvOpt.pdf):

1 Reflexivity: a ≥ a;
2 Anti-symmetry: if both a ≥ b and b ≥ a, then a = b;
3 Transitivity: if both a ≥ b and b ≥ c, then a ≥ c;
4 Compatibility with linear operations:

1 Homogeneity: If a ≥ b and λ is a nonnegative real, then λa ≥ λb, i.e. one can multiply both
sides of an inequaility by a nonnegative real.

2 Addititvity: if both a ≥ b abd c ≥ d, then a + c ≥ b + d, i.e. One can add two inequalities of
the same sign.
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Example of Partial Order

Example of Partial Order ⊆ over sets
The Hasse diagram of the set of all subsets of a three-element set {x, y, z}, ordered by
inclusion(Inclusion, i.e. the Partial Order ⊆):

(source http://en.wikipedia.org/wiki/Partially_ordered_set)
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Proof of generalized inequality

To prove that K being closed, solid and pointed are necessary & sufficient conditions for ≥K to
be a valid inequality.
Proof:

1 K being pointed convex cone =⇒ ≥K is a partial order
1 Reflexivity: a ≥K a, since a − a = 0 ∈ K (∵ K is cone)
2 Anti-symmetry: If a ≥K b & b ≥K a then a = b, since a - b ∈ K & b -a ∈ K =⇒ a - b = 0

(∵ K is pointed)
3 Transitivity: If both a ≥K b & b ≥K c then a ≥K c, since a - b ∈ K & b -c ∈ K =⇒ (a - b)

+ (b - c) ∈ K (∵ K is a convex cone i.e. contain all conic combinations of points in the set)
4 Homogeneity: If both a ≥K b & λ ≥ 0 then λa ≥K λb, since a - b ∈ K & λ ≥ 0 =⇒ λ(a -

b) ∈ K (∵ K is a cone)
5 Additivity: If a ≥K b & c ≥K d then a + c ≥K b + d, since a - b ∈ K & c -d ∈ K =⇒ (a +

c) - (b + d) ∈ K (∵ K is a convex cone)
2 ≥K is a partial order =⇒ K being pointed convex cone
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Proof of generalized inequality

To prove that K being closed, solid and pointed are necessary & sufficient conditions for ≥K to
be a valid inequality.
Proof:

1 ≥K is a partial order =⇒ K being pointed convex cone
1 K is convex cone: If x,y ∈ K then θ1x + θ2y ∈ K∀ θ1, θ2 ≥ 0, since x ≥K 0 & y ≥K 0 =⇒

θ1x ≥K 0 & θ2y ≥K 0 ∀ θ1, θ2 ≥ 0 (Homogeneity of ≥K) and thus θ1x + θ2y ≥ 0 (Additivity
of ≥K)

2 K is pointed: If x ∈ K & −x ∈ K then x = 0, since x ≥K x & −x ≥K 0 =⇒ 0 ≥K x
(reflectivity x ≥K x, and adding x ≥K x&−x ≥K 0 by additivity) and −x ≥K x (additivity
on −x ≥K 0 & 0 ≥K x) and similarly x ≥K −x, and by applying anti-symmetry on −x ≥K x
& x ≥K −x we get x = −x i.e. x = 0.
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Additional properties over & above K being pointed convex cone

1 Que: Suppose ai ≥K bi ∀ i & ai → a & bi → b, then for a ≥K b what more is required of
K?

2 Ans: Necessary condition is that ai - bi → a − b ∈ K. i.e. K is closed(Also happens to be
a sufficient condition).

3 Que: What is required so that ∃ a >K b (i.e. b ≱K a)?
4 Ans: Sufficient condition is that a − b ∈ int(K) i.e. int(K) ̸= ϕ OR K has non-empty

interior.

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 200 / 212



Linear program (LP) & Conic program.

We will first see (weak) duality in a linear optimization problem (LP).
1 LP: minx∈ℜn cTx (Affine Objective)

subjected to −Ax + b ≤ 0

−Ax + b ≤ 0 can be rewritten as Ax ≥ b or Ax − b ∈ ℜn
+ Note: ℜn

+ is a CONE. How about
defining generalized inequality for a cone C as c >K d iff c − d ∈ K and a generl conic program
as:

1 minx∈ℜn cTx
subjected to −Ax + b ≤K 0

That is, constraint is Ax − b ∈ K.
K is a proper cone.
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Generalized Inequalities
a convex cone K ⊆ ℜn is a proper cone (or regular cone) if:
(Some restrictions on K that we will require, H/W Why?)

K is closed (contains its boundary)
K is solid (has nonempty interior)
K is pointed (contains no line)

▶ i.e. K has no straight lines passing through O.
▶ i.e. if −a, a ∈ K, then a = 0

examples
non-negative orthant K = Rn

+ = {x ∈ ℜn|xi ≥ 0, i = 1, ..., n}
psitive semidefinite cone K = Sn

+

nonnegative polynomials on [0,1]:
K = {x ∈ ℜn|x1 + x2t + x3t2 + ....+ xntn−1 ≥ 0 for t ∈ [0, 1]}
Que: What if n → ∞, can you get proper cones under additional constraints?
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Linear program & its dual To Conic program and its dual.
Consider LP and its dual:

1 LP: minx∈ℜn cTx (Affine Objective)
subjected to −Ax + b ≤ 0

▶ Let λ ≥ 0 (i.e. λ ∈ Rn
+)

▶ Then λT(−Ax + b) ≤ 0
▶ =⇒ cTx ≥ cTx + λT(−Ax + b)
▶ =⇒ cTx ≥ λTb + (c − ATλ)Tx
▶ So, cTx ≥ minx λTb + (c − ATλ)Tx
▶ Thus,

cTx ≥

{
λTb, if ATλ = c
−∞, otherwise

▶ Note: LHS (cTx) is independent of λ and R.H.S (λTb) is independent of x.

2 Weak duality theorem for Linear Program:
Primal LP (lower bounded by dual) ≥ Dual LP (upper bounded by primal):
(minx∈ℜn cTx, s.t.Ax ≥ b) ≥ (maxλ≥0bTλ, s.t.ATλ = c)

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 203 / 212



Conic program
Refer page 5 of http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf:

1 Conic program:
minx∈ℜn cTx
subjected to −Ax + b ≤K 0

2 Generalized conic program:
minx∈V < c,x >V
subjected to Ax − b ∈ K

3 K is a regular/proper cone.
4 We need an equivalent λ ∈ D ⊇ K∗ s.t.

<λ,Ax − b >≥ 0.
5 This K∗ s.t.

D = {λ| < λ,Ax − b >≥ 0, λ ∈ V ∀ Ax − b ∈ K}
& D ⊇ K∗ is dual cone of K
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Dual of Conic program

1 Refer page 7 of http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf:
K∗ = {λ : λTξ ≥ 0 ∀ξ ∈ K} is the cone dual to K.

2 With this follows weak duality theorem for CONIC PROGRAM:
Primal CP (lower bounded by dual) ≥ Dual CP (upper bounded by primal):
(minx∈V < c,x >V, s.t. < λ,Ax − b >≥ 0.) ≥ (maxλ∈K∗ < b, λ >, s.t.ATλ = c)
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Notes: LP and CP

1 Both LP and CP dealt with affine objectives.
2 CP dealt with the generalized conic inequalities.
3 Later, in convex optimization, we will deal with the more general convex functions in the

objective.
Some Generalizations:

1 If K = Rn
+, the CP is an LP.

2 If K = Sn
+ (Set of all nXn SPD matrices), the CP is an SDP (Semi-definite program).

3 Any generic convex program can be expressed as a cone program (CP).

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 206 / 212



Dual of dual

1 If K is a closed convex cone then K∗∗ = K.
2 More generally, if K is just a convex cone, K∗∗ = closure(K) (abbreviated as Cl(K))

We will prove that if K is closed, then K∗∗ = K:
1 K ⊆ K∗∗, since x ∈ K =⇒ < x,y >≥ 0 ∀ y ∈ K∗ =⇒ x ∈ K∗∗.
2 K∗∗ ⊆ K, we will prove by contradiction. Suppose x ∈ K∗∗ but x /∈ K:

1 K∗∗ is closed since any dual cone is intersection of half spaces that are closed.
2 {x} is a singleton set.
3 =⇒ by ”strict hyperplane theorem” (on next page and proved later):

∃a ∈ V & b ∈ ℜ s.t. < a,x >< b& < a,y >≥ b∀ y ∈ K.
4 =⇒ < a,x >< 0 ≤< a,y > ∀y ∈ K. (Since y = 0 ∈ K∗∗, Claim: b = 0 if V is a closed

convex cone)
5 =⇒ a ∈ K∗ & x /∈ K∗∗ [contradiction]
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Separating hyperplane theorem (a fundamental theorem)

If C and D are disjoint convex sets, i.e., C ∩D = ϕ, then there exists a ̸= 0, with a b ∈ ℜ such
that
aTx ≤ b for x ∈ C,
aTx ≥ b for x ∈ D.
That is, the hyperplane

{
x|aTx = b

}
separates C and D.

The seperating hyperplane need not be unique though.
Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).
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Supporting hyperplane theorem (consequence of separating hyperplane
theorem)
Supporting hyperplane to set C at boundary point xo:{

x|aTx = aTxo
}

where a ̸= 0 and aTx ≤ aTxo for all x ∈ C

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at
every boundary point of C.
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Dual cones and generalized inequalities

In-fact, if K is a proper cone then K∗ is also proper.
K∗ = {λ : λTξ ≥ 0, ∀ξ ∈ K} is the cone dual to K.
Examples:

Self-dual cones
▶ K = ℜn

+: K∗ = ℜn
+

▶ K = Sn
+: K∗ = Sn

+
▶ K = {(x, t)|∥x∥2 ≤ t}: K∗ = {(x, t)|∥x∥2 ≤ t}

K = {(x, t)|∥x∥1 ≤ t}: K∗ = {(x, t)|∥x∥∞ ≤ t}
Dual cones of proper cones are proper, hence define generalized inequalities:
y ⪰K∗ 0 ⇐⇒ yTx ≥ 0 for all x ⪰K 0
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Minimum and minimal elements via dual inequalities

minimum element w.r.t ⪯K:
x is minimum element of S iff for all λ ≻K∗ 0, x is unique minimizer of λTz over S.

minimal element w.r.t ⪯K:
If x minimizes λTz over S for some λ ≻K∗ 0 then x is minimal
If x is minimal element of convex set S, then there exists a nonzero λ ⪰K∗ 0 such that x
minimizes λTz over S
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From Dual of Norm Cone to Dual Norm

Let ∥.∥ be a norm on ℜn The dual of K = {(x, t) ∈ ℜn+1|∥x∥ ≤ t} is:
K∗ = {(u, v)| ∈ ℜn+1|∥u∥∗ ≤ v}
where ∥u∥∗ = sup{uTx|∥x∥ ≤ 1}
Proof: We need to show that
xTu + tv ≥ 0 whenever ∥x∥ ≤ t ⇐⇒ ∥u∥∗ ≤ v
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