
Duality Theory for Constrained Optimization
A tricky thing in duality theory is to decide what we call the domain or ground set D and what

we call the constraints gi’s or hj’s. Based on whether constraints are explicitly stated or
implicitly stated in the form of the ground set, the dual problem could be very different. Thus,

many duals are possible for the given primal.
For the rest of the discussion D will mostly mean ℜn
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Formally: The Dual Theory for Constrained Optimization
Consider the general constrained minimization problem

min
x∈D

f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . ,m
subject to hj(x) = 0, j = 1, 2, . . . , n

(78)

Consider forming the lagrange function by associating prices (called lagrange multipliers)
λi and µj , with constraints involving gi and hj respectively.

L(x,λ, µ) = f(x) +
n∑

i=1

λigi(x) +
n∑

j=1

µjhj(x) = f(x) + λTg(x) + µTh(x)

At each feasible x, for fixed λi ≥ 0 ∀i ∈ {1..m},
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Formally: The Dual Theory for Constrained Optimization
Consider the general constrained minimization problem

min
x∈D

f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . ,m
subject to hj(x) = 0, j = 1, 2, . . . , n

(78)

Consider forming the lagrange function by associating prices (called lagrange multipliers)
λi and µj , with constraints involving gi and hj respectively.

L(x,λ, µ) = f(x) +
n∑

i=1

λigi(x) +
n∑

j=1

µjhj(x) = f(x) + λTg(x) + µTh(x)

At each feasible x, for fixed λi ≥ 0 ∀i ∈ {1..m},

f(x) ≥ L(x,λ, µ) if gi(x) ≤ 0 & hj(x) = 0 (79)
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Formally: The Dual Theory for Constrained Optimization
For λi ≥ 0 ∀i ∈ {1..m} and µj, minimizing the right hand side of (79) over all feasible x

f(x) ≥ min
x s.t gi(x)≤0,hj(x)=0

L(x,λ, µ) ∆
= L∗(λ, µ) (80)

L∗(λ, µ) is a pointwise (w.r.t x ∈ gi(x) ≤ 0, hj(x) = 0) minimum of linear functions
(L(x,λ, µ)) and is therefore always a
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Thus without any assumptions on f or gi or hj, we have
L* as a concave lower bound for f(x)



Formally: The Dual Theory for Constrained Optimization
For λi ≥ 0 ∀i ∈ {1..m} and µj, minimizing the right hand side of (79) over all feasible x

f(x) ≥ min
x s.t gi(x)≤0,hj(x)=0

L(x,λ, µ) ∆
= L∗(λ, µ) (80)

L∗(λ, µ) is a pointwise (w.r.t x ∈ gi(x) ≤ 0, hj(x) = 0) minimum of linear functions
(L(x,λ, µ)) and is therefore always a concave function.
Since f(x) ≥ L∗(λ, µ) for all primal feasible x and dual feasible i.e., λi ≥ 0 and µj, , we
can maximize the lower bound L∗(λ, µ) to give the following Dual Problem

max
λ∈ℜm,µ∈ℜp

L∗(λ, µ)
subject to λ ≥ 0

(81)

Theorem
(i) The dual function L∗(λ, µ) is always concave. (ii) If p∗ is solution of (78) and d∗ of (81)
then p∗ ≥ d∗
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Formally: The Dual Theory for Constrained Optimization (contd.)

Formal Proof for Part (i): Consider two values of the dual variables, viz., λ1 ≥ 0 and λ2 ≥ 0
as well as µ1 and µ2 (with no constraints). Let λ = θλ1 + (1− θ)λ2 and µ = θµ1 + (1− θ)µ2

for any θ ∈ [0, 1]. Then,

L∗(λ, µ) = min
x∈D

f(x) + λTg(x) + µTh(x)

= min
x∈D

θ
[
f(x) + λT1 g(x) + µT1 h(x)

]
+ (1− θ)

[
f(x) + λT2 g(x + µT2 h(x))

]

≥ min
x∈D

θ
[
f(x) + λT1 g(x) + µT1 h(x)

]
+ min

x∈D
(1− θ)

[
f(x) + λT2 g(x) + µT2 h(x)

]

= θL∗(λ1,λ1) + (1− θ)L∗(λ2,λ2)

This proves that L∗(λ) is a concave function.
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Formally: The Dual Theory for Constrained Optimization (contd.)

Formal Proof for Part (ii):
If bx is a feasible solution to the primal problem (78) and bλ is a feasible solution to the dual
problem (81), then

f(bx) ≥ f(bx) + bλTg(bx) ≥ min
Feasible bx∈D

f(bx) + bλTg(bx) = L∗(bλ)

That is,
f(bx) ≥ L∗(bλ)

A direct consequence of this is that

p∗ = min
x∈D

f(x) ≥ max
λ≥•0

L∗(λ) = d∗

This proves the second part of the theorem.
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The Dual Theory for Constrained Optimization: Examples and Graphical
Interpretation

The dual is concave (or the negative of the dual is convex) irrespective of the primal.
Solving the dual is therefore always a convex programming problem.
In some sense, the dual is better structured than the primal. However, the dual cannot be
drastically simpler than the primal.
For example, if the primal is not a Linear Program, the dual cannot be an LP.
Similarly, the dual can be quadratic only if the primal is quadratic.
We will look at two examples to give a flavour of how the duality theory works.

October 26, 2018 286 / 429



Example Derivations of Dual
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Example Derivations of the Dual: Linear Programs

min
x∈ℜn

cTx
subject to −Ax + b ≤ 0

The lagrangian for this problem is:

October 26, 2018 288 / 429



Example Derivations of the Dual: Linear Programs

min
x∈ℜn

cTx
subject to −Ax + b ≤ 0

The lagrangian for this problem is:

L(x,λ) = cTx + λTb− λTAx = bTλ+ xT
(

c− ATλ
)

The next step is to get L∗, which we obtain using the first derivative test:
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L* = b^Tlambda  if c= A^T lambda
     = -infinity otherwise

 

otherwise==> non-zero

x can be set to crank
down L* arbitrarily
toward -infinity



Example Derivations of the Dual: Linear Programs

min
x∈ℜn

cTx
subject to −Ax + b ≤ 0

The lagrangian for this problem is:

L(x,λ) = cTx + λTb− λTAx = bTλ+ xT
(

c− ATλ
)

The next step is to get L∗, which we obtain using the first derivative test:

L∗(λ) = min
x∈ℜn

bTλ+ xT
(

c− ATλ
)
=

{
bTλ if ATλ = c
−∞ if ATλ ̸= c
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Example Derivations of the Dual: Linear Programs (contd.)
The function L∗ can be thought of as the extended value extension of the same function
restricted to the domain

{
λ|ATλ = c

}
. Therefore, the dual problem can be formulated as:
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Example Derivations of the Dual: Linear Programs (contd.)
The function L∗ can be thought of as the extended value extension of the same function
restricted to the domain

{
λ|ATλ = c

}
. Therefore, the dual problem can be formulated as:

max
λ∈ℜm

bTλ

subject to ATλ = c
λ ≥ 0

(82)

This is the dual of the standard LP. What if the original LP was the following?

min
x∈ℜn

cTx
subject to −Ax + b ≤ 0 x ≥ 0

Now we have a variety of options based on what constraints are introduced into the ground set
(or domain) and what are explicitly treated as constraints. Some working out will convince us
that treating x ∈ ℜn as the constraint and the explicit constraints as part of the ground set is
a very bad idea. One dual for this problem can be derived similarly as (82).
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Example Derivations of the Dual: Variant of LP (contd.)

Let us look at a modified version of the problem in (83).

min
x∈ℜn

cTx−∑n
i=1 ln xi

subject to −Ax + b = 0
x > 0

We first formulate the lagrangian for this problem.
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Example Derivations of the Dual: Variant of LP (contd.)

Let us look at a modified version of the problem in (83).

min
x∈ℜn

cTx−∑n
i=1 ln xi

subject to −Ax + b = 0
x > 0

We first formulate the lagrangian for this problem.

L(x,λ) = cTx−
n∑

i=1

ln xi + λTb− λTAx = bTλ+ xT
(

c− ATλ
)
−

n∑

i=1

ln xi

The domain (or ground set) for this problem is x > 0, which is open.
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Example Derivations of the Dual: Variant of LP

The expression for L∗ can be obtained using the first derivative test, while keeping in
mind that L can be made arbitrarily small (tending to −∞) unless (c− ATλ) > 0.
This is because, even if one component of c− ATλ is less than or equal to zero, the value
of L can be made arbitrarily small by decreasing the value of the corresponding
component of x in the

∑n
i=1 ln xi part.

Further, the sum bTλ+ xT
(

c− ATλ
)
−∑n

i=1 ln xi can be separated out into the
individual components of λi, and this can be exploited while determining the critical point
of L.

L∗(λ) = min
x>0

L(x,λ) =
{

bTλ+ n−∑n
i=1 ln 1

(c−ATλ)i
if (c− ATλ) > 0

−∞ otherwise
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-infinity is out of contention while specifying
the dual optimization problem



Example Derivations of the Dual: Variant of LP (contd.)

Finally, the dual will be

max
λ∈ℜm

bTλ+ n+
∑n

i=1 ln 1

(c−ATλ)i
subject to −ATλ+ c > 0
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Geometry of Duality
It turns out that all the intuitions we need are in two dimensions, which makes it fairly

convenient to understand the idea.
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Geometry of Duality

Figure 20: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

We will study the geometry of the dual in the
column space ℜm+1. Define I ⊆ ℜm+1 as

I = {(s, z)} s.t
{

s ∈ ℜm ∃x ∈ D s.t gi(x) ≤ si ∀i
z ∈ ℜ f(x) ≤ z

▶ Recap: Any (linear) equality constraint h(x) = 0
can be expressed using
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Lagrange fn is hyperplane
The only convex function whose
negative is also convex is the linear
function. Hence, often, our equality
constraints might be linear

two inequality
constrains

Our geometric analysis will therefore
be restricted to only inequality constraints



Geometry of Duality

Figure 20: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

We will study the geometry of the dual in the
column space ℜm+1. Define I ⊆ ℜm+1 as

I = {(s, z)} s.t
{

s ∈ ℜm ∃x ∈ D s.t gi(x) ≤ si ∀i
z ∈ ℜ f(x) ≤ z

▶ Recap: Any (linear) equality constraint h(x) = 0
can be expressed using two (convex) inequality
constraints, viz., h(x) ≤ 0 and −h(x) ≤ 0.

Figure 20 illustrates in ℜ2 for n = 1, with s1 along
the x−axis and z along the y−axis.
For x ∈ D, identify all points (s1, z) for s1 ≥ g1(x)
and z ≥ f(x).

▶ These are points that lie to the right and above the
point

(
g1(x), f(x)

)
.
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Geometry of Duality: What is the Primal?

Figure 21: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Feasible region for the primal problem (74) is the
region in I with s ≤ 0.
Since all points above and to the right of a point in
I also belong to I, the solution to the primal
problem corresponds to the point in I with s = 0
and least possible value of z.
In Figure 21, the solution to the primal corresponds
to (0, δ1).
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Geometry of Duality: What is the Primal?

Figure 22: Example of the convex set I
and hyperplane Hλ,α for a single
constrained well-behaved convex
program.

Straightforward to prove that if f(x) and each of
the constraints gi(x), 1 ≤ i ≤ n are convex
functions, then I must be a convex set.
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Geometry of Duality: What is the Primal?

Figure 22: Example of the convex set I
and hyperplane Hλ,α for a single
constrained well-behaved convex
program.

Straightforward to prove that if f(x) and each of
the constraints gi(x), 1 ≤ i ≤ n are convex
functions, then I must be a convex set.
Recap: I ⊆ ℜm+1 as

I = {(s, z)} s.t
{

s ∈ ℜm ∃x ∈ D s.t gi(x) ≤ si ∀i
z ∈ ℜ f(x) ≤ z
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Geometry of Duality: What is the Dual?

Figure 23: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Define a hyerplane Hλ,α, parametrized by λ ∈ ℜm
and α ∈ ℜ as

Hλ,α =
{
(s, z)

���λT.s + z = α
}

Consider all Hλ,α that lie below I. For example, in
the Figure 23, both hyperplanes Hλ1,α1 and Hλ2,α2

lie below the set I.
Of all Hλ,α that lie below I, consider the
hyperplane whose intersection with the line s = 0,
corresponds to as high a value of z as possible.
This hyperplane must be a
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supporting hyperplane
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Geometry of Duality: What is the Dual?

Figure 23: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Define a hyerplane Hλ,α, parametrized by λ ∈ ℜm
and α ∈ ℜ as

Hλ,α =
{
(s, z)

���λT.s + z = α
}

Consider all Hλ,α that lie below I. For example, in
the Figure 23, both hyperplanes Hλ1,α1 and Hλ2,α2

lie below the set I.
Of all Hλ,α that lie below I, consider the
hyperplane whose intersection with the line s = 0,
corresponds to as high a value of z as possible.
This hyperplane must be a supporting hyperplane.
Hλ1,α1 happens to be such a supporting hyperplane.
Its point of intersection (0,α1) precisely
corresponds to the solution to the dual problem.
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Geometry of Duality: The Dual - A bit more formally

Figure 24: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Define two half-spaces corresponding to Hλ,α as

H+
λ,α =

{
(s, z)

���λT.s + z ≥ α
}

H−
λ,α =

{
(s, z)

���λT.s + z ≤ α
}

Define another set L as

L =
{
(s, z) |s = 0

}

Note that L is essentially
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Geometry of Duality: The Dual - A bit more formally

Figure 24: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Define two half-spaces corresponding to Hλ,α as

H+
λ,α =

{
(s, z)

���λT.s + z ≥ α
}

H−
λ,α =

{
(s, z)

���λT.s + z ≤ α
}

Define another set L as

L =
{
(s, z) |s = 0

}

Note that L is essentially the z or function axis.
The intersection of Hλ,α with L is
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Geometry of Duality: The Dual - A bit more formally

Figure 24: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Define two half-spaces corresponding to Hλ,α as

H+
λ,α =

{
(s, z)

���λT.s + z ≥ α
}

H−
λ,α =

{
(s, z)

���λT.s + z ≤ α
}

Define another set L as

L =
{
(s, z) |s = 0

}

Note that L is essentially the z or function axis.
The intersection of Hλ,α with L is the point (0,α).
That is, (0,α) = L∩Hλ,α

Dual: Manipulate λ and α so that I lies in the
half-space H+

λ,α as tightly as possible.
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Geometry of Duality: The Dual - A bit more formally

Figure 25: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Mathematically, we are interested in the problem of
maximizing the height of the point of
intersection of L with Hλ,α above the s plane,
while ensuring that I remains a subset of H+

λ,α.

max α
subject to H+

λ,α ⊇ I

By definitions of I, H+
λ,α and the subset relation,

this problem is equivalent to
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Remaining steps show this to be
the dual problem



Geometry of Duality: The Dual - A bit more formally

Figure 25: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Mathematically, we are interested in the problem of
maximizing the height of the point of
intersection of L with Hλ,α above the s plane,
while ensuring that I remains a subset of H+

λ,α.

max α
subject to H+

λ,α ⊇ I

By definitions of I, H+
λ,α and the subset relation,

this problem is equivalent to

max α
subject to λT.s + z ≥ α ∀(s, z) ∈ I
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expanding definition of H+



Geometry of Duality: The Dual - A bit more formally

Figure 26: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Note: If (s, z) ∈ I, then (s′, z) ∈ I for all s′ ≥ s
(as illustrated in Figure 26). Thus, we cannot
afford to have any component of λ negative; if any
of the λi’s were negative,
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I could crank up
the value of corresponding si --> infinity
and still satisfy the constraint
Hence: lambda >=0 (that is, H must have
a negative slope)

Next, expand definition of I



Geometry of Duality: The Dual - A bit more formally

Figure 26: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Note: If (s, z) ∈ I, then (s′, z) ∈ I for all s′ ≥ s
(as illustrated in Figure 26). Thus, we cannot
afford to have any component of λ negative; if any
of the λi’s were negative, we could cranck up si
arbitrarily to violate the inequality λT.s + z ≥ α.
Consequently, we can add the constraint λ ≥ 0 to
the forgoing problem without changing the solution.

max α
subject to λT.s + z ≥ α ∀(s, z) ∈ I

λ ≥ 0

Expect every point on ∂I to be of the form
(g1(x), g2(x), . . . , gm(x), f(x)) for some x ∈ D.
Therefore ......
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substitute f(x) for z and g1(x)
for s



Geometry of Duality: The Dual - A bit more formally

Figure 27: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Foregoing problem is equivalent to

max α
subject to λT.g(x) + f(x) ≥ α ∀x ∈ D

λ ≥ 0

Recall that L(x,λ) = λT.g(x) + f(x). The
geometric problem is therefore the same as

max α
subject to L(x,λ) ≥ α ∀x ∈ D

λ ≥ 0
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Geometry of Duality: The Dual - A bit more formally

Figure 28: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Since, L∗(λ) = min
x∈D

L(x,λ), we can deal with the
equivalent problem

max α
subject to L∗(λ) ≥ α

λ ≥ 0

The geometric problem can be restated as
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Geometry of Duality: The Dual - A bit more formally

Figure 28: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Since, L∗(λ) = min
x∈D

L(x,λ), we can deal with the
equivalent problem

max α
subject to L∗(λ) ≥ α

λ ≥ 0

The geometric problem can be restated as

max L∗(λ)
subject to λ ≥ 0

This is precisely the dual problem. We thus get a
geometric interpretation of the dual.
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Geometry of Duality: Duality Gap and Convexity
With reference to Figure 20, if the set I is not
convex, there could be a gap between the
z−intercept (0,α1) of the best supporting
hyperplane Hλ1,α1 and the closest point (0, δ1) of I
on the z−axis (solution to the primal).
For non-convex I, we can never prove in zero
duality gap in general.
Homework (Quiz 1, Problem 1): Write dual for
constrained problem minx f(x) = 5x2 + 6x3 − x4 on
the closed interval [−2, 10]. Does it have a duality
gap?
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