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Dual ascent
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Consider
min

x
f(x)

s.t. Ax = b
We have

▶ L(x,λ) = f(x) + λ⊤(Ax − b)
▶ L∗(λ) = inf

x
L(x,λ)

(under strong duality, infimum is attained)
▶ Recapping definition of the convex conjugate function f∗(h) = sup

x
hTx − f(x)

L∗(λ) = inf
x

L(x,λ) =
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Consider
min

x
f(x)

s.t. Ax = b
We have

▶ L(x,λ) = f(x) + λ⊤(Ax − b)
▶ L∗(λ) = inf

x
L(x,λ)

(under strong duality, infimum is attained)
▶ Recapping definition of the convex conjugate function f∗(h) = sup

x
hTx − f(x)

L∗(λ) = inf
x

L(x,λ) = −f∗(−ATλ)− bTλ
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For information only



Idea of dual ascent

1 Initialize λ(0)

2 Iteratively
1 xk+1 = argmin

x
L(x,λk)

2 Gradient ascent for dual maximization problem: d∗ = max
λ≥0

L∗(λ)...approximated as

11There are other algorithms such as cutting plane algorithm that also work for non-differentiable dual.
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Approximate d* using L(\lambda^k,x^k+1)



Idea of dual ascent

1 Initialize λ(0)

2 Iteratively
1 xk+1 = argmin

x
L(x,λk)

2 Gradient ascent for dual maximization problem: d∗ = max
λ≥0

L∗(λ)...approximated as

⋆ d∗ = max
λ≥0

L(xk+1,λ)

⋆ λk+1 = λk + tk ∂λ

(
f(xk+1) + λ⊤(Axk+1 − b)

)

11There are other algorithms such as cutting plane algorithm that also work for non-differentiable dual.
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subgradient ascent

Update \lambda based on residual of the linear constraint



Idea of dual ascent

1 Initialize λ(0)

2 Iteratively
1 xk+1 = argmin

x
L(x,λk)

2 Gradient ascent for dual maximization problem: d∗ = max
λ≥0

L∗(λ)...approximated as

⋆ d∗ = max
λ≥0

L(xk+1,λ)

⋆ λk+1 = λk + tk ∂λ

(
f(xk+1) + λ⊤(Axk+1 − b)

)

= λk + tk(Axk+1 − b)
⋆ Leads to convergence (under assumptions of strong convexity etc) even if the Lagrange dual

L∗(λ) is non-differentiable11.

11There are other algorithms such as cutting plane algorithm that also work for non-differentiable dual.
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on the f(x)



If λ converges to λ∗ = argmax
λ

L∗(λ)
and strong duality holds, i.e.

min
x

f(x) = max
λ≥0

L∗(λ)

s.t. Ax = b

then,
x∗ = argmin

x
L(x,λ∗)

If f is strongly convex with constant m, and you ensure tk ≤ m, then convergence rate
is O

(
1
k

)
.
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Recap that for gradient descent with strong convexity
m our convergence rate was (1-m/L)^k 
This is certainly not good 



Dual decomposition
f(x) is decomposable into v blocks of variables (such as in Machine Learning, with
decomposition over examples)
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Special case of Dual Ascent



Dual decomposition
f(x) is decomposable into v blocks of variables (such as in Machine Learning, with
decomposition over examples)

min
x

f(x) = min
x1,x2,...,xv

v∑

i=1

fi(xi)

s.t. Ax = b
Let A = [A1,A2...Ai..Av] be a matrix of v blocks of columns of A corresponding to the
blocks xi.




A11 Ai1 Av1
A12 Ai2 Av2
A1p Aip Avp




| {z }
p Linear constraints




x1

xi
xv


 =




v∑

i=1

Ai1xi
v∑

i=1

Ai2xi
v∑

i=1

Aipxi




=




b1

b2

bp
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pth 
constraint



Dual decomposition (contd.)
Thus: f(x) =

v∑

i=1

fi(xi) and
v∑

i=1

Aixi = b

Using this, simplify the first iterative step of dual ascent as
xk+1 = argmin

x
f(x) + λk

⊤
(Ax − b)
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solve v instances of this problem independently using 
the shared \lambda^k from previous iteration



Dual decomposition (contd.)
Thus: f(x) =

v∑

i=1

fi(xi) and
v∑

i=1

Aixi = b

Using this, simplify the first iterative step of dual ascent as
xk+1 = argmin

x
f(x) + λk

⊤
(Ax − b)

= arg min
x1,x2,...,xv

v∑

i=1

fi(xi) + λk
T







v∑

i=1

Aixi


− b




Thus, the following SCATTER step can be executed parallely for each block indexed by i
after broadcasting λk from the previous iteration
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Dual decomposition (contd.)
Thus: f(x) =

v∑

i=1

fi(xi) and
v∑

i=1

Aixi = b

Using this, simplify the first iterative step of dual ascent as
xk+1 = argmin

x
f(x) + λk

⊤
(Ax − b)

= arg min
x1,x2,...,xv

v∑

i=1

fi(xi) + λk
T







v∑

i=1

Aixi


− b




Thus, the following SCATTER step can be executed parallely for each block indexed by i
after broadcasting λk from the previous iteration

xk+1
i = argmin

xi
fi(xi) + λk

⊤
(Aixi)

Subsequently,
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GATHER all the xi's to compute next \lambda^k+1



Dual decomposition (contd.)
Thus: f(x) =

v∑

i=1

fi(xi) and
v∑

i=1

Aixi = b

Using this, simplify the first iterative step of dual ascent as
xk+1 = argmin

x
f(x) + λk

⊤
(Ax − b)

= arg min
x1,x2,...,xv

v∑

i=1

fi(xi) + λk
T







v∑

i=1

Aixi


− b




Thus, the following SCATTER step can be executed parallely for each block indexed by i
after broadcasting λk from the previous iteration

xk+1
i = argmin

xi
fi(xi) + λk

⊤
(Aixi)

Subsequently, GATHER xk+1
i from all nodes and update λk+1 for again broadcasting

λk+1 = λk + tk(Axk+1 − b)
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MAIN ADVANTAGE: Parallel execution
   of xi updates

You first gather xis 
and then update lambda

Only a computational trick



Dual decomposition (contd.)

If we have an inequality constraint instead of an equality, e.g. Ax ≤ b
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Dual decomposition (contd.)

If we have an inequality constraint instead of an equality, e.g. Ax ≤ b
▶ Just project the computed λk+1 to Rm

+

λk+1 ←
(
λk+1

)
+

i.e. λk+1 ← max
(
0,λk+1

)
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Making dual methods more robust: Augmented Lagrangian
Dual ascent methods are too sensitive to tk ≤ m
The idea is to bring in some strong convexity by transforming

min
x∈Rn

f(x)

s.t. Ax = b

into
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Making dual methods more robust: Augmented Lagrangian
Dual ascent methods are too sensitive to tk ≤ m
The idea is to bring in some strong convexity by transforming

min
x∈Rn

f(x)

s.t. Ax = b

into

min
x∈Rn

f(x) + ρ

2
∥Ax − b∥2

s.t. Ax = b

If A has full column rank, primal objective is strongly convex with constant ρσ2
min(A)

▶ In the initial iteration, λ(0) can be arbitrary and x(1) need not satisfy Ax = b
Danger: xk+1 may very slowly start satisfying Ax = b

▶ The transformed objective does not change the final solution, but improves the convergence of dual
ascent methods
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Augmented Lagrangian: Making dual methods more robust

One of our main concerns with dual ascent is the sensitivity to tk ≤ m
▶ If we take the augmented Lagrangian approach, we can use a default value of tk using the
strong convexity factor that is proportional to ρ (more motivation on next slide)

Iterate
1 xk+1 = argmin

x
f(x) + λk

⊤Ax +
ρ

2
∥Ax − b∥2

⋆ The last term here is kind of a barrier function. As we will see, in interior point or barrier
methods applied to general inequality constraints, ρ will have to be reduced/changed at each
step

2 λk+1 = λk + ρ(Axk+1 − b)
⋆ Due to ρ (related to strong convexity) instead of tk , we get better convergence
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Augmented Lagrangian: Making dual methods more robust (contd.)

More motivation for replacing tk with ρ:
Using ρ instead of tk, we must have
0 ∈ ∂

(
f(xk+1)

)
+ AT

(
λk + ρ(Axk+1 − b)

)

Considering bλk+1 =
(
λk + ρ(Axk+1 − b)

)
, we get

0 ∈ ∂
(
f(xk+1)

)
+ ATbλk+1

which is a necessary condition for our original problem
▶ bλk+1 in place of λ∗
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Augmented Lagrangian: Making dual methods more robust (contd.)

More motivation for replacing tk with ρ:
Using ρ instead of tk, we must have
0 ∈ ∂

(
f(xk+1)

)
+ AT

(
λk + ρ(Axk+1 − b)

)

Considering bλk+1 =
(
λk + ρ(Axk+1 − b)

)
, we get

0 ∈ ∂
(
f(xk+1)

)
+ ATbλk+1

which is a necessary condition for our original problem
▶ bλk+1 in place of λ∗

What is the challenge in Applying Dual Decomposition to this Augmented Lagrangian?
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The dual decomposition trick is not applicable rightaway 
owing to the presence of the augmented Lagrangian



ADMM: Best of Several Worlds
Extend the decomposition idea to augmented Lagrangian.
Iteratively solve a smaller problem with respect to xi by fixing variables xj for j ̸= i.
Consider simpler case N = 2 (easily generalizable to N). f(x) = f1(x1) + f2(x2) and
augmented Lagrangian is

Lρ(x1, x2,λ) = f1(x1) + f2(x2) + λT(A1x1 + A2x2 − b) + ρ

2
∥A1x1 + A2x2 − b∥22. (80)

ADMM solves each direction alternatively
xt+1
1 = argmin

x1
Lρ(x1, xt2,λt) (81)

xt+1
2 = argmin

x2
Lρ(xt+1

1 , x2,λt) (82)

λt+1 = λt + ρ(A1xt+1
1 + A2xt+1

2 − b) (83)
Main difference wrt dual decomposition ascent:
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Does not decompose
Solve for x1
keeping
x2 from previous
iteration

Earlier you did not have to use values from previous iterate for x_2...x_v
while finding next iterate for x_1... Here you have to do so. 



ADMM: Best of Several Worlds
Extend the decomposition idea to augmented Lagrangian.
Iteratively solve a smaller problem with respect to xi by fixing variables xj for j ̸= i.
Consider simpler case N = 2 (easily generalizable to N). f(x) = f1(x1) + f2(x2) and
augmented Lagrangian is

Lρ(x1, x2,λ) = f1(x1) + f2(x2) + λT(A1x1 + A2x2 − b) + ρ

2
∥A1x1 + A2x2 − b∥22. (80)

ADMM solves each direction alternatively
xt+1
1 = argmin

x1
Lρ(x1, xt2,λt) (81)

xt+1
2 = argmin

x2
Lρ(xt+1

1 , x2,λt) (82)

λt+1 = λt + ρ(A1xt+1
1 + A2xt+1

2 − b) (83)
Main difference wrt dual decomposition ascent: ADMM updates xi sequentially.
Additional augmented term does not let us decompose the Lagrangian form into N
components conditionally independent wrt λ
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ADMM: Alternating Direction Method of Multipliers

1 Assume that functions f1, f2 are closed, proper, and convex (that is, they have closed,
nonempty, and convex epigraphs)

2 Assume that the un-augmented Lagrangian L0(x1, x2,λ) has (critical) saddle points bx1,bx2
and bλ subject to

L0(bx1,bx2,λ) ≤ L0(bx1,bx2, bλ) ≤ L0(x1, x2, bλ) (84)
3 No need to assume that A1, A2 etc. have full column rank

Then when t → ∞, one can prove that12

Residual convergence: rt = A1xt1 + A2xt2 − b → 0

Objective convergence: f1(xt1) + f2(xt2) → f∗

Dual variable convergence: λt → λ∗

12https://web.stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf
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Augmented lagrangian ==> Method of multipliers



(Log) Barrier methods
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Barrier Methods for Constrained Optimization
Consider a more general constrained optimization problem

min
x∈Rn

f(x)

s.t.gi(x) ≤ 0 i = 1...m
and Ax = b

Possibly reformulations of this problem include:
min
x

f(x) + λB(x)

where B is a barrier function like
1 B(x) = maximinu∈{gi(x)≤0}∥x − u∥2
2 B(x) =

∑
Igi(x) (Recap: Projected Gradient Descent was built on this and a linear

approximation to f(x))
3 B(x) = ϕgi(x) = −1

t log
(
−gi(x)

)
▶ Here, − 1

t is used instead of λ April 16, 2018 293 / 348

(We saw quadratic barrier in Augmented
Lagrangian method)



Barrier Method: Example

As a very simple example, consider the following inequality constrained optimization problem.

minimize x2
subject to x ≥ 1

The logarithmic barrier formulation of this problem is

minimize x2 − µ ln (x− 1)

The unconstrained minimizer for this convex logarithmic barrier function is
bx(µ) = 1

2 + 1
2

√
1 + 2µ. As µ → 0, the optimal point of the logarithmic barrier problem

approaches the actual point of optimality bx = 1 (which, as we can see, lies on the boundary of
the feasible region). The generalized idea, that as µ → 0, f(bx) → p∗ (where p∗ is the optimal
for primal) will be proved next.
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Optimal solution is 1



Barrier Method and Linear Program

Recap:

Problem type Objective Function Constraints L∗(λ) Dual constraints Strong duality
Linear Program cTx Ax ≤ b −bTλ ATλ+ c = 0 Feasible primal

What are necessary conditions at primal-dual optimality?
..
..
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You have feasiblity conditions
And Complementary slackness conditions

Simplex tries to enforce feasibility
while maintaining complementary 
slackness [Section 4.7.1 of 
BasicsOfConvexOptimization.pdf]

Barrier methods (Interior point) for LP tries to enforce this eventually, while maintaining 
feasibility [See Section 4.7.2 of notes/BasicsOfConvexOptimization.pdf]

For details of either approach to solve LP look at Section 4.7 of 
https://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvexOptimization.pdf
Especially look at its two subsections 4.7.1 and 4.7.2



Log Barrier (Interior Point) Method

The log barrier function is defined as

B(x) = ϕgi(x) = −1

t log
(
−gi(x)

)

It looks like an approximation of
∑

Igi(x)
f(x) +

∑
i ϕgi(x)

is convex if f and gi are convex
Let λi be lagrange multiplier associated with inequality constraint gi(x) ≤ 0

We’ve taken care of the inequality constraints, lets also consider an equality constraint
Ax = b with corresponding langrage multipler (vector) ν
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We have already seen several algorithms for handling linear constraints. These include Project Gradient
Descent, Dual Ascent and ADMM. For another approach that can use Gauss Elimination to find the family
of solutions to Ax = b see Section 4.6.1 of 
https://www.cse.iitb.ac.in/~cs709/notes/BasicsOfConvexOptimization.pdf



Log Barrier Method (contd.)
Our objective becomes

min
x

f(x) +
∑

i

(
−1

t

)
log

(
−gi(x)

)

s.t. Ax = b

At different values of t, we get different x∗(t)
Let λ∗

i (t) =
First-order necessary conditions for optimality (and strong duality)13 at x∗(t),λ∗

i (t):
▶
▶
▶
▶
▶

13of original problem
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identify nature of lambda that aligns with the barrier


