
Geometry of Duality: Duality Gap and Convexity
With reference to Figure 20, if the set I is not
convex, there could be a gap between the
z−intercept (0,α1) of the best supporting
hyperplane Hλ1,α1 and the closest point (0, δ1) of I
on the z−axis (solution to the primal).
For non-convex I, we can never prove in zero
duality gap in general.
Homework (Quiz 1, Problem 1): Write dual for
constrained problem minx f(x) = 5x2 + 6x3 − x4 on
the closed interval [−2, 10]. Does it have a duality
gap?
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Geometry of Duality: Duality Gap and Convexity
With reference to Figure 20, if the set I is not
convex, there could be a gap between the
z−intercept (0,α1) of the best supporting
hyperplane Hλ1,α1 and the closest point (0, δ1) of I
on the z−axis (solution to the primal).
For non-convex I, we can never prove in zero
duality gap in general.
Homework (Quiz 1, Problem 1): Write dual for
constrained problem minx f(x) = 5x2 + 6x3 − x4 on
the closed interval [−2, 10]. Does it have a duality
gap?
For well-behaved convex functions (as in the case of
linear programming), there are no duality gaps.
Figure 31 illustrates the case of a well-behaved
convex program.

Figure 29: Example of the convex set I
and hyperplanes Hλ,α for a single
constrained well-behaved convex
program.
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Non-convexity and Duality Gap: H/W Illustration

Find all the points of local and global minima and maxima as well as any saddle point(s) of
the function f(x) = 5x2 + 6x3 − x4 on the closed interval [−2, 10].
Solution:
Setting the derivative of f(x) to 0, we first find all the critical points.

f′(x) = 10x+ 18x2 − 4x3 = 0

Factorizing

2(5− x)(1 + 2x)x = 0

The critical points of this function are −1/2, 0 and 5.
Differentiating once more

f′′(x) = 10 + 36x− 12x2 = 0
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Non-convexity and Duality Gap: H/W Illustration

One can easily verify that f′′(−1/2) < 0, f′′(0) > 10 and f′′(5) < 0. Thus, we have atleast a
local maximum (concave region) at −1/2 and 5 and a local minimum (convex region) at 0.
As for global maximum, we can simply evaluate the function at the three critical points as well
as at the extreme points and report. f(−2) = −44, f(−1/2) = 0, f(5) = 250, f(10) = −3500.
Thus, we have a global (and local) maximum at 5, global minimum at 10 and local maximum
at −1/2 and local minimum at 0.
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Non-convexity and Duality Gap: H/W Illustration
To derive its dual (for λ1,λ2 ≥ 0):

L∗(λ1,λ2) = min
x∈[−2,10]

5x2 + 6x3 − x4 + (x+ 2)λ1 + (−x+ 10)λ2

Setting derivative wrt x to be 0 2(5− x)(1 + 2x)x = λ2 − λ1

Plotting L∗ (and/or the first order necessary condition for different values of λ1 and λ2),
we find that the min in the interval [−2, 10] is always either at −2 or at 10 (based on
nature of λ1 and λ2)

L∗(λ1,λ2) = min(20+48−16+8λ2, 500+6000−10000+12λ1) = min(52+8λ2,−3500+12λ1)

That is, if 3λ1 − 2λ2 > 3552/4 = 888 then L∗(λ1,λ2) = −3500 + 12λ1 else
L∗(λ1,λ2) = 52 + 8λ2.
L∗ is piecewise linear and concave. Dual optimization problem is about maximizing L∗
wrt λ1,λ2 ≥ 0. We expect duality gap.
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Geometry of Duality: Duality Gap even with Convexity

Figure 30: Example of the convex set I
and hyperplanes Hλ,α for a single
constrained semi-definite program.

And even when the set I is convex, bizzaire things
can happen; for example, in the case of
semi-definite programming, the set I, though
convex, is not at all well-behaved and this yields a
large duality gap, as shown in Figure 30.
In fact, the set I is open from below (the dotted
boundary) for a semi-definite program. We
could create very simple problems with convex I,
for which there are duality gaps.
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Recap: Max cut as an SDP

On the other hand, non-convex problems
such as SVD can have 0 duality gap



Bringing Things Together: Zero Duality Gap,
Differentiability, Necessity of KKT Conditions
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Zero Duality Gap, Differentiability ⇒ KKT Conditions (contd.)

Consider the following general optimization
problem.

min
x∈D

f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p
variable x = (x1, . . . , xn)

(83)

Suppose that the primal and dual optimal values for
the above problem are attained and equal, that is,
strong duality holds. Let bx be a primal optimal and
(bλ, bµ) be a dual optimal point (bλ ∈ ℜm, bµ ∈ ℜp).
Thus....

Figure 31: Example of the convex set I
and hyperplanes Hλ,α for a single
constrained well-behaved convex
program.
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Zero Duality Gap, Differentiability ⇒ KKT Conditions (contd.)

f(bx) = L∗(bλ, bµ)
= min

x∈D
f(x) + bλTg(x) + bµTh(x)

≤ f(bx) + bλTg(bx) + bµTh(bx)
≤ f(bx)

The last inequality follows from the fact that bλ ≥ 0, g(bx) ≤ 0, and h(bx) = 0.
We can therefore conclude that
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the two inequalities must be
equalities



Zero Duality Gap, Differentiability ⇒ KKT Conditions (contd.)

f(bx) = L∗(bλ, bµ)
= min

x∈D
f(x) + bλTg(x) + bµTh(x)

≤ f(bx) + bλTg(bx) + bµTh(bx)
≤ f(bx)

The last inequality follows from the fact that bλ ≥ 0, g(bx) ≤ 0, and h(bx) = 0.
We can therefore conclude that the two inequalities in this chain must hold with equality.
Conclusions from this chain of equalities (continued on next slide):
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Zero Duality Gap, Differentiability ⇒ KKT Conditions (contd.)

f(bx) = f(bx) + bλTg(bx) + bµTh(bx)

1 That bx is a minimizer for L(x, bλ, bµ) over x ∈ D. In particular, if the functions f,
g1, g2, . . . , gm and h1, h2, . . . , hp are differentiable (and therefore have open domains),
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gradient wrt x at x-hat must vanish



Zero Duality Gap, Differentiability ⇒ KKT Conditions (contd.)

f(bx) = f(bx) + bλTg(bx) + bµTh(bx)

1 That bx is a minimizer for L(x, bλ, bµ) over x ∈ D. In particular, if the functions f,
g1, g2, . . . , gm and h1, h2, . . . , hp are differentiable (and therefore have open domains), the
gradient of L(x, bλ, bµ) must vanish at bx, since any point of global optimum must be a
point of local optimum. That is, ∇f(bx) +∑m

i=1
bλi∇gi(bx) +

∑p
j=1 bµj∇hj(bx) = 0

2 That bλTg(bx) = ∑n
i=1

bλigi(bx) = 0:
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Rest are straightforward (Primal and dual feasibility conditions)



Zero Duality Gap, Differentiability ⇒ KKT Conditions (contd.)

f(bx) = f(bx) + bλTg(bx) + bµTh(bx)

1 That bx is a minimizer for L(x, bλ, bµ) over x ∈ D. In particular, if the functions f,
g1, g2, . . . , gm and h1, h2, . . . , hp are differentiable (and therefore have open domains), the
gradient of L(x, bλ, bµ) must vanish at bx, since any point of global optimum must be a
point of local optimum. That is, ∇f(bx) +∑m

i=1
bλi∇gi(bx) +

∑p
j=1 bµj∇hj(bx) = 0

2 That bλTg(bx) = ∑n
i=1

bλigi(bx) = 0: Since each term in this sum is nonpositive, we
conclude that
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Zero Duality Gap, Differentiability ⇒ KKT Conditions (contd.)

f(bx) = f(bx) + bλTg(bx) + bµTh(bx)

1 That bx is a minimizer for L(x, bλ, bµ) over x ∈ D. In particular, if the functions f,
g1, g2, . . . , gm and h1, h2, . . . , hp are differentiable (and therefore have open domains), the
gradient of L(x, bλ, bµ) must vanish at bx, since any point of global optimum must be a
point of local optimum. That is, ∇f(bx) +∑m

i=1
bλi∇gi(bx) +

∑p
j=1 bµj∇hj(bx) = 0

2 That bλTg(bx) = ∑n
i=1

bλigi(bx) = 0: Since each term in this sum is nonpositive, we
conclude that bλigi(bx) = 0 for i = 1, 2, . . . ,m. This condition is called complementary
slackness and is a necessary condition for strong duality.

▶ Complementary slackness implies that the ith optimal lagrange multiplier is 0 unless the ith
inequality constraint is active at the optimum. That is,

bλi > 0 ⇒ gi(bx) = 0

gi(bx) < 0 ⇒ bλi = 0
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Zero Duality Gap, Differentiability ⇒ KKT Conditions (contd.)

Putting together these conditions along with the feasibility conditions for any primal solution
and dual solution, we can state the following Karush-Kuhn-Tucker (KKT) necessary conditions
for zero duality gap:

(1) ∇f(bx) +∑m
i=1

bλi∇gi(bx) +
∑p

j=1 bµj∇hj(bx) = 0
(2) gi(bx) ≤ 0 i = 1, 2, . . . ,m
(3) bλi ≥ 0 i = 1, 2, . . . ,m
(4) bλigi(bx) = 0 i = 1, 2, . . . ,m
(5) hj(bx) = 0 j = 1, 2, . . . , p

(84)
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Bringing Things Together: Sufficiency of KKT
Conditions, Convexity, Differentiability, Zero

Duality Gap
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KKT Conditions, Convexity and Differentiability ⇒ Zero Duality Gap
Theorem
If the function f is convex, gi are convex and hj are affine, then KKT conditions in (84) are
necessary and sufficient conditions for zero duality gap.

Proof: The necessity part has already been proved; here we only prove the sufficiency part.
The conditions (2) and (5) in (84) ensure that bx is primal feasible. Since λ ≥ 0, L(x, bλ, bµ) is
convex in x. Based on condition (1) in (84) and sufficient condition for global minimum of a
convex function, we can infer that bx minimizes
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L(x,lambda-hat,mu-hat)
since gradient vanishing is a 
sufficient condition for global min
of a convex function



KKT Conditions, Convexity and Differentiability ⇒ Zero Duality Gap
Theorem
If the function f is convex, gi are convex and hj are affine, then KKT conditions in (84) are
necessary and sufficient conditions for zero duality gap.

Proof: The necessity part has already been proved; here we only prove the sufficiency part.
The conditions (2) and (5) in (84) ensure that bx is primal feasible. Since λ ≥ 0, L(x, bλ, bµ) is
convex in x. Based on condition (1) in (84) and sufficient condition for global minimum of a
convex function, we can infer that bx minimizes L(x, bλ, bµ). We can thus conclude that
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KKT Conditions, Convexity and Differentiability ⇒ Zero Duality Gap
Theorem
If the function f is convex, gi are convex and hj are affine, then KKT conditions in (84) are
necessary and sufficient conditions for zero duality gap.

Proof: The necessity part has already been proved; here we only prove the sufficiency part.
The conditions (2) and (5) in (84) ensure that bx is primal feasible. Since λ ≥ 0, L(x, bλ, bµ) is
convex in x. Based on condition (1) in (84) and sufficient condition for global minimum of a
convex function, we can infer that bx minimizes L(x, bλ, bµ). We can thus conclude that

L∗(bλ, bµ) = f(bx) + bλTg(bx) + bµTh(bx)
= f(bx)

In the equality above, we use hj(bx) = 0 and bλigi(bx) = 0.
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KKT Conditions, Convexity and Differentiability ⇒ Zero Duality Gap
(contd.)

Further, given the relation between d∗ and L∗(bλ, bµ) and between f(bx) and p∗
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KKT Conditions, Convexity and Differentiability ⇒ Zero Duality Gap
(contd.)

Further, given the relation between d∗ and L∗(bλ, bµ) and between f(bx) and p∗

d∗ ≥ L∗(bλ, bµ) = f(bx) ≥ p∗

The weak duality theorem however states that
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d*             <=    p*

Putting together these inequalities yields x-hat as point 
of primal optimality and lambda-hat, mu-hat as point
of dual optimality



KKT Conditions, Convexity and Differentiability ⇒ Zero Duality Gap
(contd.)

Further, given the relation between d∗ and L∗(bλ, bµ) and between f(bx) and p∗

d∗ ≥ L∗(bλ, bµ) = f(bx) ≥ p∗

The weak duality theorem however states that p∗ ≥ d∗. This implies that

d∗ = L∗(bλ, bµ) = f(bx) = p∗

This shows that bx and (bλ, bµ) correspond to the primal and dual optimals respectively and the
problem therefore has zero duality gap.
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KKT Conditions, Convexity and Differentiability ⇒ Zero Duality Gap
(contd.)

In summary, for any convex optimization problem with differentiable objective and
constraint functions, any points that satisfy the KKT conditions are primal and dual
optimal, and have zero duality gap.
The KKT conditions play a very important role in optimization. In some rare cases, it is
possible to solve the optimization problems by finding a solution to the KKT conditions
analytically.
Many algorithms for convex optimization are conceived as, or can be interpreted as,
methods for solving the KKT conditions.
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Often difference between f(x^k) (>= p*) and L(lambda^k,mu^k)
(<= d*) is used as an estimate for how far we are from the 
optimal solution (where we expect zero duality gap)

Eg: Dual Ascent
algo, ADMM, 
Interior point 
methods



Bringing Things Together: Convexity, Constaint
Qualifications, Zero Duality Gap
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Even with convex functions and constraints, there are other sufficient
conditions for strong duality! 



Convexity, Slater’s Constraint Qualification ⇒ Zero Duality Gap
Recap the result on Weak Duality

p∗ = min
x∈D

f(x) ≥ min
λ≥0

L∗(λ) = d∗

The weak duality theorem has some important implications.
If the primal problem is unbounded below, that is, p∗ = −∞, we must have d∗ = −∞,
which means that the Lagrange dual problem is infeasible.
Conversely, if the dual problem is unbounded above, that is, d∗ =∞, we must have
p∗ =∞, which is equivalent to saying that the primal problem is infeasible. The
difference, p∗ − d∗ is called the duality gap.
In many hard combinatorial optimization problems with duality gaps, we get good dual
solutions, which tell us that we are guaranteed of being some k % within the optimal
solution to the primal, for some satisfactorily low values of k. This is one of the powerful
uses of duality theory; constructing bounds for optimization problems.
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(Eg: linear program with trivial constraints)

(Eg: Again trivial LP)

Slater's sufficient condition is in terms of strict feasibility



Convexity, Slater’s Constraint Qualification ⇒ Zero Duality Gap (contd.)

Under what other conditions can one assert that strong duality (d∗ = p∗) holds?
It usually holds for convex problems but there are exceptions to that - one of the most
typical being that of the semi-definite optimization problem. The semi-definite program
(SDP) is defined, with the linear matrix inequality constraint as follows:

min
x∈ℜn

cTx
subject to x1A1 + . . .+ xnAn + G ⪯ 0

Ax = b
(85)

Sufficient conditions for strong duality in convex problems are called constraint
qualifications. One of the most useful sufficient conditions for strong duality is called the
Slater’s constraint qualification (requires separating hyperplane theorem).
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linear objective with semi-definite conic
constraint

In terms of the interior of the feasible region being non-empty
Proof comes from strong separation hyper plane theorem



Convexity, Slater’s Constraint Qualification ⇒ Zero Duality Gap (contd.)
Definition
[Slater’s constraint qualification]: For a convex problem

min
x∈D

f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b
variable x = (x1, . . . , xn)

(86)

strong duality holds (that is d∗ = p∗) if it is strictly feasible. That is,

∃x ∈ int(D) : gi(x) < 0 i = 1, 2, . . . ,m Ax = b

However, if any gi is linear, it need not hold with strict inequality.
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Separating hyperplane theorem (also see additional optional notes)

If C and D are disjoint convex sets, i.e., C ∩D = ϕ, then there exists a ̸= 0, with a b ∈ ℜ such
that
aTx ≤ b for x ∈ C,
aTx ≥ b for x ∈ D.
That is, the hyperplane

{
x|aTx = b

}
separates C and D.

The seperating hyperplane need not be unique though.
Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).
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Farka's lemma, Theorem of alternatives



Simpler Case of Slater’s Constraint Qualification with Analysis (also see
additional optional notes)

Strong Duality for Conic Programs (CP) as generalization of Linear Programs (LP)
illustrated through additional concepts such as (i) Proper Cones, (ii) use of Farkas’
Lemma (theorem of alternatives as in complementary slackness) in 2015 offering of this
course12

Trajectory was: Linear program (LP) =⇒ weak duality =⇒ Dual LP =⇒ Generalized
inequality =⇒ Proper cones =⇒ Conic Program (CP) =⇒ Weak duality for CP =⇒ Dual
for CP using dual cone (Semi-definite program and LP are special cases of Conic
Programs)
Detailed discussion on Strong Duality for Conic Programs presented by Nemirovski13

12Read until lecture 10 on 13.2.2015 of https://www.cse.iitb.ac.in/~cs709/2015a/calendar.html.
13http://www2.isye.gatech.edu/~nemirovs/ICMNemirovski.pdf
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Convexity, KKT Conditions, Slater’s Constraint Qualification, Zero Duality
Gap

Table 1 summarizes some optimization problems, their duals and conditions for strong duality.

Problem type Objective Function Constraints L∗(λ) Dual constraints Strong duality
Linear Program cTx Ax ≤ b −bTλ ATλ+ c = 0 Feasible primal

λ ≥ 0 and dual
Quadratic Program 1

2xTQx + cTx for Q ∈ Sn
++ Ax ≤ b −1

2

(
c− ATλ

)T
Q−1

(
c− ATλ

)
+ bTλ λ ≥ 0 Always

Entropy maximization xi
∑n

i=1 ln xi Ax ≤ b −bTλ− µ− e−µ−1
∑n

i=1 e−aTi λ λ ≥ 0 Primal constraints
xT1 = 1 ai is the ith column of A are satisfied.

Table 1: Examples of functions and their duals.
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1) Read extra notes on Derivation of Duals for Support Vector Classification and Regression 
(Strong Duality):  https://www.cse.iitb.ac.in/~cs709/notes/enotes/svr-kkt-dual-derivation.pdf
2) See algorithms for SVM primal and dual at 
http://pages.cs.wisc.edu/~swright/talks/sjw-complearning.pdf



Homework: The general SLBQP problem

We define the general SLBQP (Single Linear equality constrained Bounded Quadratic
Program) problem as

min f(x) = 1

2
xTAx− cTx

s.t.
▶ li ≤ xi ≤ ui, ∀i
▶ aTx = b

These constraints form the non-empty closed convex set C
What about the dual function of SLBQP? Will the duality gap be zero?
Projection methods can solve bounded constrained optimization problems with large
changes in the working set of constraints at each iteration.
Are their other algorithms motivated by Lagrange Duality Theory?
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We will now look at other methods
▶ Inspired by dual
▶ Consider constraints (start with simple linear constraints Ax = b)

Interior point methods
▶ Make use of barrier function (such as logarithmic barrier; recall variant of Linear Program

discussed in last lecture), and
▶ Convergence analyzed through gap using dual (mt )
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We have already discussed projected and proximal gradient descent capable
of handling constraints. Any others?



Dual Ascent and ADMM
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Dual ascent
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Consider
min

x
f(x)

s.t. Ax = b
We have

▶ L(x,λ) = f(x) + λ⊤(Ax− b)
▶ L∗(λ) = inf

x
L(x,λ)

(under strong duality, infimum is attained)
▶ Recapping definition of the convex conjugate function f∗(h) = sup

x
hTx− f(x)

L∗(λ) = inf
x

L(x,λ) =
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Consider
min

x
f(x)

s.t. Ax = b
We have

▶ L(x,λ) = f(x) + λ⊤(Ax− b)
▶ L∗(λ) = inf

x
L(x,λ)

(under strong duality, infimum is attained)
▶ Recapping definition of the convex conjugate function f∗(h) = sup

x
hTx− f(x)

L∗(λ) = inf
x

L(x,λ) = −f∗(−ATλ)− bTλ
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Idea of dual ascent

1 Initialize λ(0)

2 Iteratively
1 xk+1 = argmin

x
L(x,λk)

2 Gradient ascent for dual maximization problem: d∗ = max
λ≥0

L∗(λ)...approximated as

14There are other algorithms such as cutting plane algorithm that also work for non-differentiable dual.
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Idea of dual ascent

1 Initialize λ(0)

2 Iteratively
1 xk+1 = argmin

x
L(x,λk)

2 Gradient ascent for dual maximization problem: d∗ = max
λ≥0

L∗(λ)...approximated as

⋆ d∗ = max
λ≥0

L(xk+1,λ)

⋆ λk+1 = λk + tk ∂λ

(
f(xk+1) + λ⊤(Axk+1 − b)

)

14There are other algorithms such as cutting plane algorithm that also work for non-differentiable dual.
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we have discussed several strategies for x including proximal

(sub)gradient ascent



Idea of dual ascent

1 Initialize λ(0)

2 Iteratively
1 xk+1 = argmin

x
L(x,λk)

2 Gradient ascent for dual maximization problem: d∗ = max
λ≥0

L∗(λ)...approximated as

⋆ d∗ = max
λ≥0

L(xk+1,λ)

⋆ λk+1 = λk + tk ∂λ

(
f(xk+1) + λ⊤(Axk+1 − b)

)

= λk + tk(Axk+1 − b)
⋆ Leads to convergence (under assumptions of strong convexity etc) even if the Lagrange dual

L∗(λ) is non-differentiable14.

14There are other algorithms such as cutting plane algorithm that also work for non-differentiable dual.
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If λ converges to λ∗ = argmax
λ

L∗(λ)
and strong duality holds, i.e.

min
x

f(x) = max
λ≥0

L∗(λ)

s.t. Ax = b

then,
x∗ = argmin

x
L(x,λ∗)

If f is strongly convex with constant m, and you ensure tk ≤ m, then convergence rate
is O

(
1
k

)
.
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Dual decomposition
f(x) is decomposable into v blocks of variables (such as in Machine Learning, with
decomposition over examples)
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Dual decomposition
f(x) is decomposable into v blocks of variables (such as in Machine Learning, with
decomposition over examples)

min
x

f(x) = min
x1,x2,...,xv

v∑

i=1

fi(xi)

s.t. Ax = b
Let A = [A1,A2...Ai..Av] be a matrix of v blocks of columns of A corresponding to the
blocks xi.




A11 Ai1 Av1
A12 Ai2 Av2
A1p Aip Avp




| {z }
p Linear constraints




x1

xi
xv


 =




v∑

i=1

Ai1xi
v∑

i=1

Ai2xi
v∑

i=1

Aipxi




=




b1

b2

bp



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Dual decomposition (contd.)
Thus: f(x) =

v∑

i=1

fi(xi) and
v∑

i=1

Aixi = b

Using this, simplify the first iterative step of dual ascent as
xk+1 = argmin

x
f(x) + λk

⊤
(Ax− b)
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