Dual decomposition: Special case of Dual Ascent

e f(x) is decomposable into v blocks of variables (such as in Machine Learning, with
decomposition over examples)
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Dual decomposition: Special case of Dual Ascent

e f(x) is decomposable into v blocks of variables (such as in Machine Learning, with
decomposition over examples)

min f(x) min Zf (%)

X X17X2, X
st. Ax =50
o Let A= [A.,Ax.. A A be a matrix of v blocks of columns of A corresponding to the
blocks x;.
-, ;

Z A1iX;
A A A X1 o by
Ao Aui Aoy Xi | = ZAQIXI = | by
Aot Api Apy Xy i=1 b,
p Linear constraints Z ApiX;
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[argimin over variables

. . of functions of those individual

o Thus: fix) =S f(x;) and S A.x; = b varlables,' with the fu'nctlons not
x) ; (e ; mutually interacting is the vectol

o Using this, simplify the first iterative step of dual ascent as  Of individual argmins]

xk*1 = argmin fx) + )\kT(Ax —b)

Dual decomposition (contd.)
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Dual decomposition (contd.)

@ Thus: flx) = Z fi(x;) and ZA*,'X,' =b
i=1 i=1

@ Using this, simplify the first iterative step of dual ascent as
xk*1 = argmin fx) + )\kT(AX —b)
X

=arg min

v
X1,X2,.. Xy
=

v
-
fi(x;) + A< d Axi| —b
=1 i=1
@ Thus, the following SCATTER step can be executed parallely for each block indexed by i
after broadcasting \* from the previous iteration
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Dual decomposition (contd.)

@ Thus: flx) = Z fi(x;) and ZA*,'X,' =b

@ Using this, simplify the first iterative step of dual ascent as
xk*1 = argmin fx) + )\kT(AX —b)
X

v
kT ~
_argxmrcr;!n, Z;f xi) + A EA,X:

@ Thus, the following SCATTER step can be executed parallely for each block indexed by i
after broadcasting \¥ from the previous iteration

xk = argmm fi(x;) + Ak (A*,-x,-)

e Subsequently, GATHER the lammbda in the ascent step
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Dual decomposition (contd. ) = Computational trick

e Thus: f(x Zf x;) and ZA*,X, =b

@ Using this, S|mp||fy the first |terat|ve step of dual ascent as
xk*1 = argmin fx) + )\kT(AX —b)
X

v
kT <
<o pin S+ X7 (Lo

@ Thus, the following SCATTER step can be executed parallely for each block indexed by i

after broadcasting \¥ from the previous iteration only this step involves
parallelizing this step " _ T the fi's and might involve
can be more helpful x; " = argmin fi(x;) + A" (A.ix;) (subgradient) computation

@ Subsequently, GATHER xf.‘H from all nodes and update A**'! for again broadcasting
)\k-i-l Ak 4t (Axk+1 b)
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Dual decomposition (contd.)

o If we have an inequality constraint instead of an equality, e.g. Ax < b

Hint: Apply projection step along with dual ascent
If Lambda <O, then make it equal to 0
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Dual decomposition (contd.)

o If we have an inequality constraint instead of an equality, e.g. Ax < b
» Just project the computed A*™! to R

AL ()\k+1)
n

ie. ANl max (0, )\kﬂ)
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Making dual methods more robust: Augmented Lagrangian

@ Dual ascent methods are too sensitive to t* < m (m was a lower bound on curvature)
@ The idea is to bring in some strong convexity by transforming

xrgg” f(X)

st. Ax=Db

into
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Making dual methods more robust: Augmented Lagrangian

@ Dual ascent methods are too sensitive to t* < m
@ The idea is to bring in some strong convexity by transforming

xngg” f(X)

st. Ax=Db

into

. 14 . 2
min fx) + 5[lAx — bl

st. Ax=D>b

If A has full column rank, primal objective is strongly convex with constant po? (A)
> In the initial iteration, A‘”) can be arbitrary and x™M need not satisfy Ax =b
Danger: x*1 may very slowly start satisfying Ax = b
> The transformed objective does not change the final solution, but improves the convergence of dual
ascent methods
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Augmented Lagrangian: Making dual methods more robust

@ One of our main concerns with dual ascent is the sensitivity to tk<m
» If we take the augmented Lagrangian approach, we can use a default value of t* using the
strong convexity factor that is proportional to p (more motivation on next slide)

o lterate
T
@ x 1 = argmin fix) + Ak (Ax —b) + gHAx — b
X
* The last term here is kind of a barrier function. As we will see, in interior point or barrier
methods applied to general inequality constraints, p will have to be reduced/changed at each
step  (but not necessarily here)

(2 )\k+1 — )\k+p(Axk+1 o b)
* Due to p (related to strong convexity) instead of t* , we get better convergence
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Augmented Lagrangian: Making dual methods more robust (contd.)

More motivation for replacing t* with p:

@ Using p instead of tX, we must have
0ed (f(xk+1)) + AT()\" + p(AxKT - b))

o Considering \t! = (/\k + p(Axk+ — b)) we get

0€ 9 (fxkH)) + ATAKH \
ensures that we are

which is a necessary condition for our original problem
. N in place of A* on the KKT (necessary)
solution path
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Augmented Lagrangian: Making dual methods more robust (contd.)

More motivation for replacing t* with p:

@ Using p instead of tX, we must have
0ed (f(xk+1)) + AT()\" + p(AxKT - b))

o Considering \t! = (/\k + p(AxF+ — b)) we get

00 (fxk)) + ATIH
which is a necessary condition for our original problem
» M1 in place of \*
o What is the challenge in Applying Dual Decomposition to this Augmented Lagrangian?
Interactions across
[|AX-b|||~2 = (Ax-b) " T(Ax-b)=x"TA"TAX..... blocks of xi's creates
non-decomposibility
in SCATTER step
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ADMM: Best of Several Worlds

o Extend the decomposition idea to augmented Lagrangian.

o lteratively solve a smaller problem with respect to x; by fixing variables x; for j # i.

o Consider simpler case N = 2 (easily generalizable to N). f(x) = fi(x1) + f2(x2) and
augmented Lagrangian is

Ly(xi,x2,\) = fi(x1) + fa(x2) + AT (A1xi + Agxo — b) + §HA1X1 + Agxo — bf3.

ADMM solves each direction alternatively

ADMM takes the idea of X§+1 = argmin L,(x1, x5, \)

dual ascent ahead to x1

alternate between x§+1 = argmin Lp(x§+1,xQ, AD)

all the x's as well X2

as alternate (like dual AL = AF (AT 4 ApxE™ — b)

ascent, with lambda)
@ Main difference wrt dual decomposition ascent:
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ADMM: Best of Several Worlds

o Extend the decomposition idea to augmented Lagrangian.

o lteratively solve a smaller problem with respect to x; by fixing variables x; for j # i.

o Consider simpler case N = 2 (easily generalizable to N). f{x) = fi(x1) + f2(x2) and
augmented Lagrangian is

Lo(x1, %2, A) = fi(x1) + fo(x2) + AT(Arxs + Asxy — b) + gHAlxl + Asxo —b|2. (87)

ADMM solves each direction alternatively

X§+1 = arg rT)Hn Lp(X17 Xé, )\t) (88)
Xg—i-l = arg n)gn Lp(xi"‘l, X2, /\t) (89)
A=A p(AGT + AT —b) (30)

@ Main difference wrt dual decomposition ascent: ADMM updates x; sequentially.
Additional augmented term does not let us decompose the Lagrangian form into N
components conditionally independent wrt A
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ADMM: Alternating Direction Method of Multipliers

@ Assume that functions fi, f» are closed, proper, and convex (that is, they have closed,
nonempty, and convex epigraphs)

@ Assume that the un-augmented Lagrangian Lo(x1, x2, A) has (critical) saddle points X;, X2
and )\ subject to

Lo(X1, %2, A) < Lo(X1,%2, A) < Lo(x1, X2, A) (91)
© No need to assume that Ay, Ay etc. have full column rank
Then when t — oo, one can prove that!®
Residual convergence: rf = Ajxt + Asxi —b — 0
Objective convergence: fi(x}) + fo(x§) —
Dual variable convergence: \f — \*

And the rate of convergence is Q-linear'® (i.e., (Ax*) — p*) < pX(Ax) — p*))

1
5https ://web.stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf
16
https://arxiv.org/pdf/1502.02009.pdf
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(Log) Barrier methods

Inspired by the Augmented Lagrangian method, how can we use the idea of
a barrier to help solve constrained optimization problems while making use
of unconstrained optimization techniques



: : — : Log barrier shoots to infinity
Barrier Methods for Constrained Optimization _ 2 "0 - % =07 0ot g

Consider a more general constrained optimization problem constraint. Hence, as iterations

proceed and we are consistently
in the feasible region, the Barrier

min f(x) function can be gradually ignored
XERT ==>1/t-->0
s.t.gi(x) <0i=1..m by letting t--> infinity
and Ax = b as iterations proceed

Possibly reformulations of this problem include:
min f(x) + AB(x)
X

where B is a barrier function like
B(x) = 3||Ax b||? (in Augmented Langragian - for a specific type of strong convexity wrt ||.[|2))

B (x) = (x) (Projected Gradient Descent: built on this & a linear aBproxmatlon to f(x))
_ — 1 . Log barrier is a differentiable
Blx) = ¢g’( ) = —¢log (~&(x)) convex approximation
» Here, —lt is used instead of ). Lets discuss this in more details t
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Barrier Method: Example

As a very simple example, consider the following inequality constrained optimization problem.

minimize  x*
subjectto x>1

The logarithmic barrier formulation of this problem is
minimize x% — pln (x—1)

The unconstrained minimizer for this convex logarithmic barrier function is

X(p) = % + %m As 1 — 0, the optimal point of the logarithmic barrier problem
approaches the actual point of optimality X = 1 (which, as we can see, lies on the boundary of
the feasible region). The generalized idea, that as u — 0, fiX) — p* (where p* is the optimal
for primal) will be proved next.

Homework
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Barrier Method and Linear Program

Recap:

Problem type

Objective Function

Constraints

[SCY)

Dual constraints

Strong duality

Linear Program

c'x

Ax <b

—b'\

A'A+c=0

Feasible primal

What are necessary conditions at primal-dual optimality?

Complementary Slackness ==> Barrier/Interior methods Force complemental
slackness to hold always while trying to attain feasibility
(eg: Using projection step) at point of optimality

(Primal/Dual) Feasibility==> Barrier/Interior methods Force feasibility
to hold always while trying to attain
complementary slackness at point of optimality
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Log Barrier (Interior Point) Method

The log barrier function is defined as

Bx) = 0g(x) = — log (~i(x))

Approximates Y I (x) (better approximation as t — c0)

fix) + ;g (x) is convex if fand g; are convex
Why? ¢g,(x) is negative of monotonically increasing concave function (log) of a concave
function —gi(x)

Let A\; be lagrange multiplier associated with inequality constraint gj(x) < 0

@ We've taken care of the inequality constraints, lets also consider an equality constraint
Ax = b with corresponding langrage multipler (vector) v
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Log Barrier Method (contd.)
@ Our objective becomes

min f{x) + Z (—%) log (—gi(x))

st. Ax=0>b

o At different values of t, we get different x*(t)
o Let \i(t) =
o First-order necessary conditions for optimality (and strong duality)!’ at x*(t), A% (t):

7of original problem
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