
Dual decomposition: Special case of Dual Ascent
f(x) is decomposable into v blocks of variables (such as in Machine Learning, with
decomposition over examples)
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Dual decomposition: Special case of Dual Ascent
f(x) is decomposable into v blocks of variables (such as in Machine Learning, with
decomposition over examples)

min
x

f(x) = min
x1,x2,...,xv

v∑

i=1

fi(xi)

s.t. Ax = b
Let A = [A∗1,A∗2...A∗i..A∗v] be a matrix of v blocks of columns of A corresponding to the
blocks xi.
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Dual decomposition (contd.)
Thus: f(x) =

v∑

i=1

fi(xi) and
v∑

i=1

A∗ixi = b

Using this, simplify the first iterative step of dual ascent as
xk+1 = argmin

x
f(x) + λk

⊤
(Ax− b)
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[argimin over variables
of functions of those individual
variables, with the functions not
mutually interacting is the vector

of individual argmins]



Dual decomposition (contd.)
Thus: f(x) =

v∑

i=1

fi(xi) and
v∑

i=1

A∗ixi = b

Using this, simplify the first iterative step of dual ascent as
xk+1 = argmin

x
f(x) + λk

⊤
(Ax− b)

= arg min
x1,x2,...,xv

v∑

i=1

fi(xi) + λk
T







v∑

i=1

Aixi


− b




Thus, the following SCATTER step can be executed parallely for each block indexed by i
after broadcasting λk from the previous iteration
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Dual decomposition (contd.)
Thus: f(x) =

v∑

i=1

fi(xi) and
v∑

i=1

A∗ixi = b

Using this, simplify the first iterative step of dual ascent as
xk+1 = argmin

x
f(x) + λk

⊤
(Ax− b)

= arg min
x1,x2,...,xv

v∑

i=1

fi(xi) + λk
T







v∑

i=1

Aixi


− b




Thus, the following SCATTER step can be executed parallely for each block indexed by i
after broadcasting λk from the previous iteration

xk+1
i = argmin

xi
fi(xi) + λk

⊤
(A∗ixi)

Subsequently,
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GATHER the lammbda in the ascent step



Dual decomposition (contd.)
Thus: f(x) =

v∑

i=1

fi(xi) and
v∑

i=1

A∗ixi = b

Using this, simplify the first iterative step of dual ascent as
xk+1 = argmin

x
f(x) + λk

⊤
(Ax− b)

= arg min
x1,x2,...,xv

v∑

i=1

fi(xi) + λk
T







v∑

i=1

Aixi


− b




Thus, the following SCATTER step can be executed parallely for each block indexed by i
after broadcasting λk from the previous iteration

xk+1
i = argmin

xi
fi(xi) + λk

⊤
(A∗ixi)

Subsequently, GATHER xk+1
i from all nodes and update λk+1 for again broadcasting

λk+1 = λk + tk(Axk+1 − b)
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=  Computational trick

parallelizing this step 
can be more helpful

only this step involves
the fi's and might involve
(subgradient) computation



Dual decomposition (contd.)

If we have an inequality constraint instead of an equality, e.g. Ax ≤ b
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Hint: Apply projection step along with dual ascent
If Lambda <0, then make it equal to 0



Dual decomposition (contd.)

If we have an inequality constraint instead of an equality, e.g. Ax ≤ b
▶ Just project the computed λk+1 to Rm

+

λk+1 ←
(
λk+1

)
+

i.e. λk+1 ← max
(
0,λk+1

)
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Making dual methods more robust: Augmented Lagrangian
Dual ascent methods are too sensitive to tk ≤ m
The idea is to bring in some strong convexity by transforming

min
x∈Rn

f(x)

s.t. Ax = b

into
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(m was a lower bound on curvature)



Making dual methods more robust: Augmented Lagrangian
Dual ascent methods are too sensitive to tk ≤ m
The idea is to bring in some strong convexity by transforming

min
x∈Rn

f(x)

s.t. Ax = b

into

min
x∈Rn

f(x) + ρ

2
∥Ax− b∥2

s.t. Ax = b

If A has full column rank, primal objective is strongly convex with constant ρσ2
min(A)

▶ In the initial iteration, λ(0) can be arbitrary and x(1) need not satisfy Ax = b
Danger: xk+1 may very slowly start satisfying Ax = b

▶ The transformed objective does not change the final solution, but improves the convergence of dual
ascent methods
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Augmented Lagrangian: Making dual methods more robust

One of our main concerns with dual ascent is the sensitivity to tk ≤ m
▶ If we take the augmented Lagrangian approach, we can use a default value of tk using the
strong convexity factor that is proportional to ρ (more motivation on next slide)

Iterate
1 xk+1 = argmin

x
f(x) + λk

⊤
(Ax− b) + ρ

2
∥Ax− b∥2

⋆ The last term here is kind of a barrier function. As we will see, in interior point or barrier
methods applied to general inequality constraints, ρ will have to be reduced/changed at each
step

2 λk+1 = λk + ρ(Axk+1 − b)
⋆ Due to ρ (related to strong convexity) instead of tk , we get better convergence
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(but not necessarily here)



Augmented Lagrangian: Making dual methods more robust (contd.)

More motivation for replacing tk with ρ:
Using ρ instead of tk, we must have
0 ∈ ∂

(
f(xk+1)

)
+ AT

(
λk + ρ(Axk+1 − b)

)

Considering bλk+1 =
(
λk + ρ(Axk+1 − b)

)
, we get

0 ∈ ∂
(
f(xk+1)

)
+ ATbλk+1

which is a necessary condition for our original problem
▶ bλk+1 in place of λ∗
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ensures that we are
on the KKT (necessary)
solution path



Augmented Lagrangian: Making dual methods more robust (contd.)

More motivation for replacing tk with ρ:
Using ρ instead of tk, we must have
0 ∈ ∂

(
f(xk+1)

)
+ AT

(
λk + ρ(Axk+1 − b)

)

Considering bλk+1 =
(
λk + ρ(Axk+1 − b)

)
, we get

0 ∈ ∂
(
f(xk+1)

)
+ ATbλk+1

which is a necessary condition for our original problem
▶ bλk+1 in place of λ∗

What is the challenge in Applying Dual Decomposition to this Augmented Lagrangian?
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||Ax-b|||^2 = (Ax-b)^T(Ax-b)=x^TA^TAx.....
Interactions across
blocks of xi's creates
non-decomposibility
in SCATTER step



ADMM: Best of Several Worlds
Extend the decomposition idea to augmented Lagrangian.
Iteratively solve a smaller problem with respect to xi by fixing variables xj for j ̸= i.
Consider simpler case N = 2 (easily generalizable to N). f(x) = f1(x1) + f2(x2) and
augmented Lagrangian is

Lρ(x1, x2,λ) = f1(x1) + f2(x2) + λT(A1x1 + A2x2 − b) + ρ

2
∥A1x1 + A2x2 − b∥22. (87)

ADMM solves each direction alternatively
xt+1
1 = argmin

x1
Lρ(x1, xt2,λt) (88)

xt+1
2 = argmin

x2
Lρ(xt+1

1 , x2,λt) (89)

λt+1 = λt + ρ(A1xt+1
1 + A2xt+1

2 − b) (90)
Main difference wrt dual decomposition ascent:
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ADMM takes the idea of
dual ascent ahead to 
alternate between 
all the x's as well
as alternate (like dual 
ascent, with lambda)



ADMM: Best of Several Worlds
Extend the decomposition idea to augmented Lagrangian.
Iteratively solve a smaller problem with respect to xi by fixing variables xj for j ̸= i.
Consider simpler case N = 2 (easily generalizable to N). f(x) = f1(x1) + f2(x2) and
augmented Lagrangian is

Lρ(x1, x2,λ) = f1(x1) + f2(x2) + λT(A1x1 + A2x2 − b) + ρ

2
∥A1x1 + A2x2 − b∥22. (87)

ADMM solves each direction alternatively
xt+1
1 = argmin

x1
Lρ(x1, xt2,λt) (88)

xt+1
2 = argmin

x2
Lρ(xt+1

1 , x2,λt) (89)

λt+1 = λt + ρ(A1xt+1
1 + A2xt+1

2 − b) (90)
Main difference wrt dual decomposition ascent: ADMM updates xi sequentially.
Additional augmented term does not let us decompose the Lagrangian form into N
components conditionally independent wrt λ
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ADMM: Alternating Direction Method of Multipliers

1 Assume that functions f1, f2 are closed, proper, and convex (that is, they have closed,
nonempty, and convex epigraphs)

2 Assume that the un-augmented Lagrangian L0(x1, x2,λ) has (critical) saddle points bx1,bx2
and bλ subject to

L0(bx1,bx2,λ) ≤ L0(bx1,bx2, bλ) ≤ L0(x1, x2, bλ) (91)
3 No need to assume that A1, A2 etc. have full column rank

Then when t→∞, one can prove that15

Residual convergence: rt = A1xt1 + A2xt2 − b→ 0

Objective convergence: f1(xt1) + f2(xt2)→ f∗

Dual variable convergence: λt → λ∗

And the rate of convergence is Q-linear16 (i.e., (f(xk)− p∗) ≤ ρk(f(x0)− p∗))
15https://web.stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf
16https://arxiv.org/pdf/1502.02009.pdf
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(Log) Barrier methods
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Inspired by the Augmented Lagrangian method, how can we use the idea of 
a barrier to help solve constrained optimization problems while making use
of unconstrained optimization techniques



Barrier Methods for Constrained Optimization
Consider a more general constrained optimization problem

min
x∈Rn

f(x)

s.t.gi(x) ≤ 0 i = 1...m
and Ax = b

Possibly reformulations of this problem include:
min
x

f(x) + λB(x)

where B is a barrier function like
1 B(x) = ρ

2∥Ax− b∥2 (in Augmented Langragian - for a specific type of strong convexity wrt ∥.∥2))
2 B(x) =

∑
Igi(x) (Projected Gradient Descent: built on this & a linear approximation to f(x))

3 B(x) = ϕgi(x) = −1
t log

(
−gi(x)

)
▶ Here, − 1

t is used instead of λ. Lets discuss this in more details
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Log barrier is a differentiable, 
          convex approximation 
          to (2) 

Log barrier shoots to infinity
even as we tend to violate the 
constraint. Hence, as iterations 
proceed and we are consistently
in the feasible region, the Barrier
function can be gradually ignored

==> 1/t --> 0
by letting t--> infinity
as iterations proceed



Barrier Method: Example

As a very simple example, consider the following inequality constrained optimization problem.

minimize x2
subject to x ≥ 1

The logarithmic barrier formulation of this problem is

minimize x2 − µ ln (x− 1)

The unconstrained minimizer for this convex logarithmic barrier function is
bx(µ) = 1

2 + 1
2

√
1 + 2µ. As µ→ 0, the optimal point of the logarithmic barrier problem

approaches the actual point of optimality bx = 1 (which, as we can see, lies on the boundary of
the feasible region). The generalized idea, that as µ→ 0, f(bx)→ p∗ (where p∗ is the optimal
for primal) will be proved next.
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Homework



Barrier Method and Linear Program

Recap:

Problem type Objective Function Constraints L∗(λ) Dual constraints Strong duality
Linear Program cTx Ax ≤ b −bTλ ATλ+ c = 0 Feasible primal

What are necessary conditions at primal-dual optimality?
..
..
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Complementary Slackness ==> Barrier/Interior methods Force complementary 
slackness to hold always while trying to attain feasibility

  (eg: Using projection step) at point of optimality

(Primal/Dual) Feasibility==> Barrier/Interior methods Force feasibility
   to hold always while trying to attain 
   complementary slackness at point of optimality



Log Barrier (Interior Point) Method

The log barrier function is defined as

B(x) = ϕgi(x) = −
1

t log
(
−gi(x)

)

Approximates
∑

Igi(x) (better approximation as t→∞)
f(x) +

∑
i ϕgi(x) is convex if f and gi are convex

Why? ϕgi(x) is negative of monotonically increasing concave function (log) of a concave
function −gi(x)
Let λi be lagrange multiplier associated with inequality constraint gi(x) ≤ 0

We’ve taken care of the inequality constraints, lets also consider an equality constraint
Ax = b with corresponding langrage multipler (vector) ν
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Log Barrier Method (contd.)
Our objective becomes

min
x

f(x) +
∑

i

(
−1

t

)
log

(
−gi(x)

)

s.t. Ax = b

At different values of t, we get different x∗(t)
Let λ∗

i (t) =
First-order necessary conditions for optimality (and strong duality)17 at x∗(t),λ∗

i (t):
1 ..
2 ..
3 ..
4 ..

⋆ ..

17of original problem
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