Convex Sets

Convex sets

- Revisiting Affine Sets
- Primal (V) and Dual (H) Description
- Operations that preserve convexity
- Generalized inequalities
- Separating and supporting hyperplanes
- Dual cones and generalized inequalities

Affine combination, Affine hull and Dimension: Primal (V) Description

- Affine Combination of points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ is any point \mathbf{x} of the form

$$
\begin{array}{ll}
\mathbf{x}= & \theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\ldots+\theta_{k} \mathbf{x}_{k} \\
\text { with } \quad \sum_{i} \theta_{i}=1
\end{array}
$$

- Affine hull or $\operatorname{aff}(\mathbf{S})$: The set that contains all affine combinations of points in set $S=$ Smallest affine set that contains S.
-

Affine combination, Affine hull and Dimension: Primal (V) Description

- Affine Combination of points $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{k}$ is any point x of the form

$$
\begin{array}{ll}
\mathbf{x}= & \theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\ldots+\theta_{k} \mathbf{x}_{k} \\
\text { with } \quad \sum_{i} \theta_{i}=1
\end{array}
$$

- Affine hull or $\operatorname{aff}(\mathbf{S}):$ The set that contains all affine combinations of points in set $S=$ Smallest affine set that contains S.
- Dimension of a set $S=$ dimension of $\operatorname{aff}(S)=$ dimension of vector space V such that $\operatorname{aff}(S)=\mathbf{v}+V$ for some $\mathbf{v} \in \operatorname{aff}(S)$.
- $S=\left\{\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is set of $n+1$ affinely independent points if $\left\{\mathbf{x}_{1}-\mathbf{x}_{0}, \mathbf{x}_{2}-\mathbf{x}_{0}, \ldots, \mathbf{x}_{n} \rightleftharpoons \mathbf{x}_{0}\right\}$ are linearly independent.

Recap: Dual Representation

If

- vector subspace $S \subseteq V$ and
- $<.>$ is an inner product on V and
- S^{\perp} is orthogonal complement of S and

wrt inner product

- $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{K}\right\}$ is finite spanning set in S^{\perp}

Then:-

- $S=\left(S^{\perp}\right)^{\perp}=\left\{\mathrm{x} \mid \mathbf{q}_{i}^{T} \mathrm{x}=0 ; i=1, \ldots, K\right\}$, where $K=\operatorname{dim}(S)$
- A dual representation of vector subspace $S\left(\subseteq \Re^{n}\right):\left\{\mathbf{x} \mid Q \mathbf{x}=0 ; \mathbf{q}_{i}^{T}\right.$ is the $i^{\text {th }}$ row of $\left.Q\right\}$
- What about dual representations for Affine Sets, Convex Sets, Convex Cones, etc?

Recap: Dual Representations of Affine Sets

Recall affine set (say $A \subseteq \Re^{n}$).

- A is affine iff $\forall \mathbf{u}, \mathbf{v} \in A: \theta \mathbf{u}+(1-\theta) \mathbf{v} \in A, \forall \theta \in \Re$.
- For some vector subspace $S \subseteq \Re^{n}, A$ is affine iff:
$A(=S$ shifted by $\mathbf{u})=\left\{\mathbf{u}+\mathbf{v} \mid \mathbf{u} \in \Re^{n}\right.$ is fixed and $\left.\mathbf{v} \in S\right\}$.
- Procedure: Let \mathbf{u} be some element in the affine set A. Then $S(=A$ shifted by $-\mathbf{u})=\{$ $\mathbf{v}-\mathbf{u} \mid \mathbf{v} \in A\}$ is a vector subspace which has a dual representation $\{\mathrm{x} \mid Q \mathrm{x}=0\}$
- The dual representation for A is therefore

$$
\{x \mid Q x=Q u\}
$$

Recap: Dual Representations of Affine Sets

Recall affine set (say $A \subseteq \Re^{n}$).

- A is affine iff $\forall \mathbf{u}, \mathbf{v} \in A: \theta \mathbf{u}+(1-\theta) \mathbf{v} \in A, \forall \theta \in \Re$.
- For some vector subspace $S \subseteq \Re^{n}, A$ is affine iff:
$A(=S$ shifted by $\mathbf{u})=\left\{\mathbf{u}+\mathbf{v} \mid \mathbf{u} \in \Re^{n}\right.$ is fixed and $\left.\mathbf{v} \in S\right\}$.
- Procedure: Let \mathbf{u} be some element in the affine set A. Then $S(=A$ shifted by $-\mathbf{u})=\{$ $\mathbf{v}-\mathbf{u} \mid \mathbf{v} \in A\}$ is a vector subspace which has a dual representation $\{\mathrm{x} \mid Q \mathrm{x}=0\}$
- The dual representation for A is therefore $\{\mathrm{x} \mid Q \mathrm{x}=Q \mathrm{u}\}$

Recap: Dual Representations of Affine Sets

- For some Q with rank $=n-\operatorname{dim}(V)$ and \mathbf{u}, A is affine iff:
$A=\{\mathbf{x} \mid Q \mathbf{x}=Q \mathbf{u}\}$ i.e. solution set of linear equations represented by $Q \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=Q \mathbf{u}$.
- Example: In 3-d if Q has rank 1, we will get either a plane as solution or no solution. If Q has rank 2, we can get a plane, a line or no solution.
- Thus hyperplanes are affine spaces of dimension $n-1$ with $Q \mathbf{x}=\mathbf{b}$ given by $p^{T} \mathbf{x}=\mathbf{b}$.

What is a primal (V) representation for hyperplane?

Hyperplane: Primal (V) and Dual (H) Descriptions

- Primal (V) Description: A hyperplane is an affine set whose dimension is one less than that of the space to which belongs. If a space is 3 -dimensional then its hyperplanes are the 2 -dimensional planes, while if the space is 2 -dimensional, its hyperplanes are the 1-dimensional lines.
- Dual (H) Description: Affine set of the form $\left\{\mathbf{x} \mid \mathbf{a}^{\top} \mathbf{x}=\mathbf{b}\right\}(\mathbf{a} \neq 0)$

$$
\text { a in } R^{\wedge} n
$$

- where $\mathbf{b}=\mathbf{x}_{0}^{T} \mathbf{a}$
- Alternatively: $\left\{\mathbf{x} \mid\left(\mathbf{x}-\mathbf{x}_{0}\right) \perp \mathbf{a}\right\}$, where \mathbf{a} is normal and $\mathbf{x}_{0} \in H$

Recap: Convex set

- In 2D, a line segment between distinct points $\mathbf{x}_{1}, \mathbf{x}_{2}$: That is, all points \mathbf{x} s.t.

$$
\begin{array}{ll}
\mathrm{x}= & \alpha x_{1}+\beta \mathrm{x}_{2} \\
\text { where } & \alpha+\beta=1,0 \leq \alpha \leq 1(\text { also, } 0 \leq \beta \leq 1)
\end{array}
$$

- Convex set : $\mathbf{x}_{1}, \mathbf{x}_{2} \in C, 0 \leq \alpha \leq 1 \Rightarrow \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in C$ need direct line seg connections

- Convex set is connected. Convex set can but not necessarily contains 'O'

Is every affine set convex? Is the reverse true?

Convex Combinations and Convex Hull: Primal (V) Description

- Convex combination of points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ is any point \mathbf{x} of the form

$$
\begin{array}{ll}
\mathbf{x}= & \theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\ldots+\theta_{k} \mathbf{x}_{k}=\operatorname{conv}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}\right) \\
\text { with } & \theta_{1}+\theta_{2}+\ldots+\theta_{k}=1, \theta_{i} \geq 0
\end{array}
$$

- Convex hull or conv(S) is the set of all convex combinations of point in the set S .

- Should S be always convex?
- What about the convexity of $\operatorname{conv}(S)$?

NO
YES

Convex Combinations and Convex Hull: Primal (V) Description

- Convex combination of points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ is any point \mathbf{x} of the form

$$
\begin{aligned}
& \mathbf{x}=\theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\ldots+\theta_{k} \mathbf{x}_{k}=\operatorname{conv}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}\right) \\
& \text { with } \quad \theta_{1}+\theta_{2}+\ldots+\theta_{k}=1, \theta_{i} \geq 0
\end{aligned}
$$

- Convex hull or conv(S) is the set of all convex combinations of point in the set S .
- Should S be always convex? No.
- What about the convexity of $\operatorname{conv}(\mathrm{S})$? It's always convex.

Convex Combinations and Convex Hull: Primal (V) Description

- Equivalent Definition of Convex Set: C is convex iff it is closed under generalized convex combinations.
- $\operatorname{conv}(S)=$ The smallest convex set that contains S. S may not be convex but conv (S) is.
- Suppose a point lies in another smallest convex set, and not in $\operatorname{conv}(S)$. Show that it must lie in $\operatorname{conv}(S)$, leading to a contradiction. Proof by contradiction

- The idea of convex combination can be generalized to include infinite sums, integrals, and, in most general form, probability distributions.

Eg: $E\left[X^{\wedge} 2\right]$ where X is Gaussian distributed R.V
as in case

HW Illustrated: Primal and Dual Descriptions for Convex Polytope P
Primal or V Description : P is convex hull of finite \# of points. Formally, if $\exists S \subset P$ s.t. $|S|$ is finite and $P=\operatorname{conv}(S)$, then P is a Convex Polytope.

HW Illustrated: Primal and Dual Descriptions for Convex Polytope P

Primal or V Description : P is convex hull of finite \# of points. Formally, if $\exists S \subset P$ s.t. $|S|$ is finite and $P=\operatorname{conv}(S)$, then P is a Convex Polytope.
Convex hull of $n+1$ affinely independent points \Rightarrow Simplex. It is the
generalization to \Re^{n} of the

HW Illustrated: Primal and Dual Descriptions for Convex Polytope P

Primal or V Description : P is convex hull of finite \# of points. Formally, if $\exists S \subset P$ s.t. $|S|$ is finite and $P=\operatorname{conv}(S)$, then P is a Convex Polytope.
Convex hull of $n+1$ affinely independent points \Rightarrow Simplex. It is the
generalization to \Re^{n} of the triangle

Dual or H Description: P is solution set of finitely many inequalities or equalities: $A \mathrm{x} \preceq \mathbf{b}$, Equality $\quad{ }^{C x}=\mathrm{d}$ such that P is also bounded (else we may get half space which is is for projecting• $A \in \Re^{m \times n}, C \in \Re^{p \times n}, \preceq$ is component wise inequality not a polytope) a potentially P is an intersection of finite number of half-spaces and hyperplanes. higher dimensional polytope
onto lower dimensional plane

Boundedness in \Re^{n}

Definition

[Balls in \Re^{n}]: Consider a point $\mathbf{x} \in \Re^{n}$. Then the closed ball around \mathbf{x} of radius ϵ is

$$
\mathcal{B}[\mathbf{x}, \epsilon]=\left\{\mathbf{y} \in \Re^{n}\| \| \mathbf{y}-\mathbf{x} \| \leq \epsilon\right\}
$$

Likewise, the open ball around \mathbf{x} of radius ϵ is defined as

$$
\mathcal{B}(\mathbf{x}, \epsilon)=\left\{\mathbf{y} \in \Re^{n}\| \| \mathbf{y}-\mathbf{x} \|<\epsilon\right\}
$$

For the 1-D case, open and closed balls degenerate to open and closed intervals respectively.

Definition

[Boundedness in \Re^{n}]: We say that a set $\mathcal{S} \subset \Re^{n}$ is bounded when there exists an $\epsilon>0$ such that $\mathcal{S} \subseteq \mathcal{B}[0, \epsilon]$.

In other words, a set $\mathcal{S} \subseteq \Re^{n}$ is bounded means that there exists an $\epsilon>0$ such that for all $\mathrm{x} \in \mathcal{S},\|\mathrm{x}\| \leq \epsilon$.

Simplex (plural: simplexes) Polytope: Primal and Dual Descriptions

Figure 10: Source:Wikipedia

Dual or H Description: An n Simplex S is a convex Polytope of affine dimension n and having $n+1$ corners.
Primal or V Description: Convex hull of $n+1$ affinely independent points. Specifically, let $S=\left\{\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{n+1}\right\}$ be a set of $n+1$ affinely independent points, then an n-dimensional simplex is conv(S).
Simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. TS THERE ANOTHER NOTION OF HOLL THAT CAN HELP US CONSTRUCTED UNBOUNDED SETS SUCH AS HALF SPACES?

Cone, conic combination and convex cone

- Cone A set C is a cone if $\forall \mathbf{x} \in C, \alpha \mathbf{x} \in C$ for $\alpha \geq 0$.

- Conic (nonnegative) combination of points $\mathbf{x}_{1}, \mathbf{x}_{2}$ is any point \mathbf{x} of the form

$$
\begin{aligned}
& \mathbf{x}=\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2} \\
& \text { with } \quad \alpha, \beta \geq 0 .
\end{aligned}
$$

Example : Diagonal vector of a parallelogram is a conic combination of the two vectors (points) \mathbf{x}_{1} and \mathbf{x}_{2} forming the sides of the parallelogram.

Are cones closed under conic combinations?
NO

Cone, conic combination and convex cone

- Cone A set C is a cone if $\forall \mathbf{x} \in C, \alpha \mathbf{x} \in C$ for $\alpha \geq 0$.

- Conic (nonnegative) combination of points $\mathbf{x}_{1}, \mathbf{x}_{2}$ is any point \mathbf{x} of the form

$$
\begin{aligned}
& \mathbf{x}=\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2} \\
& \text { with } \quad \alpha, \beta \geq 0 .
\end{aligned}
$$

Example : Diagonal vector of a parallelogram is a conic combination of the two vectors (points) x_{1} and x_{2} forming the sides of the parallelogram.

- Convex cone: The set that contains all conic combinations of points in the set.

For example, a half-space can be obtained as the set of all conic combinations of n affinely independent points and a point p lying strictly inside the half space

Conic combinations and Conic Hull

- Recap Cone: A set C is a cone if $\forall \mathbf{x} \in C, \theta \mathbf{x} \in C$ for $\theta \geq 0$.

- Conic (nonnegative) Combination of points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ is any point \mathbf{x} of the form

$$
\begin{aligned}
& \mathbf{x}=\theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2}+\ldots+\theta_{k} \mathbf{x}_{k} \\
& \text { with } \theta_{i} \geq 0
\end{aligned}
$$

- Conic hull or $\operatorname{conic}(S)$: The set that contains all conic combinations of points in set S. For example, a half-space can be obtained as affine transformation of a conic hull of n affinely independent points and a point p lying strictly inside the half space
- $\operatorname{conic}(S)=$ Smallest conic set that contains S.

From Hyperplane to Halfspace

From Hyperplane to Halfspace

Halfspaces with $b=0$ are convex cones..
Dual or H Description: Convex cone of the form $\left\{\mathbf{x} \mid \mathbf{a}^{\top} \mathbf{x} \leq \mathbf{b}\right\}(\mathbf{a} \neq 0)$

- where $\mathbf{b}=\mathbf{x}_{0}^{T} \mathbf{a}$

From Hyperplane to Halfspace

Dual or H Description: Convex cone of the form $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \leq \mathbf{b}\right\}(\mathbf{a} \neq 0)$

- where $\mathbf{b}=\mathbf{x}_{0}^{T} \mathbf{a}$

Primal or V Description: Affine transformation of conic hull of points x and x_{0} on the hyperplane and of point p lying strictly inside the half-space.

Convex Polyhedron

- Solution set of finitely many inequalities or equalities: $A \mathbf{x} \preceq \mathbf{b}, C \mathbf{x}=\mathbf{d}$
- $A \in \Re^{m \times n}$
- $C \in \Re^{p \times n}$
- \preceq is component wise inequality

BUT THE SET NEED NOT BE BOUNDED

- This is a Dual or H Description: Intersection of finite number of half-spaces and hyperplanes.
- Primal or V Description: Can you define convex polyhedra in terms of hulls?
(1) Convex hull of finite $\#$ of points \Rightarrow Convex Polytope
(2) Convex hull of $n+1$ affinely independent points \Rightarrow Simplex
(3) Conic hull of finite $\#$ of points \Rightarrow POLYHEDRAL CONE

Convex Polyhedron

- Solution set of finitely many inequalities or equalities: $A \mathbf{x} \preceq \mathbf{b}, C \mathbf{x}=\mathbf{d}$
- $A \in \Re^{m \times n}$
- $C \in \Re^{p \times n}$
- \preceq is component wise inequality

- This is a Dual or H Description: Intersection of finite number of half-spaces and hyperplanes.
- Primal or V Description: Can you define convex polyhedra in terms of hulls?
(1) Convex hull of finite $\#$ of points \Rightarrow Convex Polytope
(2) Convex hull of $n+1$ affinely independent points \Rightarrow Simplex
(3) Conic hull of finite $\#$ of points \Rightarrow Polyhedral Cone

Polyhedral Cone: Primal and Dual Descriptions

Dual or H Description : A Polyhedral Cone P is a Convex Polyhedron with $\mathbf{b}=0$. That is, $\{\mathbf{x} \mid A \mathbf{x} \succeq 0\}$ where $A \in \Re^{m \times n}$ and \succeq is component wise inequality.
Primal of V Description : If $\exists S \subset P$ s.t. $|S|$ is finite and $P=\operatorname{cone}(S)$, then P is a Polyhedral Cone.

Homework: Structure of Mathematical Spaces Discussed (arrow means 'instance')

More Convex Sets (illustrated in \Re^{n})

More Convex Sets (illustrated in \Re^{n})

- Euclidean balls and ellipsoids.
- Norm balls and norm cones.
- Compact representation of vector space.
- Dual Representation.
- Different Representations of Affine Sets

Euclidean balls and ellipsoids

- Euclidean ball with center \mathbf{x}_{c} and radius r is given by: $B\left(\mathbf{x}_{c}, r\right)=\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{c}\right\|_{2} \leq r\right\}=\left\{\mathbf{x}_{c}+r u \mid\|u\|_{2} \leq 1\right\}$
- Ellipsoid is a set of form:
$\left\{\mathbf{x} \mid\left(\mathbf{x}-\mathbf{x}_{c}\right)^{\top} P^{-1}\left(\mathbf{x}-\mathbf{x}_{c}\right) \leq 1\right\}$, where $\mathrm{P} \in S_{++}^{n}$ i.e. P is positive-definite matrix. - Other representation: $\left\{\mathbf{x}_{c}+A \mathbf{u} \mid\|\mathbf{u}\|_{2} \leq 1\right\}$ with A square and non-singular (i.e., A^{-1} exists).

These are primal representations What about their dual representations?

Euclidean balls and ellipsoids

- Euclidean ball with center \mathbf{x}_{c} and radius r is given by: $B\left(\mathbf{x}_{c}, r\right)=\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{c}\right\|_{2} \leq r\right\}=\left\{\mathbf{x}_{c}+r u \mid\|u\|_{2} \leq 1\right\}$
- Ellipsoid is a set of form:
$\left\{\mathbf{x} \mid\left(\mathbf{x}-\mathbf{x}_{c}\right)^{T} P^{-1}\left(\mathbf{x}-\mathbf{x}_{c}\right) \leq 1\right\}$, where $\mathrm{P} \in S_{++}^{n}$ i.e. P is positive-definite matrix.
- Other representation: $\left\{\mathbf{x}_{c}+A \mathbf{u} \mid\|\mathbf{u}\|_{2} \leq 1\right\}$ with A square and non-singular (i.e., A^{-1} exists).

Supporting hyperplane theorem and Dual (H) Description

Supporting hyperplane to set \mathcal{C} at boundary point \mathbf{x}_{0} :

- $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=\mathbf{a}^{T} \mathbf{x}_{o}\right\}$
- where $\mathbf{a} \neq 0$ and $\mathbf{a}^{T} \mathbf{x} \leq \mathbf{a}^{T} \mathbf{x}_{o}$ for all $\mathbf{x} \in \mathcal{C}$

Convex set could be thought of as intersection of a possibly infinite number of half spaces created by such supporting hyperplanes

Supporting hyperplane theorem: if \mathcal{C} is convex, then there exists a supporting hyperplane at every boundary point of C.

Homework: Separating and Supporting Hyperplane Theorems (Fill in the Blanks)

SHT: Separating hyperplane theorem (a fundamental theorem)

If \mathcal{C} and \mathcal{D} are disjoint convex sets, i.e., $\mathcal{C} \cap \mathcal{D}=\phi$, then there exists $\mathbf{a} \neq \mathbf{0}$ and $b \in \Re$ such that
$\mathbf{a}^{T} \mathbf{x} \leq b$ for $\mathbf{x} \in \mathcal{C}$,
$\mathbf{a}^{T} \mathbf{x} \geq b$ for $\mathbf{x} \in \mathcal{D}$.
That is, the hyperplane $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=b\right\}$ separates \mathcal{C} and \mathcal{D}.

- The seperating hyperplane need not be unique though.
- Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).

Proof of the Separating Hyperplane Theorem

We first note that the set $\mathcal{S}=\{\mathbf{x}-\mathbf{y} \mid \mathbf{x} \in \mathcal{C}, \mathbf{y} \in \mathcal{D}\}$ is convex, since it is the sum of two convex sets. Since \mathcal{C} and \mathcal{D} are disjoint, $\mathbf{0} \notin \mathcal{S}$. Consider two cases:
(1) Suppose $\mathbf{0} \notin \operatorname{closure}(\mathcal{S})$. Let $\mathcal{E}=\{0\}$ and $\mathcal{F}=\operatorname{closure}(\mathbf{S})$. Then, the euclidean distance between \mathcal{E} and \mathcal{F}, defined as $\operatorname{dist}(\mathcal{E} ; \mathcal{F})=\inf \left\{\|\mathbf{u}-\mathbf{v}\|_{2} \mid \mathbf{u} \in \mathcal{E}, \mathbf{v} \in \mathcal{F}\right\}$ is positive, and there exists a point $\mathbf{f} \in \mathcal{F}$ that achieves the minimum distance, i.e., $\|\mathbf{f}\|_{2}=\operatorname{dist}(\mathcal{E}, \mathcal{F})$. Define \qquad .
Then $\mathbf{a} \neq \mathbf{0}$ and the affine function $f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}-b=\mathbf{f}^{T}\left(\mathbf{x}-\frac{1}{2} \mathbf{f}\right)$ is nonpositive on \mathcal{E} and nonnegative on \mathcal{F}, i.e., that the hyperplane $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=b\right\}$ separates \mathcal{E} and \mathcal{F}. Thus, $\mathbf{a}^{T}(\mathbf{x}-\mathbf{y})>0$ for all $\mathbf{x}-\mathbf{y} \in \mathcal{S} \subseteq \operatorname{closure}(\mathcal{S})$, which implies that, $\mathbf{a}^{T} \mathbf{x} \geq \mathbf{a}^{T} \mathbf{y}$ for all $\mathbf{x} \in \mathcal{C}$ and $\mathbf{y} \in \mathcal{D}$.

Proof of the Separating Hyperplane Theorem

(2) Suppose, $0 \in \operatorname{closure}(\mathcal{S})$. Since $0 \notin \mathcal{S}$, it must be in the boundary of \mathcal{S}.

- If \mathcal{S} has empty interior, it must lie in an affine set of dimension less than n, and any hyperplane containing that affine set contains \mathcal{S} and is a hyperplane. In other words, \mathcal{S} is contained in a hyperplane $\left\{\mathbf{z} \mid \mathbf{a}^{T} \mathbf{z}=b\right\}$, which must include the origin and therefore $b=0$. In other words, $\mathbf{a}^{\top} \mathbf{x}=\mathbf{a}^{\top} \mathbf{y}$ for all $\mathbf{x} \in \mathcal{C}$ and all $\mathbf{y} \in \mathcal{D}$ gives us a trivial separating hyperplane.

Proof of the Separating Hyperplane Theorem

(2) Suppose, $0 \in \operatorname{closure}(\mathcal{S})$. Since $0 \notin \mathcal{S}$, it must be in the boundary of \mathcal{S}.

- If \mathcal{S} has a nonempty interior, consider the set
$\mathcal{S}_{-\epsilon}=\{\mathbf{z} \mid B(\mathbf{z}, \epsilon) \subseteq \mathcal{S}\}$
where $B(\mathbf{z}, \epsilon)$ is the Euclidean ball with center \mathbf{z} and radius $\epsilon>0 . \mathcal{S}_{-\epsilon}$ is the set \mathcal{S}, shrunk by ϵ. closure $\left(\mathcal{S}_{-\epsilon}\right)$ is closed and convex, and does not contain $\mathbf{0}$, so as argued before, it is separated from $\{\mathbf{0}\}$ by atleast one hyperplane with normal vector $\mathbf{a}(\epsilon)$ such that

Without loss of generality assume $\|\mathbf{a}(\epsilon)\|_{2}=1$. Let ϵ_{k}, for $k=1,2, \ldots$ be a sequence of positive values of ϵ_{k} with $\lim _{k \rightarrow \infty} \epsilon_{k}=0$. Since $\left\|\mathbf{a}\left(\epsilon_{k}\right)\right\|_{2}=1$
for all k, the sequence $\mathbf{a}\left(\epsilon_{k}\right)$ contains a convergent subsequence, and let $\overline{\mathbf{a}}$ be its limit. We have
which means $\overline{\mathbf{a}}^{\top} \mathbf{x} \geq \overline{\mathbf{a}}^{T} \mathbf{y}$ for all $\mathbf{x} \in \mathcal{C}$, and $\mathbf{y} \in \mathcal{D}$.

Supporting hyperplane theorem (consequence of separating hyperplane theorem)
Supporting hyperplane to set \mathcal{C} at boundary point \mathbf{x}_{o} :

- $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=\mathbf{a}^{T} \mathbf{x}_{o}\right\}$
- where $\mathbf{a} \neq 0$ and $\mathbf{a}^{T} \mathbf{x} \leq \mathbf{a}^{T} \mathbf{x}_{o}$ for all $\mathbf{x} \in \mathcal{C}$

Supporting hyperplane theorem: if \mathcal{C} is convex, then there exists a supporting hyperplane at every boundary point of C.

