Convex Sets

Convex sets

- Revisiting Affine Sets
- Primal (V) and Dual (H) Description
- Operations that preserve convexity
- Generalized inequalities
- Separating and supporting hyperplanes
- Dual cones and generalized inequalities

Affine combination, Affine hull and Dimension: Primal (V) Description

• Affine Combination of points $x_1, x_2, ..., x_k$ is any point x of the form

$$\mathbf{x} = heta_1 \mathbf{x}_1 + heta_2 \mathbf{x}_2 + \dots + heta_k \mathbf{x}_k$$

with $\sum_i heta_i = 1$

• Affine hull or aff(S): The set that contains all affine combinations of points in set S = Smallest affine set that contains S.

Affine combination, Affine hull and Dimension: Primal (V) Description

• Affine Combination of points $x_1, x_2, ..., x_k$ is any point x of the form

$$\mathbf{x} = - heta_1 \mathbf{x}_1 + heta_2 \mathbf{x}_2 + ... + heta_k \mathbf{x}_k$$

with $\sum_i heta_i = 1$

• Affine hull or aff(S): The set that contains all affine combinations of points in set S = Smallest affine set that contains S.

- Dimension of a set S = dimension of aff(S) = dimension of vector space V such that $aff(S) = \mathbf{v} + V$ for some $\mathbf{v} \in aff(S)$.
- $S = {\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_n}$ is set of n + 1 affinely independent points if ${\mathbf{x}_1 \mathbf{x}_0, \mathbf{x}_2 \mathbf{x}_0, \dots, \mathbf{x}_n \neq \mathbf{x}_0}$ are linearly independent.

Recap: Dual Representation

lf

- vector subspace $S \subseteq V$ and
- ullet < . > is an inner product on V and $ildsymbol{arsigma}$
- S^{\perp} is orthogonal complement of S and
- $\{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_K\}$ is finite spanning set in S^{\perp}

Then:-

- $S = (S^{\perp})^{\perp} = \{ \mathbf{x} | \mathbf{q}_i^T \mathbf{x} = 0; i = 1, ..., K \}, \text{ where } K = dim(S)$
- A dual representation of vector subspace S ($\subseteq \Re^n$): { $\mathbf{x} | Q\mathbf{x} = 0$; \mathbf{q}_i^T is the *i*th row of Q}

wrt inner product

• What about dual representations for Affine Sets, Convex Sets, Convex Cones, etc?

Recap: Dual Representations of Affine Sets

Recall affine set (say $A \subseteq \Re^n$).

- A is affine iff $\forall \mathbf{u}, \mathbf{v} \in A$: $\theta \mathbf{u} + (1 \theta) \mathbf{v} \in A, \forall \theta \in \Re$.
- For some vector subspace $S \subseteq \Re^n$, A is affine iff: $A(=S \text{ shifted by } \mathbf{u}) = \{ \mathbf{u} + \mathbf{v} | \mathbf{u} \in \Re^n \text{ is fixed and } \mathbf{v} \in S \}.$
- Procedure: Let u be some element in the affine set A. Then S(= A shifted by -u) = {
 v u|v ∈ A } is a vector subspace which has a dual representation {x|Qx = 0}
- The dual representation for A is therefore

 $\{x \mid Qx = Qu\}$

Recap: Dual Representations of Affine Sets

Recall affine set (say $A \subseteq \Re^n$).

- A is affine iff $\forall \mathbf{u}, \mathbf{v} \in A$: $\theta \mathbf{u} + (1 \theta) \mathbf{v} \in A, \forall \theta \in \Re$.
- For some vector subspace $S \subseteq \Re^n$, A is affine iff: $A(=S \text{ shifted by } \mathbf{u}) = \{ \mathbf{u} + \mathbf{v} | \mathbf{u} \in \Re^n \text{ is fixed and } \mathbf{v} \in S \}.$
- Procedure: Let **u** be some element in the affine set *A*. Then $S(=A \text{ shifted by } -\mathbf{u}) = \{ \mathbf{v} \mathbf{u} | \mathbf{v} \in A \}$ is a vector subspace which has a **dual representation** $\{\mathbf{x} | Q\mathbf{x} = 0\}$
- The dual representation for A is therefore $\{x | Qx = Qu\}$

Recap: Dual Representations of Affine Sets

- For some Q with rank = n dim(V) and u, A is affine iff:
 A = {x|Qx = Qu} i.e. solution set of linear equations represented by Qx = b where b = Qu.
- Example: In 3-d if Q has rank 1, we will get either a plane as solution or no solution. If Q has rank 2, we can get a plane, a line or no solution.
- Thus hyperplanes are affine spaces of dimension n-1 with $Q\mathbf{x} = \mathbf{b}$ given by $p^T \mathbf{x} = \mathbf{b}$.

What is a primal (V) representation for hyperplane?

Hyperplane: **Primal (***V***)** and **Dual (***H***)** Descriptions

- **Primal** (*V*) Description: A hyperplane is an affine set whose dimension is one less than that of the space to which belongs. If a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines.
- **Dual** (*H*) Description: Affine set of the form $\{\mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{b}\}$ $(\mathbf{a} \neq 0)$

a in R^n

• where
$$\mathbf{b} = \mathbf{x}_0^T \mathbf{a}$$

▶ Alternatively: $\{\mathbf{x} | (\mathbf{x} - \mathbf{x}_0) \perp \mathbf{a}\}$, where \mathbf{a} is normal and $\mathbf{x}_0 \in H$

Recap: Convex set

• In 2D, a line segment between distinct points x_1, x_2 : That is, all points x s.t.

Is every affine set convex? Is the reverse true?

Convex Combinations and Convex Hull: Primal (V) Description

• Convex combination of points $x_1, x_2, ..., x_k$ is any point x of the form

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_k \mathbf{x}_k = \operatorname{conv}(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\})$$

with $\theta_1 + \theta_2 + \ldots + \theta_k = 1, \theta_i \ge 0.$

• Convex hull or conv(S) is the set of all convex combinations of point in the set S.

Convex Combinations and Convex Hull: Primal (V) Description

• Convex combination of points $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ is any point \mathbf{x} of the form

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_k \mathbf{x}_k = conv(\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\})$$

with $\theta_1 + \theta_2 + \ldots + \theta_k = 1, \theta_i \ge 0.$

• Convex hull or conv(S) is the set of all convex combinations of point in the set S.

- Should S be always convex? No.
- What about the convexity of conv(S)? It's always convex.

Convex Combinations and Convex Hull: **Primal (V) Description**

- Equivalent Definition of Convex Set: <u>C is convex iff it is closed under generalized convex</u> combinations.
- conv(S) = The smallest convex set that contains S. S may not be convex but conv(S) is.
 - Suppose a point lies in another smallest convex set, and not in conv(S). Show that it must lie in conv(S), leading to a contradiction. Proof by contradiction

• The idea of convex combination can be generalized to include infinite sums, integrals, and, in most general form, probability distributions.

Eg: E[X^2] where X is Gaussian distributed R.V

as in case of prob den functions

HW Illustrated: **Primal** and **Dual** Descriptions for Convex Polytope P

Primal or V Description : *P* is convex hull of finite # of points. Formally, if $\exists S \subset P$ s.t. |S| is finite and P = conv(S), then *P* is a **Convex Polytope**.

HW Illustrated: **Primal** and **Dual** Descriptions for Convex Polytope P

Primal or *V* **Description** : *P* is convex hull of finite # of points. Formally, if $\exists S \subset P$ s.t. |S| is finite and P = conv(S), then *P* is a **Convex Polytope**. Convex hull of n + 1 affinely independent points \Rightarrow **Simplex**. It is the

generalization to \Re^n of the

HW Illustrated: Primal and Dual Descriptions for Convex Polytope P

Primal or *V* **Description** : *P* is convex hull of finite # of points. Formally, if $\exists S \subset P$ s.t. |S| is finite and P = conv(S), then *P* is a **Convex Polytope**. Convex hull of n + 1 affinely independent points \Rightarrow **Simplex**. It is the

generalization to \Re^n of the triangle

Dual or *H* **Description:** *P* is solution set of finitely many inequalities or equalities: $A\mathbf{x} \leq \mathbf{b}$, Equality $C\mathbf{x} = \mathbf{d}$ such that <u>*P*</u> is also **bounded** (else we may get half space which is is for projecting $A \in \Re^{m \times n}$, $C \in \Re^{p \times n}$, \leq is component wise inequality not a polytope) a potentially *P* is an intersection of finite number of half-spaces and hyperplanes. higher dimensional polytope onto lower dimensional plane

Prof. Ganesh Ramakrishnan (IIT Bombay)

Boundedness in \Re^n

Definition

[Balls in \Re^n]: Consider a point $\mathbf{x} \in \Re^n$. Then the closed ball around \mathbf{x} of radius ϵ is

$$\mathcal{B}[\mathbf{x}, \epsilon] = \left\{ \mathbf{y} \in \Re^n |||\mathbf{y} - \mathbf{x}|| \le \epsilon \right\}$$

Likewise, the open ball around \mathbf{x} of radius ϵ is defined as

$$\mathcal{B}(\mathbf{x}, \epsilon) = \left\{ \mathbf{y} \in \Re^n |||\mathbf{y} - \mathbf{x}|| < \epsilon \right\}$$

For the 1-D case, open and closed balls degenerate to open and closed intervals respectively.

Definition

[Boundedness in \Re^n]: We say that a set $S \subset \Re^n$ is *bounded* when there exists an $\epsilon > 0$ such that $S \subseteq \mathcal{B}[0, \epsilon]$.

In other words, a set $S \subseteq \Re^n$ is bounded means that there exists an $\epsilon > 0$ such that for all $\mathbf{x} \in S$, $||\mathbf{x}|| \le \epsilon$.

Prof. Ganesh Ramakrishnan (IIT Bombay)

Simplex (plural: simplexes) Polytope: Primal and Dual Descriptions

Figure 10: Source:Wikipedia

Dual or *H* **Description**: An *n* Simplex *S* is a convex Polytope of affine dimension *n* and having n + 1 corners.

Primal or V **Description**: Convex hull of n + 1 affinely independent points. Specifically, let

 $S = {\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{n+1}}$ be a set of n+1 affinely independent points, then an *n*-dimensional simplex is conv(S).

Simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary IS THERE ANOTHER NOTION OF HULL THAT CAN HELP US CONSTRUCTED UNBOUNDED SETS SUCH AS HALF SPACES?

Prof. Ganesh Ramakrishnan (IIT Bombay)

Cone, conic combination and convex cone

- Cone A set C is a cone if $\forall x \in C$, $\alpha x \in C$ for $\alpha \geq 0$.
- Conic (nonnegative) combination of points x_1, x_2 is any point x of the form

$$\mathbf{x} = \alpha \mathbf{x}_1 + \beta \mathbf{x}_2$$

with $\alpha, \beta \geq 0.$

Example : Diagonal vector of a parallelogram is a conic combination of the two vectors (points) \mathbf{x}_1 and \mathbf{x}_2 forming the sides of the parallelogram.

Are cones closed under conic combinations? NO

Cone, conic combination and convex cone

- Cone A set C is a cone if $\forall \mathbf{x} \in C$, $\alpha \mathbf{x} \in C$ for $\alpha \geq 0$.
- Conic (nonnegative) combination of points x_1, x_2 is any point x of the form

 $\mathbf{x} = \alpha \mathbf{x}_1 + \beta \mathbf{x}_2$

with $\alpha, \beta \geq 0.$

Example : Diagonal vector of a parallelogram is a conic combination of the two vectors (points) \mathbf{x}_1 and \mathbf{x}_2 forming the sides of the parallelogram.

• Convex cone: The set that contains all conic combinations of points in the set.

For example, a half-space can be obtained as the set of all conic combinations of n affinely independent points and a point p lying strictly inside the half space

Conic combinations and Conic Hull

- Recap **Cone**: A set C is a cone if $\forall x \in C$, $\theta x \in C$ for $\theta \ge 0$.
- Conic (nonnegative) Combination of points $x_1, x_2, ..., x_k$ is any point x of the form

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \dots + \theta_k \mathbf{x}_k$$

with
$$\theta_i \geq 0$$
.

• **Conic hull or** *conic*(*S*): The set that contains all conic combinations of points in set *S*. For example, a half-space can be obtained as affine transformation of a conic hull of n affinely independent points and a point p lying strictly inside the half space

• conic(S) = Smallest conic set that contains S.

From Hyperplane to Halfspace

From Hyperplane to Halfspace

Halfspaces with b=0 are convex cones..

Dual or *H* **Description:** Convex cone of the form $\{\mathbf{x} | \mathbf{a}^T \mathbf{x} \le \mathbf{b}\}$ $(\mathbf{a} \ne 0)$ • where $\mathbf{b} = \mathbf{x}_0^T \mathbf{a}$

From Hyperplane to Halfspace

Dual or *H* **Description:** Convex cone of the form $\{\mathbf{x} | \mathbf{a}^T \mathbf{x} \le \mathbf{b}\}$ $(\mathbf{a} \ne 0)$ • where $\mathbf{b} = \mathbf{x}_0^T \mathbf{a}$

Primal or V **Description:** Affine transformation of **conic hull** of points x and x_0 on the hyperplane **and of point** p **lying strictly inside the half-space**.

Convex Polyhedron

- Solution set of finitely many inequalities or equalities: $A\mathbf{x} \preceq \mathbf{b}$, $C\mathbf{x} = \mathbf{d}$
 - $A \in \Re^{m \times n}$
 - ► $C \in \Re^{p \times n}$

as

8.4

• \preceq is component wise inequality

- This is a **Dual or** *H***Description**: Intersection of finite number of half-spaces and hyperplanes.
- Primal or V Description: Can you define convex polyhedra in terms of hulls?
 - **1** Convex hull of finite # of points \Rightarrow Convex Polytope
 - 2 Convex hull of n + 1 affinely independent points \Rightarrow Simplex
 - Sonic hull of finite # of points \Rightarrow POLYHEDRAL CONE

Convex Polyhedron

- \bullet Solution set of finitely many inequalities or equalities: $A\mathbf{x} \preceq \mathbf{b}$, $C\mathbf{x} = \mathbf{d}$
 - $A \in \Re^{m \times n}$
 - $C \in \Re^{p \times n}$
 - \leq is component wise inequality

- This is a **Dual or** *H* **Description**: Intersection of finite number of half-spaces and hyperplanes.
- Primal or V Description: Can you define convex polyhedra in terms of hulls?
 - **1** Convex hull of finite # of points \Rightarrow **Convex Polytope**
 - **2** Convex hull of n + 1 affinely independent points \Rightarrow **Simplex**
 - **③** Conic hull of finite # of points \Rightarrow **Polyhedral Cone**

Polyhedral Cone: **Primal** and **Dual** Descriptions

Dual or *H* **Description** : A Polyhedral Cone *P* is a Convex Polyhedron with $\mathbf{b} = 0$. That is, $\{\mathbf{x} | A\mathbf{x} \succeq 0\}$ where $A \in \Re^{m \times n}$ and \succeq is component wise inequality. **Primal of** *V* **Description** : If $\exists S \subset P$ s.t. |S| is finite and P = cone(S), then *P* is a **Polyhedral Cone**.

Homework: Structure of Mathematical Spaces Discussed (arrow means 'instance')

Prof. Ganesh Ramakrishnan (IIT Bombay)

From 猊 to 猊": CS709

26/12/2016 127 / 210

More Convex Sets (illustrated in \Re^n)

More Convex Sets (illustrated in \Re^n)

- Euclidean balls and ellipsoids.
- Norm balls and norm cones.
- Compact representation of vector space.
- Dual Representation.
- Different Representations of Affine Sets

Euclidean balls and ellipsoids

- Euclidean ball with center \mathbf{x}_c and radius r is given by:
- $B(\mathbf{x}_{c}, r) = \{\mathbf{x} \mid \|\mathbf{x} \mathbf{x}_{c}\|_{2} \le r\} = \{\mathbf{x}_{c} + ru \mid \|u\|_{2} \le 1\}$ • Ellipsoid is a set of form:
 - $\{\mathbf{x} \mid (\mathbf{x} \mathbf{x}_c)^T P^{-1}(\mathbf{x} \mathbf{x}_c) \le 1\}$, where $P \in S_{++}^n$ i.e. *P* is positive-definite matrix.
 - Other representation: $\{\mathbf{x}_c + A\mathbf{u} \mid ||\mathbf{u}||_2 \le 1\}$ with A square and non-singular (*i.e.*, A^{-1} exists).

These are primal representations What about their dual representations?

Euclidean balls and ellipsoids

• Euclidean ball with center \mathbf{x}_c and radius r is given by:

$$\begin{split} & B(\mathbf{x}_c, r) = \{\mathbf{x} \mid \|\mathbf{x} - \mathbf{x}_c\|_2 \le r\} = \{\mathbf{x}_c + ru \mid \|u\|_2 \le 1 \} \\ & \bullet \text{ Ellipsoid is a set of form:} \\ & \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T P^{-1}(\mathbf{x} - \mathbf{x}_c) \le 1 \}, \text{ where } \mathsf{P} \in S^n_{++} \text{ i.e. } P \text{ is positive-definite matrix.} \\ & \bullet \text{ Other representation: } \{\mathbf{x}_c + A\mathbf{u} \mid \|\mathbf{u}\|_2 \le 1\} \text{ with } A \text{ square and non-singular } (i.e., A^{-1} \text{ exists}). \end{split}$$

Supporting hyperplane theorem and **Dual (H) Description**

Supporting hyperplane to set C at boundary point \mathbf{x}_o :

•
$$\left\{ \mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{x}_o \right\}$$

• where
$$\mathbf{a} \neq 0$$
 and $\mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \mathbf{x}_o$ for all $\mathbf{x} \in \mathcal{C}$

4.12

Convex set could be thought of as intersection of a possibly infinite number of half spaces created by such supporting hyperplanes

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C.

Homework: Separating and Supporting Hyperplane Theorems (Fill in the Blanks)

SHT: Separating hyperplane theorem (a fundamental theorem)

If C and D are disjoint convex sets, *i.e.*, $C \cap D = \phi$, then there exists $\mathbf{a} \neq \mathbf{0}$ and $b \in \Re$ such that

 $\mathbf{a}^{\mathsf{T}}\mathbf{x} \leq b$ for $\mathbf{x} \in \mathcal{C}$,

 $\mathbf{a}^T \mathbf{x} \geq b$ for $\mathbf{x} \in \mathcal{D}$.

That is, the hyperplane $\left\{ \mathbf{x} | \mathbf{a}^T \mathbf{x} = b \right\}$ separates C and D.

- The seperating hyperplane need not be unique though.
- Strict separation requires additional assumptions (e.g., C is closed, D is a singleton).

Proof of the Separating Hyperplane Theorem

We first note that the set $S = \{x - y | x \in C, y \in D\}$ is convex, since it is the sum of two convex sets. Since C and D are disjoint, $0 \notin S$. Consider two cases:

O Suppose $\mathbf{0} \notin closure(\mathcal{S})$. Let $\mathcal{E} = \{0\}$ and $\mathcal{F} = closure(\mathbf{S})$. Then, the euclidean distance between \mathcal{E} and \mathcal{F} , defined as $dist(\mathcal{E}; \mathcal{F}) = inf\{||\mathbf{u} - \mathbf{v}||_2 | \mathbf{u} \in \mathcal{E}, \mathbf{v} \in \mathcal{F}\}$ is positive, and there exists a point $\mathbf{f} \in \mathcal{F}$ that achieves the minimum distance, i.e., $||\mathbf{f}||_2 = dist(\mathcal{E}, \mathcal{F})$. Define Then $\mathbf{a} \neq \mathbf{0}$ and the affine function $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} - b = \mathbf{f}^T (\overline{\mathbf{x} - \frac{1}{2}\mathbf{f}})$ is nonpositive on \mathcal{E} and nonnegative on \mathcal{F} , *i.e.*, that the hyperplane $\left\{\mathbf{x}|\mathbf{a}^{\mathsf{T}}\mathbf{x}=b\right\}$ separates \mathcal{E} and \mathcal{F} . Thus, $\mathbf{a}^{T}(\mathbf{x} - \mathbf{y}) > 0$ for all $\mathbf{x} - \mathbf{y} \in S \subseteq closure(S)$, which implies that, $\mathbf{a}^{T}\mathbf{x} \geq \mathbf{a}^{T}\mathbf{y}$ for all $\mathbf{x} \in \mathcal{C}$ and $\mathbf{v} \in \mathcal{D}$.

Proof of the Separating Hyperplane Theorem

- Suppose, $0 \in closure(S)$. Since $0 \notin S$, it must be in the boundary of S.
 - If S has empty interior, it must lie in an affine set of dimension less than n, and any hyperplane containing that affine set contains S and is a hyperplane. In other words, S is contained in a hyperplane $\{\mathbf{z} | \mathbf{a}^T \mathbf{z} = b\}$, which must include the origin and therefore b = 0. In other words, $\mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{y}$ for all $\mathbf{x} \in C$ and all $\mathbf{y} \in D$ gives us a trivial separating hyperplane.

Proof of the Separating Hyperplane Theorem

2 Suppose, $0 \in closure(S)$. Since $0 \notin S$, it must be in the boundary of S.

• If S has a nonempty interior, consider the set $S_{-\epsilon} = \{ \mathbf{z} | B(\mathbf{z}, \epsilon) \subseteq S \}$ where $B(\mathbf{z}, \epsilon)$ is the Euclidean ball with center \mathbf{z} and radius $\epsilon > 0$. $S_{-\epsilon}$ is the set S, shrunk by ϵ . *closure* $(S_{-\epsilon})$ is closed and convex, and does not contain $\mathbf{0}$, so as argued before, it is separated from $\{\mathbf{0}\}$ by atleast one hyperplane with normal vector $\mathbf{a}(\epsilon)$ such that

Without loss of generality assume $||\mathbf{a}(\epsilon)||_2 = 1$. Let ϵ_k , for k = 1, 2, ... be a sequence of positive values of ϵ_k with $\lim_{k \to \infty} \epsilon_k = 0$. Since $||\mathbf{a}(\epsilon_k)||_2 = 1$ for all k, the sequence $\mathbf{a}(\epsilon_k)$ contains a convergent subsequence, and let $\overline{\mathbf{a}}$ be its limit. We have

which means $\overline{\mathbf{a}}^T \mathbf{x} \geq \overline{\mathbf{a}}^T \mathbf{y}$ for all $\mathbf{x} \in \mathcal{C}$, and $\mathbf{y} \in \mathcal{D}$.

Supporting hyperplane theorem (consequence of separating hyperplane theorem)

Supporting hyperplane to set C at boundary point \mathbf{x}_o :

- $\left\{ \mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{x}_o \right\}$
- where $\mathbf{a} \neq 0$ and $\mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \mathbf{x}_o$ for all $\mathbf{x} \in \mathcal{C}$

1.12

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C.