Norm balls

e Recap Norm: A function’ ||.|| that satisfies:
Q |x]| >0, and ||x|| = 0 iff x = 0.
Q |ax|| = |al||x]|| for any scalar @ € R.

Q [x1 +x2 < |[[x1 + [[x2]| for any vectors x; and x2.

e Norm ball with center x. and radius r: {x|||x — xx|| < r} is a convex set. Why?
» Eg 1: Ellipsoid is defined using ||x||3 = xPx.
» Eg 2: Euclidean ball is defined using ||x]|2.

@ Matrix Norm induced by vector norm N: My(A) = sup N(’ix)
(A) SUP W
Here, sup f(s) = fif fis the minimum upper bound for f{s) over s € S.

seS
» Eg: My(l) = Mn(A) =1 irrespective of N

n
S 1N = [ My(4) = max Y [a
i=1

> IEN= s, Mu(A) = max ) |
j=1

» If N=|.|2, Mn(A) = /71 , where oy is the dominant eigenvalue of ATA
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N =|[.[li, Mn(A) = sup S22
Nx)
x#0
n m
Q If N(x Z\x,\ then N(Ax) = > | ajx| < ZZ|3UHXJ|
i=1 =1 j=1 i=1 j=1
@ Changing the order of summation: Absolute value of sum

is <= sum of absolute values
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N =|.ll, Mu(A) = sup G
x#0
Q If N(x Z\xj\ then N(Ax) Z|Zauxj| < Zz|a,,|p9|
i=1 i=1 =1 i=1 j=1

@ Changing the order of summation: N(Ax) < Z Z |lagj| x| = Z |xi Z En
Jj=1 i=1 = =
" -

n
Q Let C= mjaxZ\a,-j] = Z\a,—k|. Then

i=1 i=1

C is max sum over absolute values in a column
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_ N(Ax)
x#0
n m
0 If N(x Z\xj\ then N(Ax) Z|Zauxj| < Zz\auw
i=1 =1 j=1 i=1 j=1
@ Changing the order of summation: N(Ax) < Z Z |ajj| x| = Z |xj| 7
=1 i=1 j=
n n ’

© Let C=max) |agl = |ayl Then ||Ax|ly < Clx|ls = |[All; = sup ﬂﬁﬂ- <cC

B = i=1 — x#0

© Now consider ax = [(Q....1 ..... 0]
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N =|.ll, Mu(A) = sup G
x#0
Q If N(x Z\xj\ then N(Ax) Z|Zauxj| <Zz\au|\xj|
i=1 i=1 =1 i=1 j=1

@ Changing the order of summation: N(Ax) < Z Z |lajj|[xj| = Z |xj] Z |ajj]
j=1 i=1 i— =
n

n
@ Let C=max ) |agl=> |aul- Then ||Ax|}y < Clx[s = [|Alls = sup ﬂﬁﬂ- <cC
= i=1 x#0
@ Now consider a x = [0,0..1,0...0] which has 1 only in the k' position and a 0 everywhere
else. Then

All inequalities mentioned above become equalities
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_ N(Ax)
x#0

0 If N(x Z\xj\ then N(Ax) Z|Za,1x,y < Zz\auw

i=1 =1 j=1 i=1 j=1
@ Changing the order of summation: N(Ax) < Z Z |lajj|[xj| = Z |xj] Z |ajj]

=1 i=1 = =
n n ’

O Let C=max ) |agl = |aul. Then [|Ax||; < (x|l = ||A1 = sup ﬂﬁﬂ- <C

=1 i=1 x#0

@ Now consider a x = [0,0..1,0...0] which has 1 only in the k' position and a 0 everywhere
else. Then ||x|l; =1 and ||Ax||; = C

@ Thus, there exists x = [0,0..1,0...0] for which the inequalities in steps (2) and (3)
become equalities! That is,
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_ N(Ax)
x#0

0 If N(x Z\xj\ then N(Ax) Z|Za,1xj| < Zz\auw

i=1 =1 j=1 i=1 j=1
@ Changing the order of summation: N(Ax) < Z Z |lajj|[xj| = Z |xj] Z |ajj]

=1 i=1 = =
n n ’

O Let C=max ) |agl = |aul. Then [|Ax||; < (x|l = ||A1 = sup ﬂﬁﬂ- <C

=1 i=1 x#0

@ Now consider a x = [0,0..1,0...0] which has 1 only in the k' position and a 0 everywhere
else. Then ||x|l; =1 and ||Ax||; = C

@ Thus, there exists x = [0,0..1,0...0] for which the inequalities in steps (2) and (3)
become equalities! That is,

Mn(A) = [|Ax[|, = maXZ\aul

H/w: Com= lete similar = roof for mﬁmtx norm
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If N = .||, Mn(A) = sup X2Ax)

N(x)
x#0
© Mn(A) = sup S5 We know that || Ax|ly = /(Ax) T(Ax) = v/xTATAx.

x#0
@ (From basic notes on Linear Algebra®): AT A is always positive semi-definite

Shttps://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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If N = .||, Mn(A) = sup X2Ax)

N(x)
x#0
@ Mn(A) = sup 152 We know that || x|, = /(Ax) T(Ax) = VxTATAx.

x#0
@ (From basic notes on Linear Algebra®): ATA € S7 is symmetric positive semi-definite
© By spectral decomposition, gpplied to positive semi-definite matrix
A"TA:

Shttps://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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N(Ax
If N =1|. ]}, Mn(A) = sup 7
x#0
@ Mn(A) = sup 152 We know that || x|, = /(Ax) T(Ax) = VxTATAx.
x#0
@ (From basic notes on Linear Algebra®): ATA € S7 is symmetric positive semi-definite
© By spectral decomposition, there exists orthonormal U with column vectors u; and
diagonal matrix ¥ of non-negative eigenvalues o; of ATA such that ATA = UTSU with
@47)4)u;::o7u;
@ Without loss of generality, let o1 > 05.. > o).

@ Since columns of U form an orthonormal basis for R”, let x =linear combination
of the ui's (basis)

Shttps://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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If N =1|.]}, Mn(A) = sup S75.

x#0
@ Mn(A) = sup 152 We know that || x|, = /(Ax) T(Ax) = VxTATAx.
x#0

@ (From basic notes on Linear Algebra®): ATA ¢ S" is symmetric positive semi-definite

© By spectral decomposition, there exists orthonormal U with column vectors u; and
diagonal matrix ¥ of non-negative eigenvalues o; of ATA such that ATA = UTSU with
(ATA)u,- = oju;

© Without loss of generality, let 01 > 09.. > o,.

n

@ Since columns of U form an orthonormal basis for R”, let x = g o,
i=1

Q@ Then, |[x]2 = /> ;a2 and || Ax[|2 = \/x(ATAx) =

Shttps://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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N(Ax
If N =1|.]}, Mn(A) = sup S75.
x#0
@ Mn(A) = sup 152 We know that || x|, = /(Ax) T(Ax) = VxTATAx.
x#0
@ (From basic notes on Linear Algebra®): ATA ¢ S" is symmetric positive semi-definite
© By spectral decomposition, there exists orthonormal U with column vectors u; and
diagonal matrix ¥ of non-negative eigenvalues o; of ATA such that ATA = UTSU with
(ATA)LI; = oju;
© Without loss of generality, let 01 > 09.. > o,.

n
@ Since columns of U form an orthonormal basis for ®", let x = g oju;
i=1

@ Then, |x[2 = {/>;0? and [|Ax|; = /XT(ATAx) = , | O am) () o).
i=1 i=1

@ If oy =1 and aj =0 for all j# 1, the maximum value in (7) will be attained. Thus,
Mpn(A) = /o1 , where o1 is the dominant eigenvalue of ATA

Shttps://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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Norm balls: Summary
e Norm ball with center x. and radius r: {x|||x — x4|| < r} is a convex set.
» Eg 1: Ellipsoid is defined using ||x||3 = x"Px.
» Eg 2: Euclidean ball is defined using ||x||2.

@ Matrix Norm induced by vector norm N: My(A) = sup NiAx)
(A) = sup Ay
» Eg: Mn(l) = Mpn(A) =1 irrespective of N
> 1N = Mu(A) = max )" Ja
i=1
S 1EN = oo, Ma(A) = max Y |3y
j=1
o If N=.|[2, Mn(A) = /57 , where o1 is the dominant eigenvalue of ATA inner prod?

@ Matrix norm with an inner product:

Trivial extension of the vector inner product
by unfolding a matrix into a vector
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Norm balls: Summary
e Norm ball with center x. and radius r: {x|||x — x4|| < r} is a convex set.
» Eg 1: Ellipsoid is defined using ||x||3 = x"Px.
» Eg 2: Euclidean ball is defined using ||x||2.

@ Matrix Norm induced by vector norm N: My(A) = sup %‘T)

x#£0
» Eg: Mn(l) = My(A) = 1 irrespective of N

SN = 1, My(A) = max 3|3y

i=1
>IN = [, Ma(A) = max > Ja

o If N=||.||2, Mn(A) = /a7 , where o7 is the dominant eigenvalue of ATA
@ Matrix norm with an inner product:

(A, B) = MZ"’U i= trace(A™TB)
ij
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Norm balls: Summary
e Norm ball with center x. and radius r: {x|||x — x4|| < r} is a convex set.
» Eg 1: Ellipsoid is defined using ||x||3 = x"Px.
» Eg 2: Euclidean ball is defined using ||x||2.

@ Matrix Norm induced by vector norm N: My(A) = sup %‘T)

x#£0
» Eg: Mn(l) = My(A) = 1 irrespective of N

SN = 1, My(A) = max 3|3y
i=1

m
>IN = [, Ma(A) = max > Ja
j=1

o If N=||.||2, Mn(A) = /a7 , where o7 is the dominant eigenvalue of ATA
@ Matrix norm with an inner product:

(A, B) = /Z ajjbjj = +/trace(A" B) is the Frobenius inner product.
ij

I|AllF = Z a,?j = \/trace(ATA) is the Frobenius norm.
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Examples of Convex Cones
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More on Convex Sets and Cones

Half-spaces as cones (induced by hyperplanes) - as affine shifted convex cones
Norm Cones (already discussed)

Positive Semi-definite cone.

Positive Semi-definite cone: Example and Notes.

Convexity Preserving Operations on Sets

Prof. Ganesh Ramakrishnan (IIT Bombay) From R to R": CS709 26/12/2016 153 / 219



Norm cones

e Norm ball with center x. and radius r: {x|||x — x| < r}.

o Norm cone: A set of form: o \y1qined by stacking norm balls
below each other with diminishing
radius r

1 (x.2) [ [Ix]| <= tz}
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Norm cones

e Norm ball with center x. and radius r: {x|||x — x| < r}.
. . n+1 < . .
e Norm cone: A set of form: {(x,t) € R"|||x]| _i Canonically just a t
» Norm cones are convex cones
» Euclidean norm cone is called-second order cone. If x € R2, in R3 it appears as:
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Positive semidefinite cone: Primal Description

Can we visualize using a Dual Description?
Can Frobenius inner product come to rescue?
VSTXV = <vww”T,X>

Notation

@ 5" is set of symmetric n X n matrices.
e ST = {X¢€ S5"|X=0}: set of n x n positive semidefinite matrices.

» Xe S = vIXv > 0 for all ve R"
» ST is a convex cone.

o ST, ={X € 5" | X > 0} set of n x n positive definite matrices.

Not a cone since 0 combinations
are not contained
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Positive semidefinite cone: Primal Description

Consider a positive semi-definite matrix S € R#”. Then S must be of the form

of a symmetric (35)
positive semi-definite matrix

We can represent the space of matrices S_% in 3 with non-negative x, y and z coordinates and

[X ] Canonical representation
S
y

a non-negative determinant:
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Positive semidefinite cone: Dual Description

Instead of all vectors v € R", we can, without loss of generality, only require the inequality to
hold for all v with ||v]j2 = 1.

QO ST={AcSNA=0} ={Ac S"|vTAv > 0,V|v|]2 =1}
@ Note: vIAv = 37,5 viayv; = >, - (vivy) ay =Frobenius inner product
of vv~T with A
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Positive semidefinite cone: Dual Description

Instead of all vectors v € R", we can, without loss of generality, only require the inequality to
hold for all v with ||v]j2 = 1.

QS ={AcS|A=0} = {Ac S"|vTAv > 0,V||v[2 = 1}
@ Note: v/ Av = doidviagyy = 32> (vivi)ay = (vvT, A) = tr((vw)TA) = tr(vvTA)
@ So, 1= | {AcS|(vww',A) >0}

Ivi=1
» One parametrization for v such that ||v|s =1 is

[ a0 .

T Cos?(6) Cos(6)Sin(0)
v ‘[ Cos(0)Sin(0)  Sin*(0) }

» Homework: Plot a finite # of halfspaces parameterized by (6).
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generated

—using-a di
theta

programmatically




Positive semidefinite cone: Dual Description

@ S = intersection of infinite # of half spaces belonging to R"("*1)/2 [Dual
Representation]
@ Cone boundary consists of all singular p.s.d. matrices having at-least one 0 eigenvalue,
@ Origin = O = matrix with all 0 eigenvalues.
© Interior consists of all full rank matrices A (rank A = m) i.e. A > 0.
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L

Convexity preserving operations

In practice if you want to establish the convexity of a set C, you could either

@ prove it from first principles, i.e., using the definition of convexity or €g: norm ball

@ prove that C can be built from simpler convex sets through some basic operations which
preserve convexity.

Some of the important operations that preserve complexity are:

@ Addition (recap discussion in context of Separating Hyperplanes)
@ Intersection

© Affine Transform (Eqg: Ellipsoid as a transform of sphere)
@ Perspective and Linear Fractional Function
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Closure under Intersection

The intersection of any number of convex sets is convex. Consider the set S:

S:{xeéﬁ”| Ip(t)lélforltlég} (38)

where

p(t) = xy cost+ xgcos2t+ ... + x, cos mt = <X,COS_VeC(tIS~9)

plt)

0 n/3 2x/3 ®
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Closure under Intersection (contd.)

Any value of t that satisfies |p(t)| < 1, defines two regions, viz.,

R=(t) = {x | x1cost+ xpcos2t+ ...+ xmcosmt < 1}

and

§R2(t) = {x | x; cost+ xacos2t+ ...+ Xy,cos mt > —1}
\

Each of the these regions is convex and for a given value of t, the set of points that may lie in
S is given by R(t) = R=(t) N R2(1)

Intersection over intersection of halfspaces ==> Convex
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Closure under Intersection (contd.)

R(t) is also convex. However, not all the points in R(t) lie in S, since the points that lie in S
satisfy the inequalities for every value of t. Thus, & can be given as:

S= () R

<%

1 0 |
Ir
Prof. Ganesh Ramakrishnan (IIT Bombay) From R to R": CS709 26/12/2016 162 / 219

o
[



Closure under Affine transform

An affine transformation or affine map between two vector spaces f: R" — R™ consists of a
linear transformation followed by a translation:

x— Ax+b
where A € R™™ and b € R™.
An affine transform is one that preserves (€g: when you go from sphere to ellipsoid

1) collinearity between points?
2) ratios of distances are preserved?
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Closure under Affine transform

An affine transformation or affine map between two vector spaces f: R" — R™ consists of a
linear transformation followed by a translation:

x— Ax+b

where A € R™™ and b € R™.
An affine transform is one that preserves

@ Collinearity between points, i.e., three points which lie on a line continue to be collinear
after the transformation.

@ Ratios of distances along a line, i.e., for distinct colinear points p1, p2, P3, [pa—pul] g

P3—P2
preserved.
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Closure under Affine transform (contd.)

In the finite-dimensional case each affine transformation is given by a matrix A and a vector b.
The image and pre-image of convex sets under an affine transformation defined as

flx) = Zn:x,-a;—l— b

yield convex sets®. Here a; is the i*" row of A. The following are examples of convex sets that
are either images or inverse images of convex sets under affine transformations:
@ the solution set of linear matrix inequality (A;, B € 8™)

{xG?R"]xlAl—i—...—i—x,,A,,jB}

is a convex set. Here A < B means B — A is positive semi-definite!?. This set is the
inverse image under an affine mapping of the

H/w

9Exercise: Prove.

The inequality induced by positive semi-definiteness corresponds to a generalized inequality <x with

K=S".
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