
Norm balls
Recap Norm: A function7 ∥.∥ that satisfies:

1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α ∈ ℜ.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set. Why?
▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x̸=0

N(Ax)
N(x)

Here, sup
s∈S

f(s) =bf if bf is the minimum upper bound for f(s) over s ∈ S.
▶ Eg: MN(I) = MN(A) = 1 irrespective of N

▶ If N = ∥.∥1, MN(A) = max
j

n∑

i=1

|aij|

▶ If N = ∥.∥∞, MN(A) = max
i

m∑

j=1

|aij|

▶ If N = ∥.∥2, MN(A) =
√
σ1 , where σ1 is the dominant eigenvalue of ATA
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N = ∥.∥1, MN(A) = sup
x̸=0

N(Ax)
N(x)

1 If N(x) =
m∑

i=1

|xj| then N(Ax) =
n∑

i=1

|
m∑

j=1

aijxj| ≤
n∑

i=1

m∑

j=1

|aij||xj|

2 Changing the order of summation:
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Absolute value of sum
is <= sum of absolute values



N = ∥.∥1, MN(A) = sup
x̸=0

N(Ax)
N(x)

1 If N(x) =
m∑

i=1

|xj| then N(Ax) =
n∑

i=1

|
m∑

j=1

aijxj| ≤
n∑

i=1

m∑

j=1

|aij||xj|

2 Changing the order of summation: N(Ax) ≤
m∑

j=1

n∑

i=1

|aij||xj| =
m∑

j=1

|xj|
n∑

i=1

|aij|

3 Let C = max
j

n∑

i=1

|aij| =
n∑

i=1

|aik|. Then
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C is max sum over absolute values in a column



N = ∥.∥1, MN(A) = sup
x̸=0

N(Ax)
N(x)

1 If N(x) =
m∑

i=1

|xj| then N(Ax) =
n∑

i=1

|
m∑

j=1

aijxj| ≤
n∑

i=1

m∑

j=1

|aij||xj|

2 Changing the order of summation: N(Ax) ≤
m∑

j=1

n∑

i=1

|aij||xj| =
m∑

j=1

|xj|
n∑

i=1

|aij|

3 Let C = max
j

n∑

i=1

|aij| =
n∑

i=1

|aik|. Then ∥Ax∥1 ≤ C∥x∥1 ⇒ ∥A∥1 = sup
x̸=0

∥Ax∥1
∥x∥1 ≤ C

4 Now consider a x
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= [0....1 .....0] 



N = ∥.∥1, MN(A) = sup
x̸=0

N(Ax)
N(x)

1 If N(x) =
m∑

i=1

|xj| then N(Ax) =
n∑

i=1

|
m∑

j=1

aijxj| ≤
n∑

i=1

m∑

j=1

|aij||xj|

2 Changing the order of summation: N(Ax) ≤
m∑

j=1

n∑

i=1

|aij||xj| =
m∑

j=1

|xj|
n∑

i=1

|aij|

3 Let C = max
j

n∑

i=1

|aij| =
n∑

i=1

|aik|. Then ∥Ax∥1 ≤ C∥x∥1 ⇒ ∥A∥1 = sup
x̸=0

∥Ax∥1
∥x∥1 ≤ C

4 Now consider a x = [0, 0..1, 0...0] which has 1 only in the kth position and a 0 everywhere
else. Then
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All inequalities mentioned above become equalities



N = ∥.∥1, MN(A) = sup
x̸=0

N(Ax)
N(x)

1 If N(x) =
m∑

i=1

|xj| then N(Ax) =
n∑

i=1

|
m∑

j=1

aijxj| ≤
n∑

i=1

m∑

j=1

|aij||xj|

2 Changing the order of summation: N(Ax) ≤
m∑

j=1

n∑

i=1

|aij||xj| =
m∑

j=1

|xj|
n∑

i=1

|aij|

3 Let C = max
j

n∑

i=1

|aij| =
n∑

i=1

|aik|. Then ∥Ax∥1 ≤ C∥x∥1 ⇒ ∥A∥1 = sup
x̸=0

∥Ax∥1
∥x∥1 ≤ C

4 Now consider a x = [0, 0..1, 0...0] which has 1 only in the kth position and a 0 everywhere
else. Then ∥x∥1 = 1 and ∥Ax∥1 = C

5 Thus, there exists x = [0, 0..1, 0...0] for which the inequalities in steps (2) and (3)
become equalities! That is,
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N = ∥.∥1, MN(A) = sup
x̸=0

N(Ax)
N(x)

1 If N(x) =
m∑

i=1

|xj| then N(Ax) =
n∑

i=1

|
m∑

j=1

aijxj| ≤
n∑

i=1

m∑

j=1

|aij||xj|

2 Changing the order of summation: N(Ax) ≤
m∑

j=1

n∑

i=1

|aij||xj| =
m∑

j=1

|xj|
n∑

i=1

|aij|

3 Let C = max
j

n∑

i=1

|aij| =
n∑

i=1

|aik|. Then ∥Ax∥1 ≤ C∥x∥1 ⇒ ∥A∥1 = sup
x̸=0

∥Ax∥1
∥x∥1 ≤ C

4 Now consider a x = [0, 0..1, 0...0] which has 1 only in the kth position and a 0 everywhere
else. Then ∥x∥1 = 1 and ∥Ax∥1 = C

5 Thus, there exists x = [0, 0..1, 0...0] for which the inequalities in steps (2) and (3)
become equalities! That is,

MN(A) = ∥Ax∥1 = max
j

n∑

i=1

|aij|
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H/w: Complete similar proof for infinity norm



If N = ∥.∥2, MN(A) = sup
x̸=0

N(Ax)
N(x)

1 MN(A) = sup
x̸=0

∥Ax∥2
∥x∥2 . We know that ∥Ax∥2 =

√
(Ax)T(Ax) =

√
xTATAx.

2 (From basic notes on Linear Algebra8):

8https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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A^T A is always positive semi-definite



If N = ∥.∥2, MN(A) = sup
x̸=0

N(Ax)
N(x)

1 MN(A) = sup
x̸=0

∥Ax∥2
∥x∥2 . We know that ∥Ax∥2 =

√
(Ax)T(Ax) =

√
xTATAx.

2 (From basic notes on Linear Algebra8): ATA ∈ Sn
+ is symmetric positive semi-definite

3 By spectral decomposition,

8https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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applied to positive semi-definite matrix
A^TA: 



If N = ∥.∥2, MN(A) = sup
x̸=0

N(Ax)
N(x)

1 MN(A) = sup
x̸=0

∥Ax∥2
∥x∥2 . We know that ∥Ax∥2 =

√
(Ax)T(Ax) =

√
xTATAx.

2 (From basic notes on Linear Algebra8): ATA ∈ Sn
+ is symmetric positive semi-definite

3 By spectral decomposition, there exists orthonormal U with column vectors ui and
diagonal matrix Σ of non-negative eigenvalues σi of ATA such that ATA = UTΣU with
(ATA)ui = σiui

4 Without loss of generality, let σ1 ≥ σ2.. ≥ σn.

5 Since columns of U form an orthonormal basis for ℜn, let x =

8https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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linear combination
of the ui's (basis)



If N = ∥.∥2, MN(A) = sup
x̸=0

N(Ax)
N(x)

1 MN(A) = sup
x̸=0

∥Ax∥2
∥x∥2 . We know that ∥Ax∥2 =

√
(Ax)T(Ax) =

√
xTATAx.

2 (From basic notes on Linear Algebra8): ATA ∈ Sn
+ is symmetric positive semi-definite

3 By spectral decomposition, there exists orthonormal U with column vectors ui and
diagonal matrix Σ of non-negative eigenvalues σi of ATA such that ATA = UTΣU with
(ATA)ui = σiui

4 Without loss of generality, let σ1 ≥ σ2.. ≥ σn.

5 Since columns of U form an orthonormal basis for ℜn, let x =

n∑

i=1

αiui

6 Then, ∥x∥2 =
√∑

i α
2
i and ∥Ax∥2 =

√
xT(ATAx) =

8https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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If N = ∥.∥2, MN(A) = sup
x̸=0

N(Ax)
N(x)

1 MN(A) = sup
x̸=0

∥Ax∥2
∥x∥2 . We know that ∥Ax∥2 =

√
(Ax)T(Ax) =

√
xTATAx.

2 (From basic notes on Linear Algebra8): ATA ∈ Sn
+ is symmetric positive semi-definite

3 By spectral decomposition, there exists orthonormal U with column vectors ui and
diagonal matrix Σ of non-negative eigenvalues σi of ATA such that ATA = UTΣU with
(ATA)ui = σiui

4 Without loss of generality, let σ1 ≥ σ2.. ≥ σn.

5 Since columns of U form an orthonormal basis for ℜn, let x =

n∑

i=1

αiui

6 Then, ∥x∥2 =
√∑

i α
2
i and ∥Ax∥2 =

√
xT(ATAx) =

vuut(
n∑

i=1

αiui)
T(

n∑

i=1

σiαiui).

7 If α1 = 1 and αj = 0 for all j ̸= 1, the maximum value in (7) will be attained. Thus,
MN(A) =

√
σ1 , where σ1 is the dominant eigenvalue of ATA

8https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf
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Norm balls: Summary
Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set.

▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x̸=0

N(Ax)
N(x)

▶ Eg: MN(I) = MN(A) = 1 irrespective of N

▶ If N = ∥.∥1, MN(A) = max
j

n∑

i=1

|aij|

▶ If N = ∥.∥∞, MN(A) = max
i

m∑

j=1

|aij|

If N = ∥.∥2, MN(A) =
√
σ1 , where σ1 is the dominant eigenvalue of ATA

Matrix norm with an inner product:
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inner prod?

Trivial extension of the vector inner product
by unfolding a matrix into a vector



Norm balls: Summary
Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set.

▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x̸=0

N(Ax)
N(x)

▶ Eg: MN(I) = MN(A) = 1 irrespective of N

▶ If N = ∥.∥1, MN(A) = max
j

n∑

i=1

|aij|

▶ If N = ∥.∥∞, MN(A) = max
i

m∑

j=1

|aij|

If N = ∥.∥2, MN(A) =
√
σ1 , where σ1 is the dominant eigenvalue of ATA

Matrix norm with an inner product:
⟨A,B⟩ =

√∑

i,j
aijbij =

Prof. Ganesh Ramakrishnan (IIT Bombay) From ℜ to ℜn: CS709 26/12/2016 151 / 219

trace(A^TB)



Norm balls: Summary
Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r} is a convex set.

▶ Eg 1: Ellipsoid is defined using ∥x∥2P = xTPx.
▶ Eg 2: Euclidean ball is defined using ∥x∥2.

Matrix Norm induced by vector norm N: MN(A) = sup
x̸=0

N(Ax)
N(x)

▶ Eg: MN(I) = MN(A) = 1 irrespective of N

▶ If N = ∥.∥1, MN(A) = max
j

n∑

i=1

|aij|

▶ If N = ∥.∥∞, MN(A) = max
i

m∑

j=1

|aij|

If N = ∥.∥2, MN(A) =
√
σ1 , where σ1 is the dominant eigenvalue of ATA

Matrix norm with an inner product:
⟨A,B⟩ =

√∑

i,j
aijbij =

√
trace(ATB) is the Frobenius inner product.

∥A∥F =

√∑

i,j
a2ij =

√
trace(ATA) is the Frobenius norm.
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Examples of Convex Cones
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More on Convex Sets and Cones

Half-spaces as cones (induced by hyperplanes)
Norm Cones
Positive Semi-definite cone.
Positive Semi-definite cone: Example and Notes.
Convexity Preserving Operations on Sets
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- as affine shifted convex cones
   (already discussed)



Norm cones
Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r}.
Norm cone: A set of form:
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obtained by stacking norm balls
below each other with diminishing
radius r

{ (x,z) | ||x|| <= tz}



Norm cones
Norm ball with center xc and radius r: {x|∥x − xx∥ ≤ r}.
Norm cone: A set of form: {(x, t) ∈ ℜn+1|∥x∥ ≤ t}.

▶ Norm cones are convex cones
▶ Euclidean norm cone is called-second order cone. If x ∈ ℜ2, in ℜ3 it appears as:
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Canonically just a t



Positive semidefinite cone: Primal Description

Notation
Sn is set of symmetric n× n matrices.
Sn
+ = {X ∈ Sn|X ⪰ 0}: set of n× n positive semidefinite matrices.
▶ X ∈ Sn

+ ⇐⇒ vTXv ≥ 0 for all v ∈ ℜn

▶ Sn
+ is a convex cone.

Sn
++ = {X ∈ Sn | X ≻ 0}: set of n× n positive definite matrices.
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Not a cone since 0 combinations
are not contained

Can we visualize using a Dual Description?
Can Frobenius inner product come to rescue?
v^TXv = <vv^T,X>



Positive semidefinite cone: Primal Description

Consider a positive semi-definite matrix S ∈ ℜ2. Then S must be of the form

S =

[
x y
y z

]
(35)

We can represent the space of matrices S2
+ in ℜ3 with non-negative x, y and z coordinates and

a non-negative determinant:
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Canonical representation
of a symmetric 
positive semi-definite matrix



Positive semidefinite cone: Dual Description
Instead of all vectors v ∈ ℜn, we can, without loss of generality, only require the inequality to
hold for all v with ∥v∥2 = 1.

1 Sn
+ = {A ∈ Sn|A ⪰ 0} = {A ∈ Sn|vTAv ≥ 0, ∀∥v∥2 = 1}

2 Note: vTAv =
∑

i
∑

j viaijvj =
∑

i
∑

j(vivj)aij =
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Frobenius inner product
of vv^T with A



Positive semidefinite cone: Dual Description
Instead of all vectors v ∈ ℜn, we can, without loss of generality, only require the inequality to
hold for all v with ∥v∥2 = 1.

1 Sn
+ = {A ∈ Sn|A ⪰ 0} = {A ∈ Sn|vTAv ≥ 0, ∀∥v∥2 = 1}

2 Note: vTAv =
∑

i
∑

j viaijvj =
∑

i
∑

j(vivj)aij = ⟨vvT,A⟩ = tr((vvT)TA) = tr(vvTA)
3 So, Sn

+ =
∩

∥v∥=1

{A ∈ S|⟨vvT,A⟩ ≥ 0}

▶ One parametrization for v such that ∥v∥2 = 1 is

v =

[
Cos(θ)
Sin(θ)

]
(36)

vvT =

[
Cos2(θ) Cos(θ)Sin(θ)

Cos(θ)Sin(θ) Sin2(θ)

]
(37)

▶ Homework: Plot a finite # of halfspaces parameterized by (θ).
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Each hyperplane has been
generated programmatically
using a different value of 
theta



Positive semidefinite cone: Dual Description

1 Sn
+ = intersection of infinite # of half spaces belonging to Rn(n+1)/2 [Dual

Representation]
1 Cone boundary consists of all singular p.s.d. matrices having at-least one 0 eigenvalue.
2 Origin = O = matrix with all 0 eigenvalues.
3 Interior consists of all full rank matrices A (rank A = m) i.e. A ≻ 0.
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Convexity preserving operations

In practice if you want to establish the convexity of a set C, you could either
1 prove it from first principles, i.e., using the definition of convexity or
2 prove that C can be built from simpler convex sets through some basic operations which

preserve convexity.
Some of the important operations that preserve complexity are:

1 Addition (recap discussion in context of Separating Hyperplanes)
2 Intersection
3 Affine Transform
4 Perspective and Linear Fractional Function
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eg: norm ball

(Eg: Ellipsoid as a transform of sphere)



Closure under Intersection
The intersection of any number of convex sets is convex. Consider the set S:

S =

{
x ∈ ℜn | |p(t)| ≤ 1 for |t| ≤ π

3

}
(38)

where
p(t) = x1 cos t+ x2 cos 2t+ . . .+ xm cosmt (39)
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= <x,cos_vec(t)>



Closure under Intersection (contd.)

Any value of t that satisfies |p(t)| ≤ 1, defines two regions, viz.,

ℜ≤(t) =
{

x | x1 cos t+ x2 cos 2t+ . . .+ xm cosmt ≤ 1
}

and

ℜ≥(t) =
{

x | x1 cos t+ x2 cos 2t+ . . .+ xm cosmt ≥ −1
}

Each of the these regions is convex and for a given value of t, the set of points that may lie in
S is given by ℜ(t) = ℜ≤(t) ∩ ℜ≥(t)
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Intersection over intersection of halfspaces ==> Convex



Closure under Intersection (contd.)
ℜ(t) is also convex. However, not all the points in ℜ(t) lie in S, since the points that lie in S
satisfy the inequalities for every value of t. Thus, S can be given as:

S =
∩

|t|≤π
3

ℜ(t)
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Closure under Affine transform

An affine transformation or affine map between two vector spaces f : ℜn → ℜm consists of a
linear transformation followed by a translation:

x 7→ Ax + b

where A ∈ ℜn×m and b ∈ ℜm.
An affine transform is one that preserves
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(eg: when you go from sphere to ellipsoid)

1) collinearity between points?
2) ratios of distances are preserved?



Closure under Affine transform

An affine transformation or affine map between two vector spaces f : ℜn → ℜm consists of a
linear transformation followed by a translation:

x 7→ Ax + b

where A ∈ ℜn×m and b ∈ ℜm.
An affine transform is one that preserves

Collinearity between points, i.e., three points which lie on a line continue to be collinear
after the transformation.
Ratios of distances along a line, i.e., for distinct colinear points p1,p2,p3, ||p2−p1||

||p3−p2|| is
preserved.
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Closure under Affine transform (contd.)
In the finite-dimensional case each affine transformation is given by a matrix A and a vector b.
The image and pre-image of convex sets under an affine transformation defined as

f(x) =
n∑

i
xiai + b

yield convex sets9. Here ai is the ith row of A. The following are examples of convex sets that
are either images or inverse images of convex sets under affine transformations:

1 the solution set of linear matrix inequality (Ai,B ∈ Sm)
{

x ∈ ℜn | x1A1 + . . .+ xnAn ⪯ B
}

is a convex set. Here A ⪯ B means B− A is positive semi-definite10. This set is the
inverse image under an affine mapping of the

9Exercise: Prove.
10The inequality induced by positive semi-definiteness corresponds to a generalized inequality ⪯K with

K = Sn
+.
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H/w


