Norm balls

• Recap Norm: A function $\| \| \|$ that satisfies:

1
$$\|\mathbf{x}\| \ge 0$$
, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

2
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
 for any scalar $\alpha \in \Re$.

- $\textbf{ () } \|\mathbf{x}_1 + \mathbf{x}_2\| \leq \|\mathbf{x}_1\| + \|\mathbf{x}_2\| \text{ for any vectors } \mathbf{x}_1 \text{ and } \mathbf{x}_2.$
- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_x\| \le r\}$ is a convex set. Why?
 - Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_P^2 = \mathbf{x}^T P \mathbf{x}$.
 - Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_2$.
- Matrix Norm induced by vector norm N: $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

Here,
$$\sup_{s \in S} f(s) = \hat{f}$$
 if \hat{f} is the minimum upper bound for $f(s)$ over $s \in S$.

• Eg:
$$M_N(I) = M_N(A) = 1$$
 irrespective of N

• If
$$N = \|.\|_1$$
, $M_N(A) = \max_j \sum_{i=1}^n |a_{ij}|$

• If
$$N = \|.\|_{\infty}$$
, $M_N(A) = \max_i \sum_{j=1}^m |a_{ij}|$

▶ If $N = \|.\|_2$, $M_N(A) = \sqrt{\sigma_1}$, where σ_1 is the dominant eigenvalue of $A^T A$

$$V = \|.\|_{1}, \ M_{N}(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$$

If $N(\mathbf{x}) = \sum_{i=1}^{m} |x_{i}|$ then $N(A\mathbf{x}) = \sum_{i=1}^{n} |\sum_{j=1}^{m} a_{ij}x_{j}| \le \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}||x_{j}|$

Or Changing the order of summation:

Absolute value of sum is <= sum of absolute values

$$I = \|.\|_{1}, \ M_{N}(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$$

a If $N(\mathbf{x}) = \sum_{i=1}^{m} |x_{i}|$ then $N(A\mathbf{x}) = \sum_{i=1}^{n} |\sum_{j=1}^{m} a_{ij}x_{j}| \le \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}||x_{j}|$
a Changing the order of summation: $N(A\mathbf{x}) \le \sum_{j=1}^{m} \sum_{i=1}^{n} |a_{ij}| |x_{j}| = \sum_{j=1}^{m} |x_{j}| \sum_{i=1}^{n} |a_{ij}|$
b Let $C = \max_{j} \sum_{i=1}^{n} |a_{ij}| = \sum_{i=1}^{n} |a_{ik}|$. Then

C is max sum over absolute values in a column

$$V = \|.\|_{1}, M_{N}(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$$

1 If $N(\mathbf{x}) = \sum_{i=1}^{m} |x_{j}|$ then $N(A\mathbf{x}) = \sum_{i=1}^{n} |\sum_{j=1}^{m} a_{ij}x_{j}| \le \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}||x_{j}|$
2 Changing the order of summation: $N(A\mathbf{x}) \le \sum_{j=1}^{m} \sum_{i=1}^{n} |a_{ij}||x_{j}| = \sum_{j=1}^{m} |x_{j}| \sum_{i=1}^{n} |a_{ij}|$
3 Let $\underline{C} = \max_{j} \sum_{i=1}^{n} |a_{ij}| = \sum_{i=1}^{n} |a_{ik}|$. Then $||A\mathbf{x}||_{1} \le \underline{C}||\mathbf{x}||_{1} \Rightarrow ||A||_{1} = \sup_{\mathbf{x}\neq 0} \frac{||A\mathbf{x}||_{1}}{||\mathbf{x}||_{1}} \le C$
3 Now consider a $\mathbf{x} = [0....1...0]$

$$I = \|.\|_{1}, \ M_{N}(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$$

a If $N(\mathbf{x}) = \sum_{i=1}^{m} |x_{j}|$ then $N(A\mathbf{x}) = \sum_{i=1}^{n} |\sum_{j=1}^{m} a_{ij}x_{j}| \le \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}||x_{j}|$
a Changing the order of summation: $N(A\mathbf{x}) \le \sum_{j=1}^{m} \sum_{i=1}^{n} |a_{ij}||x_{j}| = \sum_{j=1}^{m} |x_{j}| \sum_{i=1}^{n} |a_{ij}|$
a Let $C = \max_{j} \sum_{i=1}^{n} |a_{ij}| = \sum_{i=1}^{n} |a_{ik}|$. Then $||A\mathbf{x}||_{1} \le C||\mathbf{x}||_{1} \Rightarrow ||A||_{1} = \sup_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||_{1}}{||\mathbf{x}||_{1}} \le C$
a Now consider a $\mathbf{x} = [0, 0..1, 0...0]$ which has 1 only in the k^{th} position and a 0 everywhere else. Then

All inequalities mentioned above become equalities

$$V = \|.\|_{1}, \ M_{N}(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$$

$$If \ N(\mathbf{x}) = \sum_{i=1}^{m} |x_{j}| \ \text{then} \ N(A\mathbf{x}) = \sum_{i=1}^{n} |\sum_{j=1}^{m} a_{ij}x_{j}| \le \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}| |x_{j}|$$

$$Changing \ \text{the order of summation:} \ N(A\mathbf{x}) \le \sum_{j=1}^{m} \sum_{i=1}^{n} |a_{ij}| |x_{j}| = \sum_{i=1}^{m} |x_{j}| \sum_{i=1}^{n} |a_{ij}|$$

$$Let \ C = \max_{j} \sum_{i=1}^{n} |a_{ij}| = \sum_{i=1}^{n} |a_{ik}|. \ \text{Then} \ \|A\mathbf{x}\|_{1} \le C \|\mathbf{x}\|_{1} \Rightarrow \|A\|_{1} = \sup_{\mathbf{x}\neq 0} \frac{\|A\mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}} \le C$$

$$Now \ \text{consider a } \mathbf{x} = [0, 0..1, 0...0] \ \text{which has 1 only in the} \ k^{th} \ \text{position and a 0 everywhere} \ \text{else. Then} \ \|\mathbf{x}\|_{1} = 1 \ \text{and} \ \|A\mathbf{x}\|_{1} = C$$

$$Thus, \ \text{there exists } \mathbf{x} = [0, 0..1, 0...0] \ \text{for which the inequalities in steps (2) and (3) \ \text{become equalities! That is,}$$

$$V = \|.\|_{1}, \ M_{N}(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$$

$$If \ N(\mathbf{x}) = \sum_{i=1}^{m} |x_{j}| \ \text{then} \ N(A\mathbf{x}) = \sum_{i=1}^{n} |\sum_{j=1}^{m} a_{ij}x_{j}| \le \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}||x_{j}|$$

$$Changing \ \text{the order of summation:} \ N(A\mathbf{x}) \le \sum_{j=1}^{m} \sum_{i=1}^{n} |a_{ij}||x_{j}| = \sum_{j=1}^{m} |x_{j}| \sum_{i=1}^{n} |a_{ij}|$$

$$Let \ C = \max_{j} \sum_{i=1}^{n} |a_{ij}| = \sum_{i=1}^{n} |a_{ik}|. \ \text{Then} \ \|A\mathbf{x}\|_{1} \le C \|\mathbf{x}\|_{1} \Rightarrow \|A\|_{1} = \sup_{\mathbf{x}\neq 0} \frac{\|A\mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}} \le C$$

$$Now \ \text{consider a } \mathbf{x} = [0, 0..1, 0...0] \ \text{which has 1 only in the} \ k^{th} \ \text{position and a 0 everywhere} \ else. \ \text{Then} \ \|\mathbf{x}\|_{1} = 1 \ \text{and} \ \|A\mathbf{x}\|_{1} = C$$

$$\text{Thus, there exists } \mathbf{x} = [0, 0..1, 0...0] \ \text{for which the inequalities in steps (2) and (3) \ become \ equalities! \ \text{That is,}$$

$$M_N(A) = \|A\mathbf{x}\|_1 = \max_j \sum_{i=1}^n |a_{ij}|$$
H/w: Complete similar proof for infinity norm
Ganesh Ramakrishnan (IIT Bombay)
From \Re to \Re^n : CS709

Prof. Ganesh Ramakrishnan (IIT Bombay)

If $N = \|.\|_2$, $M_N(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$ • $M_N(A) = \sup_{\mathbf{x} \neq 0} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$. We know that $\|A\mathbf{x}\|_2 = \sqrt{(A\mathbf{x})^T (A\mathbf{x})} = \sqrt{\mathbf{x}^T A^T A \mathbf{x}}$.

(From basic notes on Linear Algebra⁸): A^T A is always positive semi-definite

⁸https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

If $N = \|.\|_2$, $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

•
$$M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$$
. We know that $\|A\mathbf{x}\|_2 = \sqrt{(A\mathbf{x})^T (A\mathbf{x})} = \sqrt{\mathbf{x}^T A^T A \mathbf{x}}$.

- **(**From basic notes on Linear Algebra⁸): $A^T A \in S^n_+$ is symmetric positive semi-definite
- By spectral decomposition, applied to positive semi-definite matrix A^TA:

⁸https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

If $N = \|.\|_2$, $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

$$\mathbf{0} \ M_{\mathcal{N}}(A) = \sup_{\mathbf{x} \neq 0} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2}.$$
 We know that $\|A\mathbf{x}\|_2 = \sqrt{(A\mathbf{x})^T (A\mathbf{x})} = \sqrt{\mathbf{x}^T A^T A \mathbf{x}}.$

- **(**From basic notes on Linear Algebra⁸): $A^T A \in S^n_+$ is symmetric positive semi-definite
- By spectral decomposition, there exists orthonormal U with column vectors u_i and diagonal matrix Σ of non-negative eigenvalues σ_i of A^TA such that A^TA = U^TΣU with (A^TA)u_i = σ_iu_i
- Without loss of generality, let $\sigma_1 \geq \sigma_2 \dots \geq \sigma_n$.

Since columns of U form an orthonormal basis for \Re^n , let $\mathbf{x} =$ linear combination of the ui's (basis)

⁸https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

If $N = \|.\|_2$, $M_N(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

$$M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2}.$$
 We know that $\|A\mathbf{x}\|_2 = \sqrt{(A\mathbf{x})^T (A\mathbf{x})} = \sqrt{\mathbf{x}^T A^T A \mathbf{x}}.$

- **2** (From basic notes on Linear Algebra⁸): $A^T A \in S^n_+$ is symmetric positive semi-definite
- By spectral decomposition, there exists orthonormal U with column vectors u_i and diagonal matrix Σ of non-negative eigenvalues σ_i of A^TA such that A^TA = U^TΣU with (A^TA)u_i = σ_iu_i
- Without loss of generality, let $\sigma_1 \geq \sigma_2 .. \geq \sigma_n$.

Since columns of U form an orthonormal basis for \Re^n , let $\mathbf{x} = \sum \alpha_i \mathbf{u}_i$

• Then,
$$\|\mathbf{x}\|_2 = \sqrt{\sum_i \alpha_i^2}$$
 and $\|A\mathbf{x}\|_2 = \sqrt{\mathbf{x}^{\mathsf{T}}(A^{\mathsf{T}}A\mathbf{x})} =$

⁸https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

If $N = \|.\|_2$, $M_N(A) = \sup_{\mathbf{x} \neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

$$\mathbf{0} \ M_{\mathcal{N}}(A) = \sup_{\mathbf{x} \neq 0} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2}.$$
 We know that $\|A\mathbf{x}\|_2 = \sqrt{(A\mathbf{x})^T (A\mathbf{x})} = \sqrt{\mathbf{x}^T A^T A \mathbf{x}}.$

- **2** (From basic notes on Linear Algebra⁸): $A^T A \in S^n_+$ is symmetric positive semi-definite
- By spectral decomposition, there exists orthonormal U with column vectors u_i and diagonal matrix Σ of non-negative eigenvalues σ_i of A^TA such that A^TA = U^TΣU with (A^TA)u_i = σ_iu_i
- Without loss of generality, let $\sigma_1 \geq \sigma_2 .. \geq \sigma_n$.

• Since columns of U form an orthonormal basis for \Re^n , let $\mathbf{x} = \sum lpha_i \mathbf{u}_i$

• Then,
$$\|\mathbf{x}\|_2 = \sqrt{\sum_i \alpha_i^2}$$
 and $\|A\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T (A^T A \mathbf{x})} = \sqrt{(\sum_{i=1}^n \alpha_i \mathbf{u}_i)^T (\sum_{i=1}^n \sigma_i \alpha_i \mathbf{u}_i)}.$

• If $\alpha_1 = 1$ and $\alpha_j = 0$ for all $j \neq 1$, the maximum value in (7) will be attained. Thus, $M_N(A) = \sqrt{\sigma_1}$, where σ_1 is the dominant eigenvalue of $A^T A$

⁸https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

Norm balls: Summary

- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_x\| \le r\}$ is a convex set.
 - Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_P^2 = \mathbf{x}^T P \mathbf{x}$.
 - Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_2$.
- Matrix Norm induced by vector norm N: $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

• Eg:
$$M_N(I) = M_N(A) = 1$$
 irrespective of N

• If
$$N = \|.\|_1$$
, $M_N(A) = \max_j \sum_{i=1}^m |a_{ij}|$
• If $N = \|.\|_\infty$, $M_N(A) = \max_j \sum_{i=1}^m |a_{ij}|$

• If $N = \|.\|_2$, $M_N(A) = \sqrt{\sigma_1}$, where σ_1 is the dominant eigenvalue of $A^T A$ inner prod?

• Matrix norm with an inner product:

Trivial extension of the vector inner product by unfolding a matrix into a vector

Norm balls: Summary

- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_x\| \le r\}$ is a convex set.
 - Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_P^2 = \mathbf{x}^T P \mathbf{x}$.
 - Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_2$.
- Matrix Norm induced by vector norm N: $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

• Eg:
$$M_N(I) = M_N(A) = 1$$
 irrespective of N

• If
$$N = \|.\|_1$$
, $M_N(A) = \max_j \sum_{i=1}^m |a_{ij}|$
• If $N = \|.\|_\infty$, $M_N(A) = \max_i \sum_{j=1}^m |a_{ij}|$

If N = ||.||₂, M_N(A) = √σ₁, where σ₁ is the dominant eigenvalue of A^TA
Matrix norm with an inner product:

$$\langle A, B \rangle = \sqrt{\sum_{i,j} a_{ij} b_{ij}} = \text{trace}(A^TB)$$

Norm balls: Summary

- Norm ball with center \mathbf{x}_c and radius r: $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_x\| \le r\}$ is a convex set.
 - Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_P^2 = \mathbf{x}^T P \mathbf{x}$.
 - Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_2$.
- Matrix Norm induced by vector norm N: $M_N(A) = \sup_{\mathbf{x}\neq 0} \frac{N(A\mathbf{x})}{N(\mathbf{x})}$

• Eg:
$$M_N(I) = M_N(A) = 1$$
 irrespective of N

• If
$$N = \|.\|_1$$
, $M_N(A) = \max_j \sum_{i=1}^m |a_{ij}|$
• If $N = \|.\|_\infty$, $M_N(A) = \max_i \sum_{j=1}^m |a_{ij}|$

If N = ||.||₂, M_N(A) = √σ₁, where σ₁ is the dominant eigenvalue of A^TA
Matrix norm with an inner product:

$$\langle A, B \rangle = \sqrt{\sum_{i,j} a_{ij} b_{ij}} = \sqrt{trace(A^T B)}$$
 is the Frobenius inner product.
 $||A||_F = \sqrt{\sum_{i,j} a_{ij}^2} = \sqrt{trace(A^T A)}$ is the Frobenius norm.

Prof. Ganesh Ramakrishnan (IIT Bombay)

From \Re to \Re^n : CS709

Examples of Convex Cones

More on Convex Sets and Cones

• Half-spaces as cones (induced by hyperplanes) - as affine shifted convex cones

(already discussed)

- Norm Cones
- Positive Semi-definite cone.
- Positive Semi-definite cone: Example and Notes.
- Convexity Preserving Operations on Sets

Norm cones

- Norm ball with center \mathbf{x}_c and radius \mathbf{r} : $\{\mathbf{x} | \|\mathbf{x} \mathbf{x}_x\| \leq r\}$.
- Norm cone: A set of form: obtained by stacking norm balls below each other with diminishing radius r

$\{ (x,z) \mid ||x|| <= tz \}$

Norm cones

- Norm ball with center x_c and radius r: {x|||x x_x|| ≤ r}.
 Norm cone: A set of form: {(x, t) ∈ ℜⁿ⁺¹|||x|| ≤ t}. Canonically just a t
 - Norm cones are convex cones
 - Euclidean norm cone is called-second order cone. If $\mathbf{x} \in \mathbb{R}^2$, in \mathbb{R}^3 it appears as:

Positive semidefinite cone: Primal Description

Can we visualize using a Dual Description? Can Frobenius inner product come to rescue? $v^TXv = \langle vv^T, X \rangle$

Notation

- S^n is set of symmetric $n \times n$ matrices.
- $S^n_+ = \{X \in S^n | X \succeq 0\}$: set of $n \times n$ positive semidefinite matrices.
 - $X \in S^n_+ \iff \mathbf{v}^T X \mathbf{v} \ge 0$ for all $\mathbf{v} \in \Re^n$
 - S^n_+ is a convex cone.
- $S_{++}^n = \{X \in S^n \mid X \succ 0\}$: set of $n \times n$ positive definite matrices.

Not a cone since 0 combinations are not contained

Positive semidefinite cone: Primal Description

Consider a positive semi-definite matrix $S \in \Re^2$. Then S must be of the form

S

$$= \begin{bmatrix} x & y \\ y & z \end{bmatrix}$$
 Canonical representation
of a symmetric (35)
positive semi-definite matrix

We can represent the space of matrices S^2_+ in \Re^3 with non-negative x, y and z coordinates and

a non-negative determinant:

Positive semidefinite cone: **Dual Description**

Instead of all vectors $\mathbf{v} \in \Re^n$, we can, without loss of generality, only require the inequality to hold for all \mathbf{v} with $\|\mathbf{v}\|_2 = 1$.

$$S^n_+ = \{ A \in S^n | A \succeq 0 \} = \{ A \in S^n | \mathbf{v}^T A \mathbf{v} \ge 0, \forall \| \mathbf{v} \|_2 = 1 \}$$

a Note: $\mathbf{v}^T A \mathbf{v} = \sum_i \sum_j v_i a_{ij} v_j = \sum_i \sum_j (v_i v_j) a_{ij} =$ Frobenius inner product of $vv^T T$ with A

Positive semidefinite cone: **Dual Description**

Instead of all vectors $\mathbf{v} \in \Re^n$, we can, without loss of generality, only require the inequality to hold for all \mathbf{v} with $\|\mathbf{v}\|_2 = 1$.

$$S_{+}^{n} = \{ A \in S^{n} | A \succeq 0 \} = \{ A \in S^{n} | \mathbf{v}^{\mathsf{T}} A \mathbf{v} \ge 0, \forall \| \mathbf{v} \|_{2} = 1 \}$$

- One parametrization for
$${\bf v}$$
 such that $\|{\bf v}\|_2=1$ is

$$\mathbf{v} = \begin{bmatrix} Cos(\theta) \\ Sin(\theta) \end{bmatrix}$$
(36)

$$\mathbf{v}\mathbf{v}^{\mathsf{T}} = \begin{bmatrix} Cos^{2}(\theta) & Cos(\theta)Sin(\theta) \\ Cos(\theta)Sin(\theta) & Sin^{2}(\theta) \end{bmatrix}$$
(37)

• Homework: Plot a finite # of halfspaces parameterized by (θ) .

Positive semidefinite cone: **Dual Description**

- S^n_+ = intersection of infinite # of half spaces belonging to $R^{n(n+1)/2}$ [Dual Representation]
 - Ocone boundary consists of all singular p.s.d. matrices having at-least one O eigenvalue.
 - **O**rigin = O = matrix with all 0 eigenvalues.
 - Interior consists of all full rank matrices A (rank A = m) i.e. $A \succ 0$.

Convexity preserving operations

In practice if you want to establish the convexity of a set $\mathcal{C},$ you could either

- **9** prove it from first principles, *i.e.*, using the definition of convexity or **eg: norm ball**
- Prove that <u>C</u> can be built from simpler convex sets through some basic operations which preserve convexity.

Some of the important operations that preserve complexity are:

Addition (recap discussion in context of Separating Hyperplanes)

Intersection

- Affine Transform (Eg: Ellipsoid as a transform of sphere)
- Perspective and Linear Fractional Function

Closure under Intersection

The intersection of any number of convex sets is convex. Consider the set S:

$$S = \left\{ \mathbf{x} \in \Re^n \mid |\mathbf{p}(t)| \le 1 \text{ for } |t| \le \frac{\pi}{3} \right\}$$
(38)

where

$$p(t) = x_1 \cos t + x_2 \cos 2t + \ldots + x_m \cos mt = < x, \cos vec(t)$$

Prof. Ganesh Ramakrishnan (IIT Bombay)

Closure under Intersection (contd.)

Any value of t that satisfies $|p(t)| \leq 1$, defines two regions, *viz.*,

$$\Re^{\leq}(t) = \left\{ \mathbf{x} \mid x_1 \cos t + x_2 \cos 2t + \ldots + x_m \cos mt \le 1 \right\}$$

and

$$\Re^{\geq}(t) = \left\{ \mathbf{x} \mid x_1 \cos t + x_2 \cos 2t + \ldots + x_m \cos mt \geq -1 \right\}$$

Each of the these regions is convex and for a given value of t, the set of points that may lie in S is given by $\Re(t) = \Re^{\leq}(t) \cap \Re^{\geq}(t)$

Intersection over intersection of halfspaces ==> Convex

Closure under Intersection (contd.)

 $\Re(t)$ is also convex. However, not all the points in $\Re(t)$ lie in S, since the points that lie in S satisfy the inequalities for every value of t. Thus, S can be given as:

Closure under Affine transform

An affine transformation or affine map between two vector spaces $f: \Re^n \to \Re^m$ consists of a linear transformation followed by a translation:

$$\mathbf{x} \mapsto A\mathbf{x} + \mathbf{b}$$

where $A \in \Re^{n \times m}$ and $\mathbf{b} \in \Re^m$.

An affine transform is one that preserves (eg: when you go from sphere to ellipsoid

collinearity between points?
 ratios of distances are preserved?

Closure under Affine transform

An affine transformation or affine map between two vector spaces $f: \Re^n \to \Re^m$ consists of a linear transformation followed by a translation:

$$\mathbf{x} \mapsto A\mathbf{x} + \mathbf{b}$$

where $A \in \Re^{n \times m}$ and $\mathbf{b} \in \Re^m$.

An affine transform is one that preserves

- Collinearity between points, *i.e.*, three points which lie on a line continue to be collinear after the transformation.
- Ratios of distances along a line, *i.e.*, for distinct colinear points $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \frac{||\mathbf{p}_2-\mathbf{p}_1||}{||\mathbf{p}_3-\mathbf{p}_2||}$ is preserved.

Closure under Affine transform (contd.)

In the finite-dimensional case each affine transformation is given by a matrix A and a vector \mathbf{b} . The image and pre-image of convex sets under an affine transformation defined as

$$f(\mathbf{x}) = \sum_{i}^{n} x_{i} a_{i} + b$$

yield convex sets⁹. Here a_i is the i^{th} row of A. The following are examples of convex sets that are either images or inverse images of convex sets under affine transformations:

• the solution set of linear matrix inequality $(A_i, B \in S^m)$

$$\{\mathbf{x}\in\mathfrak{R}^n\mid x_1A_1+\ldots+x_nA_n\preceq B\}$$

is a convex set. Here $A \leq B$ means B - A is positive semi-definite¹⁰. This set is the inverse image under an affine mapping of the

H/w

¹⁰The inequality induced by positive semi-definiteness corresponds to a generalized inequality \preceq_{κ} with $\kappa = S_{*}^{n}$

⁹Exercise: Prove.