Norm balls

- Recap Norm: A function ${ }^{7}| | .| |$ that satisfies:
(1) $\|x\| \geq 0$, and $\|x\|=0$ iff $x=0$.
(2) $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$ for any scalar $\alpha \in \Re$.
(3) $\left\|\mathrm{x}_{1}+\mathrm{x}_{2}\right\| \leq\left\|\mathrm{x}_{1}\right\|+\left\|\mathrm{x}_{2}\right\|$ for any vectors x_{1} and x_{2}.
- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set. Why?
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$

Here, sup $f(s)=\widehat{f}$ if \widehat{f} is the minimum upper bound for $f(s)$ over $s \in S$.

$$
s \in S
$$

- Eg: $M_{N}(I)=M_{N}(A)=1$ irrespective of N
- If $N=\|\cdot\|_{1}, M_{N}(A)=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$
- If $N=\|\cdot\|_{\infty}, M_{N}(A)=\max _{i} \sum_{j=1}^{m}\left|a_{i j}\right|$
- If $N=\|\cdot\|_{2}, M_{N}(A)=\sqrt{\sigma_{1}}$, where σ_{1} is the dominant eigenvalue of $A^{\top} A$
$N=\|\cdot\|_{1}, M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}$
(1) If $N(\mathbf{x})=\sum_{i=1}^{m}\left|x_{j}\right|$ then $N(A \mathbf{x})=\sum_{i=1}^{n}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}\right|$
(2) Changing the order of summation:

Absolute value of sum is $<=$ sum of absolute values
$N=\|\cdot\|_{1}, M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}$
(1) If $N(\mathbf{x})=\sum_{i=1}^{m}\left|x_{j}\right|$ then $N(A \mathbf{x})=\sum_{i=1}^{n}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}\right|$
(2) Changing the order of summation: $N(A \mathbf{x}) \leq \sum_{j=1}^{m} \sum_{i=1}^{\frac{i=1}{n}\left|a_{i j}\right|\left|x_{j}\right|}=\sum_{j=1}^{m}\left|x_{j}\right| \sum_{i=1}^{n}\left|a_{i j}\right|$
(3) Let $C=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|=\sum_{i=1}^{n}\left|a_{i k}\right|$. Then
C is max sum over absolute values in a column
$N=\|\cdot\|_{1}, M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}$
(1) If $N(\mathbf{x})=\sum_{i=1}^{m}\left|x_{j}\right|$ then $N(A \mathbf{x})=\sum_{i=1}^{n}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}\right|$
(2) Changing the order of summation: $N(A \mathbf{x}) \leq \sum_{j=1}^{m} \sum_{i=1}^{n}\left|a_{i j}\right|\left|x_{j}\right|=\sum_{j=1}^{m}\left|x_{j} \sum_{i=1}^{n}\right| a_{i j} \mid$
(3) Let $C=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|=\sum_{i=1}^{n}\left|a_{i k}\right|$. Then $\|A \mathbf{x}\|_{1} \leq C\|\mathbf{x}\|_{1} \Rightarrow\|A\|_{1}=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}} \leq C$
(9) Now consider a $\mathrm{x}=[0 \ldots .1 \ldots .0]$
$N=\|\cdot\|_{1}, M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}$
(1) If $N(\mathbf{x})=\sum_{i=1}^{m}\left|x_{j}\right|$ then $N(A \mathbf{x})=\sum_{i=1}^{n}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}\right|$
(2. Changing the order of summation: $N(A \mathbf{x}) \leq \sum_{j=1}^{m} \sum_{i=1}^{n}\left|a_{i j}\right|\left|x_{j}\right|=\sum_{j=1}^{m}\left|x_{j}\right| \sum_{i=1}^{n}\left|a_{i j}\right|$
(3) Let $C=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|=\sum_{i=1}^{n}\left|a_{i k}\right|$. Then $\|A \mathbf{x}\|_{1} \leq C\|\mathbf{x}\|_{1} \Rightarrow\|A\|_{1}=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}} \leq C$
(4) Now consider a $\mathbf{x}=[0,0 . .1,0 \ldots 0]$ which has 1 only in the $k^{\text {th }}$ position and a 0 everywhere else. Then

All inequalities mentioned above become equalities

$N=\|\cdot\|_{1}, M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}$
(1) If $N(\mathbf{x})=\sum_{i=1}^{m}\left|x_{j}\right|$ then $N(A \mathbf{x})=\sum_{i=1}^{n}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}\right|$
(2. Changing the order of summation: $N(A \mathbf{x}) \leq \sum_{j=1}^{m} \sum_{i=1}^{n}\left|a_{i j}\right|\left|x_{j}\right|=\sum_{j=1}^{m}\left|x_{j}\right| \sum_{i=1}^{n}\left|a_{i j}\right|$
(3) Let $C=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|=\sum_{i=1}^{n}\left|a_{i k}\right|$. Then $\|A \mathbf{x}\|_{1} \leq C\|\mathbf{x}\|_{1} \Rightarrow\|A\|_{1}=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}} \leq C$
(4) Now consider a $\mathbf{x}=[0,0 . .1,0 \ldots 0]$ which has 1 only in the $k^{\text {th }}$ position and a 0 everywhere else. Then $\|\mathbf{x}\|_{1}=1$ and $\|A \mathbf{x}\|_{1}=C$
(0) Thus, there exists $\mathbf{x}=[0,0 . .1,0 \ldots 0]$ for which the inequalities in steps (2) and (3) become equalities! That is,
$N=\|\cdot\|_{1}, M_{N}(A)=\sup _{\mathrm{x} \neq 0} \frac{N(A \mathrm{x})}{N(\mathrm{x})}$
(1) If $N(\mathbf{x})=\sum_{i=1}^{m}\left|x_{j}\right|$ then $N(A \mathbf{x})=\sum_{i=1}^{n}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right| \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}\right|$
(2. Changing the order of summation: $N(A \mathbf{x}) \leq \sum_{j=1}^{m} \sum_{i=1}^{n}\left|a_{i j}\right|\left|x_{j}\right|=\sum_{j=1}^{m}\left|x_{j}\right| \sum_{i=1}^{n}\left|a_{i j}\right|$
(3) Let $C=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|=\sum_{i=1}^{n}\left|a_{i k}\right|$. Then $\|A \mathbf{x}\|_{1} \leq C\|\mathbf{x}\|_{1} \Rightarrow\|A\|_{1}=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}} \leq C$
(4) Now consider a $\mathbf{x}=[0,0 . .1,0 \ldots 0]$ which has 1 only in the $k^{\text {th }}$ position and a 0 everywhere else. Then $\|\mathrm{x}\|_{1}=1$ and $\|A \mathbf{x}\|_{1}=C$
(3) Thus, there exists $\mathbf{x}=[0,0 . .1,0 \ldots 0]$ for which the inequalities in steps (2) and (3) become equalities! That is,

$$
M_{N}(A)=\|A \mathbf{x}\|_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

H/w: Complete similar proof for infinity norm

If $N=\|\cdot\|_{2}, M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$
(1) $M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$. We know that $\|A \mathrm{x}\|_{2}=\sqrt{(A \mathrm{x})^{T}(A \mathrm{x})}=\sqrt{\mathrm{x}^{\top} A^{\top} A \mathrm{x}}$.
(2) (From basic notes on Linear Algebra ${ }^{8}$): $\mathrm{A}^{\wedge} \mathrm{T} A$ is always positive semi-definite

[^0]If $N=\|\cdot\|_{2}, M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$
(1) $M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$. We know that $\|A \mathbf{x}\|_{2}=\sqrt{(A \mathbf{x})^{T}(A \mathbf{x})}=\sqrt{\mathbf{x}^{T} A^{T} A \mathbf{x}}$.
(2) (From basic notes on Linear Algebra ${ }^{8}$): $A^{T} A \in S_{+}^{n}$ is symmetric positive semi-definite

- By spectral decomposition, applied to positive semi-definite matrix A^{\wedge} TA:

[^1]If $N=\|\cdot\|_{2}, M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$
(1) $M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$. We know that $\|A \mathbf{x}\|_{2}=\sqrt{(A \mathbf{x})^{T}(A \mathbf{x})}=\sqrt{\mathbf{x}^{T} A^{T} A \mathbf{x}}$.
(2) (From basic notes on Linear Algebra ${ }^{8}$): $A^{T} A \in S_{+}^{n}$ is symmetric positive semi-definite
(3) By spectral decomposition, there exists orthonormal U with column vectors \mathbf{u}_{i} and diagonal matrix Σ of non-negative eigenvalues σ_{i} of $A^{T} A$ such that $A^{T} A=U^{T} \Sigma U$ with $\left(A^{T} A\right) \mathbf{u}_{i}=\sigma_{i} \mathbf{u}_{i}$
(9) Without loss of generality, let $\sigma_{1} \geq \sigma_{2} . . \geq \sigma_{n}$.
(5) Since columns of U form an orthonormal basis for \Re^{n}, let $\mathbf{x}=$ linear combination of the ui's (basis)

[^2]If $N=\|\cdot\|_{2}, M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$
(1) $M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$. We know that $\|A \mathbf{x}\|_{2}=\sqrt{(A \mathbf{x})^{T}(A \mathbf{x})}=\sqrt{\mathbf{x}^{T} A^{T} A \mathbf{x}}$.
(2) (From basic notes on Linear Algebra ${ }^{8}$): $A^{T} A \in S_{+}^{n}$ is symmetric positive semi-definite
(3) By spectral decomposition, there exists orthonormal U with column vectors \mathbf{u}_{i} and diagonal matrix Σ of non-negative eigenvalues σ_{i} of $A^{T} A$ such that $A^{T} A=U^{T} \Sigma U$ with $\left(A^{T} A\right) \mathbf{u}_{i}=\sigma_{i} \mathbf{u}_{i}$
(9) Without loss of generality, let $\sigma_{1} \geq \sigma_{2} . . \geq \sigma_{n}$.
(3) Since columns of U form an orthonormal basis for \Re^{n}, let $\mathrm{x}=\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}$
(6) Then, $\|\mathbf{x}\|_{2}=\sqrt{\sum_{i} \alpha_{i}^{2}}$ and $\|A \mathbf{x}\|_{2}=\sqrt{\mathrm{x}^{\top}\left(A^{\top} A \mathbf{x}\right)}=$

[^3]If $N=\|\cdot\|_{2}, M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$
(1) $M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$. We know that $\|A \mathbf{x}\|_{2}=\sqrt{(A \mathbf{x})^{T}(A \mathbf{x})}=\sqrt{\mathbf{x}^{T} A^{T} A \mathbf{x}}$.
(2) (From basic notes on Linear Algebra ${ }^{8}$): $A^{T} A \in S_{+}^{n}$ is symmetric positive semi-definite
(3) By spectral decomposition, there exists orthonormal U with column vectors \mathbf{u}_{i} and diagonal matrix Σ of non-negative eigenvalues σ_{i} of $A^{T} A$ such that $A^{T} A=U^{T} \Sigma U$ with $\left(A^{T} A\right) \mathbf{u}_{i}=\sigma_{i} \mathbf{u}_{i}$
(9) Without loss of generality, let $\sigma_{1} \geq \sigma_{2} . . \geq \sigma_{n}$.
(3) Since columns of U form an orthonormal basis for \Re^{n}, let $\mathbf{x}=\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}$
(Then, $\|\mathbf{x}\|_{2}=\sqrt{\sum_{i} \alpha_{i}^{2}}$ and $\|A \mathbf{x}\|_{2}=\sqrt{\mathbf{x}^{\top}\left(A^{\top} A \mathbf{x}\right)}=\sqrt{\left(\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}\right)^{T}\left(\sum_{i=1}^{n} \sigma_{i} \alpha_{i} \mathbf{u}_{i}\right)}$.
(3) If $\alpha_{1}=1$ and $\alpha_{j}=0$ for all $j \neq 1$, the maximum value in (7) will be attained. Thus, $M_{N}(A)=\sqrt{\sigma_{1}}$, where σ_{1} is the dominant eigenvalue of $A^{T} A$

[^4]
Norm balls: Summary

- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set.
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$
- Eg: $M_{N}(I)=M_{N}(A)=1$ irrespective of N
- If $N=\|\cdot\|_{1}, M_{N}(A)=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$
- If $N=\|.\|_{\infty}, M_{N}(A)=\max _{i} \sum_{j=1}^{m}\left|a_{i j}\right|$
- If $N=\|\cdot\|_{2}, M_{N}(A)=\sqrt{\sigma_{1}}$, where σ_{1} is the dominant eigenvalue of $A^{T} A$ inner prod?
- Matrix norm with an inner product:

Trivial extension of the vector inner product by unfolding a matrix into a vector

Norm balls: Summary

- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set.
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$
- Eg: $M_{N}(I)=M_{N}(A)=1$ irrespective of N
- If $N=\|\cdot\|_{1}, M_{N}(A)=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$
- If $N=\|.\|_{\infty}, M_{N}(A)=\max _{i} \sum_{j=1}^{m}\left|a_{i j}\right|$
- If $N=\|\cdot\|_{2}, M_{N}(A)=\sqrt{\sigma_{1}}$, where σ_{1} is the dominant eigenvalue of $A^{T} A$
- Matrix norm with an inner product:
$\langle A, B\rangle=\sqrt{\sum_{i, j} a_{i j} b_{i j}}=\operatorname{trace}\left(\mathrm{A}^{\wedge} \mathrm{TB}\right)$

Norm balls: Summary

- Norm ball with center \mathbf{x}_{c} and radius $r:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$ is a convex set.
- Eg 1: Ellipsoid is defined using $\|\mathbf{x}\|_{P}^{2}=\mathbf{x}^{\top} P \mathbf{x}$.
- Eg 2: Euclidean ball is defined using $\|\mathbf{x}\|_{2}$.
- Matrix Norm induced by vector norm $N: M_{N}(A)=\sup _{\mathbf{x} \neq 0} \frac{N(A \mathbf{x})}{N(\mathbf{x})}$
- Eg: $M_{N}(I)=M_{N}(A)=1$ irrespective of N
- If $N=\|\cdot\|_{1}, M_{N}(A)=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$
- If $N=\|\cdot\|_{\infty}, M_{N}(A)=\max _{i} \sum_{j=1}^{m}\left|a_{i j}\right|$
- If $N=\|\cdot\|_{2}, M_{N}(A)=\sqrt{\sigma_{1}}$, where σ_{1} is the dominant eigenvalue of $A^{T} A$
- Matrix norm with an inner product:
$\langle A, B\rangle=\sqrt{\sum_{i, j} a_{i j} b_{i j}}=\sqrt{\operatorname{trace}\left(A^{\top} B\right)}$ is the Frobenius inner product.
$\|A\|_{F}=\sqrt{\sum a_{i j}^{2}}=\sqrt{\operatorname{trace}\left(A^{T} A\right)}$ is the Frobenius norm.

Examples of Convex Cones

More on Convex Sets and Cones

- Half-spaces as cones (induced by hyperplanes) - as affine shifted convex cones
- Norm Cones (already discussed)
- Positive Semi-definite cone.
- Positive Semi-definite cone: Example and Notes.
- Convexity Preserving Operations on Sets

Norm cones

- Norm ball with center \mathbf{x}_{c} and radius $\mathbf{r}:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{\mathrm{x}}\right\| \leq r\right\}$.
- Norm cone: A set of form: obtained by stacking norm balls below each other with diminishing radius r

$$
\{(x, z) \mid\|x\|<=t z\}
$$

Norm cones

- Norm ball with center \mathbf{x}_{c} and radius $\mathbf{r}:\left\{\mathbf{x} \mid\left\|\mathbf{x}-\mathbf{x}_{x}\right\| \leq r\right\}$.
- Norm cone: A set of form: $\left\{(\mathbf{x}, t) \in \Re^{n+1} \mid\|\mathbf{x}\| \leq t\right\}$. Canonically just a t
- Norm cones are convex cones
- Euclidean norm cone is called-second order cone. If $\mathbf{x} \in \Re^{2}$, in \Re^{3} it appears as:

Positive semidefinite cone: Primal Description

Can we visualize using a Dual Description?
Can Frobenius inner product come to rescue?
$v^{\wedge} T X v=<v v^{\wedge} T, X>$

Notation

- S^{n} is set of symmetric $n \times n$ matrices.
- $S_{+}^{n}=\left\{X \in S^{n} \mid X \succeq 0\right\}$: set of $n \times n$ positive semidefinite matrices.
- $X \in S_{+}^{n} \Longleftrightarrow \mathbf{v}^{T} X \mathbf{v} \geq 0$ for all $\mathbf{v} \in \Re^{n}$
- S_{+}^{n} is a convex cone.
- $S_{++}^{n}=\left\{X \in S^{n} \mid X \succ 0\right\}$: set of $n \times n$ positive definite matrices.

Not a cone since 0 combinations are not contained

Positive semidefinite cone: Primal Description

Consider a positive semi-definite matrix $S \in \Re^{2}$. Then S must be of the form

$$
S=\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right] \begin{aligned}
& \text { Canonical representation } \\
& \text { of a symmetric } \\
& \text { positive semi-definite matrix }
\end{aligned}
$$

We can represent the space of matrices \mathcal{S}_{+}^{2} in \Re^{3} with non-negative x, y and z coordinates and
a non-negative determinant:

Positive semidefinite cone: Dual Description

Instead of all vectors $\mathbf{v} \in \Re^{n}$, we can, without loss of generality, only require the inequality to hold for all \mathbf{v} with $\|\mathbf{v}\|_{2}=1$.
(1) $S_{+}^{n}=\left\{A \in S^{n} \mid A \succeq 0\right\}=\left\{A \in S^{n} \mid \mathbf{v}^{T} A \mathbf{v} \geq 0, \forall\|\mathbf{v}\|_{2}=1\right\}$
(2) Note: $\mathbf{v}^{T} A \mathbf{v}=\sum_{i} \sum_{j} v_{i} a_{i j} v_{j}=\sum_{i} \sum_{j}\left(v_{i} v_{j}\right) a_{i j}=$ Frobenius inner product of $\mathrm{vv}{ }^{\wedge} \mathrm{T}$ with A

Positive semidefinite cone: Dual Description

Instead of all vectors $\mathbf{v} \in \Re^{n}$, we can, without loss of generality, only require the inequality to hold for all \mathbf{v} with $\|\mathbf{v}\|_{2}=1$.
(1) $S_{+}^{n}=\left\{A \in S^{n} \mid A \succeq 0\right\}=\left\{A \in S^{n} \mid \mathbf{v}^{T} A \mathbf{v} \geq 0, \forall\|\mathbf{v}\|_{2}=1\right\}$
(2) Note: $\mathbf{v}^{T} A \mathbf{v}=\sum_{i} \sum_{j} v_{i} a_{i j} v_{j}=\sum_{i} \sum_{j}\left(v_{i} v_{j}\right) a_{i j}=\left\langle\mathbf{v} \mathbf{v}^{T}, A\right\rangle=\operatorname{tr}\left(\left(\mathbf{v v}^{T}\right)^{T} A\right)=\operatorname{tr}\left(\mathbf{v}^{T} A\right)$
(3) So, $S_{+}^{n}=\bigcap_{\|\mathbf{v}\|=1}\left\{A \in S \mid\left\langle\mathbf{v} \mathbf{v}^{T}, A\right\rangle \geq 0\right\}$

- One parametrization for \mathbf{v} such that $\|\mathbf{v}\|_{2}=1$ is

$$
\begin{gather*}
\mathbf{v}=\left[\begin{array}{c}
\operatorname{Cos}(\theta) \\
\operatorname{Sin}(\theta)
\end{array}\right] \tag{36}\\
\mathbf{v v}^{\top}=\left[\begin{array}{cc}
\operatorname{Cos}^{2}(\theta) & \operatorname{Cos}(\theta) \operatorname{Sin}(\theta) \\
\operatorname{Cos}(\theta) \operatorname{Sin}(\theta) & \operatorname{Sin}^{2}(\theta)
\end{array}\right] \tag{37}
\end{gather*}
$$

- Homework: Plot a finite \# of halfspaces parameterized by (θ).

Each hyperplane has been generated programmatically using a different value of theta

Positive semidefinite cone: Dual Description

(1) $S_{+}^{n}=$ intersection of infinite $\#$ of half spaces belonging to $R^{n(n+1) / 2}$ [Dual Representation]
(1) Cone boundary consists of all singular p.s.d. matrices having at-least one 0 eigenvalue.
(2) Origin $=0=$ matrix with all 0 eigenvalues.
(Interior consists of all full rank matrices $A($ rank $A=m)$ i.e. $A \succ 0$.

Convexity preserving operations

In practice if you want to establish the convexity of a set \mathcal{C}, you could either
(1) prove it from first principles, i.e., using the definition of convexity or eg: norm ball
(2) prove that \mathcal{C} can be built from simpler convex sets through some basic operations which preserve convexity.
Some of the important operations that preserve complexity are:
(1) Addition (recap discussion in context of Separating Hyperplanes)
(2) Intersection
(3) Affine Transform (Eg: Ellipsoid as a transform of sphere)
(9) Perspective and Linear Fractional Function

Closure under Intersection

The intersection of any number of convex sets is convex. Consider the set \mathcal{S} :

$$
\begin{equation*}
\mathcal{S}=\left\{\mathrm{x} \in \Re^{n}| | p(t) \mid \leq 1 \text { for }|t| \leq \frac{\pi}{3}\right\} \tag{38}
\end{equation*}
$$

where

$$
p(t)=x_{1} \cos t+x_{2} \cos 2 t+\ldots+x_{m} \cos m t=<x, \cos _v e c(t)(39)
$$

Closure under Intersection (contd.)

Any value of t that satisfies $|p(t)| \leq 1$, defines two regions, viz.,

$$
\Re \leq(t)=\left\{\mathbf{x} \mid x_{1} \cos t+x_{2} \cos 2 t+\ldots+x_{m} \cos m t \leq 1\right\}
$$

and

$$
\Re \geq(t)=\left\{\mathbf{x} \mid x_{1} \cos t+x_{2} \cos 2 t+\ldots+x_{m} \cos m t \geq-1\right\}
$$

Each of the these regions is convex and for a given value of t, the set of points that may lie in \mathcal{S} is given by $\Re(t)=\Re \leq(t) \cap \Re \geq(t)$

Intersection over intersection of halfspaces $==>$ Convex

Closure under Intersection (contd.)

$\Re(t)$ is also convex. However, not all the points in $\Re(t)$ lie in \mathcal{S}, since the points that lie in \mathcal{S} satisfy the inequalities for every value of t. Thus, \mathcal{S} can be given as:

$$
\mathcal{S}=\bigcap_{|t| \leq \frac{\pi}{3}} \Re(t)
$$

Closure under Affine transform

An affine transformation or affine map between two vector spaces $f: \Re^{n} \rightarrow \Re^{m}$ consists of a linear transformation followed by a translation:

$$
\mathbf{x} \mapsto A \mathrm{x}+\mathrm{b}
$$

where $A \in \Re^{n \times m}$ and $\mathbf{b} \in \Re^{m}$.
An affine transform is one that preserves (eg: when you go from sphere to ellipsoid

1) collinearity between points?
2) ratios of distances are preserved?

Closure under Affine transform

An affine transformation or affine map between two vector spaces $f: \Re^{n} \rightarrow \Re^{m}$ consists of a linear transformation followed by a translation:

$$
\mathbf{x} \mapsto A \mathrm{x}+\mathrm{b}
$$

where $A \in \Re^{n \times m}$ and $\mathbf{b} \in \Re^{m}$.
An affine transform is one that preserves

- Collinearity between points, i.e., three points which lie on a line continue to be collinear after the transformation.
- Ratios of distances along a line, i.e., for distinct colinear points $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \frac{\left\|\mathbf{p}_{2}-\mathbf{p}_{1}\right\|}{\left\|\mathbf{p}_{3}-\mathbf{p}_{2}\right\|}$ is preserved.

Closure under Affine transform (contd.)

In the finite-dimensional case each affine transformation is given by a matrix A and a vector \mathbf{b}. The image and pre-image of convex sets under an affine transformation defined as

$$
f(\mathbf{x})=\sum_{i}^{n} x_{i} a_{i}+b
$$

yield convex sets ${ }^{9}$. Here a_{i} is the $i^{\text {th }}$ row of A. The following are examples of convex sets that are either images or inverse images of convex sets under affine transformations:
(1) the solution set of linear matrix inequality $\left(A_{i}, B \in \mathcal{S}^{m}\right)$

$$
\left\{\mathbf{x} \in \Re^{n} \mid x_{1} A_{1}+\ldots+x_{n} A_{n} \preceq B\right\}
$$

is a convex set. Here $A \preceq B$ means $B-A$ is positive semi-definite ${ }^{10}$. This set is the inverse image under an affine mapping of the

H/w

[^5] $K=\mathcal{S}_{+}^{n}$

[^0]: ${ }^{8}$ https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

[^1]: ${ }^{8}$ https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

[^2]: ${ }^{8}$ https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

[^3]: ${ }^{8}$ https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

[^4]: ${ }^{8}$ https://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf

[^5]: ${ }^{9}$ Exercise: Prove.
 ${ }^{10}$ The inequality induced by positive semi-definiteness corresponds to a generalized inequality \preceq_{K} with

